perf_counter: Provide functions for locking and pinning the context for a task
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52  * Lock for (sysadmin-configurable) counter reservations:
53  */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57  * Architecture provided APIs - weak aliases:
58  */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61         return NULL;
62 }
63
64 void __weak hw_perf_disable(void)               { barrier(); }
65 void __weak hw_perf_enable(void)                { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
68 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
69                struct perf_cpu_context *cpuctx,
70                struct perf_counter_context *ctx, int cpu)
71 {
72         return 0;
73 }
74
75 void __weak perf_counter_print_debug(void)      { }
76
77 static DEFINE_PER_CPU(int, disable_count);
78
79 void __perf_disable(void)
80 {
81         __get_cpu_var(disable_count)++;
82 }
83
84 bool __perf_enable(void)
85 {
86         return !--__get_cpu_var(disable_count);
87 }
88
89 void perf_disable(void)
90 {
91         __perf_disable();
92         hw_perf_disable();
93 }
94
95 void perf_enable(void)
96 {
97         if (__perf_enable())
98                 hw_perf_enable();
99 }
100
101 static void get_ctx(struct perf_counter_context *ctx)
102 {
103         atomic_inc(&ctx->refcount);
104 }
105
106 static void free_ctx(struct rcu_head *head)
107 {
108         struct perf_counter_context *ctx;
109
110         ctx = container_of(head, struct perf_counter_context, rcu_head);
111         kfree(ctx);
112 }
113
114 static void put_ctx(struct perf_counter_context *ctx)
115 {
116         if (atomic_dec_and_test(&ctx->refcount)) {
117                 if (ctx->parent_ctx)
118                         put_ctx(ctx->parent_ctx);
119                 if (ctx->task)
120                         put_task_struct(ctx->task);
121                 call_rcu(&ctx->rcu_head, free_ctx);
122         }
123 }
124
125 /*
126  * Get the perf_counter_context for a task and lock it.
127  * This has to cope with with the fact that until it is locked,
128  * the context could get moved to another task.
129  */
130 static struct perf_counter_context *perf_lock_task_context(
131                                 struct task_struct *task, unsigned long *flags)
132 {
133         struct perf_counter_context *ctx;
134
135         rcu_read_lock();
136  retry:
137         ctx = rcu_dereference(task->perf_counter_ctxp);
138         if (ctx) {
139                 /*
140                  * If this context is a clone of another, it might
141                  * get swapped for another underneath us by
142                  * perf_counter_task_sched_out, though the
143                  * rcu_read_lock() protects us from any context
144                  * getting freed.  Lock the context and check if it
145                  * got swapped before we could get the lock, and retry
146                  * if so.  If we locked the right context, then it
147                  * can't get swapped on us any more.
148                  */
149                 spin_lock_irqsave(&ctx->lock, *flags);
150                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
151                         spin_unlock_irqrestore(&ctx->lock, *flags);
152                         goto retry;
153                 }
154         }
155         rcu_read_unlock();
156         return ctx;
157 }
158
159 /*
160  * Get the context for a task and increment its pin_count so it
161  * can't get swapped to another task.  This also increments its
162  * reference count so that the context can't get freed.
163  */
164 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
165 {
166         struct perf_counter_context *ctx;
167         unsigned long flags;
168
169         ctx = perf_lock_task_context(task, &flags);
170         if (ctx) {
171                 ++ctx->pin_count;
172                 get_ctx(ctx);
173                 spin_unlock_irqrestore(&ctx->lock, flags);
174         }
175         return ctx;
176 }
177
178 static void perf_unpin_context(struct perf_counter_context *ctx)
179 {
180         unsigned long flags;
181
182         spin_lock_irqsave(&ctx->lock, flags);
183         --ctx->pin_count;
184         spin_unlock_irqrestore(&ctx->lock, flags);
185         put_ctx(ctx);
186 }
187
188 /*
189  * Add a counter from the lists for its context.
190  * Must be called with ctx->mutex and ctx->lock held.
191  */
192 static void
193 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
194 {
195         struct perf_counter *group_leader = counter->group_leader;
196
197         /*
198          * Depending on whether it is a standalone or sibling counter,
199          * add it straight to the context's counter list, or to the group
200          * leader's sibling list:
201          */
202         if (group_leader == counter)
203                 list_add_tail(&counter->list_entry, &ctx->counter_list);
204         else {
205                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
206                 group_leader->nr_siblings++;
207         }
208
209         list_add_rcu(&counter->event_entry, &ctx->event_list);
210         ctx->nr_counters++;
211 }
212
213 /*
214  * Remove a counter from the lists for its context.
215  * Must be called with ctx->mutex and ctx->lock held.
216  */
217 static void
218 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
219 {
220         struct perf_counter *sibling, *tmp;
221
222         if (list_empty(&counter->list_entry))
223                 return;
224         ctx->nr_counters--;
225
226         list_del_init(&counter->list_entry);
227         list_del_rcu(&counter->event_entry);
228
229         if (counter->group_leader != counter)
230                 counter->group_leader->nr_siblings--;
231
232         /*
233          * If this was a group counter with sibling counters then
234          * upgrade the siblings to singleton counters by adding them
235          * to the context list directly:
236          */
237         list_for_each_entry_safe(sibling, tmp,
238                                  &counter->sibling_list, list_entry) {
239
240                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
241                 sibling->group_leader = sibling;
242         }
243 }
244
245 static void
246 counter_sched_out(struct perf_counter *counter,
247                   struct perf_cpu_context *cpuctx,
248                   struct perf_counter_context *ctx)
249 {
250         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
251                 return;
252
253         counter->state = PERF_COUNTER_STATE_INACTIVE;
254         counter->tstamp_stopped = ctx->time;
255         counter->pmu->disable(counter);
256         counter->oncpu = -1;
257
258         if (!is_software_counter(counter))
259                 cpuctx->active_oncpu--;
260         ctx->nr_active--;
261         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
262                 cpuctx->exclusive = 0;
263 }
264
265 static void
266 group_sched_out(struct perf_counter *group_counter,
267                 struct perf_cpu_context *cpuctx,
268                 struct perf_counter_context *ctx)
269 {
270         struct perf_counter *counter;
271
272         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
273                 return;
274
275         counter_sched_out(group_counter, cpuctx, ctx);
276
277         /*
278          * Schedule out siblings (if any):
279          */
280         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
281                 counter_sched_out(counter, cpuctx, ctx);
282
283         if (group_counter->hw_event.exclusive)
284                 cpuctx->exclusive = 0;
285 }
286
287 /*
288  * Cross CPU call to remove a performance counter
289  *
290  * We disable the counter on the hardware level first. After that we
291  * remove it from the context list.
292  */
293 static void __perf_counter_remove_from_context(void *info)
294 {
295         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
296         struct perf_counter *counter = info;
297         struct perf_counter_context *ctx = counter->ctx;
298
299         /*
300          * If this is a task context, we need to check whether it is
301          * the current task context of this cpu. If not it has been
302          * scheduled out before the smp call arrived.
303          */
304         if (ctx->task && cpuctx->task_ctx != ctx)
305                 return;
306
307         spin_lock(&ctx->lock);
308         /*
309          * Protect the list operation against NMI by disabling the
310          * counters on a global level.
311          */
312         perf_disable();
313
314         counter_sched_out(counter, cpuctx, ctx);
315
316         list_del_counter(counter, ctx);
317
318         if (!ctx->task) {
319                 /*
320                  * Allow more per task counters with respect to the
321                  * reservation:
322                  */
323                 cpuctx->max_pertask =
324                         min(perf_max_counters - ctx->nr_counters,
325                             perf_max_counters - perf_reserved_percpu);
326         }
327
328         perf_enable();
329         spin_unlock(&ctx->lock);
330 }
331
332
333 /*
334  * Remove the counter from a task's (or a CPU's) list of counters.
335  *
336  * Must be called with ctx->mutex held.
337  *
338  * CPU counters are removed with a smp call. For task counters we only
339  * call when the task is on a CPU.
340  *
341  * If counter->ctx is a cloned context, callers must make sure that
342  * every task struct that counter->ctx->task could possibly point to
343  * remains valid.  This is OK when called from perf_release since
344  * that only calls us on the top-level context, which can't be a clone.
345  * When called from perf_counter_exit_task, it's OK because the
346  * context has been detached from its task.
347  */
348 static void perf_counter_remove_from_context(struct perf_counter *counter)
349 {
350         struct perf_counter_context *ctx = counter->ctx;
351         struct task_struct *task = ctx->task;
352
353         if (!task) {
354                 /*
355                  * Per cpu counters are removed via an smp call and
356                  * the removal is always sucessful.
357                  */
358                 smp_call_function_single(counter->cpu,
359                                          __perf_counter_remove_from_context,
360                                          counter, 1);
361                 return;
362         }
363
364 retry:
365         task_oncpu_function_call(task, __perf_counter_remove_from_context,
366                                  counter);
367
368         spin_lock_irq(&ctx->lock);
369         /*
370          * If the context is active we need to retry the smp call.
371          */
372         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
373                 spin_unlock_irq(&ctx->lock);
374                 goto retry;
375         }
376
377         /*
378          * The lock prevents that this context is scheduled in so we
379          * can remove the counter safely, if the call above did not
380          * succeed.
381          */
382         if (!list_empty(&counter->list_entry)) {
383                 list_del_counter(counter, ctx);
384         }
385         spin_unlock_irq(&ctx->lock);
386 }
387
388 static inline u64 perf_clock(void)
389 {
390         return cpu_clock(smp_processor_id());
391 }
392
393 /*
394  * Update the record of the current time in a context.
395  */
396 static void update_context_time(struct perf_counter_context *ctx)
397 {
398         u64 now = perf_clock();
399
400         ctx->time += now - ctx->timestamp;
401         ctx->timestamp = now;
402 }
403
404 /*
405  * Update the total_time_enabled and total_time_running fields for a counter.
406  */
407 static void update_counter_times(struct perf_counter *counter)
408 {
409         struct perf_counter_context *ctx = counter->ctx;
410         u64 run_end;
411
412         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
413                 return;
414
415         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
416
417         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
418                 run_end = counter->tstamp_stopped;
419         else
420                 run_end = ctx->time;
421
422         counter->total_time_running = run_end - counter->tstamp_running;
423 }
424
425 /*
426  * Update total_time_enabled and total_time_running for all counters in a group.
427  */
428 static void update_group_times(struct perf_counter *leader)
429 {
430         struct perf_counter *counter;
431
432         update_counter_times(leader);
433         list_for_each_entry(counter, &leader->sibling_list, list_entry)
434                 update_counter_times(counter);
435 }
436
437 /*
438  * Cross CPU call to disable a performance counter
439  */
440 static void __perf_counter_disable(void *info)
441 {
442         struct perf_counter *counter = info;
443         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
444         struct perf_counter_context *ctx = counter->ctx;
445
446         /*
447          * If this is a per-task counter, need to check whether this
448          * counter's task is the current task on this cpu.
449          */
450         if (ctx->task && cpuctx->task_ctx != ctx)
451                 return;
452
453         spin_lock(&ctx->lock);
454
455         /*
456          * If the counter is on, turn it off.
457          * If it is in error state, leave it in error state.
458          */
459         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
460                 update_context_time(ctx);
461                 update_counter_times(counter);
462                 if (counter == counter->group_leader)
463                         group_sched_out(counter, cpuctx, ctx);
464                 else
465                         counter_sched_out(counter, cpuctx, ctx);
466                 counter->state = PERF_COUNTER_STATE_OFF;
467         }
468
469         spin_unlock(&ctx->lock);
470 }
471
472 /*
473  * Disable a counter.
474  *
475  * If counter->ctx is a cloned context, callers must make sure that
476  * every task struct that counter->ctx->task could possibly point to
477  * remains valid.  This condition is satisifed when called through
478  * perf_counter_for_each_child or perf_counter_for_each because they
479  * hold the top-level counter's child_mutex, so any descendant that
480  * goes to exit will block in sync_child_counter.
481  * When called from perf_pending_counter it's OK because counter->ctx
482  * is the current context on this CPU and preemption is disabled,
483  * hence we can't get into perf_counter_task_sched_out for this context.
484  */
485 static void perf_counter_disable(struct perf_counter *counter)
486 {
487         struct perf_counter_context *ctx = counter->ctx;
488         struct task_struct *task = ctx->task;
489
490         if (!task) {
491                 /*
492                  * Disable the counter on the cpu that it's on
493                  */
494                 smp_call_function_single(counter->cpu, __perf_counter_disable,
495                                          counter, 1);
496                 return;
497         }
498
499  retry:
500         task_oncpu_function_call(task, __perf_counter_disable, counter);
501
502         spin_lock_irq(&ctx->lock);
503         /*
504          * If the counter is still active, we need to retry the cross-call.
505          */
506         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
507                 spin_unlock_irq(&ctx->lock);
508                 goto retry;
509         }
510
511         /*
512          * Since we have the lock this context can't be scheduled
513          * in, so we can change the state safely.
514          */
515         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
516                 update_counter_times(counter);
517                 counter->state = PERF_COUNTER_STATE_OFF;
518         }
519
520         spin_unlock_irq(&ctx->lock);
521 }
522
523 static int
524 counter_sched_in(struct perf_counter *counter,
525                  struct perf_cpu_context *cpuctx,
526                  struct perf_counter_context *ctx,
527                  int cpu)
528 {
529         if (counter->state <= PERF_COUNTER_STATE_OFF)
530                 return 0;
531
532         counter->state = PERF_COUNTER_STATE_ACTIVE;
533         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
534         /*
535          * The new state must be visible before we turn it on in the hardware:
536          */
537         smp_wmb();
538
539         if (counter->pmu->enable(counter)) {
540                 counter->state = PERF_COUNTER_STATE_INACTIVE;
541                 counter->oncpu = -1;
542                 return -EAGAIN;
543         }
544
545         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
546
547         if (!is_software_counter(counter))
548                 cpuctx->active_oncpu++;
549         ctx->nr_active++;
550
551         if (counter->hw_event.exclusive)
552                 cpuctx->exclusive = 1;
553
554         return 0;
555 }
556
557 static int
558 group_sched_in(struct perf_counter *group_counter,
559                struct perf_cpu_context *cpuctx,
560                struct perf_counter_context *ctx,
561                int cpu)
562 {
563         struct perf_counter *counter, *partial_group;
564         int ret;
565
566         if (group_counter->state == PERF_COUNTER_STATE_OFF)
567                 return 0;
568
569         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
570         if (ret)
571                 return ret < 0 ? ret : 0;
572
573         group_counter->prev_state = group_counter->state;
574         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
575                 return -EAGAIN;
576
577         /*
578          * Schedule in siblings as one group (if any):
579          */
580         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
581                 counter->prev_state = counter->state;
582                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583                         partial_group = counter;
584                         goto group_error;
585                 }
586         }
587
588         return 0;
589
590 group_error:
591         /*
592          * Groups can be scheduled in as one unit only, so undo any
593          * partial group before returning:
594          */
595         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596                 if (counter == partial_group)
597                         break;
598                 counter_sched_out(counter, cpuctx, ctx);
599         }
600         counter_sched_out(group_counter, cpuctx, ctx);
601
602         return -EAGAIN;
603 }
604
605 /*
606  * Return 1 for a group consisting entirely of software counters,
607  * 0 if the group contains any hardware counters.
608  */
609 static int is_software_only_group(struct perf_counter *leader)
610 {
611         struct perf_counter *counter;
612
613         if (!is_software_counter(leader))
614                 return 0;
615
616         list_for_each_entry(counter, &leader->sibling_list, list_entry)
617                 if (!is_software_counter(counter))
618                         return 0;
619
620         return 1;
621 }
622
623 /*
624  * Work out whether we can put this counter group on the CPU now.
625  */
626 static int group_can_go_on(struct perf_counter *counter,
627                            struct perf_cpu_context *cpuctx,
628                            int can_add_hw)
629 {
630         /*
631          * Groups consisting entirely of software counters can always go on.
632          */
633         if (is_software_only_group(counter))
634                 return 1;
635         /*
636          * If an exclusive group is already on, no other hardware
637          * counters can go on.
638          */
639         if (cpuctx->exclusive)
640                 return 0;
641         /*
642          * If this group is exclusive and there are already
643          * counters on the CPU, it can't go on.
644          */
645         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
646                 return 0;
647         /*
648          * Otherwise, try to add it if all previous groups were able
649          * to go on.
650          */
651         return can_add_hw;
652 }
653
654 static void add_counter_to_ctx(struct perf_counter *counter,
655                                struct perf_counter_context *ctx)
656 {
657         list_add_counter(counter, ctx);
658         counter->prev_state = PERF_COUNTER_STATE_OFF;
659         counter->tstamp_enabled = ctx->time;
660         counter->tstamp_running = ctx->time;
661         counter->tstamp_stopped = ctx->time;
662 }
663
664 /*
665  * Cross CPU call to install and enable a performance counter
666  *
667  * Must be called with ctx->mutex held
668  */
669 static void __perf_install_in_context(void *info)
670 {
671         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
672         struct perf_counter *counter = info;
673         struct perf_counter_context *ctx = counter->ctx;
674         struct perf_counter *leader = counter->group_leader;
675         int cpu = smp_processor_id();
676         int err;
677
678         /*
679          * If this is a task context, we need to check whether it is
680          * the current task context of this cpu. If not it has been
681          * scheduled out before the smp call arrived.
682          * Or possibly this is the right context but it isn't
683          * on this cpu because it had no counters.
684          */
685         if (ctx->task && cpuctx->task_ctx != ctx) {
686                 if (cpuctx->task_ctx || ctx->task != current)
687                         return;
688                 cpuctx->task_ctx = ctx;
689         }
690
691         spin_lock(&ctx->lock);
692         ctx->is_active = 1;
693         update_context_time(ctx);
694
695         /*
696          * Protect the list operation against NMI by disabling the
697          * counters on a global level. NOP for non NMI based counters.
698          */
699         perf_disable();
700
701         add_counter_to_ctx(counter, ctx);
702
703         /*
704          * Don't put the counter on if it is disabled or if
705          * it is in a group and the group isn't on.
706          */
707         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
708             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
709                 goto unlock;
710
711         /*
712          * An exclusive counter can't go on if there are already active
713          * hardware counters, and no hardware counter can go on if there
714          * is already an exclusive counter on.
715          */
716         if (!group_can_go_on(counter, cpuctx, 1))
717                 err = -EEXIST;
718         else
719                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
720
721         if (err) {
722                 /*
723                  * This counter couldn't go on.  If it is in a group
724                  * then we have to pull the whole group off.
725                  * If the counter group is pinned then put it in error state.
726                  */
727                 if (leader != counter)
728                         group_sched_out(leader, cpuctx, ctx);
729                 if (leader->hw_event.pinned) {
730                         update_group_times(leader);
731                         leader->state = PERF_COUNTER_STATE_ERROR;
732                 }
733         }
734
735         if (!err && !ctx->task && cpuctx->max_pertask)
736                 cpuctx->max_pertask--;
737
738  unlock:
739         perf_enable();
740
741         spin_unlock(&ctx->lock);
742 }
743
744 /*
745  * Attach a performance counter to a context
746  *
747  * First we add the counter to the list with the hardware enable bit
748  * in counter->hw_config cleared.
749  *
750  * If the counter is attached to a task which is on a CPU we use a smp
751  * call to enable it in the task context. The task might have been
752  * scheduled away, but we check this in the smp call again.
753  *
754  * Must be called with ctx->mutex held.
755  */
756 static void
757 perf_install_in_context(struct perf_counter_context *ctx,
758                         struct perf_counter *counter,
759                         int cpu)
760 {
761         struct task_struct *task = ctx->task;
762
763         if (!task) {
764                 /*
765                  * Per cpu counters are installed via an smp call and
766                  * the install is always sucessful.
767                  */
768                 smp_call_function_single(cpu, __perf_install_in_context,
769                                          counter, 1);
770                 return;
771         }
772
773 retry:
774         task_oncpu_function_call(task, __perf_install_in_context,
775                                  counter);
776
777         spin_lock_irq(&ctx->lock);
778         /*
779          * we need to retry the smp call.
780          */
781         if (ctx->is_active && list_empty(&counter->list_entry)) {
782                 spin_unlock_irq(&ctx->lock);
783                 goto retry;
784         }
785
786         /*
787          * The lock prevents that this context is scheduled in so we
788          * can add the counter safely, if it the call above did not
789          * succeed.
790          */
791         if (list_empty(&counter->list_entry))
792                 add_counter_to_ctx(counter, ctx);
793         spin_unlock_irq(&ctx->lock);
794 }
795
796 /*
797  * Cross CPU call to enable a performance counter
798  */
799 static void __perf_counter_enable(void *info)
800 {
801         struct perf_counter *counter = info;
802         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
803         struct perf_counter_context *ctx = counter->ctx;
804         struct perf_counter *leader = counter->group_leader;
805         int err;
806
807         /*
808          * If this is a per-task counter, need to check whether this
809          * counter's task is the current task on this cpu.
810          */
811         if (ctx->task && cpuctx->task_ctx != ctx) {
812                 if (cpuctx->task_ctx || ctx->task != current)
813                         return;
814                 cpuctx->task_ctx = ctx;
815         }
816
817         spin_lock(&ctx->lock);
818         ctx->is_active = 1;
819         update_context_time(ctx);
820
821         counter->prev_state = counter->state;
822         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
823                 goto unlock;
824         counter->state = PERF_COUNTER_STATE_INACTIVE;
825         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
826
827         /*
828          * If the counter is in a group and isn't the group leader,
829          * then don't put it on unless the group is on.
830          */
831         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
832                 goto unlock;
833
834         if (!group_can_go_on(counter, cpuctx, 1)) {
835                 err = -EEXIST;
836         } else {
837                 perf_disable();
838                 if (counter == leader)
839                         err = group_sched_in(counter, cpuctx, ctx,
840                                              smp_processor_id());
841                 else
842                         err = counter_sched_in(counter, cpuctx, ctx,
843                                                smp_processor_id());
844                 perf_enable();
845         }
846
847         if (err) {
848                 /*
849                  * If this counter can't go on and it's part of a
850                  * group, then the whole group has to come off.
851                  */
852                 if (leader != counter)
853                         group_sched_out(leader, cpuctx, ctx);
854                 if (leader->hw_event.pinned) {
855                         update_group_times(leader);
856                         leader->state = PERF_COUNTER_STATE_ERROR;
857                 }
858         }
859
860  unlock:
861         spin_unlock(&ctx->lock);
862 }
863
864 /*
865  * Enable a counter.
866  *
867  * If counter->ctx is a cloned context, callers must make sure that
868  * every task struct that counter->ctx->task could possibly point to
869  * remains valid.  This condition is satisfied when called through
870  * perf_counter_for_each_child or perf_counter_for_each as described
871  * for perf_counter_disable.
872  */
873 static void perf_counter_enable(struct perf_counter *counter)
874 {
875         struct perf_counter_context *ctx = counter->ctx;
876         struct task_struct *task = ctx->task;
877
878         if (!task) {
879                 /*
880                  * Enable the counter on the cpu that it's on
881                  */
882                 smp_call_function_single(counter->cpu, __perf_counter_enable,
883                                          counter, 1);
884                 return;
885         }
886
887         spin_lock_irq(&ctx->lock);
888         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
889                 goto out;
890
891         /*
892          * If the counter is in error state, clear that first.
893          * That way, if we see the counter in error state below, we
894          * know that it has gone back into error state, as distinct
895          * from the task having been scheduled away before the
896          * cross-call arrived.
897          */
898         if (counter->state == PERF_COUNTER_STATE_ERROR)
899                 counter->state = PERF_COUNTER_STATE_OFF;
900
901  retry:
902         spin_unlock_irq(&ctx->lock);
903         task_oncpu_function_call(task, __perf_counter_enable, counter);
904
905         spin_lock_irq(&ctx->lock);
906
907         /*
908          * If the context is active and the counter is still off,
909          * we need to retry the cross-call.
910          */
911         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
912                 goto retry;
913
914         /*
915          * Since we have the lock this context can't be scheduled
916          * in, so we can change the state safely.
917          */
918         if (counter->state == PERF_COUNTER_STATE_OFF) {
919                 counter->state = PERF_COUNTER_STATE_INACTIVE;
920                 counter->tstamp_enabled =
921                         ctx->time - counter->total_time_enabled;
922         }
923  out:
924         spin_unlock_irq(&ctx->lock);
925 }
926
927 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
928 {
929         /*
930          * not supported on inherited counters
931          */
932         if (counter->hw_event.inherit)
933                 return -EINVAL;
934
935         atomic_add(refresh, &counter->event_limit);
936         perf_counter_enable(counter);
937
938         return 0;
939 }
940
941 void __perf_counter_sched_out(struct perf_counter_context *ctx,
942                               struct perf_cpu_context *cpuctx)
943 {
944         struct perf_counter *counter;
945
946         spin_lock(&ctx->lock);
947         ctx->is_active = 0;
948         if (likely(!ctx->nr_counters))
949                 goto out;
950         update_context_time(ctx);
951
952         perf_disable();
953         if (ctx->nr_active) {
954                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
955                         if (counter != counter->group_leader)
956                                 counter_sched_out(counter, cpuctx, ctx);
957                         else
958                                 group_sched_out(counter, cpuctx, ctx);
959                 }
960         }
961         perf_enable();
962  out:
963         spin_unlock(&ctx->lock);
964 }
965
966 /*
967  * Test whether two contexts are equivalent, i.e. whether they
968  * have both been cloned from the same version of the same context
969  * and they both have the same number of enabled counters.
970  * If the number of enabled counters is the same, then the set
971  * of enabled counters should be the same, because these are both
972  * inherited contexts, therefore we can't access individual counters
973  * in them directly with an fd; we can only enable/disable all
974  * counters via prctl, or enable/disable all counters in a family
975  * via ioctl, which will have the same effect on both contexts.
976  */
977 static int context_equiv(struct perf_counter_context *ctx1,
978                          struct perf_counter_context *ctx2)
979 {
980         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
981                 && ctx1->parent_gen == ctx2->parent_gen
982                 && !ctx1->pin_count && !ctx2->pin_count;
983 }
984
985 /*
986  * Called from scheduler to remove the counters of the current task,
987  * with interrupts disabled.
988  *
989  * We stop each counter and update the counter value in counter->count.
990  *
991  * This does not protect us against NMI, but disable()
992  * sets the disabled bit in the control field of counter _before_
993  * accessing the counter control register. If a NMI hits, then it will
994  * not restart the counter.
995  */
996 void perf_counter_task_sched_out(struct task_struct *task,
997                                  struct task_struct *next, int cpu)
998 {
999         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1000         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1001         struct perf_counter_context *next_ctx;
1002         struct perf_counter_context *parent;
1003         struct pt_regs *regs;
1004         int do_switch = 1;
1005
1006         regs = task_pt_regs(task);
1007         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1008
1009         if (likely(!ctx || !cpuctx->task_ctx))
1010                 return;
1011
1012         update_context_time(ctx);
1013
1014         rcu_read_lock();
1015         parent = rcu_dereference(ctx->parent_ctx);
1016         next_ctx = next->perf_counter_ctxp;
1017         if (parent && next_ctx &&
1018             rcu_dereference(next_ctx->parent_ctx) == parent) {
1019                 /*
1020                  * Looks like the two contexts are clones, so we might be
1021                  * able to optimize the context switch.  We lock both
1022                  * contexts and check that they are clones under the
1023                  * lock (including re-checking that neither has been
1024                  * uncloned in the meantime).  It doesn't matter which
1025                  * order we take the locks because no other cpu could
1026                  * be trying to lock both of these tasks.
1027                  */
1028                 spin_lock(&ctx->lock);
1029                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1030                 if (context_equiv(ctx, next_ctx)) {
1031                         /*
1032                          * XXX do we need a memory barrier of sorts
1033                          * wrt to rcu_dereference() of perf_counter_ctxp
1034                          */
1035                         task->perf_counter_ctxp = next_ctx;
1036                         next->perf_counter_ctxp = ctx;
1037                         ctx->task = next;
1038                         next_ctx->task = task;
1039                         do_switch = 0;
1040                 }
1041                 spin_unlock(&next_ctx->lock);
1042                 spin_unlock(&ctx->lock);
1043         }
1044         rcu_read_unlock();
1045
1046         if (do_switch) {
1047                 __perf_counter_sched_out(ctx, cpuctx);
1048                 cpuctx->task_ctx = NULL;
1049         }
1050 }
1051
1052 /*
1053  * Called with IRQs disabled
1054  */
1055 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1056 {
1057         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1058
1059         if (!cpuctx->task_ctx)
1060                 return;
1061
1062         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1063                 return;
1064
1065         __perf_counter_sched_out(ctx, cpuctx);
1066         cpuctx->task_ctx = NULL;
1067 }
1068
1069 /*
1070  * Called with IRQs disabled
1071  */
1072 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1073 {
1074         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1075 }
1076
1077 static void
1078 __perf_counter_sched_in(struct perf_counter_context *ctx,
1079                         struct perf_cpu_context *cpuctx, int cpu)
1080 {
1081         struct perf_counter *counter;
1082         int can_add_hw = 1;
1083
1084         spin_lock(&ctx->lock);
1085         ctx->is_active = 1;
1086         if (likely(!ctx->nr_counters))
1087                 goto out;
1088
1089         ctx->timestamp = perf_clock();
1090
1091         perf_disable();
1092
1093         /*
1094          * First go through the list and put on any pinned groups
1095          * in order to give them the best chance of going on.
1096          */
1097         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1098                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1099                     !counter->hw_event.pinned)
1100                         continue;
1101                 if (counter->cpu != -1 && counter->cpu != cpu)
1102                         continue;
1103
1104                 if (counter != counter->group_leader)
1105                         counter_sched_in(counter, cpuctx, ctx, cpu);
1106                 else {
1107                         if (group_can_go_on(counter, cpuctx, 1))
1108                                 group_sched_in(counter, cpuctx, ctx, cpu);
1109                 }
1110
1111                 /*
1112                  * If this pinned group hasn't been scheduled,
1113                  * put it in error state.
1114                  */
1115                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1116                         update_group_times(counter);
1117                         counter->state = PERF_COUNTER_STATE_ERROR;
1118                 }
1119         }
1120
1121         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122                 /*
1123                  * Ignore counters in OFF or ERROR state, and
1124                  * ignore pinned counters since we did them already.
1125                  */
1126                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1127                     counter->hw_event.pinned)
1128                         continue;
1129
1130                 /*
1131                  * Listen to the 'cpu' scheduling filter constraint
1132                  * of counters:
1133                  */
1134                 if (counter->cpu != -1 && counter->cpu != cpu)
1135                         continue;
1136
1137                 if (counter != counter->group_leader) {
1138                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1139                                 can_add_hw = 0;
1140                 } else {
1141                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1142                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1143                                         can_add_hw = 0;
1144                         }
1145                 }
1146         }
1147         perf_enable();
1148  out:
1149         spin_unlock(&ctx->lock);
1150 }
1151
1152 /*
1153  * Called from scheduler to add the counters of the current task
1154  * with interrupts disabled.
1155  *
1156  * We restore the counter value and then enable it.
1157  *
1158  * This does not protect us against NMI, but enable()
1159  * sets the enabled bit in the control field of counter _before_
1160  * accessing the counter control register. If a NMI hits, then it will
1161  * keep the counter running.
1162  */
1163 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1164 {
1165         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1166         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1167
1168         if (likely(!ctx))
1169                 return;
1170         if (cpuctx->task_ctx == ctx)
1171                 return;
1172         __perf_counter_sched_in(ctx, cpuctx, cpu);
1173         cpuctx->task_ctx = ctx;
1174 }
1175
1176 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1177 {
1178         struct perf_counter_context *ctx = &cpuctx->ctx;
1179
1180         __perf_counter_sched_in(ctx, cpuctx, cpu);
1181 }
1182
1183 #define MAX_INTERRUPTS (~0ULL)
1184
1185 static void perf_log_throttle(struct perf_counter *counter, int enable);
1186 static void perf_log_period(struct perf_counter *counter, u64 period);
1187
1188 static void perf_adjust_freq(struct perf_counter_context *ctx)
1189 {
1190         struct perf_counter *counter;
1191         u64 interrupts, irq_period;
1192         u64 events, period;
1193         s64 delta;
1194
1195         spin_lock(&ctx->lock);
1196         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1197                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1198                         continue;
1199
1200                 interrupts = counter->hw.interrupts;
1201                 counter->hw.interrupts = 0;
1202
1203                 if (interrupts == MAX_INTERRUPTS) {
1204                         perf_log_throttle(counter, 1);
1205                         counter->pmu->unthrottle(counter);
1206                         interrupts = 2*sysctl_perf_counter_limit/HZ;
1207                 }
1208
1209                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1210                         continue;
1211
1212                 events = HZ * interrupts * counter->hw.irq_period;
1213                 period = div64_u64(events, counter->hw_event.irq_freq);
1214
1215                 delta = (s64)(1 + period - counter->hw.irq_period);
1216                 delta >>= 1;
1217
1218                 irq_period = counter->hw.irq_period + delta;
1219
1220                 if (!irq_period)
1221                         irq_period = 1;
1222
1223                 perf_log_period(counter, irq_period);
1224
1225                 counter->hw.irq_period = irq_period;
1226         }
1227         spin_unlock(&ctx->lock);
1228 }
1229
1230 /*
1231  * Round-robin a context's counters:
1232  */
1233 static void rotate_ctx(struct perf_counter_context *ctx)
1234 {
1235         struct perf_counter *counter;
1236
1237         if (!ctx->nr_counters)
1238                 return;
1239
1240         spin_lock(&ctx->lock);
1241         /*
1242          * Rotate the first entry last (works just fine for group counters too):
1243          */
1244         perf_disable();
1245         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1246                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1247                 break;
1248         }
1249         perf_enable();
1250
1251         spin_unlock(&ctx->lock);
1252 }
1253
1254 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1255 {
1256         struct perf_cpu_context *cpuctx;
1257         struct perf_counter_context *ctx;
1258
1259         if (!atomic_read(&nr_counters))
1260                 return;
1261
1262         cpuctx = &per_cpu(perf_cpu_context, cpu);
1263         ctx = curr->perf_counter_ctxp;
1264
1265         perf_adjust_freq(&cpuctx->ctx);
1266         if (ctx)
1267                 perf_adjust_freq(ctx);
1268
1269         perf_counter_cpu_sched_out(cpuctx);
1270         if (ctx)
1271                 __perf_counter_task_sched_out(ctx);
1272
1273         rotate_ctx(&cpuctx->ctx);
1274         if (ctx)
1275                 rotate_ctx(ctx);
1276
1277         perf_counter_cpu_sched_in(cpuctx, cpu);
1278         if (ctx)
1279                 perf_counter_task_sched_in(curr, cpu);
1280 }
1281
1282 /*
1283  * Cross CPU call to read the hardware counter
1284  */
1285 static void __read(void *info)
1286 {
1287         struct perf_counter *counter = info;
1288         struct perf_counter_context *ctx = counter->ctx;
1289         unsigned long flags;
1290
1291         local_irq_save(flags);
1292         if (ctx->is_active)
1293                 update_context_time(ctx);
1294         counter->pmu->read(counter);
1295         update_counter_times(counter);
1296         local_irq_restore(flags);
1297 }
1298
1299 static u64 perf_counter_read(struct perf_counter *counter)
1300 {
1301         /*
1302          * If counter is enabled and currently active on a CPU, update the
1303          * value in the counter structure:
1304          */
1305         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1306                 smp_call_function_single(counter->oncpu,
1307                                          __read, counter, 1);
1308         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1309                 update_counter_times(counter);
1310         }
1311
1312         return atomic64_read(&counter->count);
1313 }
1314
1315 /*
1316  * Initialize the perf_counter context in a task_struct:
1317  */
1318 static void
1319 __perf_counter_init_context(struct perf_counter_context *ctx,
1320                             struct task_struct *task)
1321 {
1322         memset(ctx, 0, sizeof(*ctx));
1323         spin_lock_init(&ctx->lock);
1324         mutex_init(&ctx->mutex);
1325         INIT_LIST_HEAD(&ctx->counter_list);
1326         INIT_LIST_HEAD(&ctx->event_list);
1327         atomic_set(&ctx->refcount, 1);
1328         ctx->task = task;
1329 }
1330
1331 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1332 {
1333         struct perf_cpu_context *cpuctx;
1334         struct perf_counter_context *ctx;
1335         struct perf_counter_context *parent_ctx;
1336         struct task_struct *task;
1337         unsigned long flags;
1338         int err;
1339
1340         /*
1341          * If cpu is not a wildcard then this is a percpu counter:
1342          */
1343         if (cpu != -1) {
1344                 /* Must be root to operate on a CPU counter: */
1345                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1346                         return ERR_PTR(-EACCES);
1347
1348                 if (cpu < 0 || cpu > num_possible_cpus())
1349                         return ERR_PTR(-EINVAL);
1350
1351                 /*
1352                  * We could be clever and allow to attach a counter to an
1353                  * offline CPU and activate it when the CPU comes up, but
1354                  * that's for later.
1355                  */
1356                 if (!cpu_isset(cpu, cpu_online_map))
1357                         return ERR_PTR(-ENODEV);
1358
1359                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1360                 ctx = &cpuctx->ctx;
1361                 get_ctx(ctx);
1362
1363                 return ctx;
1364         }
1365
1366         rcu_read_lock();
1367         if (!pid)
1368                 task = current;
1369         else
1370                 task = find_task_by_vpid(pid);
1371         if (task)
1372                 get_task_struct(task);
1373         rcu_read_unlock();
1374
1375         if (!task)
1376                 return ERR_PTR(-ESRCH);
1377
1378         /*
1379          * Can't attach counters to a dying task.
1380          */
1381         err = -ESRCH;
1382         if (task->flags & PF_EXITING)
1383                 goto errout;
1384
1385         /* Reuse ptrace permission checks for now. */
1386         err = -EACCES;
1387         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1388                 goto errout;
1389
1390  retry:
1391         ctx = perf_lock_task_context(task, &flags);
1392         if (ctx) {
1393                 parent_ctx = ctx->parent_ctx;
1394                 if (parent_ctx) {
1395                         put_ctx(parent_ctx);
1396                         ctx->parent_ctx = NULL;         /* no longer a clone */
1397                 }
1398                 /*
1399                  * Get an extra reference before dropping the lock so that
1400                  * this context won't get freed if the task exits.
1401                  */
1402                 get_ctx(ctx);
1403                 spin_unlock_irqrestore(&ctx->lock, flags);
1404         }
1405
1406         if (!ctx) {
1407                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1408                 err = -ENOMEM;
1409                 if (!ctx)
1410                         goto errout;
1411                 __perf_counter_init_context(ctx, task);
1412                 get_ctx(ctx);
1413                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1414                         /*
1415                          * We raced with some other task; use
1416                          * the context they set.
1417                          */
1418                         kfree(ctx);
1419                         goto retry;
1420                 }
1421                 get_task_struct(task);
1422         }
1423
1424         put_task_struct(task);
1425         return ctx;
1426
1427  errout:
1428         put_task_struct(task);
1429         return ERR_PTR(err);
1430 }
1431
1432 static void free_counter_rcu(struct rcu_head *head)
1433 {
1434         struct perf_counter *counter;
1435
1436         counter = container_of(head, struct perf_counter, rcu_head);
1437         kfree(counter);
1438 }
1439
1440 static void perf_pending_sync(struct perf_counter *counter);
1441
1442 static void free_counter(struct perf_counter *counter)
1443 {
1444         perf_pending_sync(counter);
1445
1446         atomic_dec(&nr_counters);
1447         if (counter->hw_event.mmap)
1448                 atomic_dec(&nr_mmap_tracking);
1449         if (counter->hw_event.munmap)
1450                 atomic_dec(&nr_munmap_tracking);
1451         if (counter->hw_event.comm)
1452                 atomic_dec(&nr_comm_tracking);
1453
1454         if (counter->destroy)
1455                 counter->destroy(counter);
1456
1457         put_ctx(counter->ctx);
1458         call_rcu(&counter->rcu_head, free_counter_rcu);
1459 }
1460
1461 /*
1462  * Called when the last reference to the file is gone.
1463  */
1464 static int perf_release(struct inode *inode, struct file *file)
1465 {
1466         struct perf_counter *counter = file->private_data;
1467         struct perf_counter_context *ctx = counter->ctx;
1468
1469         file->private_data = NULL;
1470
1471         WARN_ON_ONCE(ctx->parent_ctx);
1472         mutex_lock(&ctx->mutex);
1473         perf_counter_remove_from_context(counter);
1474         mutex_unlock(&ctx->mutex);
1475
1476         mutex_lock(&counter->owner->perf_counter_mutex);
1477         list_del_init(&counter->owner_entry);
1478         mutex_unlock(&counter->owner->perf_counter_mutex);
1479         put_task_struct(counter->owner);
1480
1481         free_counter(counter);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * Read the performance counter - simple non blocking version for now
1488  */
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1491 {
1492         u64 values[3];
1493         int n;
1494
1495         /*
1496          * Return end-of-file for a read on a counter that is in
1497          * error state (i.e. because it was pinned but it couldn't be
1498          * scheduled on to the CPU at some point).
1499          */
1500         if (counter->state == PERF_COUNTER_STATE_ERROR)
1501                 return 0;
1502
1503         WARN_ON_ONCE(counter->ctx->parent_ctx);
1504         mutex_lock(&counter->child_mutex);
1505         values[0] = perf_counter_read(counter);
1506         n = 1;
1507         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508                 values[n++] = counter->total_time_enabled +
1509                         atomic64_read(&counter->child_total_time_enabled);
1510         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511                 values[n++] = counter->total_time_running +
1512                         atomic64_read(&counter->child_total_time_running);
1513         mutex_unlock(&counter->child_mutex);
1514
1515         if (count < n * sizeof(u64))
1516                 return -EINVAL;
1517         count = n * sizeof(u64);
1518
1519         if (copy_to_user(buf, values, count))
1520                 return -EFAULT;
1521
1522         return count;
1523 }
1524
1525 static ssize_t
1526 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1527 {
1528         struct perf_counter *counter = file->private_data;
1529
1530         return perf_read_hw(counter, buf, count);
1531 }
1532
1533 static unsigned int perf_poll(struct file *file, poll_table *wait)
1534 {
1535         struct perf_counter *counter = file->private_data;
1536         struct perf_mmap_data *data;
1537         unsigned int events = POLL_HUP;
1538
1539         rcu_read_lock();
1540         data = rcu_dereference(counter->data);
1541         if (data)
1542                 events = atomic_xchg(&data->poll, 0);
1543         rcu_read_unlock();
1544
1545         poll_wait(file, &counter->waitq, wait);
1546
1547         return events;
1548 }
1549
1550 static void perf_counter_reset(struct perf_counter *counter)
1551 {
1552         (void)perf_counter_read(counter);
1553         atomic64_set(&counter->count, 0);
1554         perf_counter_update_userpage(counter);
1555 }
1556
1557 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1558                                           void (*func)(struct perf_counter *))
1559 {
1560         struct perf_counter_context *ctx = counter->ctx;
1561         struct perf_counter *sibling;
1562
1563         WARN_ON_ONCE(ctx->parent_ctx);
1564         mutex_lock(&ctx->mutex);
1565         counter = counter->group_leader;
1566
1567         func(counter);
1568         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1569                 func(sibling);
1570         mutex_unlock(&ctx->mutex);
1571 }
1572
1573 /*
1574  * Holding the top-level counter's child_mutex means that any
1575  * descendant process that has inherited this counter will block
1576  * in sync_child_counter if it goes to exit, thus satisfying the
1577  * task existence requirements of perf_counter_enable/disable.
1578  */
1579 static void perf_counter_for_each_child(struct perf_counter *counter,
1580                                         void (*func)(struct perf_counter *))
1581 {
1582         struct perf_counter *child;
1583
1584         WARN_ON_ONCE(counter->ctx->parent_ctx);
1585         mutex_lock(&counter->child_mutex);
1586         func(counter);
1587         list_for_each_entry(child, &counter->child_list, child_list)
1588                 func(child);
1589         mutex_unlock(&counter->child_mutex);
1590 }
1591
1592 static void perf_counter_for_each(struct perf_counter *counter,
1593                                   void (*func)(struct perf_counter *))
1594 {
1595         struct perf_counter *child;
1596
1597         WARN_ON_ONCE(counter->ctx->parent_ctx);
1598         mutex_lock(&counter->child_mutex);
1599         perf_counter_for_each_sibling(counter, func);
1600         list_for_each_entry(child, &counter->child_list, child_list)
1601                 perf_counter_for_each_sibling(child, func);
1602         mutex_unlock(&counter->child_mutex);
1603 }
1604
1605 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1606 {
1607         struct perf_counter *counter = file->private_data;
1608         void (*func)(struct perf_counter *);
1609         u32 flags = arg;
1610
1611         switch (cmd) {
1612         case PERF_COUNTER_IOC_ENABLE:
1613                 func = perf_counter_enable;
1614                 break;
1615         case PERF_COUNTER_IOC_DISABLE:
1616                 func = perf_counter_disable;
1617                 break;
1618         case PERF_COUNTER_IOC_RESET:
1619                 func = perf_counter_reset;
1620                 break;
1621
1622         case PERF_COUNTER_IOC_REFRESH:
1623                 return perf_counter_refresh(counter, arg);
1624         default:
1625                 return -ENOTTY;
1626         }
1627
1628         if (flags & PERF_IOC_FLAG_GROUP)
1629                 perf_counter_for_each(counter, func);
1630         else
1631                 perf_counter_for_each_child(counter, func);
1632
1633         return 0;
1634 }
1635
1636 int perf_counter_task_enable(void)
1637 {
1638         struct perf_counter *counter;
1639
1640         mutex_lock(&current->perf_counter_mutex);
1641         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1642                 perf_counter_for_each_child(counter, perf_counter_enable);
1643         mutex_unlock(&current->perf_counter_mutex);
1644
1645         return 0;
1646 }
1647
1648 int perf_counter_task_disable(void)
1649 {
1650         struct perf_counter *counter;
1651
1652         mutex_lock(&current->perf_counter_mutex);
1653         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1654                 perf_counter_for_each_child(counter, perf_counter_disable);
1655         mutex_unlock(&current->perf_counter_mutex);
1656
1657         return 0;
1658 }
1659
1660 /*
1661  * Callers need to ensure there can be no nesting of this function, otherwise
1662  * the seqlock logic goes bad. We can not serialize this because the arch
1663  * code calls this from NMI context.
1664  */
1665 void perf_counter_update_userpage(struct perf_counter *counter)
1666 {
1667         struct perf_mmap_data *data;
1668         struct perf_counter_mmap_page *userpg;
1669
1670         rcu_read_lock();
1671         data = rcu_dereference(counter->data);
1672         if (!data)
1673                 goto unlock;
1674
1675         userpg = data->user_page;
1676
1677         /*
1678          * Disable preemption so as to not let the corresponding user-space
1679          * spin too long if we get preempted.
1680          */
1681         preempt_disable();
1682         ++userpg->lock;
1683         barrier();
1684         userpg->index = counter->hw.idx;
1685         userpg->offset = atomic64_read(&counter->count);
1686         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1687                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1688
1689         barrier();
1690         ++userpg->lock;
1691         preempt_enable();
1692 unlock:
1693         rcu_read_unlock();
1694 }
1695
1696 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1697 {
1698         struct perf_counter *counter = vma->vm_file->private_data;
1699         struct perf_mmap_data *data;
1700         int ret = VM_FAULT_SIGBUS;
1701
1702         rcu_read_lock();
1703         data = rcu_dereference(counter->data);
1704         if (!data)
1705                 goto unlock;
1706
1707         if (vmf->pgoff == 0) {
1708                 vmf->page = virt_to_page(data->user_page);
1709         } else {
1710                 int nr = vmf->pgoff - 1;
1711
1712                 if ((unsigned)nr > data->nr_pages)
1713                         goto unlock;
1714
1715                 vmf->page = virt_to_page(data->data_pages[nr]);
1716         }
1717         get_page(vmf->page);
1718         ret = 0;
1719 unlock:
1720         rcu_read_unlock();
1721
1722         return ret;
1723 }
1724
1725 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1726 {
1727         struct perf_mmap_data *data;
1728         unsigned long size;
1729         int i;
1730
1731         WARN_ON(atomic_read(&counter->mmap_count));
1732
1733         size = sizeof(struct perf_mmap_data);
1734         size += nr_pages * sizeof(void *);
1735
1736         data = kzalloc(size, GFP_KERNEL);
1737         if (!data)
1738                 goto fail;
1739
1740         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1741         if (!data->user_page)
1742                 goto fail_user_page;
1743
1744         for (i = 0; i < nr_pages; i++) {
1745                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1746                 if (!data->data_pages[i])
1747                         goto fail_data_pages;
1748         }
1749
1750         data->nr_pages = nr_pages;
1751         atomic_set(&data->lock, -1);
1752
1753         rcu_assign_pointer(counter->data, data);
1754
1755         return 0;
1756
1757 fail_data_pages:
1758         for (i--; i >= 0; i--)
1759                 free_page((unsigned long)data->data_pages[i]);
1760
1761         free_page((unsigned long)data->user_page);
1762
1763 fail_user_page:
1764         kfree(data);
1765
1766 fail:
1767         return -ENOMEM;
1768 }
1769
1770 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1771 {
1772         struct perf_mmap_data *data = container_of(rcu_head,
1773                         struct perf_mmap_data, rcu_head);
1774         int i;
1775
1776         free_page((unsigned long)data->user_page);
1777         for (i = 0; i < data->nr_pages; i++)
1778                 free_page((unsigned long)data->data_pages[i]);
1779         kfree(data);
1780 }
1781
1782 static void perf_mmap_data_free(struct perf_counter *counter)
1783 {
1784         struct perf_mmap_data *data = counter->data;
1785
1786         WARN_ON(atomic_read(&counter->mmap_count));
1787
1788         rcu_assign_pointer(counter->data, NULL);
1789         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1790 }
1791
1792 static void perf_mmap_open(struct vm_area_struct *vma)
1793 {
1794         struct perf_counter *counter = vma->vm_file->private_data;
1795
1796         atomic_inc(&counter->mmap_count);
1797 }
1798
1799 static void perf_mmap_close(struct vm_area_struct *vma)
1800 {
1801         struct perf_counter *counter = vma->vm_file->private_data;
1802
1803         WARN_ON_ONCE(counter->ctx->parent_ctx);
1804         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1805                                       &counter->mmap_mutex)) {
1806                 struct user_struct *user = current_user();
1807
1808                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1809                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1810                 perf_mmap_data_free(counter);
1811                 mutex_unlock(&counter->mmap_mutex);
1812         }
1813 }
1814
1815 static struct vm_operations_struct perf_mmap_vmops = {
1816         .open  = perf_mmap_open,
1817         .close = perf_mmap_close,
1818         .fault = perf_mmap_fault,
1819 };
1820
1821 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1822 {
1823         struct perf_counter *counter = file->private_data;
1824         struct user_struct *user = current_user();
1825         unsigned long vma_size;
1826         unsigned long nr_pages;
1827         unsigned long user_locked, user_lock_limit;
1828         unsigned long locked, lock_limit;
1829         long user_extra, extra;
1830         int ret = 0;
1831
1832         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1833                 return -EINVAL;
1834
1835         vma_size = vma->vm_end - vma->vm_start;
1836         nr_pages = (vma_size / PAGE_SIZE) - 1;
1837
1838         /*
1839          * If we have data pages ensure they're a power-of-two number, so we
1840          * can do bitmasks instead of modulo.
1841          */
1842         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1843                 return -EINVAL;
1844
1845         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1846                 return -EINVAL;
1847
1848         if (vma->vm_pgoff != 0)
1849                 return -EINVAL;
1850
1851         WARN_ON_ONCE(counter->ctx->parent_ctx);
1852         mutex_lock(&counter->mmap_mutex);
1853         if (atomic_inc_not_zero(&counter->mmap_count)) {
1854                 if (nr_pages != counter->data->nr_pages)
1855                         ret = -EINVAL;
1856                 goto unlock;
1857         }
1858
1859         user_extra = nr_pages + 1;
1860         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1861
1862         /*
1863          * Increase the limit linearly with more CPUs:
1864          */
1865         user_lock_limit *= num_online_cpus();
1866
1867         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1868
1869         extra = 0;
1870         if (user_locked > user_lock_limit)
1871                 extra = user_locked - user_lock_limit;
1872
1873         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1874         lock_limit >>= PAGE_SHIFT;
1875         locked = vma->vm_mm->locked_vm + extra;
1876
1877         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1878                 ret = -EPERM;
1879                 goto unlock;
1880         }
1881
1882         WARN_ON(counter->data);
1883         ret = perf_mmap_data_alloc(counter, nr_pages);
1884         if (ret)
1885                 goto unlock;
1886
1887         atomic_set(&counter->mmap_count, 1);
1888         atomic_long_add(user_extra, &user->locked_vm);
1889         vma->vm_mm->locked_vm += extra;
1890         counter->data->nr_locked = extra;
1891 unlock:
1892         mutex_unlock(&counter->mmap_mutex);
1893
1894         vma->vm_flags &= ~VM_MAYWRITE;
1895         vma->vm_flags |= VM_RESERVED;
1896         vma->vm_ops = &perf_mmap_vmops;
1897
1898         return ret;
1899 }
1900
1901 static int perf_fasync(int fd, struct file *filp, int on)
1902 {
1903         struct perf_counter *counter = filp->private_data;
1904         struct inode *inode = filp->f_path.dentry->d_inode;
1905         int retval;
1906
1907         mutex_lock(&inode->i_mutex);
1908         retval = fasync_helper(fd, filp, on, &counter->fasync);
1909         mutex_unlock(&inode->i_mutex);
1910
1911         if (retval < 0)
1912                 return retval;
1913
1914         return 0;
1915 }
1916
1917 static const struct file_operations perf_fops = {
1918         .release                = perf_release,
1919         .read                   = perf_read,
1920         .poll                   = perf_poll,
1921         .unlocked_ioctl         = perf_ioctl,
1922         .compat_ioctl           = perf_ioctl,
1923         .mmap                   = perf_mmap,
1924         .fasync                 = perf_fasync,
1925 };
1926
1927 /*
1928  * Perf counter wakeup
1929  *
1930  * If there's data, ensure we set the poll() state and publish everything
1931  * to user-space before waking everybody up.
1932  */
1933
1934 void perf_counter_wakeup(struct perf_counter *counter)
1935 {
1936         wake_up_all(&counter->waitq);
1937
1938         if (counter->pending_kill) {
1939                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1940                 counter->pending_kill = 0;
1941         }
1942 }
1943
1944 /*
1945  * Pending wakeups
1946  *
1947  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1948  *
1949  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1950  * single linked list and use cmpxchg() to add entries lockless.
1951  */
1952
1953 static void perf_pending_counter(struct perf_pending_entry *entry)
1954 {
1955         struct perf_counter *counter = container_of(entry,
1956                         struct perf_counter, pending);
1957
1958         if (counter->pending_disable) {
1959                 counter->pending_disable = 0;
1960                 perf_counter_disable(counter);
1961         }
1962
1963         if (counter->pending_wakeup) {
1964                 counter->pending_wakeup = 0;
1965                 perf_counter_wakeup(counter);
1966         }
1967 }
1968
1969 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1970
1971 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1972         PENDING_TAIL,
1973 };
1974
1975 static void perf_pending_queue(struct perf_pending_entry *entry,
1976                                void (*func)(struct perf_pending_entry *))
1977 {
1978         struct perf_pending_entry **head;
1979
1980         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1981                 return;
1982
1983         entry->func = func;
1984
1985         head = &get_cpu_var(perf_pending_head);
1986
1987         do {
1988                 entry->next = *head;
1989         } while (cmpxchg(head, entry->next, entry) != entry->next);
1990
1991         set_perf_counter_pending();
1992
1993         put_cpu_var(perf_pending_head);
1994 }
1995
1996 static int __perf_pending_run(void)
1997 {
1998         struct perf_pending_entry *list;
1999         int nr = 0;
2000
2001         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2002         while (list != PENDING_TAIL) {
2003                 void (*func)(struct perf_pending_entry *);
2004                 struct perf_pending_entry *entry = list;
2005
2006                 list = list->next;
2007
2008                 func = entry->func;
2009                 entry->next = NULL;
2010                 /*
2011                  * Ensure we observe the unqueue before we issue the wakeup,
2012                  * so that we won't be waiting forever.
2013                  * -- see perf_not_pending().
2014                  */
2015                 smp_wmb();
2016
2017                 func(entry);
2018                 nr++;
2019         }
2020
2021         return nr;
2022 }
2023
2024 static inline int perf_not_pending(struct perf_counter *counter)
2025 {
2026         /*
2027          * If we flush on whatever cpu we run, there is a chance we don't
2028          * need to wait.
2029          */
2030         get_cpu();
2031         __perf_pending_run();
2032         put_cpu();
2033
2034         /*
2035          * Ensure we see the proper queue state before going to sleep
2036          * so that we do not miss the wakeup. -- see perf_pending_handle()
2037          */
2038         smp_rmb();
2039         return counter->pending.next == NULL;
2040 }
2041
2042 static void perf_pending_sync(struct perf_counter *counter)
2043 {
2044         wait_event(counter->waitq, perf_not_pending(counter));
2045 }
2046
2047 void perf_counter_do_pending(void)
2048 {
2049         __perf_pending_run();
2050 }
2051
2052 /*
2053  * Callchain support -- arch specific
2054  */
2055
2056 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2057 {
2058         return NULL;
2059 }
2060
2061 /*
2062  * Output
2063  */
2064
2065 struct perf_output_handle {
2066         struct perf_counter     *counter;
2067         struct perf_mmap_data   *data;
2068         unsigned int            offset;
2069         unsigned int            head;
2070         int                     nmi;
2071         int                     overflow;
2072         int                     locked;
2073         unsigned long           flags;
2074 };
2075
2076 static void perf_output_wakeup(struct perf_output_handle *handle)
2077 {
2078         atomic_set(&handle->data->poll, POLL_IN);
2079
2080         if (handle->nmi) {
2081                 handle->counter->pending_wakeup = 1;
2082                 perf_pending_queue(&handle->counter->pending,
2083                                    perf_pending_counter);
2084         } else
2085                 perf_counter_wakeup(handle->counter);
2086 }
2087
2088 /*
2089  * Curious locking construct.
2090  *
2091  * We need to ensure a later event doesn't publish a head when a former
2092  * event isn't done writing. However since we need to deal with NMIs we
2093  * cannot fully serialize things.
2094  *
2095  * What we do is serialize between CPUs so we only have to deal with NMI
2096  * nesting on a single CPU.
2097  *
2098  * We only publish the head (and generate a wakeup) when the outer-most
2099  * event completes.
2100  */
2101 static void perf_output_lock(struct perf_output_handle *handle)
2102 {
2103         struct perf_mmap_data *data = handle->data;
2104         int cpu;
2105
2106         handle->locked = 0;
2107
2108         local_irq_save(handle->flags);
2109         cpu = smp_processor_id();
2110
2111         if (in_nmi() && atomic_read(&data->lock) == cpu)
2112                 return;
2113
2114         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2115                 cpu_relax();
2116
2117         handle->locked = 1;
2118 }
2119
2120 static void perf_output_unlock(struct perf_output_handle *handle)
2121 {
2122         struct perf_mmap_data *data = handle->data;
2123         int head, cpu;
2124
2125         data->done_head = data->head;
2126
2127         if (!handle->locked)
2128                 goto out;
2129
2130 again:
2131         /*
2132          * The xchg implies a full barrier that ensures all writes are done
2133          * before we publish the new head, matched by a rmb() in userspace when
2134          * reading this position.
2135          */
2136         while ((head = atomic_xchg(&data->done_head, 0)))
2137                 data->user_page->data_head = head;
2138
2139         /*
2140          * NMI can happen here, which means we can miss a done_head update.
2141          */
2142
2143         cpu = atomic_xchg(&data->lock, -1);
2144         WARN_ON_ONCE(cpu != smp_processor_id());
2145
2146         /*
2147          * Therefore we have to validate we did not indeed do so.
2148          */
2149         if (unlikely(atomic_read(&data->done_head))) {
2150                 /*
2151                  * Since we had it locked, we can lock it again.
2152                  */
2153                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2154                         cpu_relax();
2155
2156                 goto again;
2157         }
2158
2159         if (atomic_xchg(&data->wakeup, 0))
2160                 perf_output_wakeup(handle);
2161 out:
2162         local_irq_restore(handle->flags);
2163 }
2164
2165 static int perf_output_begin(struct perf_output_handle *handle,
2166                              struct perf_counter *counter, unsigned int size,
2167                              int nmi, int overflow)
2168 {
2169         struct perf_mmap_data *data;
2170         unsigned int offset, head;
2171
2172         /*
2173          * For inherited counters we send all the output towards the parent.
2174          */
2175         if (counter->parent)
2176                 counter = counter->parent;
2177
2178         rcu_read_lock();
2179         data = rcu_dereference(counter->data);
2180         if (!data)
2181                 goto out;
2182
2183         handle->data     = data;
2184         handle->counter  = counter;
2185         handle->nmi      = nmi;
2186         handle->overflow = overflow;
2187
2188         if (!data->nr_pages)
2189                 goto fail;
2190
2191         perf_output_lock(handle);
2192
2193         do {
2194                 offset = head = atomic_read(&data->head);
2195                 head += size;
2196         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2197
2198         handle->offset  = offset;
2199         handle->head    = head;
2200
2201         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2202                 atomic_set(&data->wakeup, 1);
2203
2204         return 0;
2205
2206 fail:
2207         perf_output_wakeup(handle);
2208 out:
2209         rcu_read_unlock();
2210
2211         return -ENOSPC;
2212 }
2213
2214 static void perf_output_copy(struct perf_output_handle *handle,
2215                              void *buf, unsigned int len)
2216 {
2217         unsigned int pages_mask;
2218         unsigned int offset;
2219         unsigned int size;
2220         void **pages;
2221
2222         offset          = handle->offset;
2223         pages_mask      = handle->data->nr_pages - 1;
2224         pages           = handle->data->data_pages;
2225
2226         do {
2227                 unsigned int page_offset;
2228                 int nr;
2229
2230                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2231                 page_offset = offset & (PAGE_SIZE - 1);
2232                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2233
2234                 memcpy(pages[nr] + page_offset, buf, size);
2235
2236                 len         -= size;
2237                 buf         += size;
2238                 offset      += size;
2239         } while (len);
2240
2241         handle->offset = offset;
2242
2243         /*
2244          * Check we didn't copy past our reservation window, taking the
2245          * possible unsigned int wrap into account.
2246          */
2247         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2248 }
2249
2250 #define perf_output_put(handle, x) \
2251         perf_output_copy((handle), &(x), sizeof(x))
2252
2253 static void perf_output_end(struct perf_output_handle *handle)
2254 {
2255         struct perf_counter *counter = handle->counter;
2256         struct perf_mmap_data *data = handle->data;
2257
2258         int wakeup_events = counter->hw_event.wakeup_events;
2259
2260         if (handle->overflow && wakeup_events) {
2261                 int events = atomic_inc_return(&data->events);
2262                 if (events >= wakeup_events) {
2263                         atomic_sub(wakeup_events, &data->events);
2264                         atomic_set(&data->wakeup, 1);
2265                 }
2266         }
2267
2268         perf_output_unlock(handle);
2269         rcu_read_unlock();
2270 }
2271
2272 static void perf_counter_output(struct perf_counter *counter,
2273                                 int nmi, struct pt_regs *regs, u64 addr)
2274 {
2275         int ret;
2276         u64 record_type = counter->hw_event.record_type;
2277         struct perf_output_handle handle;
2278         struct perf_event_header header;
2279         u64 ip;
2280         struct {
2281                 u32 pid, tid;
2282         } tid_entry;
2283         struct {
2284                 u64 event;
2285                 u64 counter;
2286         } group_entry;
2287         struct perf_callchain_entry *callchain = NULL;
2288         int callchain_size = 0;
2289         u64 time;
2290         struct {
2291                 u32 cpu, reserved;
2292         } cpu_entry;
2293
2294         header.type = 0;
2295         header.size = sizeof(header);
2296
2297         header.misc = PERF_EVENT_MISC_OVERFLOW;
2298         header.misc |= perf_misc_flags(regs);
2299
2300         if (record_type & PERF_RECORD_IP) {
2301                 ip = perf_instruction_pointer(regs);
2302                 header.type |= PERF_RECORD_IP;
2303                 header.size += sizeof(ip);
2304         }
2305
2306         if (record_type & PERF_RECORD_TID) {
2307                 /* namespace issues */
2308                 tid_entry.pid = current->group_leader->pid;
2309                 tid_entry.tid = current->pid;
2310
2311                 header.type |= PERF_RECORD_TID;
2312                 header.size += sizeof(tid_entry);
2313         }
2314
2315         if (record_type & PERF_RECORD_TIME) {
2316                 /*
2317                  * Maybe do better on x86 and provide cpu_clock_nmi()
2318                  */
2319                 time = sched_clock();
2320
2321                 header.type |= PERF_RECORD_TIME;
2322                 header.size += sizeof(u64);
2323         }
2324
2325         if (record_type & PERF_RECORD_ADDR) {
2326                 header.type |= PERF_RECORD_ADDR;
2327                 header.size += sizeof(u64);
2328         }
2329
2330         if (record_type & PERF_RECORD_CONFIG) {
2331                 header.type |= PERF_RECORD_CONFIG;
2332                 header.size += sizeof(u64);
2333         }
2334
2335         if (record_type & PERF_RECORD_CPU) {
2336                 header.type |= PERF_RECORD_CPU;
2337                 header.size += sizeof(cpu_entry);
2338
2339                 cpu_entry.cpu = raw_smp_processor_id();
2340         }
2341
2342         if (record_type & PERF_RECORD_GROUP) {
2343                 header.type |= PERF_RECORD_GROUP;
2344                 header.size += sizeof(u64) +
2345                         counter->nr_siblings * sizeof(group_entry);
2346         }
2347
2348         if (record_type & PERF_RECORD_CALLCHAIN) {
2349                 callchain = perf_callchain(regs);
2350
2351                 if (callchain) {
2352                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2353
2354                         header.type |= PERF_RECORD_CALLCHAIN;
2355                         header.size += callchain_size;
2356                 }
2357         }
2358
2359         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2360         if (ret)
2361                 return;
2362
2363         perf_output_put(&handle, header);
2364
2365         if (record_type & PERF_RECORD_IP)
2366                 perf_output_put(&handle, ip);
2367
2368         if (record_type & PERF_RECORD_TID)
2369                 perf_output_put(&handle, tid_entry);
2370
2371         if (record_type & PERF_RECORD_TIME)
2372                 perf_output_put(&handle, time);
2373
2374         if (record_type & PERF_RECORD_ADDR)
2375                 perf_output_put(&handle, addr);
2376
2377         if (record_type & PERF_RECORD_CONFIG)
2378                 perf_output_put(&handle, counter->hw_event.config);
2379
2380         if (record_type & PERF_RECORD_CPU)
2381                 perf_output_put(&handle, cpu_entry);
2382
2383         /*
2384          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2385          */
2386         if (record_type & PERF_RECORD_GROUP) {
2387                 struct perf_counter *leader, *sub;
2388                 u64 nr = counter->nr_siblings;
2389
2390                 perf_output_put(&handle, nr);
2391
2392                 leader = counter->group_leader;
2393                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2394                         if (sub != counter)
2395                                 sub->pmu->read(sub);
2396
2397                         group_entry.event = sub->hw_event.config;
2398                         group_entry.counter = atomic64_read(&sub->count);
2399
2400                         perf_output_put(&handle, group_entry);
2401                 }
2402         }
2403
2404         if (callchain)
2405                 perf_output_copy(&handle, callchain, callchain_size);
2406
2407         perf_output_end(&handle);
2408 }
2409
2410 /*
2411  * comm tracking
2412  */
2413
2414 struct perf_comm_event {
2415         struct task_struct      *task;
2416         char                    *comm;
2417         int                     comm_size;
2418
2419         struct {
2420                 struct perf_event_header        header;
2421
2422                 u32                             pid;
2423                 u32                             tid;
2424         } event;
2425 };
2426
2427 static void perf_counter_comm_output(struct perf_counter *counter,
2428                                      struct perf_comm_event *comm_event)
2429 {
2430         struct perf_output_handle handle;
2431         int size = comm_event->event.header.size;
2432         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2433
2434         if (ret)
2435                 return;
2436
2437         perf_output_put(&handle, comm_event->event);
2438         perf_output_copy(&handle, comm_event->comm,
2439                                    comm_event->comm_size);
2440         perf_output_end(&handle);
2441 }
2442
2443 static int perf_counter_comm_match(struct perf_counter *counter,
2444                                    struct perf_comm_event *comm_event)
2445 {
2446         if (counter->hw_event.comm &&
2447             comm_event->event.header.type == PERF_EVENT_COMM)
2448                 return 1;
2449
2450         return 0;
2451 }
2452
2453 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2454                                   struct perf_comm_event *comm_event)
2455 {
2456         struct perf_counter *counter;
2457
2458         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2459                 return;
2460
2461         rcu_read_lock();
2462         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2463                 if (perf_counter_comm_match(counter, comm_event))
2464                         perf_counter_comm_output(counter, comm_event);
2465         }
2466         rcu_read_unlock();
2467 }
2468
2469 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2470 {
2471         struct perf_cpu_context *cpuctx;
2472         struct perf_counter_context *ctx;
2473         unsigned int size;
2474         char *comm = comm_event->task->comm;
2475
2476         size = ALIGN(strlen(comm)+1, sizeof(u64));
2477
2478         comm_event->comm = comm;
2479         comm_event->comm_size = size;
2480
2481         comm_event->event.header.size = sizeof(comm_event->event) + size;
2482
2483         cpuctx = &get_cpu_var(perf_cpu_context);
2484         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2485         put_cpu_var(perf_cpu_context);
2486
2487         rcu_read_lock();
2488         /*
2489          * doesn't really matter which of the child contexts the
2490          * events ends up in.
2491          */
2492         ctx = rcu_dereference(current->perf_counter_ctxp);
2493         if (ctx)
2494                 perf_counter_comm_ctx(ctx, comm_event);
2495         rcu_read_unlock();
2496 }
2497
2498 void perf_counter_comm(struct task_struct *task)
2499 {
2500         struct perf_comm_event comm_event;
2501
2502         if (!atomic_read(&nr_comm_tracking))
2503                 return;
2504
2505         comm_event = (struct perf_comm_event){
2506                 .task   = task,
2507                 .event  = {
2508                         .header = { .type = PERF_EVENT_COMM, },
2509                         .pid    = task->group_leader->pid,
2510                         .tid    = task->pid,
2511                 },
2512         };
2513
2514         perf_counter_comm_event(&comm_event);
2515 }
2516
2517 /*
2518  * mmap tracking
2519  */
2520
2521 struct perf_mmap_event {
2522         struct file     *file;
2523         char            *file_name;
2524         int             file_size;
2525
2526         struct {
2527                 struct perf_event_header        header;
2528
2529                 u32                             pid;
2530                 u32                             tid;
2531                 u64                             start;
2532                 u64                             len;
2533                 u64                             pgoff;
2534         } event;
2535 };
2536
2537 static void perf_counter_mmap_output(struct perf_counter *counter,
2538                                      struct perf_mmap_event *mmap_event)
2539 {
2540         struct perf_output_handle handle;
2541         int size = mmap_event->event.header.size;
2542         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2543
2544         if (ret)
2545                 return;
2546
2547         perf_output_put(&handle, mmap_event->event);
2548         perf_output_copy(&handle, mmap_event->file_name,
2549                                    mmap_event->file_size);
2550         perf_output_end(&handle);
2551 }
2552
2553 static int perf_counter_mmap_match(struct perf_counter *counter,
2554                                    struct perf_mmap_event *mmap_event)
2555 {
2556         if (counter->hw_event.mmap &&
2557             mmap_event->event.header.type == PERF_EVENT_MMAP)
2558                 return 1;
2559
2560         if (counter->hw_event.munmap &&
2561             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2562                 return 1;
2563
2564         return 0;
2565 }
2566
2567 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2568                                   struct perf_mmap_event *mmap_event)
2569 {
2570         struct perf_counter *counter;
2571
2572         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2573                 return;
2574
2575         rcu_read_lock();
2576         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2577                 if (perf_counter_mmap_match(counter, mmap_event))
2578                         perf_counter_mmap_output(counter, mmap_event);
2579         }
2580         rcu_read_unlock();
2581 }
2582
2583 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2584 {
2585         struct perf_cpu_context *cpuctx;
2586         struct perf_counter_context *ctx;
2587         struct file *file = mmap_event->file;
2588         unsigned int size;
2589         char tmp[16];
2590         char *buf = NULL;
2591         char *name;
2592
2593         if (file) {
2594                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2595                 if (!buf) {
2596                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2597                         goto got_name;
2598                 }
2599                 name = d_path(&file->f_path, buf, PATH_MAX);
2600                 if (IS_ERR(name)) {
2601                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2602                         goto got_name;
2603                 }
2604         } else {
2605                 name = strncpy(tmp, "//anon", sizeof(tmp));
2606                 goto got_name;
2607         }
2608
2609 got_name:
2610         size = ALIGN(strlen(name)+1, sizeof(u64));
2611
2612         mmap_event->file_name = name;
2613         mmap_event->file_size = size;
2614
2615         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2616
2617         cpuctx = &get_cpu_var(perf_cpu_context);
2618         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2619         put_cpu_var(perf_cpu_context);
2620
2621         rcu_read_lock();
2622         /*
2623          * doesn't really matter which of the child contexts the
2624          * events ends up in.
2625          */
2626         ctx = rcu_dereference(current->perf_counter_ctxp);
2627         if (ctx)
2628                 perf_counter_mmap_ctx(ctx, mmap_event);
2629         rcu_read_unlock();
2630
2631         kfree(buf);
2632 }
2633
2634 void perf_counter_mmap(unsigned long addr, unsigned long len,
2635                        unsigned long pgoff, struct file *file)
2636 {
2637         struct perf_mmap_event mmap_event;
2638
2639         if (!atomic_read(&nr_mmap_tracking))
2640                 return;
2641
2642         mmap_event = (struct perf_mmap_event){
2643                 .file   = file,
2644                 .event  = {
2645                         .header = { .type = PERF_EVENT_MMAP, },
2646                         .pid    = current->group_leader->pid,
2647                         .tid    = current->pid,
2648                         .start  = addr,
2649                         .len    = len,
2650                         .pgoff  = pgoff,
2651                 },
2652         };
2653
2654         perf_counter_mmap_event(&mmap_event);
2655 }
2656
2657 void perf_counter_munmap(unsigned long addr, unsigned long len,
2658                          unsigned long pgoff, struct file *file)
2659 {
2660         struct perf_mmap_event mmap_event;
2661
2662         if (!atomic_read(&nr_munmap_tracking))
2663                 return;
2664
2665         mmap_event = (struct perf_mmap_event){
2666                 .file   = file,
2667                 .event  = {
2668                         .header = { .type = PERF_EVENT_MUNMAP, },
2669                         .pid    = current->group_leader->pid,
2670                         .tid    = current->pid,
2671                         .start  = addr,
2672                         .len    = len,
2673                         .pgoff  = pgoff,
2674                 },
2675         };
2676
2677         perf_counter_mmap_event(&mmap_event);
2678 }
2679
2680 /*
2681  * Log irq_period changes so that analyzing tools can re-normalize the
2682  * event flow.
2683  */
2684
2685 static void perf_log_period(struct perf_counter *counter, u64 period)
2686 {
2687         struct perf_output_handle handle;
2688         int ret;
2689
2690         struct {
2691                 struct perf_event_header        header;
2692                 u64                             time;
2693                 u64                             period;
2694         } freq_event = {
2695                 .header = {
2696                         .type = PERF_EVENT_PERIOD,
2697                         .misc = 0,
2698                         .size = sizeof(freq_event),
2699                 },
2700                 .time = sched_clock(),
2701                 .period = period,
2702         };
2703
2704         if (counter->hw.irq_period == period)
2705                 return;
2706
2707         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2708         if (ret)
2709                 return;
2710
2711         perf_output_put(&handle, freq_event);
2712         perf_output_end(&handle);
2713 }
2714
2715 /*
2716  * IRQ throttle logging
2717  */
2718
2719 static void perf_log_throttle(struct perf_counter *counter, int enable)
2720 {
2721         struct perf_output_handle handle;
2722         int ret;
2723
2724         struct {
2725                 struct perf_event_header        header;
2726                 u64                             time;
2727         } throttle_event = {
2728                 .header = {
2729                         .type = PERF_EVENT_THROTTLE + 1,
2730                         .misc = 0,
2731                         .size = sizeof(throttle_event),
2732                 },
2733                 .time = sched_clock(),
2734         };
2735
2736         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2737         if (ret)
2738                 return;
2739
2740         perf_output_put(&handle, throttle_event);
2741         perf_output_end(&handle);
2742 }
2743
2744 /*
2745  * Generic counter overflow handling.
2746  */
2747
2748 int perf_counter_overflow(struct perf_counter *counter,
2749                           int nmi, struct pt_regs *regs, u64 addr)
2750 {
2751         int events = atomic_read(&counter->event_limit);
2752         int throttle = counter->pmu->unthrottle != NULL;
2753         int ret = 0;
2754
2755         if (!throttle) {
2756                 counter->hw.interrupts++;
2757         } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2758                 counter->hw.interrupts++;
2759                 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2760                         counter->hw.interrupts = MAX_INTERRUPTS;
2761                         perf_log_throttle(counter, 0);
2762                         ret = 1;
2763                 }
2764         }
2765
2766         /*
2767          * XXX event_limit might not quite work as expected on inherited
2768          * counters
2769          */
2770
2771         counter->pending_kill = POLL_IN;
2772         if (events && atomic_dec_and_test(&counter->event_limit)) {
2773                 ret = 1;
2774                 counter->pending_kill = POLL_HUP;
2775                 if (nmi) {
2776                         counter->pending_disable = 1;
2777                         perf_pending_queue(&counter->pending,
2778                                            perf_pending_counter);
2779                 } else
2780                         perf_counter_disable(counter);
2781         }
2782
2783         perf_counter_output(counter, nmi, regs, addr);
2784         return ret;
2785 }
2786
2787 /*
2788  * Generic software counter infrastructure
2789  */
2790
2791 static void perf_swcounter_update(struct perf_counter *counter)
2792 {
2793         struct hw_perf_counter *hwc = &counter->hw;
2794         u64 prev, now;
2795         s64 delta;
2796
2797 again:
2798         prev = atomic64_read(&hwc->prev_count);
2799         now = atomic64_read(&hwc->count);
2800         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2801                 goto again;
2802
2803         delta = now - prev;
2804
2805         atomic64_add(delta, &counter->count);
2806         atomic64_sub(delta, &hwc->period_left);
2807 }
2808
2809 static void perf_swcounter_set_period(struct perf_counter *counter)
2810 {
2811         struct hw_perf_counter *hwc = &counter->hw;
2812         s64 left = atomic64_read(&hwc->period_left);
2813         s64 period = hwc->irq_period;
2814
2815         if (unlikely(left <= -period)) {
2816                 left = period;
2817                 atomic64_set(&hwc->period_left, left);
2818         }
2819
2820         if (unlikely(left <= 0)) {
2821                 left += period;
2822                 atomic64_add(period, &hwc->period_left);
2823         }
2824
2825         atomic64_set(&hwc->prev_count, -left);
2826         atomic64_set(&hwc->count, -left);
2827 }
2828
2829 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2830 {
2831         enum hrtimer_restart ret = HRTIMER_RESTART;
2832         struct perf_counter *counter;
2833         struct pt_regs *regs;
2834         u64 period;
2835
2836         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2837         counter->pmu->read(counter);
2838
2839         regs = get_irq_regs();
2840         /*
2841          * In case we exclude kernel IPs or are somehow not in interrupt
2842          * context, provide the next best thing, the user IP.
2843          */
2844         if ((counter->hw_event.exclude_kernel || !regs) &&
2845                         !counter->hw_event.exclude_user)
2846                 regs = task_pt_regs(current);
2847
2848         if (regs) {
2849                 if (perf_counter_overflow(counter, 0, regs, 0))
2850                         ret = HRTIMER_NORESTART;
2851         }
2852
2853         period = max_t(u64, 10000, counter->hw.irq_period);
2854         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2855
2856         return ret;
2857 }
2858
2859 static void perf_swcounter_overflow(struct perf_counter *counter,
2860                                     int nmi, struct pt_regs *regs, u64 addr)
2861 {
2862         perf_swcounter_update(counter);
2863         perf_swcounter_set_period(counter);
2864         if (perf_counter_overflow(counter, nmi, regs, addr))
2865                 /* soft-disable the counter */
2866                 ;
2867
2868 }
2869
2870 static int perf_swcounter_match(struct perf_counter *counter,
2871                                 enum perf_event_types type,
2872                                 u32 event, struct pt_regs *regs)
2873 {
2874         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2875                 return 0;
2876
2877         if (perf_event_raw(&counter->hw_event))
2878                 return 0;
2879
2880         if (perf_event_type(&counter->hw_event) != type)
2881                 return 0;
2882
2883         if (perf_event_id(&counter->hw_event) != event)
2884                 return 0;
2885
2886         if (counter->hw_event.exclude_user && user_mode(regs))
2887                 return 0;
2888
2889         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2890                 return 0;
2891
2892         return 1;
2893 }
2894
2895 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2896                                int nmi, struct pt_regs *regs, u64 addr)
2897 {
2898         int neg = atomic64_add_negative(nr, &counter->hw.count);
2899         if (counter->hw.irq_period && !neg)
2900                 perf_swcounter_overflow(counter, nmi, regs, addr);
2901 }
2902
2903 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2904                                      enum perf_event_types type, u32 event,
2905                                      u64 nr, int nmi, struct pt_regs *regs,
2906                                      u64 addr)
2907 {
2908         struct perf_counter *counter;
2909
2910         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2911                 return;
2912
2913         rcu_read_lock();
2914         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2915                 if (perf_swcounter_match(counter, type, event, regs))
2916                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2917         }
2918         rcu_read_unlock();
2919 }
2920
2921 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2922 {
2923         if (in_nmi())
2924                 return &cpuctx->recursion[3];
2925
2926         if (in_irq())
2927                 return &cpuctx->recursion[2];
2928
2929         if (in_softirq())
2930                 return &cpuctx->recursion[1];
2931
2932         return &cpuctx->recursion[0];
2933 }
2934
2935 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2936                                    u64 nr, int nmi, struct pt_regs *regs,
2937                                    u64 addr)
2938 {
2939         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2940         int *recursion = perf_swcounter_recursion_context(cpuctx);
2941         struct perf_counter_context *ctx;
2942
2943         if (*recursion)
2944                 goto out;
2945
2946         (*recursion)++;
2947         barrier();
2948
2949         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2950                                  nr, nmi, regs, addr);
2951         rcu_read_lock();
2952         /*
2953          * doesn't really matter which of the child contexts the
2954          * events ends up in.
2955          */
2956         ctx = rcu_dereference(current->perf_counter_ctxp);
2957         if (ctx)
2958                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
2959         rcu_read_unlock();
2960
2961         barrier();
2962         (*recursion)--;
2963
2964 out:
2965         put_cpu_var(perf_cpu_context);
2966 }
2967
2968 void
2969 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2970 {
2971         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2972 }
2973
2974 static void perf_swcounter_read(struct perf_counter *counter)
2975 {
2976         perf_swcounter_update(counter);
2977 }
2978
2979 static int perf_swcounter_enable(struct perf_counter *counter)
2980 {
2981         perf_swcounter_set_period(counter);
2982         return 0;
2983 }
2984
2985 static void perf_swcounter_disable(struct perf_counter *counter)
2986 {
2987         perf_swcounter_update(counter);
2988 }
2989
2990 static const struct pmu perf_ops_generic = {
2991         .enable         = perf_swcounter_enable,
2992         .disable        = perf_swcounter_disable,
2993         .read           = perf_swcounter_read,
2994 };
2995
2996 /*
2997  * Software counter: cpu wall time clock
2998  */
2999
3000 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3001 {
3002         int cpu = raw_smp_processor_id();
3003         s64 prev;
3004         u64 now;
3005
3006         now = cpu_clock(cpu);
3007         prev = atomic64_read(&counter->hw.prev_count);
3008         atomic64_set(&counter->hw.prev_count, now);
3009         atomic64_add(now - prev, &counter->count);
3010 }
3011
3012 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3013 {
3014         struct hw_perf_counter *hwc = &counter->hw;
3015         int cpu = raw_smp_processor_id();
3016
3017         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3018         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3019         hwc->hrtimer.function = perf_swcounter_hrtimer;
3020         if (hwc->irq_period) {
3021                 u64 period = max_t(u64, 10000, hwc->irq_period);
3022                 __hrtimer_start_range_ns(&hwc->hrtimer,
3023                                 ns_to_ktime(period), 0,
3024                                 HRTIMER_MODE_REL, 0);
3025         }
3026
3027         return 0;
3028 }
3029
3030 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3031 {
3032         if (counter->hw.irq_period)
3033                 hrtimer_cancel(&counter->hw.hrtimer);
3034         cpu_clock_perf_counter_update(counter);
3035 }
3036
3037 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3038 {
3039         cpu_clock_perf_counter_update(counter);
3040 }
3041
3042 static const struct pmu perf_ops_cpu_clock = {
3043         .enable         = cpu_clock_perf_counter_enable,
3044         .disable        = cpu_clock_perf_counter_disable,
3045         .read           = cpu_clock_perf_counter_read,
3046 };
3047
3048 /*
3049  * Software counter: task time clock
3050  */
3051
3052 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3053 {
3054         u64 prev;
3055         s64 delta;
3056
3057         prev = atomic64_xchg(&counter->hw.prev_count, now);
3058         delta = now - prev;
3059         atomic64_add(delta, &counter->count);
3060 }
3061
3062 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3063 {
3064         struct hw_perf_counter *hwc = &counter->hw;
3065         u64 now;
3066
3067         now = counter->ctx->time;
3068
3069         atomic64_set(&hwc->prev_count, now);
3070         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3071         hwc->hrtimer.function = perf_swcounter_hrtimer;
3072         if (hwc->irq_period) {
3073                 u64 period = max_t(u64, 10000, hwc->irq_period);
3074                 __hrtimer_start_range_ns(&hwc->hrtimer,
3075                                 ns_to_ktime(period), 0,
3076                                 HRTIMER_MODE_REL, 0);
3077         }
3078
3079         return 0;
3080 }
3081
3082 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3083 {
3084         if (counter->hw.irq_period)
3085                 hrtimer_cancel(&counter->hw.hrtimer);
3086         task_clock_perf_counter_update(counter, counter->ctx->time);
3087
3088 }
3089
3090 static void task_clock_perf_counter_read(struct perf_counter *counter)
3091 {
3092         u64 time;
3093
3094         if (!in_nmi()) {
3095                 update_context_time(counter->ctx);
3096                 time = counter->ctx->time;
3097         } else {
3098                 u64 now = perf_clock();
3099                 u64 delta = now - counter->ctx->timestamp;
3100                 time = counter->ctx->time + delta;
3101         }
3102
3103         task_clock_perf_counter_update(counter, time);
3104 }
3105
3106 static const struct pmu perf_ops_task_clock = {
3107         .enable         = task_clock_perf_counter_enable,
3108         .disable        = task_clock_perf_counter_disable,
3109         .read           = task_clock_perf_counter_read,
3110 };
3111
3112 /*
3113  * Software counter: cpu migrations
3114  */
3115
3116 static inline u64 get_cpu_migrations(struct perf_counter *counter)
3117 {
3118         struct task_struct *curr = counter->ctx->task;
3119
3120         if (curr)
3121                 return curr->se.nr_migrations;
3122         return cpu_nr_migrations(smp_processor_id());
3123 }
3124
3125 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
3126 {
3127         u64 prev, now;
3128         s64 delta;
3129
3130         prev = atomic64_read(&counter->hw.prev_count);
3131         now = get_cpu_migrations(counter);
3132
3133         atomic64_set(&counter->hw.prev_count, now);
3134
3135         delta = now - prev;
3136
3137         atomic64_add(delta, &counter->count);
3138 }
3139
3140 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
3141 {
3142         cpu_migrations_perf_counter_update(counter);
3143 }
3144
3145 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
3146 {
3147         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
3148                 atomic64_set(&counter->hw.prev_count,
3149                              get_cpu_migrations(counter));
3150         return 0;
3151 }
3152
3153 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
3154 {
3155         cpu_migrations_perf_counter_update(counter);
3156 }
3157
3158 static const struct pmu perf_ops_cpu_migrations = {
3159         .enable         = cpu_migrations_perf_counter_enable,
3160         .disable        = cpu_migrations_perf_counter_disable,
3161         .read           = cpu_migrations_perf_counter_read,
3162 };
3163
3164 #ifdef CONFIG_EVENT_PROFILE
3165 void perf_tpcounter_event(int event_id)
3166 {
3167         struct pt_regs *regs = get_irq_regs();
3168
3169         if (!regs)
3170                 regs = task_pt_regs(current);
3171
3172         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3173 }
3174 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3175
3176 extern int ftrace_profile_enable(int);
3177 extern void ftrace_profile_disable(int);
3178
3179 static void tp_perf_counter_destroy(struct perf_counter *counter)
3180 {
3181         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3182 }
3183
3184 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3185 {
3186         int event_id = perf_event_id(&counter->hw_event);
3187         int ret;
3188
3189         ret = ftrace_profile_enable(event_id);
3190         if (ret)
3191                 return NULL;
3192
3193         counter->destroy = tp_perf_counter_destroy;
3194         counter->hw.irq_period = counter->hw_event.irq_period;
3195
3196         return &perf_ops_generic;
3197 }
3198 #else
3199 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3200 {
3201         return NULL;
3202 }
3203 #endif
3204
3205 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3206 {
3207         const struct pmu *pmu = NULL;
3208
3209         /*
3210          * Software counters (currently) can't in general distinguish
3211          * between user, kernel and hypervisor events.
3212          * However, context switches and cpu migrations are considered
3213          * to be kernel events, and page faults are never hypervisor
3214          * events.
3215          */
3216         switch (perf_event_id(&counter->hw_event)) {
3217         case PERF_COUNT_CPU_CLOCK:
3218                 pmu = &perf_ops_cpu_clock;
3219
3220                 break;
3221         case PERF_COUNT_TASK_CLOCK:
3222                 /*
3223                  * If the user instantiates this as a per-cpu counter,
3224                  * use the cpu_clock counter instead.
3225                  */
3226                 if (counter->ctx->task)
3227                         pmu = &perf_ops_task_clock;
3228                 else
3229                         pmu = &perf_ops_cpu_clock;
3230
3231                 break;
3232         case PERF_COUNT_PAGE_FAULTS:
3233         case PERF_COUNT_PAGE_FAULTS_MIN:
3234         case PERF_COUNT_PAGE_FAULTS_MAJ:
3235         case PERF_COUNT_CONTEXT_SWITCHES:
3236                 pmu = &perf_ops_generic;
3237                 break;
3238         case PERF_COUNT_CPU_MIGRATIONS:
3239                 if (!counter->hw_event.exclude_kernel)
3240                         pmu = &perf_ops_cpu_migrations;
3241                 break;
3242         }
3243
3244         return pmu;
3245 }
3246
3247 /*
3248  * Allocate and initialize a counter structure
3249  */
3250 static struct perf_counter *
3251 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3252                    int cpu,
3253                    struct perf_counter_context *ctx,
3254                    struct perf_counter *group_leader,
3255                    gfp_t gfpflags)
3256 {
3257         const struct pmu *pmu;
3258         struct perf_counter *counter;
3259         struct hw_perf_counter *hwc;
3260         long err;
3261
3262         counter = kzalloc(sizeof(*counter), gfpflags);
3263         if (!counter)
3264                 return ERR_PTR(-ENOMEM);
3265
3266         /*
3267          * Single counters are their own group leaders, with an
3268          * empty sibling list:
3269          */
3270         if (!group_leader)
3271                 group_leader = counter;
3272
3273         mutex_init(&counter->child_mutex);
3274         INIT_LIST_HEAD(&counter->child_list);
3275
3276         INIT_LIST_HEAD(&counter->list_entry);
3277         INIT_LIST_HEAD(&counter->event_entry);
3278         INIT_LIST_HEAD(&counter->sibling_list);
3279         init_waitqueue_head(&counter->waitq);
3280
3281         mutex_init(&counter->mmap_mutex);
3282
3283         counter->cpu                    = cpu;
3284         counter->hw_event               = *hw_event;
3285         counter->group_leader           = group_leader;
3286         counter->pmu                    = NULL;
3287         counter->ctx                    = ctx;
3288         counter->oncpu                  = -1;
3289
3290         counter->state = PERF_COUNTER_STATE_INACTIVE;
3291         if (hw_event->disabled)
3292                 counter->state = PERF_COUNTER_STATE_OFF;
3293
3294         pmu = NULL;
3295
3296         hwc = &counter->hw;
3297         if (hw_event->freq && hw_event->irq_freq)
3298                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3299         else
3300                 hwc->irq_period = hw_event->irq_period;
3301
3302         /*
3303          * we currently do not support PERF_RECORD_GROUP on inherited counters
3304          */
3305         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3306                 goto done;
3307
3308         if (perf_event_raw(hw_event)) {
3309                 pmu = hw_perf_counter_init(counter);
3310                 goto done;
3311         }
3312
3313         switch (perf_event_type(hw_event)) {
3314         case PERF_TYPE_HARDWARE:
3315                 pmu = hw_perf_counter_init(counter);
3316                 break;
3317
3318         case PERF_TYPE_SOFTWARE:
3319                 pmu = sw_perf_counter_init(counter);
3320                 break;
3321
3322         case PERF_TYPE_TRACEPOINT:
3323                 pmu = tp_perf_counter_init(counter);
3324                 break;
3325         }
3326 done:
3327         err = 0;
3328         if (!pmu)
3329                 err = -EINVAL;
3330         else if (IS_ERR(pmu))
3331                 err = PTR_ERR(pmu);
3332
3333         if (err) {
3334                 kfree(counter);
3335                 return ERR_PTR(err);
3336         }
3337
3338         counter->pmu = pmu;
3339
3340         atomic_inc(&nr_counters);
3341         if (counter->hw_event.mmap)
3342                 atomic_inc(&nr_mmap_tracking);
3343         if (counter->hw_event.munmap)
3344                 atomic_inc(&nr_munmap_tracking);
3345         if (counter->hw_event.comm)
3346                 atomic_inc(&nr_comm_tracking);
3347
3348         return counter;
3349 }
3350
3351 /**
3352  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3353  *
3354  * @hw_event_uptr:      event type attributes for monitoring/sampling
3355  * @pid:                target pid
3356  * @cpu:                target cpu
3357  * @group_fd:           group leader counter fd
3358  */
3359 SYSCALL_DEFINE5(perf_counter_open,
3360                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3361                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3362 {
3363         struct perf_counter *counter, *group_leader;
3364         struct perf_counter_hw_event hw_event;
3365         struct perf_counter_context *ctx;
3366         struct file *counter_file = NULL;
3367         struct file *group_file = NULL;
3368         int fput_needed = 0;
3369         int fput_needed2 = 0;
3370         int ret;
3371
3372         /* for future expandability... */
3373         if (flags)
3374                 return -EINVAL;
3375
3376         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3377                 return -EFAULT;
3378
3379         /*
3380          * Get the target context (task or percpu):
3381          */
3382         ctx = find_get_context(pid, cpu);
3383         if (IS_ERR(ctx))
3384                 return PTR_ERR(ctx);
3385
3386         /*
3387          * Look up the group leader (we will attach this counter to it):
3388          */
3389         group_leader = NULL;
3390         if (group_fd != -1) {
3391                 ret = -EINVAL;
3392                 group_file = fget_light(group_fd, &fput_needed);
3393                 if (!group_file)
3394                         goto err_put_context;
3395                 if (group_file->f_op != &perf_fops)
3396                         goto err_put_context;
3397
3398                 group_leader = group_file->private_data;
3399                 /*
3400                  * Do not allow a recursive hierarchy (this new sibling
3401                  * becoming part of another group-sibling):
3402                  */
3403                 if (group_leader->group_leader != group_leader)
3404                         goto err_put_context;
3405                 /*
3406                  * Do not allow to attach to a group in a different
3407                  * task or CPU context:
3408                  */
3409                 if (group_leader->ctx != ctx)
3410                         goto err_put_context;
3411                 /*
3412                  * Only a group leader can be exclusive or pinned
3413                  */
3414                 if (hw_event.exclusive || hw_event.pinned)
3415                         goto err_put_context;
3416         }
3417
3418         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3419                                      GFP_KERNEL);
3420         ret = PTR_ERR(counter);
3421         if (IS_ERR(counter))
3422                 goto err_put_context;
3423
3424         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3425         if (ret < 0)
3426                 goto err_free_put_context;
3427
3428         counter_file = fget_light(ret, &fput_needed2);
3429         if (!counter_file)
3430                 goto err_free_put_context;
3431
3432         counter->filp = counter_file;
3433         WARN_ON_ONCE(ctx->parent_ctx);
3434         mutex_lock(&ctx->mutex);
3435         perf_install_in_context(ctx, counter, cpu);
3436         ++ctx->generation;
3437         mutex_unlock(&ctx->mutex);
3438
3439         counter->owner = current;
3440         get_task_struct(current);
3441         mutex_lock(&current->perf_counter_mutex);
3442         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3443         mutex_unlock(&current->perf_counter_mutex);
3444
3445         fput_light(counter_file, fput_needed2);
3446
3447 out_fput:
3448         fput_light(group_file, fput_needed);
3449
3450         return ret;
3451
3452 err_free_put_context:
3453         kfree(counter);
3454
3455 err_put_context:
3456         put_ctx(ctx);
3457
3458         goto out_fput;
3459 }
3460
3461 /*
3462  * inherit a counter from parent task to child task:
3463  */
3464 static struct perf_counter *
3465 inherit_counter(struct perf_counter *parent_counter,
3466               struct task_struct *parent,
3467               struct perf_counter_context *parent_ctx,
3468               struct task_struct *child,
3469               struct perf_counter *group_leader,
3470               struct perf_counter_context *child_ctx)
3471 {
3472         struct perf_counter *child_counter;
3473
3474         /*
3475          * Instead of creating recursive hierarchies of counters,
3476          * we link inherited counters back to the original parent,
3477          * which has a filp for sure, which we use as the reference
3478          * count:
3479          */
3480         if (parent_counter->parent)
3481                 parent_counter = parent_counter->parent;
3482
3483         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3484                                            parent_counter->cpu, child_ctx,
3485                                            group_leader, GFP_KERNEL);
3486         if (IS_ERR(child_counter))
3487                 return child_counter;
3488         get_ctx(child_ctx);
3489
3490         /*
3491          * Make the child state follow the state of the parent counter,
3492          * not its hw_event.disabled bit.  We hold the parent's mutex,
3493          * so we won't race with perf_counter_{en,dis}able_family.
3494          */
3495         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3496                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3497         else
3498                 child_counter->state = PERF_COUNTER_STATE_OFF;
3499
3500         /*
3501          * Link it up in the child's context:
3502          */
3503         add_counter_to_ctx(child_counter, child_ctx);
3504
3505         child_counter->parent = parent_counter;
3506         /*
3507          * inherit into child's child as well:
3508          */
3509         child_counter->hw_event.inherit = 1;
3510
3511         /*
3512          * Get a reference to the parent filp - we will fput it
3513          * when the child counter exits. This is safe to do because
3514          * we are in the parent and we know that the filp still
3515          * exists and has a nonzero count:
3516          */
3517         atomic_long_inc(&parent_counter->filp->f_count);
3518
3519         /*
3520          * Link this into the parent counter's child list
3521          */
3522         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3523         mutex_lock(&parent_counter->child_mutex);
3524         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3525         mutex_unlock(&parent_counter->child_mutex);
3526
3527         return child_counter;
3528 }
3529
3530 static int inherit_group(struct perf_counter *parent_counter,
3531               struct task_struct *parent,
3532               struct perf_counter_context *parent_ctx,
3533               struct task_struct *child,
3534               struct perf_counter_context *child_ctx)
3535 {
3536         struct perf_counter *leader;
3537         struct perf_counter *sub;
3538         struct perf_counter *child_ctr;
3539
3540         leader = inherit_counter(parent_counter, parent, parent_ctx,
3541                                  child, NULL, child_ctx);
3542         if (IS_ERR(leader))
3543                 return PTR_ERR(leader);
3544         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3545                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3546                                             child, leader, child_ctx);
3547                 if (IS_ERR(child_ctr))
3548                         return PTR_ERR(child_ctr);
3549         }
3550         return 0;
3551 }
3552
3553 static void sync_child_counter(struct perf_counter *child_counter,
3554                                struct perf_counter *parent_counter)
3555 {
3556         u64 child_val;
3557
3558         child_val = atomic64_read(&child_counter->count);
3559
3560         /*
3561          * Add back the child's count to the parent's count:
3562          */
3563         atomic64_add(child_val, &parent_counter->count);
3564         atomic64_add(child_counter->total_time_enabled,
3565                      &parent_counter->child_total_time_enabled);
3566         atomic64_add(child_counter->total_time_running,
3567                      &parent_counter->child_total_time_running);
3568
3569         /*
3570          * Remove this counter from the parent's list
3571          */
3572         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3573         mutex_lock(&parent_counter->child_mutex);
3574         list_del_init(&child_counter->child_list);
3575         mutex_unlock(&parent_counter->child_mutex);
3576
3577         /*
3578          * Release the parent counter, if this was the last
3579          * reference to it.
3580          */
3581         fput(parent_counter->filp);
3582 }
3583
3584 static void
3585 __perf_counter_exit_task(struct perf_counter *child_counter,
3586                          struct perf_counter_context *child_ctx)
3587 {
3588         struct perf_counter *parent_counter;
3589
3590         update_counter_times(child_counter);
3591         perf_counter_remove_from_context(child_counter);
3592
3593         parent_counter = child_counter->parent;
3594         /*
3595          * It can happen that parent exits first, and has counters
3596          * that are still around due to the child reference. These
3597          * counters need to be zapped - but otherwise linger.
3598          */
3599         if (parent_counter) {
3600                 sync_child_counter(child_counter, parent_counter);
3601                 free_counter(child_counter);
3602         }
3603 }
3604
3605 /*
3606  * When a child task exits, feed back counter values to parent counters.
3607  */
3608 void perf_counter_exit_task(struct task_struct *child)
3609 {
3610         struct perf_counter *child_counter, *tmp;
3611         struct perf_counter_context *child_ctx;
3612         unsigned long flags;
3613
3614         if (likely(!child->perf_counter_ctxp))
3615                 return;
3616
3617         local_irq_save(flags);
3618         /*
3619          * We can't reschedule here because interrupts are disabled,
3620          * and either child is current or it is a task that can't be
3621          * scheduled, so we are now safe from rescheduling changing
3622          * our context.
3623          */
3624         child_ctx = child->perf_counter_ctxp;
3625         __perf_counter_task_sched_out(child_ctx);
3626
3627         /*
3628          * Take the context lock here so that if find_get_context is
3629          * reading child->perf_counter_ctxp, we wait until it has
3630          * incremented the context's refcount before we do put_ctx below.
3631          */
3632         spin_lock(&child_ctx->lock);
3633         child->perf_counter_ctxp = NULL;
3634         if (child_ctx->parent_ctx) {
3635                 /*
3636                  * This context is a clone; unclone it so it can't get
3637                  * swapped to another process while we're removing all
3638                  * the counters from it.
3639                  */
3640                 put_ctx(child_ctx->parent_ctx);
3641                 child_ctx->parent_ctx = NULL;
3642         }
3643         spin_unlock(&child_ctx->lock);
3644         local_irq_restore(flags);
3645
3646         mutex_lock(&child_ctx->mutex);
3647
3648 again:
3649         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3650                                  list_entry)
3651                 __perf_counter_exit_task(child_counter, child_ctx);
3652
3653         /*
3654          * If the last counter was a group counter, it will have appended all
3655          * its siblings to the list, but we obtained 'tmp' before that which
3656          * will still point to the list head terminating the iteration.
3657          */
3658         if (!list_empty(&child_ctx->counter_list))
3659                 goto again;
3660
3661         mutex_unlock(&child_ctx->mutex);
3662
3663         put_ctx(child_ctx);
3664 }
3665
3666 /*
3667  * free an unexposed, unused context as created by inheritance by
3668  * init_task below, used by fork() in case of fail.
3669  */
3670 void perf_counter_free_task(struct task_struct *task)
3671 {
3672         struct perf_counter_context *ctx = task->perf_counter_ctxp;
3673         struct perf_counter *counter, *tmp;
3674
3675         if (!ctx)
3676                 return;
3677
3678         mutex_lock(&ctx->mutex);
3679 again:
3680         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3681                 struct perf_counter *parent = counter->parent;
3682
3683                 if (WARN_ON_ONCE(!parent))
3684                         continue;
3685
3686                 mutex_lock(&parent->child_mutex);
3687                 list_del_init(&counter->child_list);
3688                 mutex_unlock(&parent->child_mutex);
3689
3690                 fput(parent->filp);
3691
3692                 list_del_counter(counter, ctx);
3693                 free_counter(counter);
3694         }
3695
3696         if (!list_empty(&ctx->counter_list))
3697                 goto again;
3698
3699         mutex_unlock(&ctx->mutex);
3700
3701         put_ctx(ctx);
3702 }
3703
3704 /*
3705  * Initialize the perf_counter context in task_struct
3706  */
3707 int perf_counter_init_task(struct task_struct *child)
3708 {
3709         struct perf_counter_context *child_ctx, *parent_ctx;
3710         struct perf_counter_context *cloned_ctx;
3711         struct perf_counter *counter;
3712         struct task_struct *parent = current;
3713         int inherited_all = 1;
3714         int ret = 0;
3715
3716         child->perf_counter_ctxp = NULL;
3717
3718         mutex_init(&child->perf_counter_mutex);
3719         INIT_LIST_HEAD(&child->perf_counter_list);
3720
3721         if (likely(!parent->perf_counter_ctxp))
3722                 return 0;
3723
3724         /*
3725          * This is executed from the parent task context, so inherit
3726          * counters that have been marked for cloning.
3727          * First allocate and initialize a context for the child.
3728          */
3729
3730         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3731         if (!child_ctx)
3732                 return -ENOMEM;
3733
3734         __perf_counter_init_context(child_ctx, child);
3735         child->perf_counter_ctxp = child_ctx;
3736         get_task_struct(child);
3737
3738         /*
3739          * If the parent's context is a clone, pin it so it won't get
3740          * swapped under us.
3741          */
3742         parent_ctx = perf_pin_task_context(parent);
3743
3744         /*
3745          * No need to check if parent_ctx != NULL here; since we saw
3746          * it non-NULL earlier, the only reason for it to become NULL
3747          * is if we exit, and since we're currently in the middle of
3748          * a fork we can't be exiting at the same time.
3749          */
3750
3751         /*
3752          * Lock the parent list. No need to lock the child - not PID
3753          * hashed yet and not running, so nobody can access it.
3754          */
3755         mutex_lock(&parent_ctx->mutex);
3756
3757         /*
3758          * We dont have to disable NMIs - we are only looking at
3759          * the list, not manipulating it:
3760          */
3761         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3762                 if (counter != counter->group_leader)
3763                         continue;
3764
3765                 if (!counter->hw_event.inherit) {
3766                         inherited_all = 0;
3767                         continue;
3768                 }
3769
3770                 ret = inherit_group(counter, parent, parent_ctx,
3771                                              child, child_ctx);
3772                 if (ret) {
3773                         inherited_all = 0;
3774                         break;
3775                 }
3776         }
3777
3778         if (inherited_all) {
3779                 /*
3780                  * Mark the child context as a clone of the parent
3781                  * context, or of whatever the parent is a clone of.
3782                  * Note that if the parent is a clone, it could get
3783                  * uncloned at any point, but that doesn't matter
3784                  * because the list of counters and the generation
3785                  * count can't have changed since we took the mutex.
3786                  */
3787                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3788                 if (cloned_ctx) {
3789                         child_ctx->parent_ctx = cloned_ctx;
3790                         child_ctx->parent_gen = parent_ctx->parent_gen;
3791                 } else {
3792                         child_ctx->parent_ctx = parent_ctx;
3793                         child_ctx->parent_gen = parent_ctx->generation;
3794                 }
3795                 get_ctx(child_ctx->parent_ctx);
3796         }
3797
3798         mutex_unlock(&parent_ctx->mutex);
3799
3800         perf_unpin_context(parent_ctx);
3801
3802         return ret;
3803 }
3804
3805 static void __cpuinit perf_counter_init_cpu(int cpu)
3806 {
3807         struct perf_cpu_context *cpuctx;
3808
3809         cpuctx = &per_cpu(perf_cpu_context, cpu);
3810         __perf_counter_init_context(&cpuctx->ctx, NULL);
3811
3812         spin_lock(&perf_resource_lock);
3813         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3814         spin_unlock(&perf_resource_lock);
3815
3816         hw_perf_counter_setup(cpu);
3817 }
3818
3819 #ifdef CONFIG_HOTPLUG_CPU
3820 static void __perf_counter_exit_cpu(void *info)
3821 {
3822         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3823         struct perf_counter_context *ctx = &cpuctx->ctx;
3824         struct perf_counter *counter, *tmp;
3825
3826         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3827                 __perf_counter_remove_from_context(counter);
3828 }
3829 static void perf_counter_exit_cpu(int cpu)
3830 {
3831         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3832         struct perf_counter_context *ctx = &cpuctx->ctx;
3833
3834         mutex_lock(&ctx->mutex);
3835         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3836         mutex_unlock(&ctx->mutex);
3837 }
3838 #else
3839 static inline void perf_counter_exit_cpu(int cpu) { }
3840 #endif
3841
3842 static int __cpuinit
3843 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3844 {
3845         unsigned int cpu = (long)hcpu;
3846
3847         switch (action) {
3848
3849         case CPU_UP_PREPARE:
3850         case CPU_UP_PREPARE_FROZEN:
3851                 perf_counter_init_cpu(cpu);
3852                 break;
3853
3854         case CPU_DOWN_PREPARE:
3855         case CPU_DOWN_PREPARE_FROZEN:
3856                 perf_counter_exit_cpu(cpu);
3857                 break;
3858
3859         default:
3860                 break;
3861         }
3862
3863         return NOTIFY_OK;
3864 }
3865
3866 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3867         .notifier_call          = perf_cpu_notify,
3868 };
3869
3870 void __init perf_counter_init(void)
3871 {
3872         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3873                         (void *)(long)smp_processor_id());
3874         register_cpu_notifier(&perf_cpu_nb);
3875 }
3876
3877 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3878 {
3879         return sprintf(buf, "%d\n", perf_reserved_percpu);
3880 }
3881
3882 static ssize_t
3883 perf_set_reserve_percpu(struct sysdev_class *class,
3884                         const char *buf,
3885                         size_t count)
3886 {
3887         struct perf_cpu_context *cpuctx;
3888         unsigned long val;
3889         int err, cpu, mpt;
3890
3891         err = strict_strtoul(buf, 10, &val);
3892         if (err)
3893                 return err;
3894         if (val > perf_max_counters)
3895                 return -EINVAL;
3896
3897         spin_lock(&perf_resource_lock);
3898         perf_reserved_percpu = val;
3899         for_each_online_cpu(cpu) {
3900                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3901                 spin_lock_irq(&cpuctx->ctx.lock);
3902                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3903                           perf_max_counters - perf_reserved_percpu);
3904                 cpuctx->max_pertask = mpt;
3905                 spin_unlock_irq(&cpuctx->ctx.lock);
3906         }
3907         spin_unlock(&perf_resource_lock);
3908
3909         return count;
3910 }
3911
3912 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3913 {
3914         return sprintf(buf, "%d\n", perf_overcommit);
3915 }
3916
3917 static ssize_t
3918 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3919 {
3920         unsigned long val;
3921         int err;
3922
3923         err = strict_strtoul(buf, 10, &val);
3924         if (err)
3925                 return err;
3926         if (val > 1)
3927                 return -EINVAL;
3928
3929         spin_lock(&perf_resource_lock);
3930         perf_overcommit = val;
3931         spin_unlock(&perf_resource_lock);
3932
3933         return count;
3934 }
3935
3936 static SYSDEV_CLASS_ATTR(
3937                                 reserve_percpu,
3938                                 0644,
3939                                 perf_show_reserve_percpu,
3940                                 perf_set_reserve_percpu
3941                         );
3942
3943 static SYSDEV_CLASS_ATTR(
3944                                 overcommit,
3945                                 0644,
3946                                 perf_show_overcommit,
3947                                 perf_set_overcommit
3948                         );
3949
3950 static struct attribute *perfclass_attrs[] = {
3951         &attr_reserve_percpu.attr,
3952         &attr_overcommit.attr,
3953         NULL
3954 };
3955
3956 static struct attribute_group perfclass_attr_group = {
3957         .attrs                  = perfclass_attrs,
3958         .name                   = "perf_counters",
3959 };
3960
3961 static int __init perf_counter_sysfs_init(void)
3962 {
3963         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3964                                   &perfclass_attr_group);
3965 }
3966 device_initcall(perf_counter_sysfs_init);