4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
24 * A fast way to enable or disable all ring buffers is to
25 * call tracing_on or tracing_off. Turning off the ring buffers
26 * prevents all ring buffers from being recorded to.
27 * Turning this switch on, makes it OK to write to the
28 * ring buffer, if the ring buffer is enabled itself.
30 * There's three layers that must be on in order to write
33 * 1) This global flag must be set.
34 * 2) The ring buffer must be enabled for recording.
35 * 3) The per cpu buffer must be enabled for recording.
37 * In case of an anomaly, this global flag has a bit set that
38 * will permantly disable all ring buffers.
42 * Global flag to disable all recording to ring buffers
43 * This has two bits: ON, DISABLED
47 * 0 0 : ring buffers are off
48 * 1 0 : ring buffers are on
49 * X 1 : ring buffers are permanently disabled
53 RB_BUFFERS_ON_BIT = 0,
54 RB_BUFFERS_DISABLED_BIT = 1,
58 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
59 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
62 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
64 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
67 * tracing_on - enable all tracing buffers
69 * This function enables all tracing buffers that may have been
70 * disabled with tracing_off.
74 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
76 EXPORT_SYMBOL_GPL(tracing_on);
79 * tracing_off - turn off all tracing buffers
81 * This function stops all tracing buffers from recording data.
82 * It does not disable any overhead the tracers themselves may
83 * be causing. This function simply causes all recording to
84 * the ring buffers to fail.
86 void tracing_off(void)
88 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
90 EXPORT_SYMBOL_GPL(tracing_off);
93 * tracing_off_permanent - permanently disable ring buffers
95 * This function, once called, will disable all ring buffers
98 void tracing_off_permanent(void)
100 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
104 * tracing_is_on - show state of ring buffers enabled
106 int tracing_is_on(void)
108 return ring_buffer_flags == RB_BUFFERS_ON;
110 EXPORT_SYMBOL_GPL(tracing_is_on);
114 /* Up this if you want to test the TIME_EXTENTS and normalization */
115 #define DEBUG_SHIFT 0
117 u64 ring_buffer_time_stamp(int cpu)
121 preempt_disable_notrace();
122 /* shift to debug/test normalization and TIME_EXTENTS */
123 time = trace_clock_local() << DEBUG_SHIFT;
124 preempt_enable_no_resched_notrace();
128 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
130 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
132 /* Just stupid testing the normalize function and deltas */
135 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT 4U
139 #define RB_MAX_SMALL_DATA 28
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
146 /* inline for ring buffer fast paths */
148 rb_event_length(struct ring_buffer_event *event)
152 switch (event->type) {
153 case RINGBUF_TYPE_PADDING:
157 case RINGBUF_TYPE_TIME_EXTEND:
158 return RB_LEN_TIME_EXTEND;
160 case RINGBUF_TYPE_TIME_STAMP:
161 return RB_LEN_TIME_STAMP;
163 case RINGBUF_TYPE_DATA:
165 length = event->len * RB_ALIGNMENT;
167 length = event->array[0];
168 return length + RB_EVNT_HDR_SIZE;
177 * ring_buffer_event_length - return the length of the event
178 * @event: the event to get the length of
180 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
182 unsigned length = rb_event_length(event);
183 if (event->type != RINGBUF_TYPE_DATA)
185 length -= RB_EVNT_HDR_SIZE;
186 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
187 length -= sizeof(event->array[0]);
190 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
192 /* inline for ring buffer fast paths */
194 rb_event_data(struct ring_buffer_event *event)
196 BUG_ON(event->type != RINGBUF_TYPE_DATA);
197 /* If length is in len field, then array[0] has the data */
199 return (void *)&event->array[0];
200 /* Otherwise length is in array[0] and array[1] has the data */
201 return (void *)&event->array[1];
205 * ring_buffer_event_data - return the data of the event
206 * @event: the event to get the data from
208 void *ring_buffer_event_data(struct ring_buffer_event *event)
210 return rb_event_data(event);
212 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
214 #define for_each_buffer_cpu(buffer, cpu) \
215 for_each_cpu(cpu, buffer->cpumask)
218 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
219 #define TS_DELTA_TEST (~TS_MASK)
221 struct buffer_data_page {
222 u64 time_stamp; /* page time stamp */
223 local_t commit; /* write committed index */
224 unsigned char data[]; /* data of buffer page */
228 local_t write; /* index for next write */
229 unsigned read; /* index for next read */
230 struct list_head list; /* list of free pages */
231 struct buffer_data_page *page; /* Actual data page */
234 static void rb_init_page(struct buffer_data_page *bpage)
236 local_set(&bpage->commit, 0);
240 * ring_buffer_page_len - the size of data on the page.
241 * @page: The page to read
243 * Returns the amount of data on the page, including buffer page header.
245 size_t ring_buffer_page_len(void *page)
247 return local_read(&((struct buffer_data_page *)page)->commit)
252 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
255 static void free_buffer_page(struct buffer_page *bpage)
257 free_page((unsigned long)bpage->page);
262 * We need to fit the time_stamp delta into 27 bits.
264 static inline int test_time_stamp(u64 delta)
266 if (delta & TS_DELTA_TEST)
271 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
274 * head_page == tail_page && head == tail then buffer is empty.
276 struct ring_buffer_per_cpu {
278 struct ring_buffer *buffer;
279 spinlock_t reader_lock; /* serialize readers */
281 struct lock_class_key lock_key;
282 struct list_head pages;
283 struct buffer_page *head_page; /* read from head */
284 struct buffer_page *tail_page; /* write to tail */
285 struct buffer_page *commit_page; /* committed pages */
286 struct buffer_page *reader_page;
287 unsigned long overrun;
288 unsigned long entries;
291 atomic_t record_disabled;
298 atomic_t record_disabled;
299 cpumask_var_t cpumask;
303 struct ring_buffer_per_cpu **buffers;
306 struct ring_buffer_iter {
307 struct ring_buffer_per_cpu *cpu_buffer;
309 struct buffer_page *head_page;
313 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
314 #define RB_WARN_ON(buffer, cond) \
316 int _____ret = unlikely(cond); \
318 atomic_inc(&buffer->record_disabled); \
325 * check_pages - integrity check of buffer pages
326 * @cpu_buffer: CPU buffer with pages to test
328 * As a safety measure we check to make sure the data pages have not
331 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
333 struct list_head *head = &cpu_buffer->pages;
334 struct buffer_page *bpage, *tmp;
336 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
338 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
341 list_for_each_entry_safe(bpage, tmp, head, list) {
342 if (RB_WARN_ON(cpu_buffer,
343 bpage->list.next->prev != &bpage->list))
345 if (RB_WARN_ON(cpu_buffer,
346 bpage->list.prev->next != &bpage->list))
353 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
356 struct list_head *head = &cpu_buffer->pages;
357 struct buffer_page *bpage, *tmp;
362 for (i = 0; i < nr_pages; i++) {
363 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
364 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
367 list_add(&bpage->list, &pages);
369 addr = __get_free_page(GFP_KERNEL);
372 bpage->page = (void *)addr;
373 rb_init_page(bpage->page);
376 list_splice(&pages, head);
378 rb_check_pages(cpu_buffer);
383 list_for_each_entry_safe(bpage, tmp, &pages, list) {
384 list_del_init(&bpage->list);
385 free_buffer_page(bpage);
390 static struct ring_buffer_per_cpu *
391 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
393 struct ring_buffer_per_cpu *cpu_buffer;
394 struct buffer_page *bpage;
398 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
399 GFP_KERNEL, cpu_to_node(cpu));
403 cpu_buffer->cpu = cpu;
404 cpu_buffer->buffer = buffer;
405 spin_lock_init(&cpu_buffer->reader_lock);
406 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
407 INIT_LIST_HEAD(&cpu_buffer->pages);
409 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
410 GFP_KERNEL, cpu_to_node(cpu));
412 goto fail_free_buffer;
414 cpu_buffer->reader_page = bpage;
415 addr = __get_free_page(GFP_KERNEL);
417 goto fail_free_reader;
418 bpage->page = (void *)addr;
419 rb_init_page(bpage->page);
421 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
423 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
425 goto fail_free_reader;
427 cpu_buffer->head_page
428 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
429 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
434 free_buffer_page(cpu_buffer->reader_page);
441 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
443 struct list_head *head = &cpu_buffer->pages;
444 struct buffer_page *bpage, *tmp;
446 list_del_init(&cpu_buffer->reader_page->list);
447 free_buffer_page(cpu_buffer->reader_page);
449 list_for_each_entry_safe(bpage, tmp, head, list) {
450 list_del_init(&bpage->list);
451 free_buffer_page(bpage);
457 * Causes compile errors if the struct buffer_page gets bigger
458 * than the struct page.
460 extern int ring_buffer_page_too_big(void);
463 * ring_buffer_alloc - allocate a new ring_buffer
464 * @size: the size in bytes per cpu that is needed.
465 * @flags: attributes to set for the ring buffer.
467 * Currently the only flag that is available is the RB_FL_OVERWRITE
468 * flag. This flag means that the buffer will overwrite old data
469 * when the buffer wraps. If this flag is not set, the buffer will
470 * drop data when the tail hits the head.
472 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
474 struct ring_buffer *buffer;
478 /* Paranoid! Optimizes out when all is well */
479 if (sizeof(struct buffer_page) > sizeof(struct page))
480 ring_buffer_page_too_big();
483 /* keep it in its own cache line */
484 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
489 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
490 goto fail_free_buffer;
492 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
493 buffer->flags = flags;
495 /* need at least two pages */
496 if (buffer->pages == 1)
499 cpumask_copy(buffer->cpumask, cpu_possible_mask);
500 buffer->cpus = nr_cpu_ids;
502 bsize = sizeof(void *) * nr_cpu_ids;
503 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
505 if (!buffer->buffers)
506 goto fail_free_cpumask;
508 for_each_buffer_cpu(buffer, cpu) {
509 buffer->buffers[cpu] =
510 rb_allocate_cpu_buffer(buffer, cpu);
511 if (!buffer->buffers[cpu])
512 goto fail_free_buffers;
515 mutex_init(&buffer->mutex);
520 for_each_buffer_cpu(buffer, cpu) {
521 if (buffer->buffers[cpu])
522 rb_free_cpu_buffer(buffer->buffers[cpu]);
524 kfree(buffer->buffers);
527 free_cpumask_var(buffer->cpumask);
533 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
536 * ring_buffer_free - free a ring buffer.
537 * @buffer: the buffer to free.
540 ring_buffer_free(struct ring_buffer *buffer)
544 for_each_buffer_cpu(buffer, cpu)
545 rb_free_cpu_buffer(buffer->buffers[cpu]);
547 free_cpumask_var(buffer->cpumask);
551 EXPORT_SYMBOL_GPL(ring_buffer_free);
553 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
556 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
558 struct buffer_page *bpage;
562 atomic_inc(&cpu_buffer->record_disabled);
565 for (i = 0; i < nr_pages; i++) {
566 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
568 p = cpu_buffer->pages.next;
569 bpage = list_entry(p, struct buffer_page, list);
570 list_del_init(&bpage->list);
571 free_buffer_page(bpage);
573 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
576 rb_reset_cpu(cpu_buffer);
578 rb_check_pages(cpu_buffer);
580 atomic_dec(&cpu_buffer->record_disabled);
585 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
586 struct list_head *pages, unsigned nr_pages)
588 struct buffer_page *bpage;
592 atomic_inc(&cpu_buffer->record_disabled);
595 for (i = 0; i < nr_pages; i++) {
596 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
599 bpage = list_entry(p, struct buffer_page, list);
600 list_del_init(&bpage->list);
601 list_add_tail(&bpage->list, &cpu_buffer->pages);
603 rb_reset_cpu(cpu_buffer);
605 rb_check_pages(cpu_buffer);
607 atomic_dec(&cpu_buffer->record_disabled);
611 * ring_buffer_resize - resize the ring buffer
612 * @buffer: the buffer to resize.
613 * @size: the new size.
615 * The tracer is responsible for making sure that the buffer is
616 * not being used while changing the size.
617 * Note: We may be able to change the above requirement by using
618 * RCU synchronizations.
620 * Minimum size is 2 * BUF_PAGE_SIZE.
622 * Returns -1 on failure.
624 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
626 struct ring_buffer_per_cpu *cpu_buffer;
627 unsigned nr_pages, rm_pages, new_pages;
628 struct buffer_page *bpage, *tmp;
629 unsigned long buffer_size;
635 * Always succeed at resizing a non-existent buffer:
640 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
641 size *= BUF_PAGE_SIZE;
642 buffer_size = buffer->pages * BUF_PAGE_SIZE;
644 /* we need a minimum of two pages */
645 if (size < BUF_PAGE_SIZE * 2)
646 size = BUF_PAGE_SIZE * 2;
648 if (size == buffer_size)
651 mutex_lock(&buffer->mutex);
653 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
655 if (size < buffer_size) {
657 /* easy case, just free pages */
658 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
659 mutex_unlock(&buffer->mutex);
663 rm_pages = buffer->pages - nr_pages;
665 for_each_buffer_cpu(buffer, cpu) {
666 cpu_buffer = buffer->buffers[cpu];
667 rb_remove_pages(cpu_buffer, rm_pages);
673 * This is a bit more difficult. We only want to add pages
674 * when we can allocate enough for all CPUs. We do this
675 * by allocating all the pages and storing them on a local
676 * link list. If we succeed in our allocation, then we
677 * add these pages to the cpu_buffers. Otherwise we just free
678 * them all and return -ENOMEM;
680 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
681 mutex_unlock(&buffer->mutex);
685 new_pages = nr_pages - buffer->pages;
687 for_each_buffer_cpu(buffer, cpu) {
688 for (i = 0; i < new_pages; i++) {
689 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
691 GFP_KERNEL, cpu_to_node(cpu));
694 list_add(&bpage->list, &pages);
695 addr = __get_free_page(GFP_KERNEL);
698 bpage->page = (void *)addr;
699 rb_init_page(bpage->page);
703 for_each_buffer_cpu(buffer, cpu) {
704 cpu_buffer = buffer->buffers[cpu];
705 rb_insert_pages(cpu_buffer, &pages, new_pages);
708 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
709 mutex_unlock(&buffer->mutex);
714 buffer->pages = nr_pages;
715 mutex_unlock(&buffer->mutex);
720 list_for_each_entry_safe(bpage, tmp, &pages, list) {
721 list_del_init(&bpage->list);
722 free_buffer_page(bpage);
724 mutex_unlock(&buffer->mutex);
727 EXPORT_SYMBOL_GPL(ring_buffer_resize);
729 static inline int rb_null_event(struct ring_buffer_event *event)
731 return event->type == RINGBUF_TYPE_PADDING;
735 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
737 return bpage->data + index;
740 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
742 return bpage->page->data + index;
745 static inline struct ring_buffer_event *
746 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
748 return __rb_page_index(cpu_buffer->reader_page,
749 cpu_buffer->reader_page->read);
752 static inline struct ring_buffer_event *
753 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
755 return __rb_page_index(cpu_buffer->head_page,
756 cpu_buffer->head_page->read);
759 static inline struct ring_buffer_event *
760 rb_iter_head_event(struct ring_buffer_iter *iter)
762 return __rb_page_index(iter->head_page, iter->head);
765 static inline unsigned rb_page_write(struct buffer_page *bpage)
767 return local_read(&bpage->write);
770 static inline unsigned rb_page_commit(struct buffer_page *bpage)
772 return local_read(&bpage->page->commit);
775 /* Size is determined by what has been commited */
776 static inline unsigned rb_page_size(struct buffer_page *bpage)
778 return rb_page_commit(bpage);
781 static inline unsigned
782 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
784 return rb_page_commit(cpu_buffer->commit_page);
787 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
789 return rb_page_commit(cpu_buffer->head_page);
793 * When the tail hits the head and the buffer is in overwrite mode,
794 * the head jumps to the next page and all content on the previous
795 * page is discarded. But before doing so, we update the overrun
796 * variable of the buffer.
798 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
800 struct ring_buffer_event *event;
803 for (head = 0; head < rb_head_size(cpu_buffer);
804 head += rb_event_length(event)) {
806 event = __rb_page_index(cpu_buffer->head_page, head);
807 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
809 /* Only count data entries */
810 if (event->type != RINGBUF_TYPE_DATA)
812 cpu_buffer->overrun++;
813 cpu_buffer->entries--;
817 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
818 struct buffer_page **bpage)
820 struct list_head *p = (*bpage)->list.next;
822 if (p == &cpu_buffer->pages)
825 *bpage = list_entry(p, struct buffer_page, list);
828 static inline unsigned
829 rb_event_index(struct ring_buffer_event *event)
831 unsigned long addr = (unsigned long)event;
833 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
837 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
838 struct ring_buffer_event *event)
840 unsigned long addr = (unsigned long)event;
843 index = rb_event_index(event);
846 return cpu_buffer->commit_page->page == (void *)addr &&
847 rb_commit_index(cpu_buffer) == index;
851 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
852 struct ring_buffer_event *event)
854 unsigned long addr = (unsigned long)event;
857 index = rb_event_index(event);
860 while (cpu_buffer->commit_page->page != (void *)addr) {
861 if (RB_WARN_ON(cpu_buffer,
862 cpu_buffer->commit_page == cpu_buffer->tail_page))
864 cpu_buffer->commit_page->page->commit =
865 cpu_buffer->commit_page->write;
866 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
867 cpu_buffer->write_stamp =
868 cpu_buffer->commit_page->page->time_stamp;
871 /* Now set the commit to the event's index */
872 local_set(&cpu_buffer->commit_page->page->commit, index);
876 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
879 * We only race with interrupts and NMIs on this CPU.
880 * If we own the commit event, then we can commit
881 * all others that interrupted us, since the interruptions
882 * are in stack format (they finish before they come
883 * back to us). This allows us to do a simple loop to
884 * assign the commit to the tail.
887 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
888 cpu_buffer->commit_page->page->commit =
889 cpu_buffer->commit_page->write;
890 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
891 cpu_buffer->write_stamp =
892 cpu_buffer->commit_page->page->time_stamp;
893 /* add barrier to keep gcc from optimizing too much */
896 while (rb_commit_index(cpu_buffer) !=
897 rb_page_write(cpu_buffer->commit_page)) {
898 cpu_buffer->commit_page->page->commit =
899 cpu_buffer->commit_page->write;
903 /* again, keep gcc from optimizing */
907 * If an interrupt came in just after the first while loop
908 * and pushed the tail page forward, we will be left with
909 * a dangling commit that will never go forward.
911 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
915 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
917 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
918 cpu_buffer->reader_page->read = 0;
921 static void rb_inc_iter(struct ring_buffer_iter *iter)
923 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
926 * The iterator could be on the reader page (it starts there).
927 * But the head could have moved, since the reader was
928 * found. Check for this case and assign the iterator
929 * to the head page instead of next.
931 if (iter->head_page == cpu_buffer->reader_page)
932 iter->head_page = cpu_buffer->head_page;
934 rb_inc_page(cpu_buffer, &iter->head_page);
936 iter->read_stamp = iter->head_page->page->time_stamp;
941 * ring_buffer_update_event - update event type and data
942 * @event: the even to update
943 * @type: the type of event
944 * @length: the size of the event field in the ring buffer
946 * Update the type and data fields of the event. The length
947 * is the actual size that is written to the ring buffer,
948 * and with this, we can determine what to place into the
952 rb_update_event(struct ring_buffer_event *event,
953 unsigned type, unsigned length)
959 case RINGBUF_TYPE_PADDING:
962 case RINGBUF_TYPE_TIME_EXTEND:
963 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
966 case RINGBUF_TYPE_TIME_STAMP:
967 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
970 case RINGBUF_TYPE_DATA:
971 length -= RB_EVNT_HDR_SIZE;
972 if (length > RB_MAX_SMALL_DATA) {
974 event->array[0] = length;
976 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
983 static unsigned rb_calculate_event_length(unsigned length)
985 struct ring_buffer_event event; /* Used only for sizeof array */
987 /* zero length can cause confusions */
991 if (length > RB_MAX_SMALL_DATA)
992 length += sizeof(event.array[0]);
994 length += RB_EVNT_HDR_SIZE;
995 length = ALIGN(length, RB_ALIGNMENT);
1000 static struct ring_buffer_event *
1001 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1002 unsigned type, unsigned long length, u64 *ts)
1004 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1005 unsigned long tail, write;
1006 struct ring_buffer *buffer = cpu_buffer->buffer;
1007 struct ring_buffer_event *event;
1008 unsigned long flags;
1009 bool lock_taken = false;
1011 commit_page = cpu_buffer->commit_page;
1012 /* we just need to protect against interrupts */
1014 tail_page = cpu_buffer->tail_page;
1015 write = local_add_return(length, &tail_page->write);
1016 tail = write - length;
1018 /* See if we shot pass the end of this buffer page */
1019 if (write > BUF_PAGE_SIZE) {
1020 struct buffer_page *next_page = tail_page;
1022 local_irq_save(flags);
1024 * Since the write to the buffer is still not
1025 * fully lockless, we must be careful with NMIs.
1026 * The locks in the writers are taken when a write
1027 * crosses to a new page. The locks protect against
1028 * races with the readers (this will soon be fixed
1029 * with a lockless solution).
1031 * Because we can not protect against NMIs, and we
1032 * want to keep traces reentrant, we need to manage
1033 * what happens when we are in an NMI.
1035 * NMIs can happen after we take the lock.
1036 * If we are in an NMI, only take the lock
1037 * if it is not already taken. Otherwise
1040 if (unlikely(in_nmi())) {
1041 if (!__raw_spin_trylock(&cpu_buffer->lock))
1044 __raw_spin_lock(&cpu_buffer->lock);
1048 rb_inc_page(cpu_buffer, &next_page);
1050 head_page = cpu_buffer->head_page;
1051 reader_page = cpu_buffer->reader_page;
1053 /* we grabbed the lock before incrementing */
1054 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1058 * If for some reason, we had an interrupt storm that made
1059 * it all the way around the buffer, bail, and warn
1062 if (unlikely(next_page == commit_page)) {
1067 if (next_page == head_page) {
1068 if (!(buffer->flags & RB_FL_OVERWRITE))
1071 /* tail_page has not moved yet? */
1072 if (tail_page == cpu_buffer->tail_page) {
1073 /* count overflows */
1074 rb_update_overflow(cpu_buffer);
1076 rb_inc_page(cpu_buffer, &head_page);
1077 cpu_buffer->head_page = head_page;
1078 cpu_buffer->head_page->read = 0;
1083 * If the tail page is still the same as what we think
1084 * it is, then it is up to us to update the tail
1087 if (tail_page == cpu_buffer->tail_page) {
1088 local_set(&next_page->write, 0);
1089 local_set(&next_page->page->commit, 0);
1090 cpu_buffer->tail_page = next_page;
1092 /* reread the time stamp */
1093 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1094 cpu_buffer->tail_page->page->time_stamp = *ts;
1098 * The actual tail page has moved forward.
1100 if (tail < BUF_PAGE_SIZE) {
1101 /* Mark the rest of the page with padding */
1102 event = __rb_page_index(tail_page, tail);
1103 event->type = RINGBUF_TYPE_PADDING;
1106 if (tail <= BUF_PAGE_SIZE)
1107 /* Set the write back to the previous setting */
1108 local_set(&tail_page->write, tail);
1111 * If this was a commit entry that failed,
1112 * increment that too
1114 if (tail_page == cpu_buffer->commit_page &&
1115 tail == rb_commit_index(cpu_buffer)) {
1116 rb_set_commit_to_write(cpu_buffer);
1119 __raw_spin_unlock(&cpu_buffer->lock);
1120 local_irq_restore(flags);
1122 /* fail and let the caller try again */
1123 return ERR_PTR(-EAGAIN);
1126 /* We reserved something on the buffer */
1128 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1131 event = __rb_page_index(tail_page, tail);
1132 rb_update_event(event, type, length);
1135 * If this is a commit and the tail is zero, then update
1136 * this page's time stamp.
1138 if (!tail && rb_is_commit(cpu_buffer, event))
1139 cpu_buffer->commit_page->page->time_stamp = *ts;
1145 if (tail <= BUF_PAGE_SIZE)
1146 local_set(&tail_page->write, tail);
1148 if (likely(lock_taken))
1149 __raw_spin_unlock(&cpu_buffer->lock);
1150 local_irq_restore(flags);
1155 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1156 u64 *ts, u64 *delta)
1158 struct ring_buffer_event *event;
1162 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1163 printk(KERN_WARNING "Delta way too big! %llu"
1164 " ts=%llu write stamp = %llu\n",
1165 (unsigned long long)*delta,
1166 (unsigned long long)*ts,
1167 (unsigned long long)cpu_buffer->write_stamp);
1172 * The delta is too big, we to add a
1175 event = __rb_reserve_next(cpu_buffer,
1176 RINGBUF_TYPE_TIME_EXTEND,
1182 if (PTR_ERR(event) == -EAGAIN)
1185 /* Only a commited time event can update the write stamp */
1186 if (rb_is_commit(cpu_buffer, event)) {
1188 * If this is the first on the page, then we need to
1189 * update the page itself, and just put in a zero.
1191 if (rb_event_index(event)) {
1192 event->time_delta = *delta & TS_MASK;
1193 event->array[0] = *delta >> TS_SHIFT;
1195 cpu_buffer->commit_page->page->time_stamp = *ts;
1196 event->time_delta = 0;
1197 event->array[0] = 0;
1199 cpu_buffer->write_stamp = *ts;
1200 /* let the caller know this was the commit */
1203 /* Darn, this is just wasted space */
1204 event->time_delta = 0;
1205 event->array[0] = 0;
1214 static struct ring_buffer_event *
1215 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1216 unsigned type, unsigned long length)
1218 struct ring_buffer_event *event;
1225 * We allow for interrupts to reenter here and do a trace.
1226 * If one does, it will cause this original code to loop
1227 * back here. Even with heavy interrupts happening, this
1228 * should only happen a few times in a row. If this happens
1229 * 1000 times in a row, there must be either an interrupt
1230 * storm or we have something buggy.
1233 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1236 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1239 * Only the first commit can update the timestamp.
1240 * Yes there is a race here. If an interrupt comes in
1241 * just after the conditional and it traces too, then it
1242 * will also check the deltas. More than one timestamp may
1243 * also be made. But only the entry that did the actual
1244 * commit will be something other than zero.
1246 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1247 rb_page_write(cpu_buffer->tail_page) ==
1248 rb_commit_index(cpu_buffer)) {
1250 delta = ts - cpu_buffer->write_stamp;
1252 /* make sure this delta is calculated here */
1255 /* Did the write stamp get updated already? */
1256 if (unlikely(ts < cpu_buffer->write_stamp))
1259 if (test_time_stamp(delta)) {
1261 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1263 if (commit == -EBUSY)
1266 if (commit == -EAGAIN)
1269 RB_WARN_ON(cpu_buffer, commit < 0);
1272 /* Non commits have zero deltas */
1275 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1276 if (PTR_ERR(event) == -EAGAIN)
1280 if (unlikely(commit))
1282 * Ouch! We needed a timestamp and it was commited. But
1283 * we didn't get our event reserved.
1285 rb_set_commit_to_write(cpu_buffer);
1290 * If the timestamp was commited, make the commit our entry
1291 * now so that we will update it when needed.
1294 rb_set_commit_event(cpu_buffer, event);
1295 else if (!rb_is_commit(cpu_buffer, event))
1298 event->time_delta = delta;
1303 static DEFINE_PER_CPU(int, rb_need_resched);
1306 * ring_buffer_lock_reserve - reserve a part of the buffer
1307 * @buffer: the ring buffer to reserve from
1308 * @length: the length of the data to reserve (excluding event header)
1310 * Returns a reseverd event on the ring buffer to copy directly to.
1311 * The user of this interface will need to get the body to write into
1312 * and can use the ring_buffer_event_data() interface.
1314 * The length is the length of the data needed, not the event length
1315 * which also includes the event header.
1317 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1318 * If NULL is returned, then nothing has been allocated or locked.
1320 struct ring_buffer_event *
1321 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1323 struct ring_buffer_per_cpu *cpu_buffer;
1324 struct ring_buffer_event *event;
1327 if (ring_buffer_flags != RB_BUFFERS_ON)
1330 if (atomic_read(&buffer->record_disabled))
1333 /* If we are tracing schedule, we don't want to recurse */
1334 resched = ftrace_preempt_disable();
1336 cpu = raw_smp_processor_id();
1338 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1341 cpu_buffer = buffer->buffers[cpu];
1343 if (atomic_read(&cpu_buffer->record_disabled))
1346 length = rb_calculate_event_length(length);
1347 if (length > BUF_PAGE_SIZE)
1350 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1355 * Need to store resched state on this cpu.
1356 * Only the first needs to.
1359 if (preempt_count() == 1)
1360 per_cpu(rb_need_resched, cpu) = resched;
1365 ftrace_preempt_enable(resched);
1368 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1370 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1371 struct ring_buffer_event *event)
1373 cpu_buffer->entries++;
1375 /* Only process further if we own the commit */
1376 if (!rb_is_commit(cpu_buffer, event))
1379 cpu_buffer->write_stamp += event->time_delta;
1381 rb_set_commit_to_write(cpu_buffer);
1385 * ring_buffer_unlock_commit - commit a reserved
1386 * @buffer: The buffer to commit to
1387 * @event: The event pointer to commit.
1389 * This commits the data to the ring buffer, and releases any locks held.
1391 * Must be paired with ring_buffer_lock_reserve.
1393 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1394 struct ring_buffer_event *event)
1396 struct ring_buffer_per_cpu *cpu_buffer;
1397 int cpu = raw_smp_processor_id();
1399 cpu_buffer = buffer->buffers[cpu];
1401 rb_commit(cpu_buffer, event);
1404 * Only the last preempt count needs to restore preemption.
1406 if (preempt_count() == 1)
1407 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1409 preempt_enable_no_resched_notrace();
1413 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1416 * ring_buffer_write - write data to the buffer without reserving
1417 * @buffer: The ring buffer to write to.
1418 * @length: The length of the data being written (excluding the event header)
1419 * @data: The data to write to the buffer.
1421 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1422 * one function. If you already have the data to write to the buffer, it
1423 * may be easier to simply call this function.
1425 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1426 * and not the length of the event which would hold the header.
1428 int ring_buffer_write(struct ring_buffer *buffer,
1429 unsigned long length,
1432 struct ring_buffer_per_cpu *cpu_buffer;
1433 struct ring_buffer_event *event;
1434 unsigned long event_length;
1439 if (ring_buffer_flags != RB_BUFFERS_ON)
1442 if (atomic_read(&buffer->record_disabled))
1445 resched = ftrace_preempt_disable();
1447 cpu = raw_smp_processor_id();
1449 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1452 cpu_buffer = buffer->buffers[cpu];
1454 if (atomic_read(&cpu_buffer->record_disabled))
1457 event_length = rb_calculate_event_length(length);
1458 event = rb_reserve_next_event(cpu_buffer,
1459 RINGBUF_TYPE_DATA, event_length);
1463 body = rb_event_data(event);
1465 memcpy(body, data, length);
1467 rb_commit(cpu_buffer, event);
1471 ftrace_preempt_enable(resched);
1475 EXPORT_SYMBOL_GPL(ring_buffer_write);
1477 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1479 struct buffer_page *reader = cpu_buffer->reader_page;
1480 struct buffer_page *head = cpu_buffer->head_page;
1481 struct buffer_page *commit = cpu_buffer->commit_page;
1483 return reader->read == rb_page_commit(reader) &&
1484 (commit == reader ||
1486 head->read == rb_page_commit(commit)));
1490 * ring_buffer_record_disable - stop all writes into the buffer
1491 * @buffer: The ring buffer to stop writes to.
1493 * This prevents all writes to the buffer. Any attempt to write
1494 * to the buffer after this will fail and return NULL.
1496 * The caller should call synchronize_sched() after this.
1498 void ring_buffer_record_disable(struct ring_buffer *buffer)
1500 atomic_inc(&buffer->record_disabled);
1502 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1505 * ring_buffer_record_enable - enable writes to the buffer
1506 * @buffer: The ring buffer to enable writes
1508 * Note, multiple disables will need the same number of enables
1509 * to truely enable the writing (much like preempt_disable).
1511 void ring_buffer_record_enable(struct ring_buffer *buffer)
1513 atomic_dec(&buffer->record_disabled);
1515 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1518 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1519 * @buffer: The ring buffer to stop writes to.
1520 * @cpu: The CPU buffer to stop
1522 * This prevents all writes to the buffer. Any attempt to write
1523 * to the buffer after this will fail and return NULL.
1525 * The caller should call synchronize_sched() after this.
1527 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1529 struct ring_buffer_per_cpu *cpu_buffer;
1531 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1534 cpu_buffer = buffer->buffers[cpu];
1535 atomic_inc(&cpu_buffer->record_disabled);
1537 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1540 * ring_buffer_record_enable_cpu - enable writes to the buffer
1541 * @buffer: The ring buffer to enable writes
1542 * @cpu: The CPU to enable.
1544 * Note, multiple disables will need the same number of enables
1545 * to truely enable the writing (much like preempt_disable).
1547 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1549 struct ring_buffer_per_cpu *cpu_buffer;
1551 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1554 cpu_buffer = buffer->buffers[cpu];
1555 atomic_dec(&cpu_buffer->record_disabled);
1557 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1560 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1561 * @buffer: The ring buffer
1562 * @cpu: The per CPU buffer to get the entries from.
1564 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1566 struct ring_buffer_per_cpu *cpu_buffer;
1568 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1571 cpu_buffer = buffer->buffers[cpu];
1572 return cpu_buffer->entries;
1574 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1577 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1578 * @buffer: The ring buffer
1579 * @cpu: The per CPU buffer to get the number of overruns from
1581 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1583 struct ring_buffer_per_cpu *cpu_buffer;
1585 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1588 cpu_buffer = buffer->buffers[cpu];
1589 return cpu_buffer->overrun;
1591 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1594 * ring_buffer_entries - get the number of entries in a buffer
1595 * @buffer: The ring buffer
1597 * Returns the total number of entries in the ring buffer
1600 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1602 struct ring_buffer_per_cpu *cpu_buffer;
1603 unsigned long entries = 0;
1606 /* if you care about this being correct, lock the buffer */
1607 for_each_buffer_cpu(buffer, cpu) {
1608 cpu_buffer = buffer->buffers[cpu];
1609 entries += cpu_buffer->entries;
1614 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1617 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1618 * @buffer: The ring buffer
1620 * Returns the total number of overruns in the ring buffer
1623 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1625 struct ring_buffer_per_cpu *cpu_buffer;
1626 unsigned long overruns = 0;
1629 /* if you care about this being correct, lock the buffer */
1630 for_each_buffer_cpu(buffer, cpu) {
1631 cpu_buffer = buffer->buffers[cpu];
1632 overruns += cpu_buffer->overrun;
1637 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1639 static void rb_iter_reset(struct ring_buffer_iter *iter)
1641 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1643 /* Iterator usage is expected to have record disabled */
1644 if (list_empty(&cpu_buffer->reader_page->list)) {
1645 iter->head_page = cpu_buffer->head_page;
1646 iter->head = cpu_buffer->head_page->read;
1648 iter->head_page = cpu_buffer->reader_page;
1649 iter->head = cpu_buffer->reader_page->read;
1652 iter->read_stamp = cpu_buffer->read_stamp;
1654 iter->read_stamp = iter->head_page->page->time_stamp;
1658 * ring_buffer_iter_reset - reset an iterator
1659 * @iter: The iterator to reset
1661 * Resets the iterator, so that it will start from the beginning
1664 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1666 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1667 unsigned long flags;
1669 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1670 rb_iter_reset(iter);
1671 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1673 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1676 * ring_buffer_iter_empty - check if an iterator has no more to read
1677 * @iter: The iterator to check
1679 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1681 struct ring_buffer_per_cpu *cpu_buffer;
1683 cpu_buffer = iter->cpu_buffer;
1685 return iter->head_page == cpu_buffer->commit_page &&
1686 iter->head == rb_commit_index(cpu_buffer);
1688 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1691 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1692 struct ring_buffer_event *event)
1696 switch (event->type) {
1697 case RINGBUF_TYPE_PADDING:
1700 case RINGBUF_TYPE_TIME_EXTEND:
1701 delta = event->array[0];
1703 delta += event->time_delta;
1704 cpu_buffer->read_stamp += delta;
1707 case RINGBUF_TYPE_TIME_STAMP:
1708 /* FIXME: not implemented */
1711 case RINGBUF_TYPE_DATA:
1712 cpu_buffer->read_stamp += event->time_delta;
1722 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1723 struct ring_buffer_event *event)
1727 switch (event->type) {
1728 case RINGBUF_TYPE_PADDING:
1731 case RINGBUF_TYPE_TIME_EXTEND:
1732 delta = event->array[0];
1734 delta += event->time_delta;
1735 iter->read_stamp += delta;
1738 case RINGBUF_TYPE_TIME_STAMP:
1739 /* FIXME: not implemented */
1742 case RINGBUF_TYPE_DATA:
1743 iter->read_stamp += event->time_delta;
1752 static struct buffer_page *
1753 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1755 struct buffer_page *reader = NULL;
1756 unsigned long flags;
1759 local_irq_save(flags);
1760 __raw_spin_lock(&cpu_buffer->lock);
1764 * This should normally only loop twice. But because the
1765 * start of the reader inserts an empty page, it causes
1766 * a case where we will loop three times. There should be no
1767 * reason to loop four times (that I know of).
1769 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1774 reader = cpu_buffer->reader_page;
1776 /* If there's more to read, return this page */
1777 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1780 /* Never should we have an index greater than the size */
1781 if (RB_WARN_ON(cpu_buffer,
1782 cpu_buffer->reader_page->read > rb_page_size(reader)))
1785 /* check if we caught up to the tail */
1787 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1791 * Splice the empty reader page into the list around the head.
1792 * Reset the reader page to size zero.
1795 reader = cpu_buffer->head_page;
1796 cpu_buffer->reader_page->list.next = reader->list.next;
1797 cpu_buffer->reader_page->list.prev = reader->list.prev;
1799 local_set(&cpu_buffer->reader_page->write, 0);
1800 local_set(&cpu_buffer->reader_page->page->commit, 0);
1802 /* Make the reader page now replace the head */
1803 reader->list.prev->next = &cpu_buffer->reader_page->list;
1804 reader->list.next->prev = &cpu_buffer->reader_page->list;
1807 * If the tail is on the reader, then we must set the head
1808 * to the inserted page, otherwise we set it one before.
1810 cpu_buffer->head_page = cpu_buffer->reader_page;
1812 if (cpu_buffer->commit_page != reader)
1813 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1815 /* Finally update the reader page to the new head */
1816 cpu_buffer->reader_page = reader;
1817 rb_reset_reader_page(cpu_buffer);
1822 __raw_spin_unlock(&cpu_buffer->lock);
1823 local_irq_restore(flags);
1828 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1830 struct ring_buffer_event *event;
1831 struct buffer_page *reader;
1834 reader = rb_get_reader_page(cpu_buffer);
1836 /* This function should not be called when buffer is empty */
1837 if (RB_WARN_ON(cpu_buffer, !reader))
1840 event = rb_reader_event(cpu_buffer);
1842 if (event->type == RINGBUF_TYPE_DATA)
1843 cpu_buffer->entries--;
1845 rb_update_read_stamp(cpu_buffer, event);
1847 length = rb_event_length(event);
1848 cpu_buffer->reader_page->read += length;
1851 static void rb_advance_iter(struct ring_buffer_iter *iter)
1853 struct ring_buffer *buffer;
1854 struct ring_buffer_per_cpu *cpu_buffer;
1855 struct ring_buffer_event *event;
1858 cpu_buffer = iter->cpu_buffer;
1859 buffer = cpu_buffer->buffer;
1862 * Check if we are at the end of the buffer.
1864 if (iter->head >= rb_page_size(iter->head_page)) {
1865 if (RB_WARN_ON(buffer,
1866 iter->head_page == cpu_buffer->commit_page))
1872 event = rb_iter_head_event(iter);
1874 length = rb_event_length(event);
1877 * This should not be called to advance the header if we are
1878 * at the tail of the buffer.
1880 if (RB_WARN_ON(cpu_buffer,
1881 (iter->head_page == cpu_buffer->commit_page) &&
1882 (iter->head + length > rb_commit_index(cpu_buffer))))
1885 rb_update_iter_read_stamp(iter, event);
1887 iter->head += length;
1889 /* check for end of page padding */
1890 if ((iter->head >= rb_page_size(iter->head_page)) &&
1891 (iter->head_page != cpu_buffer->commit_page))
1892 rb_advance_iter(iter);
1895 static struct ring_buffer_event *
1896 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1898 struct ring_buffer_per_cpu *cpu_buffer;
1899 struct ring_buffer_event *event;
1900 struct buffer_page *reader;
1903 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1906 cpu_buffer = buffer->buffers[cpu];
1910 * We repeat when a timestamp is encountered. It is possible
1911 * to get multiple timestamps from an interrupt entering just
1912 * as one timestamp is about to be written. The max times
1913 * that this can happen is the number of nested interrupts we
1914 * can have. Nesting 10 deep of interrupts is clearly
1917 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1920 reader = rb_get_reader_page(cpu_buffer);
1924 event = rb_reader_event(cpu_buffer);
1926 switch (event->type) {
1927 case RINGBUF_TYPE_PADDING:
1928 RB_WARN_ON(cpu_buffer, 1);
1929 rb_advance_reader(cpu_buffer);
1932 case RINGBUF_TYPE_TIME_EXTEND:
1933 /* Internal data, OK to advance */
1934 rb_advance_reader(cpu_buffer);
1937 case RINGBUF_TYPE_TIME_STAMP:
1938 /* FIXME: not implemented */
1939 rb_advance_reader(cpu_buffer);
1942 case RINGBUF_TYPE_DATA:
1944 *ts = cpu_buffer->read_stamp + event->time_delta;
1945 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1955 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1957 static struct ring_buffer_event *
1958 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1960 struct ring_buffer *buffer;
1961 struct ring_buffer_per_cpu *cpu_buffer;
1962 struct ring_buffer_event *event;
1965 if (ring_buffer_iter_empty(iter))
1968 cpu_buffer = iter->cpu_buffer;
1969 buffer = cpu_buffer->buffer;
1973 * We repeat when a timestamp is encountered. It is possible
1974 * to get multiple timestamps from an interrupt entering just
1975 * as one timestamp is about to be written. The max times
1976 * that this can happen is the number of nested interrupts we
1977 * can have. Nesting 10 deep of interrupts is clearly
1980 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1983 if (rb_per_cpu_empty(cpu_buffer))
1986 event = rb_iter_head_event(iter);
1988 switch (event->type) {
1989 case RINGBUF_TYPE_PADDING:
1993 case RINGBUF_TYPE_TIME_EXTEND:
1994 /* Internal data, OK to advance */
1995 rb_advance_iter(iter);
1998 case RINGBUF_TYPE_TIME_STAMP:
1999 /* FIXME: not implemented */
2000 rb_advance_iter(iter);
2003 case RINGBUF_TYPE_DATA:
2005 *ts = iter->read_stamp + event->time_delta;
2006 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2016 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2019 * ring_buffer_peek - peek at the next event to be read
2020 * @buffer: The ring buffer to read
2021 * @cpu: The cpu to peak at
2022 * @ts: The timestamp counter of this event.
2024 * This will return the event that will be read next, but does
2025 * not consume the data.
2027 struct ring_buffer_event *
2028 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2030 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2031 struct ring_buffer_event *event;
2032 unsigned long flags;
2034 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2035 event = rb_buffer_peek(buffer, cpu, ts);
2036 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2042 * ring_buffer_iter_peek - peek at the next event to be read
2043 * @iter: The ring buffer iterator
2044 * @ts: The timestamp counter of this event.
2046 * This will return the event that will be read next, but does
2047 * not increment the iterator.
2049 struct ring_buffer_event *
2050 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2052 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2053 struct ring_buffer_event *event;
2054 unsigned long flags;
2056 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2057 event = rb_iter_peek(iter, ts);
2058 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2064 * ring_buffer_consume - return an event and consume it
2065 * @buffer: The ring buffer to get the next event from
2067 * Returns the next event in the ring buffer, and that event is consumed.
2068 * Meaning, that sequential reads will keep returning a different event,
2069 * and eventually empty the ring buffer if the producer is slower.
2071 struct ring_buffer_event *
2072 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2074 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2075 struct ring_buffer_event *event;
2076 unsigned long flags;
2078 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2081 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2083 event = rb_buffer_peek(buffer, cpu, ts);
2087 rb_advance_reader(cpu_buffer);
2090 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2094 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2097 * ring_buffer_read_start - start a non consuming read of the buffer
2098 * @buffer: The ring buffer to read from
2099 * @cpu: The cpu buffer to iterate over
2101 * This starts up an iteration through the buffer. It also disables
2102 * the recording to the buffer until the reading is finished.
2103 * This prevents the reading from being corrupted. This is not
2104 * a consuming read, so a producer is not expected.
2106 * Must be paired with ring_buffer_finish.
2108 struct ring_buffer_iter *
2109 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2111 struct ring_buffer_per_cpu *cpu_buffer;
2112 struct ring_buffer_iter *iter;
2113 unsigned long flags;
2115 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2118 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2122 cpu_buffer = buffer->buffers[cpu];
2124 iter->cpu_buffer = cpu_buffer;
2126 atomic_inc(&cpu_buffer->record_disabled);
2127 synchronize_sched();
2129 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2130 __raw_spin_lock(&cpu_buffer->lock);
2131 rb_iter_reset(iter);
2132 __raw_spin_unlock(&cpu_buffer->lock);
2133 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2137 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2140 * ring_buffer_finish - finish reading the iterator of the buffer
2141 * @iter: The iterator retrieved by ring_buffer_start
2143 * This re-enables the recording to the buffer, and frees the
2147 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2149 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2151 atomic_dec(&cpu_buffer->record_disabled);
2154 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2157 * ring_buffer_read - read the next item in the ring buffer by the iterator
2158 * @iter: The ring buffer iterator
2159 * @ts: The time stamp of the event read.
2161 * This reads the next event in the ring buffer and increments the iterator.
2163 struct ring_buffer_event *
2164 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2166 struct ring_buffer_event *event;
2167 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2168 unsigned long flags;
2170 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2171 event = rb_iter_peek(iter, ts);
2175 rb_advance_iter(iter);
2177 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2181 EXPORT_SYMBOL_GPL(ring_buffer_read);
2184 * ring_buffer_size - return the size of the ring buffer (in bytes)
2185 * @buffer: The ring buffer.
2187 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2189 return BUF_PAGE_SIZE * buffer->pages;
2191 EXPORT_SYMBOL_GPL(ring_buffer_size);
2194 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2196 cpu_buffer->head_page
2197 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2198 local_set(&cpu_buffer->head_page->write, 0);
2199 local_set(&cpu_buffer->head_page->page->commit, 0);
2201 cpu_buffer->head_page->read = 0;
2203 cpu_buffer->tail_page = cpu_buffer->head_page;
2204 cpu_buffer->commit_page = cpu_buffer->head_page;
2206 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2207 local_set(&cpu_buffer->reader_page->write, 0);
2208 local_set(&cpu_buffer->reader_page->page->commit, 0);
2209 cpu_buffer->reader_page->read = 0;
2211 cpu_buffer->overrun = 0;
2212 cpu_buffer->entries = 0;
2214 cpu_buffer->write_stamp = 0;
2215 cpu_buffer->read_stamp = 0;
2219 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2220 * @buffer: The ring buffer to reset a per cpu buffer of
2221 * @cpu: The CPU buffer to be reset
2223 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2225 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2226 unsigned long flags;
2228 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2231 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2233 __raw_spin_lock(&cpu_buffer->lock);
2235 rb_reset_cpu(cpu_buffer);
2237 __raw_spin_unlock(&cpu_buffer->lock);
2239 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2241 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2244 * ring_buffer_reset - reset a ring buffer
2245 * @buffer: The ring buffer to reset all cpu buffers
2247 void ring_buffer_reset(struct ring_buffer *buffer)
2251 for_each_buffer_cpu(buffer, cpu)
2252 ring_buffer_reset_cpu(buffer, cpu);
2254 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2257 * rind_buffer_empty - is the ring buffer empty?
2258 * @buffer: The ring buffer to test
2260 int ring_buffer_empty(struct ring_buffer *buffer)
2262 struct ring_buffer_per_cpu *cpu_buffer;
2265 /* yes this is racy, but if you don't like the race, lock the buffer */
2266 for_each_buffer_cpu(buffer, cpu) {
2267 cpu_buffer = buffer->buffers[cpu];
2268 if (!rb_per_cpu_empty(cpu_buffer))
2273 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2276 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2277 * @buffer: The ring buffer
2278 * @cpu: The CPU buffer to test
2280 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2282 struct ring_buffer_per_cpu *cpu_buffer;
2284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2287 cpu_buffer = buffer->buffers[cpu];
2288 return rb_per_cpu_empty(cpu_buffer);
2290 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2293 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2294 * @buffer_a: One buffer to swap with
2295 * @buffer_b: The other buffer to swap with
2297 * This function is useful for tracers that want to take a "snapshot"
2298 * of a CPU buffer and has another back up buffer lying around.
2299 * it is expected that the tracer handles the cpu buffer not being
2300 * used at the moment.
2302 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2303 struct ring_buffer *buffer_b, int cpu)
2305 struct ring_buffer_per_cpu *cpu_buffer_a;
2306 struct ring_buffer_per_cpu *cpu_buffer_b;
2308 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2309 !cpumask_test_cpu(cpu, buffer_b->cpumask))
2312 /* At least make sure the two buffers are somewhat the same */
2313 if (buffer_a->pages != buffer_b->pages)
2316 if (ring_buffer_flags != RB_BUFFERS_ON)
2319 if (atomic_read(&buffer_a->record_disabled))
2322 if (atomic_read(&buffer_b->record_disabled))
2325 cpu_buffer_a = buffer_a->buffers[cpu];
2326 cpu_buffer_b = buffer_b->buffers[cpu];
2328 if (atomic_read(&cpu_buffer_a->record_disabled))
2331 if (atomic_read(&cpu_buffer_b->record_disabled))
2335 * We can't do a synchronize_sched here because this
2336 * function can be called in atomic context.
2337 * Normally this will be called from the same CPU as cpu.
2338 * If not it's up to the caller to protect this.
2340 atomic_inc(&cpu_buffer_a->record_disabled);
2341 atomic_inc(&cpu_buffer_b->record_disabled);
2343 buffer_a->buffers[cpu] = cpu_buffer_b;
2344 buffer_b->buffers[cpu] = cpu_buffer_a;
2346 cpu_buffer_b->buffer = buffer_a;
2347 cpu_buffer_a->buffer = buffer_b;
2349 atomic_dec(&cpu_buffer_a->record_disabled);
2350 atomic_dec(&cpu_buffer_b->record_disabled);
2354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2356 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2357 struct buffer_data_page *bpage,
2358 unsigned int offset)
2360 struct ring_buffer_event *event;
2363 __raw_spin_lock(&cpu_buffer->lock);
2364 for (head = offset; head < local_read(&bpage->commit);
2365 head += rb_event_length(event)) {
2367 event = __rb_data_page_index(bpage, head);
2368 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2370 /* Only count data entries */
2371 if (event->type != RINGBUF_TYPE_DATA)
2373 cpu_buffer->entries--;
2375 __raw_spin_unlock(&cpu_buffer->lock);
2379 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2380 * @buffer: the buffer to allocate for.
2382 * This function is used in conjunction with ring_buffer_read_page.
2383 * When reading a full page from the ring buffer, these functions
2384 * can be used to speed up the process. The calling function should
2385 * allocate a few pages first with this function. Then when it
2386 * needs to get pages from the ring buffer, it passes the result
2387 * of this function into ring_buffer_read_page, which will swap
2388 * the page that was allocated, with the read page of the buffer.
2391 * The page allocated, or NULL on error.
2393 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2395 struct buffer_data_page *bpage;
2398 addr = __get_free_page(GFP_KERNEL);
2402 bpage = (void *)addr;
2404 rb_init_page(bpage);
2410 * ring_buffer_free_read_page - free an allocated read page
2411 * @buffer: the buffer the page was allocate for
2412 * @data: the page to free
2414 * Free a page allocated from ring_buffer_alloc_read_page.
2416 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2418 free_page((unsigned long)data);
2422 * ring_buffer_read_page - extract a page from the ring buffer
2423 * @buffer: buffer to extract from
2424 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2425 * @len: amount to extract
2426 * @cpu: the cpu of the buffer to extract
2427 * @full: should the extraction only happen when the page is full.
2429 * This function will pull out a page from the ring buffer and consume it.
2430 * @data_page must be the address of the variable that was returned
2431 * from ring_buffer_alloc_read_page. This is because the page might be used
2432 * to swap with a page in the ring buffer.
2435 * rpage = ring_buffer_alloc_read_page(buffer);
2438 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2440 * process_page(rpage, ret);
2442 * When @full is set, the function will not return true unless
2443 * the writer is off the reader page.
2445 * Note: it is up to the calling functions to handle sleeps and wakeups.
2446 * The ring buffer can be used anywhere in the kernel and can not
2447 * blindly call wake_up. The layer that uses the ring buffer must be
2448 * responsible for that.
2451 * >=0 if data has been transferred, returns the offset of consumed data.
2452 * <0 if no data has been transferred.
2454 int ring_buffer_read_page(struct ring_buffer *buffer,
2455 void **data_page, size_t len, int cpu, int full)
2457 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2458 struct ring_buffer_event *event;
2459 struct buffer_data_page *bpage;
2460 struct buffer_page *reader;
2461 unsigned long flags;
2462 unsigned int commit;
2467 * If len is not big enough to hold the page header, then
2468 * we can not copy anything.
2470 if (len <= BUF_PAGE_HDR_SIZE)
2473 len -= BUF_PAGE_HDR_SIZE;
2482 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2484 reader = rb_get_reader_page(cpu_buffer);
2488 event = rb_reader_event(cpu_buffer);
2490 read = reader->read;
2491 commit = rb_page_commit(reader);
2494 * If this page has been partially read or
2495 * if len is not big enough to read the rest of the page or
2496 * a writer is still on the page, then
2497 * we must copy the data from the page to the buffer.
2498 * Otherwise, we can simply swap the page with the one passed in.
2500 if (read || (len < (commit - read)) ||
2501 cpu_buffer->reader_page == cpu_buffer->commit_page) {
2502 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2503 unsigned int rpos = read;
2504 unsigned int pos = 0;
2510 if (len > (commit - read))
2511 len = (commit - read);
2513 size = rb_event_length(event);
2518 /* Need to copy one event at a time */
2520 memcpy(bpage->data + pos, rpage->data + rpos, size);
2524 rb_advance_reader(cpu_buffer);
2525 rpos = reader->read;
2528 event = rb_reader_event(cpu_buffer);
2529 size = rb_event_length(event);
2530 } while (len > size);
2533 local_set(&bpage->commit, pos);
2534 bpage->time_stamp = rpage->time_stamp;
2536 /* we copied everything to the beginning */
2539 /* swap the pages */
2540 rb_init_page(bpage);
2541 bpage = reader->page;
2542 reader->page = *data_page;
2543 local_set(&reader->write, 0);
2547 /* update the entry counter */
2548 rb_remove_entries(cpu_buffer, bpage, read);
2553 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2559 rb_simple_read(struct file *filp, char __user *ubuf,
2560 size_t cnt, loff_t *ppos)
2562 unsigned long *p = filp->private_data;
2566 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2567 r = sprintf(buf, "permanently disabled\n");
2569 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2571 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2575 rb_simple_write(struct file *filp, const char __user *ubuf,
2576 size_t cnt, loff_t *ppos)
2578 unsigned long *p = filp->private_data;
2583 if (cnt >= sizeof(buf))
2586 if (copy_from_user(&buf, ubuf, cnt))
2591 ret = strict_strtoul(buf, 10, &val);
2596 set_bit(RB_BUFFERS_ON_BIT, p);
2598 clear_bit(RB_BUFFERS_ON_BIT, p);
2605 static struct file_operations rb_simple_fops = {
2606 .open = tracing_open_generic,
2607 .read = rb_simple_read,
2608 .write = rb_simple_write,
2612 static __init int rb_init_debugfs(void)
2614 struct dentry *d_tracer;
2615 struct dentry *entry;
2617 d_tracer = tracing_init_dentry();
2619 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2620 &ring_buffer_flags, &rb_simple_fops);
2622 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2627 fs_initcall(rb_init_debugfs);