2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39 uint32_t read_domains,
40 uint32_t write_domain);
41 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
44 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
49 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
50 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
55 static void i915_gem_object_get_fence_reg(struct drm_gem_object *obj);
56 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57 static int i915_gem_evict_something(struct drm_device *dev);
59 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 drm_i915_private_t *dev_priv = dev->dev_private;
65 (start & (PAGE_SIZE - 1)) != 0 ||
66 (end & (PAGE_SIZE - 1)) != 0) {
70 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 dev->gtt_total = (uint32_t) (end - start);
79 i915_gem_init_ioctl(struct drm_device *dev, void *data,
80 struct drm_file *file_priv)
82 struct drm_i915_gem_init *args = data;
85 mutex_lock(&dev->struct_mutex);
86 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
87 mutex_unlock(&dev->struct_mutex);
93 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
94 struct drm_file *file_priv)
96 struct drm_i915_gem_get_aperture *args = data;
98 if (!(dev->driver->driver_features & DRIVER_GEM))
101 args->aper_size = dev->gtt_total;
102 args->aper_available_size = (args->aper_size -
103 atomic_read(&dev->pin_memory));
110 * Creates a new mm object and returns a handle to it.
113 i915_gem_create_ioctl(struct drm_device *dev, void *data,
114 struct drm_file *file_priv)
116 struct drm_i915_gem_create *args = data;
117 struct drm_gem_object *obj;
120 args->size = roundup(args->size, PAGE_SIZE);
122 /* Allocate the new object */
123 obj = drm_gem_object_alloc(dev, args->size);
127 ret = drm_gem_handle_create(file_priv, obj, &handle);
128 mutex_lock(&dev->struct_mutex);
129 drm_gem_object_handle_unreference(obj);
130 mutex_unlock(&dev->struct_mutex);
135 args->handle = handle;
141 * Reads data from the object referenced by handle.
143 * On error, the contents of *data are undefined.
146 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
147 struct drm_file *file_priv)
149 struct drm_i915_gem_pread *args = data;
150 struct drm_gem_object *obj;
151 struct drm_i915_gem_object *obj_priv;
156 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
159 obj_priv = obj->driver_private;
161 /* Bounds check source.
163 * XXX: This could use review for overflow issues...
165 if (args->offset > obj->size || args->size > obj->size ||
166 args->offset + args->size > obj->size) {
167 drm_gem_object_unreference(obj);
171 mutex_lock(&dev->struct_mutex);
173 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
176 drm_gem_object_unreference(obj);
177 mutex_unlock(&dev->struct_mutex);
181 offset = args->offset;
183 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
184 args->size, &offset);
185 if (read != args->size) {
186 drm_gem_object_unreference(obj);
187 mutex_unlock(&dev->struct_mutex);
194 drm_gem_object_unreference(obj);
195 mutex_unlock(&dev->struct_mutex);
200 /* This is the fast write path which cannot handle
201 * page faults in the source data
205 fast_user_write(struct io_mapping *mapping,
206 loff_t page_base, int page_offset,
207 char __user *user_data,
211 unsigned long unwritten;
213 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
214 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
216 io_mapping_unmap_atomic(vaddr_atomic);
222 /* Here's the write path which can sleep for
227 slow_user_write(struct io_mapping *mapping,
228 loff_t page_base, int page_offset,
229 char __user *user_data,
233 unsigned long unwritten;
235 vaddr = io_mapping_map_wc(mapping, page_base);
238 unwritten = __copy_from_user(vaddr + page_offset,
240 io_mapping_unmap(vaddr);
247 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
248 struct drm_i915_gem_pwrite *args,
249 struct drm_file *file_priv)
251 struct drm_i915_gem_object *obj_priv = obj->driver_private;
252 drm_i915_private_t *dev_priv = dev->dev_private;
254 loff_t offset, page_base;
255 char __user *user_data;
256 int page_offset, page_length;
259 user_data = (char __user *) (uintptr_t) args->data_ptr;
261 if (!access_ok(VERIFY_READ, user_data, remain))
265 mutex_lock(&dev->struct_mutex);
266 ret = i915_gem_object_pin(obj, 0);
268 mutex_unlock(&dev->struct_mutex);
271 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
275 obj_priv = obj->driver_private;
276 offset = obj_priv->gtt_offset + args->offset;
280 /* Operation in this page
282 * page_base = page offset within aperture
283 * page_offset = offset within page
284 * page_length = bytes to copy for this page
286 page_base = (offset & ~(PAGE_SIZE-1));
287 page_offset = offset & (PAGE_SIZE-1);
288 page_length = remain;
289 if ((page_offset + remain) > PAGE_SIZE)
290 page_length = PAGE_SIZE - page_offset;
292 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
293 page_offset, user_data, page_length);
295 /* If we get a fault while copying data, then (presumably) our
296 * source page isn't available. In this case, use the
297 * non-atomic function
300 ret = slow_user_write (dev_priv->mm.gtt_mapping,
301 page_base, page_offset,
302 user_data, page_length);
307 remain -= page_length;
308 user_data += page_length;
309 offset += page_length;
313 i915_gem_object_unpin(obj);
314 mutex_unlock(&dev->struct_mutex);
320 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
321 struct drm_i915_gem_pwrite *args,
322 struct drm_file *file_priv)
328 mutex_lock(&dev->struct_mutex);
330 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
332 mutex_unlock(&dev->struct_mutex);
336 offset = args->offset;
338 written = vfs_write(obj->filp,
339 (char __user *)(uintptr_t) args->data_ptr,
340 args->size, &offset);
341 if (written != args->size) {
342 mutex_unlock(&dev->struct_mutex);
349 mutex_unlock(&dev->struct_mutex);
355 * Writes data to the object referenced by handle.
357 * On error, the contents of the buffer that were to be modified are undefined.
360 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
361 struct drm_file *file_priv)
363 struct drm_i915_gem_pwrite *args = data;
364 struct drm_gem_object *obj;
365 struct drm_i915_gem_object *obj_priv;
368 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
371 obj_priv = obj->driver_private;
373 /* Bounds check destination.
375 * XXX: This could use review for overflow issues...
377 if (args->offset > obj->size || args->size > obj->size ||
378 args->offset + args->size > obj->size) {
379 drm_gem_object_unreference(obj);
383 /* We can only do the GTT pwrite on untiled buffers, as otherwise
384 * it would end up going through the fenced access, and we'll get
385 * different detiling behavior between reading and writing.
386 * pread/pwrite currently are reading and writing from the CPU
387 * perspective, requiring manual detiling by the client.
389 if (obj_priv->tiling_mode == I915_TILING_NONE &&
391 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
393 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
397 DRM_INFO("pwrite failed %d\n", ret);
400 drm_gem_object_unreference(obj);
406 * Called when user space prepares to use an object with the CPU, either
407 * through the mmap ioctl's mapping or a GTT mapping.
410 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
411 struct drm_file *file_priv)
413 struct drm_i915_gem_set_domain *args = data;
414 struct drm_gem_object *obj;
415 uint32_t read_domains = args->read_domains;
416 uint32_t write_domain = args->write_domain;
419 if (!(dev->driver->driver_features & DRIVER_GEM))
422 /* Only handle setting domains to types used by the CPU. */
423 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
426 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
429 /* Having something in the write domain implies it's in the read
430 * domain, and only that read domain. Enforce that in the request.
432 if (write_domain != 0 && read_domains != write_domain)
435 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
439 mutex_lock(&dev->struct_mutex);
441 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
442 obj, obj->size, read_domains, write_domain);
444 if (read_domains & I915_GEM_DOMAIN_GTT) {
445 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
447 /* Silently promote "you're not bound, there was nothing to do"
448 * to success, since the client was just asking us to
449 * make sure everything was done.
454 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
457 drm_gem_object_unreference(obj);
458 mutex_unlock(&dev->struct_mutex);
463 * Called when user space has done writes to this buffer
466 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
467 struct drm_file *file_priv)
469 struct drm_i915_gem_sw_finish *args = data;
470 struct drm_gem_object *obj;
471 struct drm_i915_gem_object *obj_priv;
474 if (!(dev->driver->driver_features & DRIVER_GEM))
477 mutex_lock(&dev->struct_mutex);
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
480 mutex_unlock(&dev->struct_mutex);
485 DRM_INFO("%s: sw_finish %d (%p %d)\n",
486 __func__, args->handle, obj, obj->size);
488 obj_priv = obj->driver_private;
490 /* Pinned buffers may be scanout, so flush the cache */
491 if (obj_priv->pin_count)
492 i915_gem_object_flush_cpu_write_domain(obj);
494 drm_gem_object_unreference(obj);
495 mutex_unlock(&dev->struct_mutex);
500 * Maps the contents of an object, returning the address it is mapped
503 * While the mapping holds a reference on the contents of the object, it doesn't
504 * imply a ref on the object itself.
507 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file_priv)
510 struct drm_i915_gem_mmap *args = data;
511 struct drm_gem_object *obj;
515 if (!(dev->driver->driver_features & DRIVER_GEM))
518 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
522 offset = args->offset;
524 down_write(¤t->mm->mmap_sem);
525 addr = do_mmap(obj->filp, 0, args->size,
526 PROT_READ | PROT_WRITE, MAP_SHARED,
528 up_write(¤t->mm->mmap_sem);
529 mutex_lock(&dev->struct_mutex);
530 drm_gem_object_unreference(obj);
531 mutex_unlock(&dev->struct_mutex);
532 if (IS_ERR((void *)addr))
535 args->addr_ptr = (uint64_t) addr;
541 * i915_gem_fault - fault a page into the GTT
542 * vma: VMA in question
545 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
546 * from userspace. The fault handler takes care of binding the object to
547 * the GTT (if needed), allocating and programming a fence register (again,
548 * only if needed based on whether the old reg is still valid or the object
549 * is tiled) and inserting a new PTE into the faulting process.
551 * Note that the faulting process may involve evicting existing objects
552 * from the GTT and/or fence registers to make room. So performance may
553 * suffer if the GTT working set is large or there are few fence registers
556 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
558 struct drm_gem_object *obj = vma->vm_private_data;
559 struct drm_device *dev = obj->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct drm_i915_gem_object *obj_priv = obj->driver_private;
566 /* We don't use vmf->pgoff since that has the fake offset */
567 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
570 /* Now bind it into the GTT if needed */
571 mutex_lock(&dev->struct_mutex);
572 if (!obj_priv->gtt_space) {
573 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
575 mutex_unlock(&dev->struct_mutex);
576 return VM_FAULT_SIGBUS;
578 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
581 /* Need a new fence register? */
582 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
583 obj_priv->tiling_mode != I915_TILING_NONE)
584 i915_gem_object_get_fence_reg(obj);
586 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
589 /* Finally, remap it using the new GTT offset */
590 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
592 mutex_unlock(&dev->struct_mutex);
600 DRM_ERROR("can't insert pfn?? fault or busy...\n");
601 return VM_FAULT_SIGBUS;
603 return VM_FAULT_NOPAGE;
608 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
609 * @obj: obj in question
611 * GEM memory mapping works by handing back to userspace a fake mmap offset
612 * it can use in a subsequent mmap(2) call. The DRM core code then looks
613 * up the object based on the offset and sets up the various memory mapping
616 * This routine allocates and attaches a fake offset for @obj.
619 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
621 struct drm_device *dev = obj->dev;
622 struct drm_gem_mm *mm = dev->mm_private;
623 struct drm_i915_gem_object *obj_priv = obj->driver_private;
624 struct drm_map_list *list;
628 /* Set the object up for mmap'ing */
629 list = &obj->map_list;
630 list->map = drm_calloc(1, sizeof(struct drm_map_list),
636 map->type = _DRM_GEM;
637 map->size = obj->size;
640 /* Get a DRM GEM mmap offset allocated... */
641 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
642 obj->size / PAGE_SIZE, 0, 0);
643 if (!list->file_offset_node) {
644 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
649 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
650 obj->size / PAGE_SIZE, 0);
651 if (!list->file_offset_node) {
656 list->hash.key = list->file_offset_node->start;
657 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
658 DRM_ERROR("failed to add to map hash\n");
662 /* By now we should be all set, any drm_mmap request on the offset
663 * below will get to our mmap & fault handler */
664 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
669 drm_mm_put_block(list->file_offset_node);
671 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
677 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
678 * @obj: object to check
680 * Return the required GTT alignment for an object, taking into account
681 * potential fence register mapping if needed.
684 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
686 struct drm_device *dev = obj->dev;
687 struct drm_i915_gem_object *obj_priv = obj->driver_private;
691 * Minimum alignment is 4k (GTT page size), but might be greater
692 * if a fence register is needed for the object.
694 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
698 * Previous chips need to be aligned to the size of the smallest
699 * fence register that can contain the object.
706 for (i = start; i < obj->size; i <<= 1)
713 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
715 * @data: GTT mapping ioctl data
716 * @file_priv: GEM object info
718 * Simply returns the fake offset to userspace so it can mmap it.
719 * The mmap call will end up in drm_gem_mmap(), which will set things
720 * up so we can get faults in the handler above.
722 * The fault handler will take care of binding the object into the GTT
723 * (since it may have been evicted to make room for something), allocating
724 * a fence register, and mapping the appropriate aperture address into
728 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
729 struct drm_file *file_priv)
731 struct drm_i915_gem_mmap_gtt *args = data;
732 struct drm_i915_private *dev_priv = dev->dev_private;
733 struct drm_gem_object *obj;
734 struct drm_i915_gem_object *obj_priv;
737 if (!(dev->driver->driver_features & DRIVER_GEM))
740 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
744 mutex_lock(&dev->struct_mutex);
746 obj_priv = obj->driver_private;
748 if (!obj_priv->mmap_offset) {
749 ret = i915_gem_create_mmap_offset(obj);
754 args->offset = obj_priv->mmap_offset;
756 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
758 /* Make sure the alignment is correct for fence regs etc */
759 if (obj_priv->agp_mem &&
760 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
761 drm_gem_object_unreference(obj);
762 mutex_unlock(&dev->struct_mutex);
767 * Pull it into the GTT so that we have a page list (makes the
768 * initial fault faster and any subsequent flushing possible).
770 if (!obj_priv->agp_mem) {
771 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
773 drm_gem_object_unreference(obj);
774 mutex_unlock(&dev->struct_mutex);
777 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
780 drm_gem_object_unreference(obj);
781 mutex_unlock(&dev->struct_mutex);
787 i915_gem_object_free_page_list(struct drm_gem_object *obj)
789 struct drm_i915_gem_object *obj_priv = obj->driver_private;
790 int page_count = obj->size / PAGE_SIZE;
793 if (obj_priv->page_list == NULL)
797 for (i = 0; i < page_count; i++)
798 if (obj_priv->page_list[i] != NULL) {
800 set_page_dirty(obj_priv->page_list[i]);
801 mark_page_accessed(obj_priv->page_list[i]);
802 page_cache_release(obj_priv->page_list[i]);
806 drm_free(obj_priv->page_list,
807 page_count * sizeof(struct page *),
809 obj_priv->page_list = NULL;
813 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
815 struct drm_device *dev = obj->dev;
816 drm_i915_private_t *dev_priv = dev->dev_private;
817 struct drm_i915_gem_object *obj_priv = obj->driver_private;
819 /* Add a reference if we're newly entering the active list. */
820 if (!obj_priv->active) {
821 drm_gem_object_reference(obj);
822 obj_priv->active = 1;
824 /* Move from whatever list we were on to the tail of execution. */
825 list_move_tail(&obj_priv->list,
826 &dev_priv->mm.active_list);
827 obj_priv->last_rendering_seqno = seqno;
831 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
833 struct drm_device *dev = obj->dev;
834 drm_i915_private_t *dev_priv = dev->dev_private;
835 struct drm_i915_gem_object *obj_priv = obj->driver_private;
837 BUG_ON(!obj_priv->active);
838 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
839 obj_priv->last_rendering_seqno = 0;
843 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
845 struct drm_device *dev = obj->dev;
846 drm_i915_private_t *dev_priv = dev->dev_private;
847 struct drm_i915_gem_object *obj_priv = obj->driver_private;
849 i915_verify_inactive(dev, __FILE__, __LINE__);
850 if (obj_priv->pin_count != 0)
851 list_del_init(&obj_priv->list);
853 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
855 obj_priv->last_rendering_seqno = 0;
856 if (obj_priv->active) {
857 obj_priv->active = 0;
858 drm_gem_object_unreference(obj);
860 i915_verify_inactive(dev, __FILE__, __LINE__);
864 * Creates a new sequence number, emitting a write of it to the status page
865 * plus an interrupt, which will trigger i915_user_interrupt_handler.
867 * Must be called with struct_lock held.
869 * Returned sequence numbers are nonzero on success.
872 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
874 drm_i915_private_t *dev_priv = dev->dev_private;
875 struct drm_i915_gem_request *request;
880 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
884 /* Grab the seqno we're going to make this request be, and bump the
885 * next (skipping 0 so it can be the reserved no-seqno value).
887 seqno = dev_priv->mm.next_gem_seqno;
888 dev_priv->mm.next_gem_seqno++;
889 if (dev_priv->mm.next_gem_seqno == 0)
890 dev_priv->mm.next_gem_seqno++;
893 OUT_RING(MI_STORE_DWORD_INDEX);
894 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
897 OUT_RING(MI_USER_INTERRUPT);
900 DRM_DEBUG("%d\n", seqno);
902 request->seqno = seqno;
903 request->emitted_jiffies = jiffies;
904 was_empty = list_empty(&dev_priv->mm.request_list);
905 list_add_tail(&request->list, &dev_priv->mm.request_list);
907 /* Associate any objects on the flushing list matching the write
908 * domain we're flushing with our flush.
910 if (flush_domains != 0) {
911 struct drm_i915_gem_object *obj_priv, *next;
913 list_for_each_entry_safe(obj_priv, next,
914 &dev_priv->mm.flushing_list, list) {
915 struct drm_gem_object *obj = obj_priv->obj;
917 if ((obj->write_domain & flush_domains) ==
919 obj->write_domain = 0;
920 i915_gem_object_move_to_active(obj, seqno);
926 if (was_empty && !dev_priv->mm.suspended)
927 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
932 * Command execution barrier
934 * Ensures that all commands in the ring are finished
935 * before signalling the CPU
938 i915_retire_commands(struct drm_device *dev)
940 drm_i915_private_t *dev_priv = dev->dev_private;
941 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
942 uint32_t flush_domains = 0;
945 /* The sampler always gets flushed on i965 (sigh) */
947 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
950 OUT_RING(0); /* noop */
952 return flush_domains;
956 * Moves buffers associated only with the given active seqno from the active
957 * to inactive list, potentially freeing them.
960 i915_gem_retire_request(struct drm_device *dev,
961 struct drm_i915_gem_request *request)
963 drm_i915_private_t *dev_priv = dev->dev_private;
965 /* Move any buffers on the active list that are no longer referenced
966 * by the ringbuffer to the flushing/inactive lists as appropriate.
968 while (!list_empty(&dev_priv->mm.active_list)) {
969 struct drm_gem_object *obj;
970 struct drm_i915_gem_object *obj_priv;
972 obj_priv = list_first_entry(&dev_priv->mm.active_list,
973 struct drm_i915_gem_object,
977 /* If the seqno being retired doesn't match the oldest in the
978 * list, then the oldest in the list must still be newer than
981 if (obj_priv->last_rendering_seqno != request->seqno)
985 DRM_INFO("%s: retire %d moves to inactive list %p\n",
986 __func__, request->seqno, obj);
989 if (obj->write_domain != 0)
990 i915_gem_object_move_to_flushing(obj);
992 i915_gem_object_move_to_inactive(obj);
997 * Returns true if seq1 is later than seq2.
1000 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1002 return (int32_t)(seq1 - seq2) >= 0;
1006 i915_get_gem_seqno(struct drm_device *dev)
1008 drm_i915_private_t *dev_priv = dev->dev_private;
1010 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1014 * This function clears the request list as sequence numbers are passed.
1017 i915_gem_retire_requests(struct drm_device *dev)
1019 drm_i915_private_t *dev_priv = dev->dev_private;
1022 seqno = i915_get_gem_seqno(dev);
1024 while (!list_empty(&dev_priv->mm.request_list)) {
1025 struct drm_i915_gem_request *request;
1026 uint32_t retiring_seqno;
1028 request = list_first_entry(&dev_priv->mm.request_list,
1029 struct drm_i915_gem_request,
1031 retiring_seqno = request->seqno;
1033 if (i915_seqno_passed(seqno, retiring_seqno) ||
1034 dev_priv->mm.wedged) {
1035 i915_gem_retire_request(dev, request);
1037 list_del(&request->list);
1038 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1045 i915_gem_retire_work_handler(struct work_struct *work)
1047 drm_i915_private_t *dev_priv;
1048 struct drm_device *dev;
1050 dev_priv = container_of(work, drm_i915_private_t,
1051 mm.retire_work.work);
1052 dev = dev_priv->dev;
1054 mutex_lock(&dev->struct_mutex);
1055 i915_gem_retire_requests(dev);
1056 if (!dev_priv->mm.suspended &&
1057 !list_empty(&dev_priv->mm.request_list))
1058 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1059 mutex_unlock(&dev->struct_mutex);
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1067 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1069 drm_i915_private_t *dev_priv = dev->dev_private;
1074 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1075 dev_priv->mm.waiting_gem_seqno = seqno;
1076 i915_user_irq_get(dev);
1077 ret = wait_event_interruptible(dev_priv->irq_queue,
1078 i915_seqno_passed(i915_get_gem_seqno(dev),
1080 dev_priv->mm.wedged);
1081 i915_user_irq_put(dev);
1082 dev_priv->mm.waiting_gem_seqno = 0;
1084 if (dev_priv->mm.wedged)
1087 if (ret && ret != -ERESTARTSYS)
1088 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1089 __func__, ret, seqno, i915_get_gem_seqno(dev));
1091 /* Directly dispatch request retiring. While we have the work queue
1092 * to handle this, the waiter on a request often wants an associated
1093 * buffer to have made it to the inactive list, and we would need
1094 * a separate wait queue to handle that.
1097 i915_gem_retire_requests(dev);
1103 i915_gem_flush(struct drm_device *dev,
1104 uint32_t invalidate_domains,
1105 uint32_t flush_domains)
1107 drm_i915_private_t *dev_priv = dev->dev_private;
1112 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1113 invalidate_domains, flush_domains);
1116 if (flush_domains & I915_GEM_DOMAIN_CPU)
1117 drm_agp_chipset_flush(dev);
1119 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1120 I915_GEM_DOMAIN_GTT)) {
1122 * read/write caches:
1124 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1125 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1126 * also flushed at 2d versus 3d pipeline switches.
1130 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1131 * MI_READ_FLUSH is set, and is always flushed on 965.
1133 * I915_GEM_DOMAIN_COMMAND may not exist?
1135 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1136 * invalidated when MI_EXE_FLUSH is set.
1138 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1139 * invalidated with every MI_FLUSH.
1143 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1144 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1145 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1146 * are flushed at any MI_FLUSH.
1149 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1150 if ((invalidate_domains|flush_domains) &
1151 I915_GEM_DOMAIN_RENDER)
1152 cmd &= ~MI_NO_WRITE_FLUSH;
1153 if (!IS_I965G(dev)) {
1155 * On the 965, the sampler cache always gets flushed
1156 * and this bit is reserved.
1158 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1159 cmd |= MI_READ_FLUSH;
1161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1162 cmd |= MI_EXE_FLUSH;
1165 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1169 OUT_RING(0); /* noop */
1175 * Ensures that all rendering to the object has completed and the object is
1176 * safe to unbind from the GTT or access from the CPU.
1179 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1181 struct drm_device *dev = obj->dev;
1182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1185 /* This function only exists to support waiting for existing rendering,
1186 * not for emitting required flushes.
1188 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1190 /* If there is rendering queued on the buffer being evicted, wait for
1193 if (obj_priv->active) {
1195 DRM_INFO("%s: object %p wait for seqno %08x\n",
1196 __func__, obj, obj_priv->last_rendering_seqno);
1198 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1207 * Unbinds an object from the GTT aperture.
1210 i915_gem_object_unbind(struct drm_gem_object *obj)
1212 struct drm_device *dev = obj->dev;
1213 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1219 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1221 if (obj_priv->gtt_space == NULL)
1224 if (obj_priv->pin_count != 0) {
1225 DRM_ERROR("Attempting to unbind pinned buffer\n");
1229 /* Move the object to the CPU domain to ensure that
1230 * any possible CPU writes while it's not in the GTT
1231 * are flushed when we go to remap it. This will
1232 * also ensure that all pending GPU writes are finished
1235 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1237 if (ret != -ERESTARTSYS)
1238 DRM_ERROR("set_domain failed: %d\n", ret);
1242 if (obj_priv->agp_mem != NULL) {
1243 drm_unbind_agp(obj_priv->agp_mem);
1244 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1245 obj_priv->agp_mem = NULL;
1248 BUG_ON(obj_priv->active);
1250 /* blow away mappings if mapped through GTT */
1251 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1252 if (dev->dev_mapping)
1253 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1255 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1256 i915_gem_clear_fence_reg(obj);
1258 i915_gem_object_free_page_list(obj);
1260 if (obj_priv->gtt_space) {
1261 atomic_dec(&dev->gtt_count);
1262 atomic_sub(obj->size, &dev->gtt_memory);
1264 drm_mm_put_block(obj_priv->gtt_space);
1265 obj_priv->gtt_space = NULL;
1268 /* Remove ourselves from the LRU list if present. */
1269 if (!list_empty(&obj_priv->list))
1270 list_del_init(&obj_priv->list);
1276 i915_gem_evict_something(struct drm_device *dev)
1278 drm_i915_private_t *dev_priv = dev->dev_private;
1279 struct drm_gem_object *obj;
1280 struct drm_i915_gem_object *obj_priv;
1284 /* If there's an inactive buffer available now, grab it
1287 if (!list_empty(&dev_priv->mm.inactive_list)) {
1288 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1289 struct drm_i915_gem_object,
1291 obj = obj_priv->obj;
1292 BUG_ON(obj_priv->pin_count != 0);
1294 DRM_INFO("%s: evicting %p\n", __func__, obj);
1296 BUG_ON(obj_priv->active);
1298 /* Wait on the rendering and unbind the buffer. */
1299 ret = i915_gem_object_unbind(obj);
1303 /* If we didn't get anything, but the ring is still processing
1304 * things, wait for one of those things to finish and hopefully
1305 * leave us a buffer to evict.
1307 if (!list_empty(&dev_priv->mm.request_list)) {
1308 struct drm_i915_gem_request *request;
1310 request = list_first_entry(&dev_priv->mm.request_list,
1311 struct drm_i915_gem_request,
1314 ret = i915_wait_request(dev, request->seqno);
1318 /* if waiting caused an object to become inactive,
1319 * then loop around and wait for it. Otherwise, we
1320 * assume that waiting freed and unbound something,
1321 * so there should now be some space in the GTT
1323 if (!list_empty(&dev_priv->mm.inactive_list))
1328 /* If we didn't have anything on the request list but there
1329 * are buffers awaiting a flush, emit one and try again.
1330 * When we wait on it, those buffers waiting for that flush
1331 * will get moved to inactive.
1333 if (!list_empty(&dev_priv->mm.flushing_list)) {
1334 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1335 struct drm_i915_gem_object,
1337 obj = obj_priv->obj;
1342 i915_add_request(dev, obj->write_domain);
1348 DRM_ERROR("inactive empty %d request empty %d "
1349 "flushing empty %d\n",
1350 list_empty(&dev_priv->mm.inactive_list),
1351 list_empty(&dev_priv->mm.request_list),
1352 list_empty(&dev_priv->mm.flushing_list));
1353 /* If we didn't do any of the above, there's nothing to be done
1354 * and we just can't fit it in.
1362 i915_gem_evict_everything(struct drm_device *dev)
1367 ret = i915_gem_evict_something(dev);
1377 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1379 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1381 struct address_space *mapping;
1382 struct inode *inode;
1386 if (obj_priv->page_list)
1389 /* Get the list of pages out of our struct file. They'll be pinned
1390 * at this point until we release them.
1392 page_count = obj->size / PAGE_SIZE;
1393 BUG_ON(obj_priv->page_list != NULL);
1394 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1396 if (obj_priv->page_list == NULL) {
1397 DRM_ERROR("Faled to allocate page list\n");
1401 inode = obj->filp->f_path.dentry->d_inode;
1402 mapping = inode->i_mapping;
1403 for (i = 0; i < page_count; i++) {
1404 page = read_mapping_page(mapping, i, NULL);
1406 ret = PTR_ERR(page);
1407 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1408 i915_gem_object_free_page_list(obj);
1411 obj_priv->page_list[i] = page;
1416 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1418 struct drm_gem_object *obj = reg->obj;
1419 struct drm_device *dev = obj->dev;
1420 drm_i915_private_t *dev_priv = dev->dev_private;
1421 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1422 int regnum = obj_priv->fence_reg;
1425 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1427 val |= obj_priv->gtt_offset & 0xfffff000;
1428 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1429 if (obj_priv->tiling_mode == I915_TILING_Y)
1430 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1431 val |= I965_FENCE_REG_VALID;
1433 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1436 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1438 struct drm_gem_object *obj = reg->obj;
1439 struct drm_device *dev = obj->dev;
1440 drm_i915_private_t *dev_priv = dev->dev_private;
1441 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1442 int regnum = obj_priv->fence_reg;
1446 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1447 (obj_priv->gtt_offset & (obj->size - 1))) {
1448 WARN(1, "%s: object not 1M or size aligned\n", __FUNCTION__);
1452 if (obj_priv->tiling_mode == I915_TILING_Y && (IS_I945G(dev) ||
1455 pitch_val = (obj_priv->stride / 128) - 1;
1457 pitch_val = (obj_priv->stride / 512) - 1;
1459 val = obj_priv->gtt_offset;
1460 if (obj_priv->tiling_mode == I915_TILING_Y)
1461 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1462 val |= I915_FENCE_SIZE_BITS(obj->size);
1463 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1464 val |= I830_FENCE_REG_VALID;
1466 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1469 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1471 struct drm_gem_object *obj = reg->obj;
1472 struct drm_device *dev = obj->dev;
1473 drm_i915_private_t *dev_priv = dev->dev_private;
1474 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1475 int regnum = obj_priv->fence_reg;
1479 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1480 (obj_priv->gtt_offset & (obj->size - 1))) {
1481 WARN(1, "%s: object not 1M or size aligned\n", __FUNCTION__);
1485 pitch_val = (obj_priv->stride / 128) - 1;
1487 val = obj_priv->gtt_offset;
1488 if (obj_priv->tiling_mode == I915_TILING_Y)
1489 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1490 val |= I830_FENCE_SIZE_BITS(obj->size);
1491 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1492 val |= I830_FENCE_REG_VALID;
1494 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1499 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1500 * @obj: object to map through a fence reg
1502 * When mapping objects through the GTT, userspace wants to be able to write
1503 * to them without having to worry about swizzling if the object is tiled.
1505 * This function walks the fence regs looking for a free one for @obj,
1506 * stealing one if it can't find any.
1508 * It then sets up the reg based on the object's properties: address, pitch
1509 * and tiling format.
1512 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
1514 struct drm_device *dev = obj->dev;
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1517 struct drm_i915_fence_reg *reg = NULL;
1520 switch (obj_priv->tiling_mode) {
1521 case I915_TILING_NONE:
1522 WARN(1, "allocating a fence for non-tiled object?\n");
1525 WARN(obj_priv->stride & (512 - 1),
1526 "object is X tiled but has non-512B pitch\n");
1529 WARN(obj_priv->stride & (128 - 1),
1530 "object is Y tiled but has non-128B pitch\n");
1534 /* First try to find a free reg */
1535 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1536 reg = &dev_priv->fence_regs[i];
1541 /* None available, try to steal one or wait for a user to finish */
1542 if (i == dev_priv->num_fence_regs) {
1543 struct drm_i915_gem_object *old_obj_priv = NULL;
1547 /* Could try to use LRU here instead... */
1548 for (i = dev_priv->fence_reg_start;
1549 i < dev_priv->num_fence_regs; i++) {
1550 reg = &dev_priv->fence_regs[i];
1551 old_obj_priv = reg->obj->driver_private;
1552 if (!old_obj_priv->pin_count)
1557 * Now things get ugly... we have to wait for one of the
1558 * objects to finish before trying again.
1560 if (i == dev_priv->num_fence_regs) {
1561 ret = i915_gem_object_wait_rendering(reg->obj);
1563 WARN(ret, "wait_rendering failed: %d\n", ret);
1570 * Zap this virtual mapping so we can set up a fence again
1571 * for this object next time we need it.
1573 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1574 if (dev->dev_mapping)
1575 unmap_mapping_range(dev->dev_mapping, offset,
1577 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1580 obj_priv->fence_reg = i;
1584 i965_write_fence_reg(reg);
1585 else if (IS_I9XX(dev))
1586 i915_write_fence_reg(reg);
1588 i830_write_fence_reg(reg);
1592 * i915_gem_clear_fence_reg - clear out fence register info
1593 * @obj: object to clear
1595 * Zeroes out the fence register itself and clears out the associated
1596 * data structures in dev_priv and obj_priv.
1599 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1601 struct drm_device *dev = obj->dev;
1602 drm_i915_private_t *dev_priv = dev->dev_private;
1603 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1606 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1608 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1610 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1611 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1615 * Finds free space in the GTT aperture and binds the object there.
1618 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1620 struct drm_device *dev = obj->dev;
1621 drm_i915_private_t *dev_priv = dev->dev_private;
1622 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1623 struct drm_mm_node *free_space;
1624 int page_count, ret;
1627 alignment = PAGE_SIZE;
1628 if (alignment & (PAGE_SIZE - 1)) {
1629 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1634 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1635 obj->size, alignment, 0);
1636 if (free_space != NULL) {
1637 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1639 if (obj_priv->gtt_space != NULL) {
1640 obj_priv->gtt_space->private = obj;
1641 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1644 if (obj_priv->gtt_space == NULL) {
1645 /* If the gtt is empty and we're still having trouble
1646 * fitting our object in, we're out of memory.
1649 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1651 if (list_empty(&dev_priv->mm.inactive_list) &&
1652 list_empty(&dev_priv->mm.flushing_list) &&
1653 list_empty(&dev_priv->mm.active_list)) {
1654 DRM_ERROR("GTT full, but LRU list empty\n");
1658 ret = i915_gem_evict_something(dev);
1660 if (ret != -ERESTARTSYS)
1661 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1668 DRM_INFO("Binding object of size %d at 0x%08x\n",
1669 obj->size, obj_priv->gtt_offset);
1671 ret = i915_gem_object_get_page_list(obj);
1673 drm_mm_put_block(obj_priv->gtt_space);
1674 obj_priv->gtt_space = NULL;
1678 page_count = obj->size / PAGE_SIZE;
1679 /* Create an AGP memory structure pointing at our pages, and bind it
1682 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1683 obj_priv->page_list,
1685 obj_priv->gtt_offset,
1686 obj_priv->agp_type);
1687 if (obj_priv->agp_mem == NULL) {
1688 i915_gem_object_free_page_list(obj);
1689 drm_mm_put_block(obj_priv->gtt_space);
1690 obj_priv->gtt_space = NULL;
1693 atomic_inc(&dev->gtt_count);
1694 atomic_add(obj->size, &dev->gtt_memory);
1696 /* Assert that the object is not currently in any GPU domain. As it
1697 * wasn't in the GTT, there shouldn't be any way it could have been in
1700 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1701 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1707 i915_gem_clflush_object(struct drm_gem_object *obj)
1709 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1711 /* If we don't have a page list set up, then we're not pinned
1712 * to GPU, and we can ignore the cache flush because it'll happen
1713 * again at bind time.
1715 if (obj_priv->page_list == NULL)
1718 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1721 /** Flushes any GPU write domain for the object if it's dirty. */
1723 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1725 struct drm_device *dev = obj->dev;
1728 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1731 /* Queue the GPU write cache flushing we need. */
1732 i915_gem_flush(dev, 0, obj->write_domain);
1733 seqno = i915_add_request(dev, obj->write_domain);
1734 obj->write_domain = 0;
1735 i915_gem_object_move_to_active(obj, seqno);
1738 /** Flushes the GTT write domain for the object if it's dirty. */
1740 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1742 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1745 /* No actual flushing is required for the GTT write domain. Writes
1746 * to it immediately go to main memory as far as we know, so there's
1747 * no chipset flush. It also doesn't land in render cache.
1749 obj->write_domain = 0;
1752 /** Flushes the CPU write domain for the object if it's dirty. */
1754 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1756 struct drm_device *dev = obj->dev;
1758 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1761 i915_gem_clflush_object(obj);
1762 drm_agp_chipset_flush(dev);
1763 obj->write_domain = 0;
1767 * Moves a single object to the GTT read, and possibly write domain.
1769 * This function returns when the move is complete, including waiting on
1773 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1775 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1778 /* Not valid to be called on unbound objects. */
1779 if (obj_priv->gtt_space == NULL)
1782 i915_gem_object_flush_gpu_write_domain(obj);
1783 /* Wait on any GPU rendering and flushing to occur. */
1784 ret = i915_gem_object_wait_rendering(obj);
1788 /* If we're writing through the GTT domain, then CPU and GPU caches
1789 * will need to be invalidated at next use.
1792 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1794 i915_gem_object_flush_cpu_write_domain(obj);
1796 /* It should now be out of any other write domains, and we can update
1797 * the domain values for our changes.
1799 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1800 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1802 obj->write_domain = I915_GEM_DOMAIN_GTT;
1803 obj_priv->dirty = 1;
1810 * Moves a single object to the CPU read, and possibly write domain.
1812 * This function returns when the move is complete, including waiting on
1816 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1818 struct drm_device *dev = obj->dev;
1821 i915_gem_object_flush_gpu_write_domain(obj);
1822 /* Wait on any GPU rendering and flushing to occur. */
1823 ret = i915_gem_object_wait_rendering(obj);
1827 i915_gem_object_flush_gtt_write_domain(obj);
1829 /* If we have a partially-valid cache of the object in the CPU,
1830 * finish invalidating it and free the per-page flags.
1832 i915_gem_object_set_to_full_cpu_read_domain(obj);
1834 /* Flush the CPU cache if it's still invalid. */
1835 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1836 i915_gem_clflush_object(obj);
1837 drm_agp_chipset_flush(dev);
1839 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1842 /* It should now be out of any other write domains, and we can update
1843 * the domain values for our changes.
1845 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1847 /* If we're writing through the CPU, then the GPU read domains will
1848 * need to be invalidated at next use.
1851 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1852 obj->write_domain = I915_GEM_DOMAIN_CPU;
1859 * Set the next domain for the specified object. This
1860 * may not actually perform the necessary flushing/invaliding though,
1861 * as that may want to be batched with other set_domain operations
1863 * This is (we hope) the only really tricky part of gem. The goal
1864 * is fairly simple -- track which caches hold bits of the object
1865 * and make sure they remain coherent. A few concrete examples may
1866 * help to explain how it works. For shorthand, we use the notation
1867 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1868 * a pair of read and write domain masks.
1870 * Case 1: the batch buffer
1876 * 5. Unmapped from GTT
1879 * Let's take these a step at a time
1882 * Pages allocated from the kernel may still have
1883 * cache contents, so we set them to (CPU, CPU) always.
1884 * 2. Written by CPU (using pwrite)
1885 * The pwrite function calls set_domain (CPU, CPU) and
1886 * this function does nothing (as nothing changes)
1888 * This function asserts that the object is not
1889 * currently in any GPU-based read or write domains
1891 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1892 * As write_domain is zero, this function adds in the
1893 * current read domains (CPU+COMMAND, 0).
1894 * flush_domains is set to CPU.
1895 * invalidate_domains is set to COMMAND
1896 * clflush is run to get data out of the CPU caches
1897 * then i915_dev_set_domain calls i915_gem_flush to
1898 * emit an MI_FLUSH and drm_agp_chipset_flush
1899 * 5. Unmapped from GTT
1900 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1901 * flush_domains and invalidate_domains end up both zero
1902 * so no flushing/invalidating happens
1906 * Case 2: The shared render buffer
1910 * 3. Read/written by GPU
1911 * 4. set_domain to (CPU,CPU)
1912 * 5. Read/written by CPU
1913 * 6. Read/written by GPU
1916 * Same as last example, (CPU, CPU)
1918 * Nothing changes (assertions find that it is not in the GPU)
1919 * 3. Read/written by GPU
1920 * execbuffer calls set_domain (RENDER, RENDER)
1921 * flush_domains gets CPU
1922 * invalidate_domains gets GPU
1924 * MI_FLUSH and drm_agp_chipset_flush
1925 * 4. set_domain (CPU, CPU)
1926 * flush_domains gets GPU
1927 * invalidate_domains gets CPU
1928 * wait_rendering (obj) to make sure all drawing is complete.
1929 * This will include an MI_FLUSH to get the data from GPU
1931 * clflush (obj) to invalidate the CPU cache
1932 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1933 * 5. Read/written by CPU
1934 * cache lines are loaded and dirtied
1935 * 6. Read written by GPU
1936 * Same as last GPU access
1938 * Case 3: The constant buffer
1943 * 4. Updated (written) by CPU again
1952 * flush_domains = CPU
1953 * invalidate_domains = RENDER
1956 * drm_agp_chipset_flush
1957 * 4. Updated (written) by CPU again
1959 * flush_domains = 0 (no previous write domain)
1960 * invalidate_domains = 0 (no new read domains)
1963 * flush_domains = CPU
1964 * invalidate_domains = RENDER
1967 * drm_agp_chipset_flush
1970 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1971 uint32_t read_domains,
1972 uint32_t write_domain)
1974 struct drm_device *dev = obj->dev;
1975 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1976 uint32_t invalidate_domains = 0;
1977 uint32_t flush_domains = 0;
1979 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1980 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
1983 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1985 obj->read_domains, read_domains,
1986 obj->write_domain, write_domain);
1989 * If the object isn't moving to a new write domain,
1990 * let the object stay in multiple read domains
1992 if (write_domain == 0)
1993 read_domains |= obj->read_domains;
1995 obj_priv->dirty = 1;
1998 * Flush the current write domain if
1999 * the new read domains don't match. Invalidate
2000 * any read domains which differ from the old
2003 if (obj->write_domain && obj->write_domain != read_domains) {
2004 flush_domains |= obj->write_domain;
2005 invalidate_domains |= read_domains & ~obj->write_domain;
2008 * Invalidate any read caches which may have
2009 * stale data. That is, any new read domains.
2011 invalidate_domains |= read_domains & ~obj->read_domains;
2012 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2014 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2015 __func__, flush_domains, invalidate_domains);
2017 i915_gem_clflush_object(obj);
2020 if ((write_domain | flush_domains) != 0)
2021 obj->write_domain = write_domain;
2022 obj->read_domains = read_domains;
2024 dev->invalidate_domains |= invalidate_domains;
2025 dev->flush_domains |= flush_domains;
2027 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2029 obj->read_domains, obj->write_domain,
2030 dev->invalidate_domains, dev->flush_domains);
2035 * Moves the object from a partially CPU read to a full one.
2037 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2038 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2041 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2043 struct drm_device *dev = obj->dev;
2044 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2046 if (!obj_priv->page_cpu_valid)
2049 /* If we're partially in the CPU read domain, finish moving it in.
2051 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2054 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2055 if (obj_priv->page_cpu_valid[i])
2057 drm_clflush_pages(obj_priv->page_list + i, 1);
2059 drm_agp_chipset_flush(dev);
2062 /* Free the page_cpu_valid mappings which are now stale, whether
2063 * or not we've got I915_GEM_DOMAIN_CPU.
2065 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2067 obj_priv->page_cpu_valid = NULL;
2071 * Set the CPU read domain on a range of the object.
2073 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2074 * not entirely valid. The page_cpu_valid member of the object flags which
2075 * pages have been flushed, and will be respected by
2076 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2077 * of the whole object.
2079 * This function returns when the move is complete, including waiting on
2083 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2084 uint64_t offset, uint64_t size)
2086 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2089 if (offset == 0 && size == obj->size)
2090 return i915_gem_object_set_to_cpu_domain(obj, 0);
2092 i915_gem_object_flush_gpu_write_domain(obj);
2093 /* Wait on any GPU rendering and flushing to occur. */
2094 ret = i915_gem_object_wait_rendering(obj);
2097 i915_gem_object_flush_gtt_write_domain(obj);
2099 /* If we're already fully in the CPU read domain, we're done. */
2100 if (obj_priv->page_cpu_valid == NULL &&
2101 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2104 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2105 * newly adding I915_GEM_DOMAIN_CPU
2107 if (obj_priv->page_cpu_valid == NULL) {
2108 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2110 if (obj_priv->page_cpu_valid == NULL)
2112 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2113 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2115 /* Flush the cache on any pages that are still invalid from the CPU's
2118 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2120 if (obj_priv->page_cpu_valid[i])
2123 drm_clflush_pages(obj_priv->page_list + i, 1);
2125 obj_priv->page_cpu_valid[i] = 1;
2128 /* It should now be out of any other write domains, and we can update
2129 * the domain values for our changes.
2131 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2133 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2139 * Pin an object to the GTT and evaluate the relocations landing in it.
2142 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2143 struct drm_file *file_priv,
2144 struct drm_i915_gem_exec_object *entry)
2146 struct drm_device *dev = obj->dev;
2147 drm_i915_private_t *dev_priv = dev->dev_private;
2148 struct drm_i915_gem_relocation_entry reloc;
2149 struct drm_i915_gem_relocation_entry __user *relocs;
2150 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2152 void __iomem *reloc_page;
2154 /* Choose the GTT offset for our buffer and put it there. */
2155 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2159 entry->offset = obj_priv->gtt_offset;
2161 relocs = (struct drm_i915_gem_relocation_entry __user *)
2162 (uintptr_t) entry->relocs_ptr;
2163 /* Apply the relocations, using the GTT aperture to avoid cache
2164 * flushing requirements.
2166 for (i = 0; i < entry->relocation_count; i++) {
2167 struct drm_gem_object *target_obj;
2168 struct drm_i915_gem_object *target_obj_priv;
2169 uint32_t reloc_val, reloc_offset;
2170 uint32_t __iomem *reloc_entry;
2172 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2174 i915_gem_object_unpin(obj);
2178 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2179 reloc.target_handle);
2180 if (target_obj == NULL) {
2181 i915_gem_object_unpin(obj);
2184 target_obj_priv = target_obj->driver_private;
2186 /* The target buffer should have appeared before us in the
2187 * exec_object list, so it should have a GTT space bound by now.
2189 if (target_obj_priv->gtt_space == NULL) {
2190 DRM_ERROR("No GTT space found for object %d\n",
2191 reloc.target_handle);
2192 drm_gem_object_unreference(target_obj);
2193 i915_gem_object_unpin(obj);
2197 if (reloc.offset > obj->size - 4) {
2198 DRM_ERROR("Relocation beyond object bounds: "
2199 "obj %p target %d offset %d size %d.\n",
2200 obj, reloc.target_handle,
2201 (int) reloc.offset, (int) obj->size);
2202 drm_gem_object_unreference(target_obj);
2203 i915_gem_object_unpin(obj);
2206 if (reloc.offset & 3) {
2207 DRM_ERROR("Relocation not 4-byte aligned: "
2208 "obj %p target %d offset %d.\n",
2209 obj, reloc.target_handle,
2210 (int) reloc.offset);
2211 drm_gem_object_unreference(target_obj);
2212 i915_gem_object_unpin(obj);
2216 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2217 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2218 DRM_ERROR("reloc with read/write CPU domains: "
2219 "obj %p target %d offset %d "
2220 "read %08x write %08x",
2221 obj, reloc.target_handle,
2224 reloc.write_domain);
2228 if (reloc.write_domain && target_obj->pending_write_domain &&
2229 reloc.write_domain != target_obj->pending_write_domain) {
2230 DRM_ERROR("Write domain conflict: "
2231 "obj %p target %d offset %d "
2232 "new %08x old %08x\n",
2233 obj, reloc.target_handle,
2236 target_obj->pending_write_domain);
2237 drm_gem_object_unreference(target_obj);
2238 i915_gem_object_unpin(obj);
2243 DRM_INFO("%s: obj %p offset %08x target %d "
2244 "read %08x write %08x gtt %08x "
2245 "presumed %08x delta %08x\n",
2249 (int) reloc.target_handle,
2250 (int) reloc.read_domains,
2251 (int) reloc.write_domain,
2252 (int) target_obj_priv->gtt_offset,
2253 (int) reloc.presumed_offset,
2257 target_obj->pending_read_domains |= reloc.read_domains;
2258 target_obj->pending_write_domain |= reloc.write_domain;
2260 /* If the relocation already has the right value in it, no
2261 * more work needs to be done.
2263 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2264 drm_gem_object_unreference(target_obj);
2268 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2270 drm_gem_object_unreference(target_obj);
2271 i915_gem_object_unpin(obj);
2275 /* Map the page containing the relocation we're going to
2278 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2279 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2282 reloc_entry = (uint32_t __iomem *)(reloc_page +
2283 (reloc_offset & (PAGE_SIZE - 1)));
2284 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2287 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2288 obj, (unsigned int) reloc.offset,
2289 readl(reloc_entry), reloc_val);
2291 writel(reloc_val, reloc_entry);
2292 io_mapping_unmap_atomic(reloc_page);
2294 /* Write the updated presumed offset for this entry back out
2297 reloc.presumed_offset = target_obj_priv->gtt_offset;
2298 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2300 drm_gem_object_unreference(target_obj);
2301 i915_gem_object_unpin(obj);
2305 drm_gem_object_unreference(target_obj);
2310 i915_gem_dump_object(obj, 128, __func__, ~0);
2315 /** Dispatch a batchbuffer to the ring
2318 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2319 struct drm_i915_gem_execbuffer *exec,
2320 uint64_t exec_offset)
2322 drm_i915_private_t *dev_priv = dev->dev_private;
2323 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2324 (uintptr_t) exec->cliprects_ptr;
2325 int nbox = exec->num_cliprects;
2327 uint32_t exec_start, exec_len;
2330 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2331 exec_len = (uint32_t) exec->batch_len;
2333 if ((exec_start | exec_len) & 0x7) {
2334 DRM_ERROR("alignment\n");
2341 count = nbox ? nbox : 1;
2343 for (i = 0; i < count; i++) {
2345 int ret = i915_emit_box(dev, boxes, i,
2346 exec->DR1, exec->DR4);
2351 if (IS_I830(dev) || IS_845G(dev)) {
2353 OUT_RING(MI_BATCH_BUFFER);
2354 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2355 OUT_RING(exec_start + exec_len - 4);
2360 if (IS_I965G(dev)) {
2361 OUT_RING(MI_BATCH_BUFFER_START |
2363 MI_BATCH_NON_SECURE_I965);
2364 OUT_RING(exec_start);
2366 OUT_RING(MI_BATCH_BUFFER_START |
2368 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2374 /* XXX breadcrumb */
2378 /* Throttle our rendering by waiting until the ring has completed our requests
2379 * emitted over 20 msec ago.
2381 * This should get us reasonable parallelism between CPU and GPU but also
2382 * relatively low latency when blocking on a particular request to finish.
2385 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2387 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2391 mutex_lock(&dev->struct_mutex);
2392 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2393 i915_file_priv->mm.last_gem_throttle_seqno =
2394 i915_file_priv->mm.last_gem_seqno;
2396 ret = i915_wait_request(dev, seqno);
2397 mutex_unlock(&dev->struct_mutex);
2402 i915_gem_execbuffer(struct drm_device *dev, void *data,
2403 struct drm_file *file_priv)
2405 drm_i915_private_t *dev_priv = dev->dev_private;
2406 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2407 struct drm_i915_gem_execbuffer *args = data;
2408 struct drm_i915_gem_exec_object *exec_list = NULL;
2409 struct drm_gem_object **object_list = NULL;
2410 struct drm_gem_object *batch_obj;
2411 int ret, i, pinned = 0;
2412 uint64_t exec_offset;
2413 uint32_t seqno, flush_domains;
2417 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2418 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2421 if (args->buffer_count < 1) {
2422 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2425 /* Copy in the exec list from userland */
2426 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2428 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2430 if (exec_list == NULL || object_list == NULL) {
2431 DRM_ERROR("Failed to allocate exec or object list "
2433 args->buffer_count);
2437 ret = copy_from_user(exec_list,
2438 (struct drm_i915_relocation_entry __user *)
2439 (uintptr_t) args->buffers_ptr,
2440 sizeof(*exec_list) * args->buffer_count);
2442 DRM_ERROR("copy %d exec entries failed %d\n",
2443 args->buffer_count, ret);
2447 mutex_lock(&dev->struct_mutex);
2449 i915_verify_inactive(dev, __FILE__, __LINE__);
2451 if (dev_priv->mm.wedged) {
2452 DRM_ERROR("Execbuf while wedged\n");
2453 mutex_unlock(&dev->struct_mutex);
2457 if (dev_priv->mm.suspended) {
2458 DRM_ERROR("Execbuf while VT-switched.\n");
2459 mutex_unlock(&dev->struct_mutex);
2463 /* Look up object handles */
2464 for (i = 0; i < args->buffer_count; i++) {
2465 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2466 exec_list[i].handle);
2467 if (object_list[i] == NULL) {
2468 DRM_ERROR("Invalid object handle %d at index %d\n",
2469 exec_list[i].handle, i);
2475 /* Pin and relocate */
2476 for (pin_tries = 0; ; pin_tries++) {
2478 for (i = 0; i < args->buffer_count; i++) {
2479 object_list[i]->pending_read_domains = 0;
2480 object_list[i]->pending_write_domain = 0;
2481 ret = i915_gem_object_pin_and_relocate(object_list[i],
2492 /* error other than GTT full, or we've already tried again */
2493 if (ret != -ENOMEM || pin_tries >= 1) {
2494 if (ret != -ERESTARTSYS)
2495 DRM_ERROR("Failed to pin buffers %d\n", ret);
2499 /* unpin all of our buffers */
2500 for (i = 0; i < pinned; i++)
2501 i915_gem_object_unpin(object_list[i]);
2504 /* evict everyone we can from the aperture */
2505 ret = i915_gem_evict_everything(dev);
2510 /* Set the pending read domains for the batch buffer to COMMAND */
2511 batch_obj = object_list[args->buffer_count-1];
2512 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2513 batch_obj->pending_write_domain = 0;
2515 i915_verify_inactive(dev, __FILE__, __LINE__);
2517 /* Zero the global flush/invalidate flags. These
2518 * will be modified as new domains are computed
2521 dev->invalidate_domains = 0;
2522 dev->flush_domains = 0;
2524 for (i = 0; i < args->buffer_count; i++) {
2525 struct drm_gem_object *obj = object_list[i];
2527 /* Compute new gpu domains and update invalidate/flush */
2528 i915_gem_object_set_to_gpu_domain(obj,
2529 obj->pending_read_domains,
2530 obj->pending_write_domain);
2533 i915_verify_inactive(dev, __FILE__, __LINE__);
2535 if (dev->invalidate_domains | dev->flush_domains) {
2537 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2539 dev->invalidate_domains,
2540 dev->flush_domains);
2543 dev->invalidate_domains,
2544 dev->flush_domains);
2545 if (dev->flush_domains)
2546 (void)i915_add_request(dev, dev->flush_domains);
2549 i915_verify_inactive(dev, __FILE__, __LINE__);
2552 for (i = 0; i < args->buffer_count; i++) {
2553 i915_gem_object_check_coherency(object_list[i],
2554 exec_list[i].handle);
2558 exec_offset = exec_list[args->buffer_count - 1].offset;
2561 i915_gem_dump_object(object_list[args->buffer_count - 1],
2567 /* Exec the batchbuffer */
2568 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2570 DRM_ERROR("dispatch failed %d\n", ret);
2575 * Ensure that the commands in the batch buffer are
2576 * finished before the interrupt fires
2578 flush_domains = i915_retire_commands(dev);
2580 i915_verify_inactive(dev, __FILE__, __LINE__);
2583 * Get a seqno representing the execution of the current buffer,
2584 * which we can wait on. We would like to mitigate these interrupts,
2585 * likely by only creating seqnos occasionally (so that we have
2586 * *some* interrupts representing completion of buffers that we can
2587 * wait on when trying to clear up gtt space).
2589 seqno = i915_add_request(dev, flush_domains);
2591 i915_file_priv->mm.last_gem_seqno = seqno;
2592 for (i = 0; i < args->buffer_count; i++) {
2593 struct drm_gem_object *obj = object_list[i];
2595 i915_gem_object_move_to_active(obj, seqno);
2597 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2601 i915_dump_lru(dev, __func__);
2604 i915_verify_inactive(dev, __FILE__, __LINE__);
2606 /* Copy the new buffer offsets back to the user's exec list. */
2607 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2608 (uintptr_t) args->buffers_ptr,
2610 sizeof(*exec_list) * args->buffer_count);
2612 DRM_ERROR("failed to copy %d exec entries "
2613 "back to user (%d)\n",
2614 args->buffer_count, ret);
2616 for (i = 0; i < pinned; i++)
2617 i915_gem_object_unpin(object_list[i]);
2619 for (i = 0; i < args->buffer_count; i++)
2620 drm_gem_object_unreference(object_list[i]);
2622 mutex_unlock(&dev->struct_mutex);
2625 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2627 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2634 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2636 struct drm_device *dev = obj->dev;
2637 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2640 i915_verify_inactive(dev, __FILE__, __LINE__);
2641 if (obj_priv->gtt_space == NULL) {
2642 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2644 if (ret != -ERESTARTSYS)
2645 DRM_ERROR("Failure to bind: %d", ret);
2649 obj_priv->pin_count++;
2651 /* If the object is not active and not pending a flush,
2652 * remove it from the inactive list
2654 if (obj_priv->pin_count == 1) {
2655 atomic_inc(&dev->pin_count);
2656 atomic_add(obj->size, &dev->pin_memory);
2657 if (!obj_priv->active &&
2658 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2659 I915_GEM_DOMAIN_GTT)) == 0 &&
2660 !list_empty(&obj_priv->list))
2661 list_del_init(&obj_priv->list);
2663 i915_verify_inactive(dev, __FILE__, __LINE__);
2669 i915_gem_object_unpin(struct drm_gem_object *obj)
2671 struct drm_device *dev = obj->dev;
2672 drm_i915_private_t *dev_priv = dev->dev_private;
2673 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2675 i915_verify_inactive(dev, __FILE__, __LINE__);
2676 obj_priv->pin_count--;
2677 BUG_ON(obj_priv->pin_count < 0);
2678 BUG_ON(obj_priv->gtt_space == NULL);
2680 /* If the object is no longer pinned, and is
2681 * neither active nor being flushed, then stick it on
2684 if (obj_priv->pin_count == 0) {
2685 if (!obj_priv->active &&
2686 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2687 I915_GEM_DOMAIN_GTT)) == 0)
2688 list_move_tail(&obj_priv->list,
2689 &dev_priv->mm.inactive_list);
2690 atomic_dec(&dev->pin_count);
2691 atomic_sub(obj->size, &dev->pin_memory);
2693 i915_verify_inactive(dev, __FILE__, __LINE__);
2697 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2698 struct drm_file *file_priv)
2700 struct drm_i915_gem_pin *args = data;
2701 struct drm_gem_object *obj;
2702 struct drm_i915_gem_object *obj_priv;
2705 mutex_lock(&dev->struct_mutex);
2707 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2709 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2711 mutex_unlock(&dev->struct_mutex);
2714 obj_priv = obj->driver_private;
2716 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2717 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2719 mutex_unlock(&dev->struct_mutex);
2723 obj_priv->user_pin_count++;
2724 obj_priv->pin_filp = file_priv;
2725 if (obj_priv->user_pin_count == 1) {
2726 ret = i915_gem_object_pin(obj, args->alignment);
2728 drm_gem_object_unreference(obj);
2729 mutex_unlock(&dev->struct_mutex);
2734 /* XXX - flush the CPU caches for pinned objects
2735 * as the X server doesn't manage domains yet
2737 i915_gem_object_flush_cpu_write_domain(obj);
2738 args->offset = obj_priv->gtt_offset;
2739 drm_gem_object_unreference(obj);
2740 mutex_unlock(&dev->struct_mutex);
2746 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2747 struct drm_file *file_priv)
2749 struct drm_i915_gem_pin *args = data;
2750 struct drm_gem_object *obj;
2751 struct drm_i915_gem_object *obj_priv;
2753 mutex_lock(&dev->struct_mutex);
2755 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2757 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2759 mutex_unlock(&dev->struct_mutex);
2763 obj_priv = obj->driver_private;
2764 if (obj_priv->pin_filp != file_priv) {
2765 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2767 drm_gem_object_unreference(obj);
2768 mutex_unlock(&dev->struct_mutex);
2771 obj_priv->user_pin_count--;
2772 if (obj_priv->user_pin_count == 0) {
2773 obj_priv->pin_filp = NULL;
2774 i915_gem_object_unpin(obj);
2777 drm_gem_object_unreference(obj);
2778 mutex_unlock(&dev->struct_mutex);
2783 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2784 struct drm_file *file_priv)
2786 struct drm_i915_gem_busy *args = data;
2787 struct drm_gem_object *obj;
2788 struct drm_i915_gem_object *obj_priv;
2790 mutex_lock(&dev->struct_mutex);
2791 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2793 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2795 mutex_unlock(&dev->struct_mutex);
2799 obj_priv = obj->driver_private;
2800 /* Don't count being on the flushing list against the object being
2801 * done. Otherwise, a buffer left on the flushing list but not getting
2802 * flushed (because nobody's flushing that domain) won't ever return
2803 * unbusy and get reused by libdrm's bo cache. The other expected
2804 * consumer of this interface, OpenGL's occlusion queries, also specs
2805 * that the objects get unbusy "eventually" without any interference.
2807 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2809 drm_gem_object_unreference(obj);
2810 mutex_unlock(&dev->struct_mutex);
2815 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2816 struct drm_file *file_priv)
2818 return i915_gem_ring_throttle(dev, file_priv);
2821 int i915_gem_init_object(struct drm_gem_object *obj)
2823 struct drm_i915_gem_object *obj_priv;
2825 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2826 if (obj_priv == NULL)
2830 * We've just allocated pages from the kernel,
2831 * so they've just been written by the CPU with
2832 * zeros. They'll need to be clflushed before we
2833 * use them with the GPU.
2835 obj->write_domain = I915_GEM_DOMAIN_CPU;
2836 obj->read_domains = I915_GEM_DOMAIN_CPU;
2838 obj_priv->agp_type = AGP_USER_MEMORY;
2840 obj->driver_private = obj_priv;
2841 obj_priv->obj = obj;
2842 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2843 INIT_LIST_HEAD(&obj_priv->list);
2848 void i915_gem_free_object(struct drm_gem_object *obj)
2850 struct drm_device *dev = obj->dev;
2851 struct drm_gem_mm *mm = dev->mm_private;
2852 struct drm_map_list *list;
2853 struct drm_map *map;
2854 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2856 while (obj_priv->pin_count > 0)
2857 i915_gem_object_unpin(obj);
2859 i915_gem_object_unbind(obj);
2861 list = &obj->map_list;
2862 drm_ht_remove_item(&mm->offset_hash, &list->hash);
2864 if (list->file_offset_node) {
2865 drm_mm_put_block(list->file_offset_node);
2866 list->file_offset_node = NULL;
2871 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2875 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2876 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2879 /** Unbinds all objects that are on the given buffer list. */
2881 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2883 struct drm_gem_object *obj;
2884 struct drm_i915_gem_object *obj_priv;
2887 while (!list_empty(head)) {
2888 obj_priv = list_first_entry(head,
2889 struct drm_i915_gem_object,
2891 obj = obj_priv->obj;
2893 if (obj_priv->pin_count != 0) {
2894 DRM_ERROR("Pinned object in unbind list\n");
2895 mutex_unlock(&dev->struct_mutex);
2899 ret = i915_gem_object_unbind(obj);
2901 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2903 mutex_unlock(&dev->struct_mutex);
2913 i915_gem_idle(struct drm_device *dev)
2915 drm_i915_private_t *dev_priv = dev->dev_private;
2916 uint32_t seqno, cur_seqno, last_seqno;
2919 mutex_lock(&dev->struct_mutex);
2921 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2922 mutex_unlock(&dev->struct_mutex);
2926 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2927 * We need to replace this with a semaphore, or something.
2929 dev_priv->mm.suspended = 1;
2931 /* Cancel the retire work handler, wait for it to finish if running
2933 mutex_unlock(&dev->struct_mutex);
2934 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2935 mutex_lock(&dev->struct_mutex);
2937 i915_kernel_lost_context(dev);
2939 /* Flush the GPU along with all non-CPU write domains
2941 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2942 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2943 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
2946 mutex_unlock(&dev->struct_mutex);
2950 dev_priv->mm.waiting_gem_seqno = seqno;
2954 cur_seqno = i915_get_gem_seqno(dev);
2955 if (i915_seqno_passed(cur_seqno, seqno))
2957 if (last_seqno == cur_seqno) {
2958 if (stuck++ > 100) {
2959 DRM_ERROR("hardware wedged\n");
2960 dev_priv->mm.wedged = 1;
2961 DRM_WAKEUP(&dev_priv->irq_queue);
2966 last_seqno = cur_seqno;
2968 dev_priv->mm.waiting_gem_seqno = 0;
2970 i915_gem_retire_requests(dev);
2972 if (!dev_priv->mm.wedged) {
2973 /* Active and flushing should now be empty as we've
2974 * waited for a sequence higher than any pending execbuffer
2976 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2977 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2978 /* Request should now be empty as we've also waited
2979 * for the last request in the list
2981 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2984 /* Empty the active and flushing lists to inactive. If there's
2985 * anything left at this point, it means that we're wedged and
2986 * nothing good's going to happen by leaving them there. So strip
2987 * the GPU domains and just stuff them onto inactive.
2989 while (!list_empty(&dev_priv->mm.active_list)) {
2990 struct drm_i915_gem_object *obj_priv;
2992 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2993 struct drm_i915_gem_object,
2995 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2996 i915_gem_object_move_to_inactive(obj_priv->obj);
2999 while (!list_empty(&dev_priv->mm.flushing_list)) {
3000 struct drm_i915_gem_object *obj_priv;
3002 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3003 struct drm_i915_gem_object,
3005 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3006 i915_gem_object_move_to_inactive(obj_priv->obj);
3010 /* Move all inactive buffers out of the GTT. */
3011 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3012 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3014 mutex_unlock(&dev->struct_mutex);
3018 i915_gem_cleanup_ringbuffer(dev);
3019 mutex_unlock(&dev->struct_mutex);
3025 i915_gem_init_hws(struct drm_device *dev)
3027 drm_i915_private_t *dev_priv = dev->dev_private;
3028 struct drm_gem_object *obj;
3029 struct drm_i915_gem_object *obj_priv;
3032 /* If we need a physical address for the status page, it's already
3033 * initialized at driver load time.
3035 if (!I915_NEED_GFX_HWS(dev))
3038 obj = drm_gem_object_alloc(dev, 4096);
3040 DRM_ERROR("Failed to allocate status page\n");
3043 obj_priv = obj->driver_private;
3044 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3046 ret = i915_gem_object_pin(obj, 4096);
3048 drm_gem_object_unreference(obj);
3052 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3054 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3055 if (dev_priv->hw_status_page == NULL) {
3056 DRM_ERROR("Failed to map status page.\n");
3057 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3058 drm_gem_object_unreference(obj);
3061 dev_priv->hws_obj = obj;
3062 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3063 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3064 I915_READ(HWS_PGA); /* posting read */
3065 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3071 i915_gem_init_ringbuffer(struct drm_device *dev)
3073 drm_i915_private_t *dev_priv = dev->dev_private;
3074 struct drm_gem_object *obj;
3075 struct drm_i915_gem_object *obj_priv;
3076 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3080 ret = i915_gem_init_hws(dev);
3084 obj = drm_gem_object_alloc(dev, 128 * 1024);
3086 DRM_ERROR("Failed to allocate ringbuffer\n");
3089 obj_priv = obj->driver_private;
3091 ret = i915_gem_object_pin(obj, 4096);
3093 drm_gem_object_unreference(obj);
3097 /* Set up the kernel mapping for the ring. */
3098 ring->Size = obj->size;
3099 ring->tail_mask = obj->size - 1;
3101 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3102 ring->map.size = obj->size;
3104 ring->map.flags = 0;
3107 drm_core_ioremap_wc(&ring->map, dev);
3108 if (ring->map.handle == NULL) {
3109 DRM_ERROR("Failed to map ringbuffer.\n");
3110 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3111 drm_gem_object_unreference(obj);
3114 ring->ring_obj = obj;
3115 ring->virtual_start = ring->map.handle;
3117 /* Stop the ring if it's running. */
3118 I915_WRITE(PRB0_CTL, 0);
3119 I915_WRITE(PRB0_TAIL, 0);
3120 I915_WRITE(PRB0_HEAD, 0);
3122 /* Initialize the ring. */
3123 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3124 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3126 /* G45 ring initialization fails to reset head to zero */
3128 DRM_ERROR("Ring head not reset to zero "
3129 "ctl %08x head %08x tail %08x start %08x\n",
3130 I915_READ(PRB0_CTL),
3131 I915_READ(PRB0_HEAD),
3132 I915_READ(PRB0_TAIL),
3133 I915_READ(PRB0_START));
3134 I915_WRITE(PRB0_HEAD, 0);
3136 DRM_ERROR("Ring head forced to zero "
3137 "ctl %08x head %08x tail %08x start %08x\n",
3138 I915_READ(PRB0_CTL),
3139 I915_READ(PRB0_HEAD),
3140 I915_READ(PRB0_TAIL),
3141 I915_READ(PRB0_START));
3144 I915_WRITE(PRB0_CTL,
3145 ((obj->size - 4096) & RING_NR_PAGES) |
3149 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3151 /* If the head is still not zero, the ring is dead */
3153 DRM_ERROR("Ring initialization failed "
3154 "ctl %08x head %08x tail %08x start %08x\n",
3155 I915_READ(PRB0_CTL),
3156 I915_READ(PRB0_HEAD),
3157 I915_READ(PRB0_TAIL),
3158 I915_READ(PRB0_START));
3162 /* Update our cache of the ring state */
3163 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3164 i915_kernel_lost_context(dev);
3166 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3167 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3168 ring->space = ring->head - (ring->tail + 8);
3169 if (ring->space < 0)
3170 ring->space += ring->Size;
3177 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3179 drm_i915_private_t *dev_priv = dev->dev_private;
3181 if (dev_priv->ring.ring_obj == NULL)
3184 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3186 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3187 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3188 dev_priv->ring.ring_obj = NULL;
3189 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3191 if (dev_priv->hws_obj != NULL) {
3192 struct drm_gem_object *obj = dev_priv->hws_obj;
3193 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3195 kunmap(obj_priv->page_list[0]);
3196 i915_gem_object_unpin(obj);
3197 drm_gem_object_unreference(obj);
3198 dev_priv->hws_obj = NULL;
3199 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3200 dev_priv->hw_status_page = NULL;
3202 /* Write high address into HWS_PGA when disabling. */
3203 I915_WRITE(HWS_PGA, 0x1ffff000);
3208 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3209 struct drm_file *file_priv)
3211 drm_i915_private_t *dev_priv = dev->dev_private;
3214 if (drm_core_check_feature(dev, DRIVER_MODESET))
3217 if (dev_priv->mm.wedged) {
3218 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3219 dev_priv->mm.wedged = 0;
3222 ret = i915_gem_init_ringbuffer(dev);
3226 dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
3227 dev->agp->agp_info.aper_size
3230 mutex_lock(&dev->struct_mutex);
3231 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3232 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3233 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3234 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3235 dev_priv->mm.suspended = 0;
3236 mutex_unlock(&dev->struct_mutex);
3238 drm_irq_install(dev);
3244 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3245 struct drm_file *file_priv)
3247 drm_i915_private_t *dev_priv = dev->dev_private;
3250 if (drm_core_check_feature(dev, DRIVER_MODESET))
3253 ret = i915_gem_idle(dev);
3254 drm_irq_uninstall(dev);
3256 io_mapping_free(dev_priv->mm.gtt_mapping);
3261 i915_gem_lastclose(struct drm_device *dev)
3265 ret = i915_gem_idle(dev);
3267 DRM_ERROR("failed to idle hardware: %d\n", ret);
3271 i915_gem_load(struct drm_device *dev)
3273 drm_i915_private_t *dev_priv = dev->dev_private;
3275 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3276 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3277 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3278 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3279 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3280 i915_gem_retire_work_handler);
3281 dev_priv->mm.next_gem_seqno = 1;
3283 /* Old X drivers will take 0-2 for front, back, depth buffers */
3284 dev_priv->fence_reg_start = 3;
3287 dev_priv->num_fence_regs = 16;
3289 dev_priv->num_fence_regs = 8;
3291 i915_gem_detect_bit_6_swizzle(dev);