2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
47 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61 drm_i915_private_t *dev_priv = dev->dev_private;
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
72 dev->gtt_total = (uint32_t) (end - start);
78 i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
81 struct drm_i915_gem_init *args = data;
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
86 mutex_unlock(&dev->struct_mutex);
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
95 struct drm_i915_gem_get_aperture *args = data;
97 if (!(dev->driver->driver_features & DRIVER_GEM))
100 args->aper_size = dev->gtt_total;
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
109 * Creates a new mm object and returns a handle to it.
112 i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
119 args->size = roundup(args->size, PAGE_SIZE);
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
134 args->handle = handle;
140 * Reads data from the object referenced by handle.
142 * On error, the contents of *data are undefined.
145 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file_priv)
148 struct drm_i915_gem_pread *args = data;
149 struct drm_gem_object *obj;
150 struct drm_i915_gem_object *obj_priv;
155 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
158 obj_priv = obj->driver_private;
160 /* Bounds check source.
162 * XXX: This could use review for overflow issues...
164 if (args->offset > obj->size || args->size > obj->size ||
165 args->offset + args->size > obj->size) {
166 drm_gem_object_unreference(obj);
170 mutex_lock(&dev->struct_mutex);
172 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
175 drm_gem_object_unreference(obj);
176 mutex_unlock(&dev->struct_mutex);
180 offset = args->offset;
182 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
183 args->size, &offset);
184 if (read != args->size) {
185 drm_gem_object_unreference(obj);
186 mutex_unlock(&dev->struct_mutex);
193 drm_gem_object_unreference(obj);
194 mutex_unlock(&dev->struct_mutex);
199 /* This is the fast write path which cannot handle
200 * page faults in the source data
204 fast_user_write(struct io_mapping *mapping,
205 loff_t page_base, int page_offset,
206 char __user *user_data,
210 unsigned long unwritten;
212 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
213 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
215 io_mapping_unmap_atomic(vaddr_atomic);
221 /* Here's the write path which can sleep for
226 slow_user_write(struct io_mapping *mapping,
227 loff_t page_base, int page_offset,
228 char __user *user_data,
232 unsigned long unwritten;
234 vaddr = io_mapping_map_wc(mapping, page_base);
237 unwritten = __copy_from_user(vaddr + page_offset,
239 io_mapping_unmap(vaddr);
246 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
247 struct drm_i915_gem_pwrite *args,
248 struct drm_file *file_priv)
250 struct drm_i915_gem_object *obj_priv = obj->driver_private;
251 drm_i915_private_t *dev_priv = dev->dev_private;
253 loff_t offset, page_base;
254 char __user *user_data;
255 int page_offset, page_length;
258 user_data = (char __user *) (uintptr_t) args->data_ptr;
260 if (!access_ok(VERIFY_READ, user_data, remain))
264 mutex_lock(&dev->struct_mutex);
265 ret = i915_gem_object_pin(obj, 0);
267 mutex_unlock(&dev->struct_mutex);
270 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
274 obj_priv = obj->driver_private;
275 offset = obj_priv->gtt_offset + args->offset;
279 /* Operation in this page
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
291 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
292 page_offset, user_data, page_length);
294 /* If we get a fault while copying data, then (presumably) our
295 * source page isn't available. In this case, use the
296 * non-atomic function
299 ret = slow_user_write (dev_priv->mm.gtt_mapping,
300 page_base, page_offset,
301 user_data, page_length);
306 remain -= page_length;
307 user_data += page_length;
308 offset += page_length;
312 i915_gem_object_unpin(obj);
313 mutex_unlock(&dev->struct_mutex);
319 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
320 struct drm_i915_gem_pwrite *args,
321 struct drm_file *file_priv)
327 mutex_lock(&dev->struct_mutex);
329 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
331 mutex_unlock(&dev->struct_mutex);
335 offset = args->offset;
337 written = vfs_write(obj->filp,
338 (char __user *)(uintptr_t) args->data_ptr,
339 args->size, &offset);
340 if (written != args->size) {
341 mutex_unlock(&dev->struct_mutex);
348 mutex_unlock(&dev->struct_mutex);
354 * Writes data to the object referenced by handle.
356 * On error, the contents of the buffer that were to be modified are undefined.
359 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
360 struct drm_file *file_priv)
362 struct drm_i915_gem_pwrite *args = data;
363 struct drm_gem_object *obj;
364 struct drm_i915_gem_object *obj_priv;
367 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
370 obj_priv = obj->driver_private;
372 /* Bounds check destination.
374 * XXX: This could use review for overflow issues...
376 if (args->offset > obj->size || args->size > obj->size ||
377 args->offset + args->size > obj->size) {
378 drm_gem_object_unreference(obj);
382 /* We can only do the GTT pwrite on untiled buffers, as otherwise
383 * it would end up going through the fenced access, and we'll get
384 * different detiling behavior between reading and writing.
385 * pread/pwrite currently are reading and writing from the CPU
386 * perspective, requiring manual detiling by the client.
388 if (obj_priv->phys_obj)
389 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
390 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
392 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
394 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
398 DRM_INFO("pwrite failed %d\n", ret);
401 drm_gem_object_unreference(obj);
407 * Called when user space prepares to use an object with the CPU, either
408 * through the mmap ioctl's mapping or a GTT mapping.
411 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
412 struct drm_file *file_priv)
414 struct drm_i915_gem_set_domain *args = data;
415 struct drm_gem_object *obj;
416 uint32_t read_domains = args->read_domains;
417 uint32_t write_domain = args->write_domain;
420 if (!(dev->driver->driver_features & DRIVER_GEM))
423 /* Only handle setting domains to types used by the CPU. */
424 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
427 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
430 /* Having something in the write domain implies it's in the read
431 * domain, and only that read domain. Enforce that in the request.
433 if (write_domain != 0 && read_domains != write_domain)
436 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
440 mutex_lock(&dev->struct_mutex);
442 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
443 obj, obj->size, read_domains, write_domain);
445 if (read_domains & I915_GEM_DOMAIN_GTT) {
446 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
448 /* Silently promote "you're not bound, there was nothing to do"
449 * to success, since the client was just asking us to
450 * make sure everything was done.
455 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
458 drm_gem_object_unreference(obj);
459 mutex_unlock(&dev->struct_mutex);
464 * Called when user space has done writes to this buffer
467 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
468 struct drm_file *file_priv)
470 struct drm_i915_gem_sw_finish *args = data;
471 struct drm_gem_object *obj;
472 struct drm_i915_gem_object *obj_priv;
475 if (!(dev->driver->driver_features & DRIVER_GEM))
478 mutex_lock(&dev->struct_mutex);
479 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
481 mutex_unlock(&dev->struct_mutex);
486 DRM_INFO("%s: sw_finish %d (%p %d)\n",
487 __func__, args->handle, obj, obj->size);
489 obj_priv = obj->driver_private;
491 /* Pinned buffers may be scanout, so flush the cache */
492 if (obj_priv->pin_count)
493 i915_gem_object_flush_cpu_write_domain(obj);
495 drm_gem_object_unreference(obj);
496 mutex_unlock(&dev->struct_mutex);
501 * Maps the contents of an object, returning the address it is mapped
504 * While the mapping holds a reference on the contents of the object, it doesn't
505 * imply a ref on the object itself.
508 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
509 struct drm_file *file_priv)
511 struct drm_i915_gem_mmap *args = data;
512 struct drm_gem_object *obj;
516 if (!(dev->driver->driver_features & DRIVER_GEM))
519 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
523 offset = args->offset;
525 down_write(¤t->mm->mmap_sem);
526 addr = do_mmap(obj->filp, 0, args->size,
527 PROT_READ | PROT_WRITE, MAP_SHARED,
529 up_write(¤t->mm->mmap_sem);
530 mutex_lock(&dev->struct_mutex);
531 drm_gem_object_unreference(obj);
532 mutex_unlock(&dev->struct_mutex);
533 if (IS_ERR((void *)addr))
536 args->addr_ptr = (uint64_t) addr;
542 * i915_gem_fault - fault a page into the GTT
543 * vma: VMA in question
546 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
547 * from userspace. The fault handler takes care of binding the object to
548 * the GTT (if needed), allocating and programming a fence register (again,
549 * only if needed based on whether the old reg is still valid or the object
550 * is tiled) and inserting a new PTE into the faulting process.
552 * Note that the faulting process may involve evicting existing objects
553 * from the GTT and/or fence registers to make room. So performance may
554 * suffer if the GTT working set is large or there are few fence registers
557 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
559 struct drm_gem_object *obj = vma->vm_private_data;
560 struct drm_device *dev = obj->dev;
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 struct drm_i915_gem_object *obj_priv = obj->driver_private;
566 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
568 /* We don't use vmf->pgoff since that has the fake offset */
569 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
572 /* Now bind it into the GTT if needed */
573 mutex_lock(&dev->struct_mutex);
574 if (!obj_priv->gtt_space) {
575 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
577 mutex_unlock(&dev->struct_mutex);
578 return VM_FAULT_SIGBUS;
580 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
583 /* Need a new fence register? */
584 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
585 obj_priv->tiling_mode != I915_TILING_NONE) {
586 ret = i915_gem_object_get_fence_reg(obj, write);
588 mutex_unlock(&dev->struct_mutex);
589 return VM_FAULT_SIGBUS;
593 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
596 /* Finally, remap it using the new GTT offset */
597 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
599 mutex_unlock(&dev->struct_mutex);
606 return VM_FAULT_SIGBUS;
608 return VM_FAULT_NOPAGE;
613 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
614 * @obj: obj in question
616 * GEM memory mapping works by handing back to userspace a fake mmap offset
617 * it can use in a subsequent mmap(2) call. The DRM core code then looks
618 * up the object based on the offset and sets up the various memory mapping
621 * This routine allocates and attaches a fake offset for @obj.
624 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
626 struct drm_device *dev = obj->dev;
627 struct drm_gem_mm *mm = dev->mm_private;
628 struct drm_i915_gem_object *obj_priv = obj->driver_private;
629 struct drm_map_list *list;
633 /* Set the object up for mmap'ing */
634 list = &obj->map_list;
635 list->map = drm_calloc(1, sizeof(struct drm_map_list),
641 map->type = _DRM_GEM;
642 map->size = obj->size;
645 /* Get a DRM GEM mmap offset allocated... */
646 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
647 obj->size / PAGE_SIZE, 0, 0);
648 if (!list->file_offset_node) {
649 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
654 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
655 obj->size / PAGE_SIZE, 0);
656 if (!list->file_offset_node) {
661 list->hash.key = list->file_offset_node->start;
662 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
663 DRM_ERROR("failed to add to map hash\n");
667 /* By now we should be all set, any drm_mmap request on the offset
668 * below will get to our mmap & fault handler */
669 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
674 drm_mm_put_block(list->file_offset_node);
676 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
682 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
684 struct drm_device *dev = obj->dev;
685 struct drm_i915_gem_object *obj_priv = obj->driver_private;
686 struct drm_gem_mm *mm = dev->mm_private;
687 struct drm_map_list *list;
689 list = &obj->map_list;
690 drm_ht_remove_item(&mm->offset_hash, &list->hash);
692 if (list->file_offset_node) {
693 drm_mm_put_block(list->file_offset_node);
694 list->file_offset_node = NULL;
698 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
702 obj_priv->mmap_offset = 0;
706 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
707 * @obj: object to check
709 * Return the required GTT alignment for an object, taking into account
710 * potential fence register mapping if needed.
713 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
715 struct drm_device *dev = obj->dev;
716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
720 * Minimum alignment is 4k (GTT page size), but might be greater
721 * if a fence register is needed for the object.
723 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
727 * Previous chips need to be aligned to the size of the smallest
728 * fence register that can contain the object.
735 for (i = start; i < obj->size; i <<= 1)
742 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
744 * @data: GTT mapping ioctl data
745 * @file_priv: GEM object info
747 * Simply returns the fake offset to userspace so it can mmap it.
748 * The mmap call will end up in drm_gem_mmap(), which will set things
749 * up so we can get faults in the handler above.
751 * The fault handler will take care of binding the object into the GTT
752 * (since it may have been evicted to make room for something), allocating
753 * a fence register, and mapping the appropriate aperture address into
757 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
758 struct drm_file *file_priv)
760 struct drm_i915_gem_mmap_gtt *args = data;
761 struct drm_i915_private *dev_priv = dev->dev_private;
762 struct drm_gem_object *obj;
763 struct drm_i915_gem_object *obj_priv;
766 if (!(dev->driver->driver_features & DRIVER_GEM))
769 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
773 mutex_lock(&dev->struct_mutex);
775 obj_priv = obj->driver_private;
777 if (!obj_priv->mmap_offset) {
778 ret = i915_gem_create_mmap_offset(obj);
780 drm_gem_object_unreference(obj);
781 mutex_unlock(&dev->struct_mutex);
786 args->offset = obj_priv->mmap_offset;
788 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
790 /* Make sure the alignment is correct for fence regs etc */
791 if (obj_priv->agp_mem &&
792 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
793 drm_gem_object_unreference(obj);
794 mutex_unlock(&dev->struct_mutex);
799 * Pull it into the GTT so that we have a page list (makes the
800 * initial fault faster and any subsequent flushing possible).
802 if (!obj_priv->agp_mem) {
803 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
805 drm_gem_object_unreference(obj);
806 mutex_unlock(&dev->struct_mutex);
809 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
812 drm_gem_object_unreference(obj);
813 mutex_unlock(&dev->struct_mutex);
819 i915_gem_object_free_page_list(struct drm_gem_object *obj)
821 struct drm_i915_gem_object *obj_priv = obj->driver_private;
822 int page_count = obj->size / PAGE_SIZE;
825 if (obj_priv->page_list == NULL)
829 for (i = 0; i < page_count; i++)
830 if (obj_priv->page_list[i] != NULL) {
832 set_page_dirty(obj_priv->page_list[i]);
833 mark_page_accessed(obj_priv->page_list[i]);
834 page_cache_release(obj_priv->page_list[i]);
838 drm_free(obj_priv->page_list,
839 page_count * sizeof(struct page *),
841 obj_priv->page_list = NULL;
845 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
847 struct drm_device *dev = obj->dev;
848 drm_i915_private_t *dev_priv = dev->dev_private;
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
851 /* Add a reference if we're newly entering the active list. */
852 if (!obj_priv->active) {
853 drm_gem_object_reference(obj);
854 obj_priv->active = 1;
856 /* Move from whatever list we were on to the tail of execution. */
857 list_move_tail(&obj_priv->list,
858 &dev_priv->mm.active_list);
859 obj_priv->last_rendering_seqno = seqno;
863 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
865 struct drm_device *dev = obj->dev;
866 drm_i915_private_t *dev_priv = dev->dev_private;
867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
869 BUG_ON(!obj_priv->active);
870 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
871 obj_priv->last_rendering_seqno = 0;
875 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
877 struct drm_device *dev = obj->dev;
878 drm_i915_private_t *dev_priv = dev->dev_private;
879 struct drm_i915_gem_object *obj_priv = obj->driver_private;
881 i915_verify_inactive(dev, __FILE__, __LINE__);
882 if (obj_priv->pin_count != 0)
883 list_del_init(&obj_priv->list);
885 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
887 obj_priv->last_rendering_seqno = 0;
888 if (obj_priv->active) {
889 obj_priv->active = 0;
890 drm_gem_object_unreference(obj);
892 i915_verify_inactive(dev, __FILE__, __LINE__);
896 * Creates a new sequence number, emitting a write of it to the status page
897 * plus an interrupt, which will trigger i915_user_interrupt_handler.
899 * Must be called with struct_lock held.
901 * Returned sequence numbers are nonzero on success.
904 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
906 drm_i915_private_t *dev_priv = dev->dev_private;
907 struct drm_i915_gem_request *request;
912 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
916 /* Grab the seqno we're going to make this request be, and bump the
917 * next (skipping 0 so it can be the reserved no-seqno value).
919 seqno = dev_priv->mm.next_gem_seqno;
920 dev_priv->mm.next_gem_seqno++;
921 if (dev_priv->mm.next_gem_seqno == 0)
922 dev_priv->mm.next_gem_seqno++;
925 OUT_RING(MI_STORE_DWORD_INDEX);
926 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
929 OUT_RING(MI_USER_INTERRUPT);
932 DRM_DEBUG("%d\n", seqno);
934 request->seqno = seqno;
935 request->emitted_jiffies = jiffies;
936 was_empty = list_empty(&dev_priv->mm.request_list);
937 list_add_tail(&request->list, &dev_priv->mm.request_list);
939 /* Associate any objects on the flushing list matching the write
940 * domain we're flushing with our flush.
942 if (flush_domains != 0) {
943 struct drm_i915_gem_object *obj_priv, *next;
945 list_for_each_entry_safe(obj_priv, next,
946 &dev_priv->mm.flushing_list, list) {
947 struct drm_gem_object *obj = obj_priv->obj;
949 if ((obj->write_domain & flush_domains) ==
951 obj->write_domain = 0;
952 i915_gem_object_move_to_active(obj, seqno);
958 if (was_empty && !dev_priv->mm.suspended)
959 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
964 * Command execution barrier
966 * Ensures that all commands in the ring are finished
967 * before signalling the CPU
970 i915_retire_commands(struct drm_device *dev)
972 drm_i915_private_t *dev_priv = dev->dev_private;
973 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
974 uint32_t flush_domains = 0;
977 /* The sampler always gets flushed on i965 (sigh) */
979 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
982 OUT_RING(0); /* noop */
984 return flush_domains;
988 * Moves buffers associated only with the given active seqno from the active
989 * to inactive list, potentially freeing them.
992 i915_gem_retire_request(struct drm_device *dev,
993 struct drm_i915_gem_request *request)
995 drm_i915_private_t *dev_priv = dev->dev_private;
997 /* Move any buffers on the active list that are no longer referenced
998 * by the ringbuffer to the flushing/inactive lists as appropriate.
1000 while (!list_empty(&dev_priv->mm.active_list)) {
1001 struct drm_gem_object *obj;
1002 struct drm_i915_gem_object *obj_priv;
1004 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1005 struct drm_i915_gem_object,
1007 obj = obj_priv->obj;
1009 /* If the seqno being retired doesn't match the oldest in the
1010 * list, then the oldest in the list must still be newer than
1013 if (obj_priv->last_rendering_seqno != request->seqno)
1017 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1018 __func__, request->seqno, obj);
1021 if (obj->write_domain != 0)
1022 i915_gem_object_move_to_flushing(obj);
1024 i915_gem_object_move_to_inactive(obj);
1029 * Returns true if seq1 is later than seq2.
1032 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1034 return (int32_t)(seq1 - seq2) >= 0;
1038 i915_get_gem_seqno(struct drm_device *dev)
1040 drm_i915_private_t *dev_priv = dev->dev_private;
1042 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1046 * This function clears the request list as sequence numbers are passed.
1049 i915_gem_retire_requests(struct drm_device *dev)
1051 drm_i915_private_t *dev_priv = dev->dev_private;
1054 seqno = i915_get_gem_seqno(dev);
1056 while (!list_empty(&dev_priv->mm.request_list)) {
1057 struct drm_i915_gem_request *request;
1058 uint32_t retiring_seqno;
1060 request = list_first_entry(&dev_priv->mm.request_list,
1061 struct drm_i915_gem_request,
1063 retiring_seqno = request->seqno;
1065 if (i915_seqno_passed(seqno, retiring_seqno) ||
1066 dev_priv->mm.wedged) {
1067 i915_gem_retire_request(dev, request);
1069 list_del(&request->list);
1070 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1077 i915_gem_retire_work_handler(struct work_struct *work)
1079 drm_i915_private_t *dev_priv;
1080 struct drm_device *dev;
1082 dev_priv = container_of(work, drm_i915_private_t,
1083 mm.retire_work.work);
1084 dev = dev_priv->dev;
1086 mutex_lock(&dev->struct_mutex);
1087 i915_gem_retire_requests(dev);
1088 if (!dev_priv->mm.suspended &&
1089 !list_empty(&dev_priv->mm.request_list))
1090 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1091 mutex_unlock(&dev->struct_mutex);
1095 * Waits for a sequence number to be signaled, and cleans up the
1096 * request and object lists appropriately for that event.
1099 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1101 drm_i915_private_t *dev_priv = dev->dev_private;
1106 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1107 dev_priv->mm.waiting_gem_seqno = seqno;
1108 i915_user_irq_get(dev);
1109 ret = wait_event_interruptible(dev_priv->irq_queue,
1110 i915_seqno_passed(i915_get_gem_seqno(dev),
1112 dev_priv->mm.wedged);
1113 i915_user_irq_put(dev);
1114 dev_priv->mm.waiting_gem_seqno = 0;
1116 if (dev_priv->mm.wedged)
1119 if (ret && ret != -ERESTARTSYS)
1120 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1121 __func__, ret, seqno, i915_get_gem_seqno(dev));
1123 /* Directly dispatch request retiring. While we have the work queue
1124 * to handle this, the waiter on a request often wants an associated
1125 * buffer to have made it to the inactive list, and we would need
1126 * a separate wait queue to handle that.
1129 i915_gem_retire_requests(dev);
1135 i915_gem_flush(struct drm_device *dev,
1136 uint32_t invalidate_domains,
1137 uint32_t flush_domains)
1139 drm_i915_private_t *dev_priv = dev->dev_private;
1144 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1145 invalidate_domains, flush_domains);
1148 if (flush_domains & I915_GEM_DOMAIN_CPU)
1149 drm_agp_chipset_flush(dev);
1151 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1152 I915_GEM_DOMAIN_GTT)) {
1154 * read/write caches:
1156 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1157 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1158 * also flushed at 2d versus 3d pipeline switches.
1162 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1163 * MI_READ_FLUSH is set, and is always flushed on 965.
1165 * I915_GEM_DOMAIN_COMMAND may not exist?
1167 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1168 * invalidated when MI_EXE_FLUSH is set.
1170 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1171 * invalidated with every MI_FLUSH.
1175 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1176 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1177 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1178 * are flushed at any MI_FLUSH.
1181 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1182 if ((invalidate_domains|flush_domains) &
1183 I915_GEM_DOMAIN_RENDER)
1184 cmd &= ~MI_NO_WRITE_FLUSH;
1185 if (!IS_I965G(dev)) {
1187 * On the 965, the sampler cache always gets flushed
1188 * and this bit is reserved.
1190 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1191 cmd |= MI_READ_FLUSH;
1193 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1194 cmd |= MI_EXE_FLUSH;
1197 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1201 OUT_RING(0); /* noop */
1207 * Ensures that all rendering to the object has completed and the object is
1208 * safe to unbind from the GTT or access from the CPU.
1211 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1213 struct drm_device *dev = obj->dev;
1214 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1217 /* This function only exists to support waiting for existing rendering,
1218 * not for emitting required flushes.
1220 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1222 /* If there is rendering queued on the buffer being evicted, wait for
1225 if (obj_priv->active) {
1227 DRM_INFO("%s: object %p wait for seqno %08x\n",
1228 __func__, obj, obj_priv->last_rendering_seqno);
1230 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1239 * Unbinds an object from the GTT aperture.
1242 i915_gem_object_unbind(struct drm_gem_object *obj)
1244 struct drm_device *dev = obj->dev;
1245 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1250 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1251 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1253 if (obj_priv->gtt_space == NULL)
1256 if (obj_priv->pin_count != 0) {
1257 DRM_ERROR("Attempting to unbind pinned buffer\n");
1261 /* Move the object to the CPU domain to ensure that
1262 * any possible CPU writes while it's not in the GTT
1263 * are flushed when we go to remap it. This will
1264 * also ensure that all pending GPU writes are finished
1267 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1269 if (ret != -ERESTARTSYS)
1270 DRM_ERROR("set_domain failed: %d\n", ret);
1274 if (obj_priv->agp_mem != NULL) {
1275 drm_unbind_agp(obj_priv->agp_mem);
1276 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1277 obj_priv->agp_mem = NULL;
1280 BUG_ON(obj_priv->active);
1282 /* blow away mappings if mapped through GTT */
1283 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1284 if (dev->dev_mapping)
1285 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1287 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1288 i915_gem_clear_fence_reg(obj);
1290 i915_gem_object_free_page_list(obj);
1292 if (obj_priv->gtt_space) {
1293 atomic_dec(&dev->gtt_count);
1294 atomic_sub(obj->size, &dev->gtt_memory);
1296 drm_mm_put_block(obj_priv->gtt_space);
1297 obj_priv->gtt_space = NULL;
1300 /* Remove ourselves from the LRU list if present. */
1301 if (!list_empty(&obj_priv->list))
1302 list_del_init(&obj_priv->list);
1308 i915_gem_evict_something(struct drm_device *dev)
1310 drm_i915_private_t *dev_priv = dev->dev_private;
1311 struct drm_gem_object *obj;
1312 struct drm_i915_gem_object *obj_priv;
1316 /* If there's an inactive buffer available now, grab it
1319 if (!list_empty(&dev_priv->mm.inactive_list)) {
1320 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1321 struct drm_i915_gem_object,
1323 obj = obj_priv->obj;
1324 BUG_ON(obj_priv->pin_count != 0);
1326 DRM_INFO("%s: evicting %p\n", __func__, obj);
1328 BUG_ON(obj_priv->active);
1330 /* Wait on the rendering and unbind the buffer. */
1331 ret = i915_gem_object_unbind(obj);
1335 /* If we didn't get anything, but the ring is still processing
1336 * things, wait for one of those things to finish and hopefully
1337 * leave us a buffer to evict.
1339 if (!list_empty(&dev_priv->mm.request_list)) {
1340 struct drm_i915_gem_request *request;
1342 request = list_first_entry(&dev_priv->mm.request_list,
1343 struct drm_i915_gem_request,
1346 ret = i915_wait_request(dev, request->seqno);
1350 /* if waiting caused an object to become inactive,
1351 * then loop around and wait for it. Otherwise, we
1352 * assume that waiting freed and unbound something,
1353 * so there should now be some space in the GTT
1355 if (!list_empty(&dev_priv->mm.inactive_list))
1360 /* If we didn't have anything on the request list but there
1361 * are buffers awaiting a flush, emit one and try again.
1362 * When we wait on it, those buffers waiting for that flush
1363 * will get moved to inactive.
1365 if (!list_empty(&dev_priv->mm.flushing_list)) {
1366 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1367 struct drm_i915_gem_object,
1369 obj = obj_priv->obj;
1374 i915_add_request(dev, obj->write_domain);
1380 DRM_ERROR("inactive empty %d request empty %d "
1381 "flushing empty %d\n",
1382 list_empty(&dev_priv->mm.inactive_list),
1383 list_empty(&dev_priv->mm.request_list),
1384 list_empty(&dev_priv->mm.flushing_list));
1385 /* If we didn't do any of the above, there's nothing to be done
1386 * and we just can't fit it in.
1394 i915_gem_evict_everything(struct drm_device *dev)
1399 ret = i915_gem_evict_something(dev);
1409 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1411 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1413 struct address_space *mapping;
1414 struct inode *inode;
1418 if (obj_priv->page_list)
1421 /* Get the list of pages out of our struct file. They'll be pinned
1422 * at this point until we release them.
1424 page_count = obj->size / PAGE_SIZE;
1425 BUG_ON(obj_priv->page_list != NULL);
1426 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1428 if (obj_priv->page_list == NULL) {
1429 DRM_ERROR("Faled to allocate page list\n");
1433 inode = obj->filp->f_path.dentry->d_inode;
1434 mapping = inode->i_mapping;
1435 for (i = 0; i < page_count; i++) {
1436 page = read_mapping_page(mapping, i, NULL);
1438 ret = PTR_ERR(page);
1439 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1440 i915_gem_object_free_page_list(obj);
1443 obj_priv->page_list[i] = page;
1448 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1450 struct drm_gem_object *obj = reg->obj;
1451 struct drm_device *dev = obj->dev;
1452 drm_i915_private_t *dev_priv = dev->dev_private;
1453 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1454 int regnum = obj_priv->fence_reg;
1457 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1459 val |= obj_priv->gtt_offset & 0xfffff000;
1460 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1461 if (obj_priv->tiling_mode == I915_TILING_Y)
1462 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1463 val |= I965_FENCE_REG_VALID;
1465 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1468 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1470 struct drm_gem_object *obj = reg->obj;
1471 struct drm_device *dev = obj->dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
1473 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1474 int regnum = obj_priv->fence_reg;
1479 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1480 (obj_priv->gtt_offset & (obj->size - 1))) {
1481 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1482 __func__, obj_priv->gtt_offset, obj->size);
1486 if (obj_priv->tiling_mode == I915_TILING_Y &&
1487 HAS_128_BYTE_Y_TILING(dev))
1492 /* Note: pitch better be a power of two tile widths */
1493 pitch_val = obj_priv->stride / tile_width;
1494 pitch_val = ffs(pitch_val) - 1;
1496 val = obj_priv->gtt_offset;
1497 if (obj_priv->tiling_mode == I915_TILING_Y)
1498 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1499 val |= I915_FENCE_SIZE_BITS(obj->size);
1500 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1501 val |= I830_FENCE_REG_VALID;
1503 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1506 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1508 struct drm_gem_object *obj = reg->obj;
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512 int regnum = obj_priv->fence_reg;
1516 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1517 (obj_priv->gtt_offset & (obj->size - 1))) {
1518 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1519 __func__, obj_priv->gtt_offset);
1523 pitch_val = (obj_priv->stride / 128) - 1;
1525 val = obj_priv->gtt_offset;
1526 if (obj_priv->tiling_mode == I915_TILING_Y)
1527 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1528 val |= I830_FENCE_SIZE_BITS(obj->size);
1529 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1530 val |= I830_FENCE_REG_VALID;
1532 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1537 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1538 * @obj: object to map through a fence reg
1539 * @write: object is about to be written
1541 * When mapping objects through the GTT, userspace wants to be able to write
1542 * to them without having to worry about swizzling if the object is tiled.
1544 * This function walks the fence regs looking for a free one for @obj,
1545 * stealing one if it can't find any.
1547 * It then sets up the reg based on the object's properties: address, pitch
1548 * and tiling format.
1551 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
1553 struct drm_device *dev = obj->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1556 struct drm_i915_fence_reg *reg = NULL;
1559 switch (obj_priv->tiling_mode) {
1560 case I915_TILING_NONE:
1561 WARN(1, "allocating a fence for non-tiled object?\n");
1564 if (!obj_priv->stride)
1566 WARN((obj_priv->stride & (512 - 1)),
1567 "object 0x%08x is X tiled but has non-512B pitch\n",
1568 obj_priv->gtt_offset);
1571 if (!obj_priv->stride)
1573 WARN((obj_priv->stride & (128 - 1)),
1574 "object 0x%08x is Y tiled but has non-128B pitch\n",
1575 obj_priv->gtt_offset);
1579 /* First try to find a free reg */
1580 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1581 reg = &dev_priv->fence_regs[i];
1586 /* None available, try to steal one or wait for a user to finish */
1587 if (i == dev_priv->num_fence_regs) {
1588 struct drm_i915_gem_object *old_obj_priv = NULL;
1592 /* Could try to use LRU here instead... */
1593 for (i = dev_priv->fence_reg_start;
1594 i < dev_priv->num_fence_regs; i++) {
1595 reg = &dev_priv->fence_regs[i];
1596 old_obj_priv = reg->obj->driver_private;
1597 if (!old_obj_priv->pin_count)
1602 * Now things get ugly... we have to wait for one of the
1603 * objects to finish before trying again.
1605 if (i == dev_priv->num_fence_regs) {
1606 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
1608 WARN(ret != -ERESTARTSYS,
1609 "switch to GTT domain failed: %d\n", ret);
1616 * Zap this virtual mapping so we can set up a fence again
1617 * for this object next time we need it.
1619 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1620 if (dev->dev_mapping)
1621 unmap_mapping_range(dev->dev_mapping, offset,
1623 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1626 obj_priv->fence_reg = i;
1630 i965_write_fence_reg(reg);
1631 else if (IS_I9XX(dev))
1632 i915_write_fence_reg(reg);
1634 i830_write_fence_reg(reg);
1640 * i915_gem_clear_fence_reg - clear out fence register info
1641 * @obj: object to clear
1643 * Zeroes out the fence register itself and clears out the associated
1644 * data structures in dev_priv and obj_priv.
1647 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1649 struct drm_device *dev = obj->dev;
1650 drm_i915_private_t *dev_priv = dev->dev_private;
1651 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1654 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1656 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1658 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1659 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1663 * Finds free space in the GTT aperture and binds the object there.
1666 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1668 struct drm_device *dev = obj->dev;
1669 drm_i915_private_t *dev_priv = dev->dev_private;
1670 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1671 struct drm_mm_node *free_space;
1672 int page_count, ret;
1674 if (dev_priv->mm.suspended)
1677 alignment = i915_gem_get_gtt_alignment(obj);
1678 if (alignment & (PAGE_SIZE - 1)) {
1679 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1684 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1685 obj->size, alignment, 0);
1686 if (free_space != NULL) {
1687 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1689 if (obj_priv->gtt_space != NULL) {
1690 obj_priv->gtt_space->private = obj;
1691 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1694 if (obj_priv->gtt_space == NULL) {
1695 /* If the gtt is empty and we're still having trouble
1696 * fitting our object in, we're out of memory.
1699 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1701 if (list_empty(&dev_priv->mm.inactive_list) &&
1702 list_empty(&dev_priv->mm.flushing_list) &&
1703 list_empty(&dev_priv->mm.active_list)) {
1704 DRM_ERROR("GTT full, but LRU list empty\n");
1708 ret = i915_gem_evict_something(dev);
1710 if (ret != -ERESTARTSYS)
1711 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1718 DRM_INFO("Binding object of size %d at 0x%08x\n",
1719 obj->size, obj_priv->gtt_offset);
1721 ret = i915_gem_object_get_page_list(obj);
1723 drm_mm_put_block(obj_priv->gtt_space);
1724 obj_priv->gtt_space = NULL;
1728 page_count = obj->size / PAGE_SIZE;
1729 /* Create an AGP memory structure pointing at our pages, and bind it
1732 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1733 obj_priv->page_list,
1735 obj_priv->gtt_offset,
1736 obj_priv->agp_type);
1737 if (obj_priv->agp_mem == NULL) {
1738 i915_gem_object_free_page_list(obj);
1739 drm_mm_put_block(obj_priv->gtt_space);
1740 obj_priv->gtt_space = NULL;
1743 atomic_inc(&dev->gtt_count);
1744 atomic_add(obj->size, &dev->gtt_memory);
1746 /* Assert that the object is not currently in any GPU domain. As it
1747 * wasn't in the GTT, there shouldn't be any way it could have been in
1750 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1751 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1757 i915_gem_clflush_object(struct drm_gem_object *obj)
1759 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1761 /* If we don't have a page list set up, then we're not pinned
1762 * to GPU, and we can ignore the cache flush because it'll happen
1763 * again at bind time.
1765 if (obj_priv->page_list == NULL)
1768 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1771 /** Flushes any GPU write domain for the object if it's dirty. */
1773 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1775 struct drm_device *dev = obj->dev;
1778 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1781 /* Queue the GPU write cache flushing we need. */
1782 i915_gem_flush(dev, 0, obj->write_domain);
1783 seqno = i915_add_request(dev, obj->write_domain);
1784 obj->write_domain = 0;
1785 i915_gem_object_move_to_active(obj, seqno);
1788 /** Flushes the GTT write domain for the object if it's dirty. */
1790 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1792 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1795 /* No actual flushing is required for the GTT write domain. Writes
1796 * to it immediately go to main memory as far as we know, so there's
1797 * no chipset flush. It also doesn't land in render cache.
1799 obj->write_domain = 0;
1802 /** Flushes the CPU write domain for the object if it's dirty. */
1804 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1806 struct drm_device *dev = obj->dev;
1808 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1811 i915_gem_clflush_object(obj);
1812 drm_agp_chipset_flush(dev);
1813 obj->write_domain = 0;
1817 * Moves a single object to the GTT read, and possibly write domain.
1819 * This function returns when the move is complete, including waiting on
1823 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1825 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1828 /* Not valid to be called on unbound objects. */
1829 if (obj_priv->gtt_space == NULL)
1832 i915_gem_object_flush_gpu_write_domain(obj);
1833 /* Wait on any GPU rendering and flushing to occur. */
1834 ret = i915_gem_object_wait_rendering(obj);
1838 /* If we're writing through the GTT domain, then CPU and GPU caches
1839 * will need to be invalidated at next use.
1842 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1844 i915_gem_object_flush_cpu_write_domain(obj);
1846 /* It should now be out of any other write domains, and we can update
1847 * the domain values for our changes.
1849 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1850 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1852 obj->write_domain = I915_GEM_DOMAIN_GTT;
1853 obj_priv->dirty = 1;
1860 * Moves a single object to the CPU read, and possibly write domain.
1862 * This function returns when the move is complete, including waiting on
1866 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1868 struct drm_device *dev = obj->dev;
1871 i915_gem_object_flush_gpu_write_domain(obj);
1872 /* Wait on any GPU rendering and flushing to occur. */
1873 ret = i915_gem_object_wait_rendering(obj);
1877 i915_gem_object_flush_gtt_write_domain(obj);
1879 /* If we have a partially-valid cache of the object in the CPU,
1880 * finish invalidating it and free the per-page flags.
1882 i915_gem_object_set_to_full_cpu_read_domain(obj);
1884 /* Flush the CPU cache if it's still invalid. */
1885 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1886 i915_gem_clflush_object(obj);
1887 drm_agp_chipset_flush(dev);
1889 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1892 /* It should now be out of any other write domains, and we can update
1893 * the domain values for our changes.
1895 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1897 /* If we're writing through the CPU, then the GPU read domains will
1898 * need to be invalidated at next use.
1901 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1902 obj->write_domain = I915_GEM_DOMAIN_CPU;
1909 * Set the next domain for the specified object. This
1910 * may not actually perform the necessary flushing/invaliding though,
1911 * as that may want to be batched with other set_domain operations
1913 * This is (we hope) the only really tricky part of gem. The goal
1914 * is fairly simple -- track which caches hold bits of the object
1915 * and make sure they remain coherent. A few concrete examples may
1916 * help to explain how it works. For shorthand, we use the notation
1917 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1918 * a pair of read and write domain masks.
1920 * Case 1: the batch buffer
1926 * 5. Unmapped from GTT
1929 * Let's take these a step at a time
1932 * Pages allocated from the kernel may still have
1933 * cache contents, so we set them to (CPU, CPU) always.
1934 * 2. Written by CPU (using pwrite)
1935 * The pwrite function calls set_domain (CPU, CPU) and
1936 * this function does nothing (as nothing changes)
1938 * This function asserts that the object is not
1939 * currently in any GPU-based read or write domains
1941 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1942 * As write_domain is zero, this function adds in the
1943 * current read domains (CPU+COMMAND, 0).
1944 * flush_domains is set to CPU.
1945 * invalidate_domains is set to COMMAND
1946 * clflush is run to get data out of the CPU caches
1947 * then i915_dev_set_domain calls i915_gem_flush to
1948 * emit an MI_FLUSH and drm_agp_chipset_flush
1949 * 5. Unmapped from GTT
1950 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1951 * flush_domains and invalidate_domains end up both zero
1952 * so no flushing/invalidating happens
1956 * Case 2: The shared render buffer
1960 * 3. Read/written by GPU
1961 * 4. set_domain to (CPU,CPU)
1962 * 5. Read/written by CPU
1963 * 6. Read/written by GPU
1966 * Same as last example, (CPU, CPU)
1968 * Nothing changes (assertions find that it is not in the GPU)
1969 * 3. Read/written by GPU
1970 * execbuffer calls set_domain (RENDER, RENDER)
1971 * flush_domains gets CPU
1972 * invalidate_domains gets GPU
1974 * MI_FLUSH and drm_agp_chipset_flush
1975 * 4. set_domain (CPU, CPU)
1976 * flush_domains gets GPU
1977 * invalidate_domains gets CPU
1978 * wait_rendering (obj) to make sure all drawing is complete.
1979 * This will include an MI_FLUSH to get the data from GPU
1981 * clflush (obj) to invalidate the CPU cache
1982 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1983 * 5. Read/written by CPU
1984 * cache lines are loaded and dirtied
1985 * 6. Read written by GPU
1986 * Same as last GPU access
1988 * Case 3: The constant buffer
1993 * 4. Updated (written) by CPU again
2002 * flush_domains = CPU
2003 * invalidate_domains = RENDER
2006 * drm_agp_chipset_flush
2007 * 4. Updated (written) by CPU again
2009 * flush_domains = 0 (no previous write domain)
2010 * invalidate_domains = 0 (no new read domains)
2013 * flush_domains = CPU
2014 * invalidate_domains = RENDER
2017 * drm_agp_chipset_flush
2020 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2022 struct drm_device *dev = obj->dev;
2023 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2024 uint32_t invalidate_domains = 0;
2025 uint32_t flush_domains = 0;
2027 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2028 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2031 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2033 obj->read_domains, obj->pending_read_domains,
2034 obj->write_domain, obj->pending_write_domain);
2037 * If the object isn't moving to a new write domain,
2038 * let the object stay in multiple read domains
2040 if (obj->pending_write_domain == 0)
2041 obj->pending_read_domains |= obj->read_domains;
2043 obj_priv->dirty = 1;
2046 * Flush the current write domain if
2047 * the new read domains don't match. Invalidate
2048 * any read domains which differ from the old
2051 if (obj->write_domain &&
2052 obj->write_domain != obj->pending_read_domains) {
2053 flush_domains |= obj->write_domain;
2054 invalidate_domains |=
2055 obj->pending_read_domains & ~obj->write_domain;
2058 * Invalidate any read caches which may have
2059 * stale data. That is, any new read domains.
2061 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2062 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2064 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2065 __func__, flush_domains, invalidate_domains);
2067 i915_gem_clflush_object(obj);
2070 /* The actual obj->write_domain will be updated with
2071 * pending_write_domain after we emit the accumulated flush for all
2072 * of our domain changes in execbuffers (which clears objects'
2073 * write_domains). So if we have a current write domain that we
2074 * aren't changing, set pending_write_domain to that.
2076 if (flush_domains == 0 && obj->pending_write_domain == 0)
2077 obj->pending_write_domain = obj->write_domain;
2078 obj->read_domains = obj->pending_read_domains;
2080 dev->invalidate_domains |= invalidate_domains;
2081 dev->flush_domains |= flush_domains;
2083 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2085 obj->read_domains, obj->write_domain,
2086 dev->invalidate_domains, dev->flush_domains);
2091 * Moves the object from a partially CPU read to a full one.
2093 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2094 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2097 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2099 struct drm_device *dev = obj->dev;
2100 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2102 if (!obj_priv->page_cpu_valid)
2105 /* If we're partially in the CPU read domain, finish moving it in.
2107 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2110 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2111 if (obj_priv->page_cpu_valid[i])
2113 drm_clflush_pages(obj_priv->page_list + i, 1);
2115 drm_agp_chipset_flush(dev);
2118 /* Free the page_cpu_valid mappings which are now stale, whether
2119 * or not we've got I915_GEM_DOMAIN_CPU.
2121 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2123 obj_priv->page_cpu_valid = NULL;
2127 * Set the CPU read domain on a range of the object.
2129 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2130 * not entirely valid. The page_cpu_valid member of the object flags which
2131 * pages have been flushed, and will be respected by
2132 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2133 * of the whole object.
2135 * This function returns when the move is complete, including waiting on
2139 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2140 uint64_t offset, uint64_t size)
2142 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2145 if (offset == 0 && size == obj->size)
2146 return i915_gem_object_set_to_cpu_domain(obj, 0);
2148 i915_gem_object_flush_gpu_write_domain(obj);
2149 /* Wait on any GPU rendering and flushing to occur. */
2150 ret = i915_gem_object_wait_rendering(obj);
2153 i915_gem_object_flush_gtt_write_domain(obj);
2155 /* If we're already fully in the CPU read domain, we're done. */
2156 if (obj_priv->page_cpu_valid == NULL &&
2157 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2160 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2161 * newly adding I915_GEM_DOMAIN_CPU
2163 if (obj_priv->page_cpu_valid == NULL) {
2164 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2166 if (obj_priv->page_cpu_valid == NULL)
2168 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2169 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2171 /* Flush the cache on any pages that are still invalid from the CPU's
2174 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2176 if (obj_priv->page_cpu_valid[i])
2179 drm_clflush_pages(obj_priv->page_list + i, 1);
2181 obj_priv->page_cpu_valid[i] = 1;
2184 /* It should now be out of any other write domains, and we can update
2185 * the domain values for our changes.
2187 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2189 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2195 * Pin an object to the GTT and evaluate the relocations landing in it.
2198 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2199 struct drm_file *file_priv,
2200 struct drm_i915_gem_exec_object *entry)
2202 struct drm_device *dev = obj->dev;
2203 drm_i915_private_t *dev_priv = dev->dev_private;
2204 struct drm_i915_gem_relocation_entry reloc;
2205 struct drm_i915_gem_relocation_entry __user *relocs;
2206 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2208 void __iomem *reloc_page;
2210 /* Choose the GTT offset for our buffer and put it there. */
2211 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2215 entry->offset = obj_priv->gtt_offset;
2217 relocs = (struct drm_i915_gem_relocation_entry __user *)
2218 (uintptr_t) entry->relocs_ptr;
2219 /* Apply the relocations, using the GTT aperture to avoid cache
2220 * flushing requirements.
2222 for (i = 0; i < entry->relocation_count; i++) {
2223 struct drm_gem_object *target_obj;
2224 struct drm_i915_gem_object *target_obj_priv;
2225 uint32_t reloc_val, reloc_offset;
2226 uint32_t __iomem *reloc_entry;
2228 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2230 i915_gem_object_unpin(obj);
2234 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2235 reloc.target_handle);
2236 if (target_obj == NULL) {
2237 i915_gem_object_unpin(obj);
2240 target_obj_priv = target_obj->driver_private;
2242 /* The target buffer should have appeared before us in the
2243 * exec_object list, so it should have a GTT space bound by now.
2245 if (target_obj_priv->gtt_space == NULL) {
2246 DRM_ERROR("No GTT space found for object %d\n",
2247 reloc.target_handle);
2248 drm_gem_object_unreference(target_obj);
2249 i915_gem_object_unpin(obj);
2253 if (reloc.offset > obj->size - 4) {
2254 DRM_ERROR("Relocation beyond object bounds: "
2255 "obj %p target %d offset %d size %d.\n",
2256 obj, reloc.target_handle,
2257 (int) reloc.offset, (int) obj->size);
2258 drm_gem_object_unreference(target_obj);
2259 i915_gem_object_unpin(obj);
2262 if (reloc.offset & 3) {
2263 DRM_ERROR("Relocation not 4-byte aligned: "
2264 "obj %p target %d offset %d.\n",
2265 obj, reloc.target_handle,
2266 (int) reloc.offset);
2267 drm_gem_object_unreference(target_obj);
2268 i915_gem_object_unpin(obj);
2272 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2273 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2274 DRM_ERROR("reloc with read/write CPU domains: "
2275 "obj %p target %d offset %d "
2276 "read %08x write %08x",
2277 obj, reloc.target_handle,
2280 reloc.write_domain);
2281 drm_gem_object_unreference(target_obj);
2282 i915_gem_object_unpin(obj);
2286 if (reloc.write_domain && target_obj->pending_write_domain &&
2287 reloc.write_domain != target_obj->pending_write_domain) {
2288 DRM_ERROR("Write domain conflict: "
2289 "obj %p target %d offset %d "
2290 "new %08x old %08x\n",
2291 obj, reloc.target_handle,
2294 target_obj->pending_write_domain);
2295 drm_gem_object_unreference(target_obj);
2296 i915_gem_object_unpin(obj);
2301 DRM_INFO("%s: obj %p offset %08x target %d "
2302 "read %08x write %08x gtt %08x "
2303 "presumed %08x delta %08x\n",
2307 (int) reloc.target_handle,
2308 (int) reloc.read_domains,
2309 (int) reloc.write_domain,
2310 (int) target_obj_priv->gtt_offset,
2311 (int) reloc.presumed_offset,
2315 target_obj->pending_read_domains |= reloc.read_domains;
2316 target_obj->pending_write_domain |= reloc.write_domain;
2318 /* If the relocation already has the right value in it, no
2319 * more work needs to be done.
2321 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2322 drm_gem_object_unreference(target_obj);
2326 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2328 drm_gem_object_unreference(target_obj);
2329 i915_gem_object_unpin(obj);
2333 /* Map the page containing the relocation we're going to
2336 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2337 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2340 reloc_entry = (uint32_t __iomem *)(reloc_page +
2341 (reloc_offset & (PAGE_SIZE - 1)));
2342 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2345 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2346 obj, (unsigned int) reloc.offset,
2347 readl(reloc_entry), reloc_val);
2349 writel(reloc_val, reloc_entry);
2350 io_mapping_unmap_atomic(reloc_page);
2352 /* Write the updated presumed offset for this entry back out
2355 reloc.presumed_offset = target_obj_priv->gtt_offset;
2356 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2358 drm_gem_object_unreference(target_obj);
2359 i915_gem_object_unpin(obj);
2363 drm_gem_object_unreference(target_obj);
2368 i915_gem_dump_object(obj, 128, __func__, ~0);
2373 /** Dispatch a batchbuffer to the ring
2376 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2377 struct drm_i915_gem_execbuffer *exec,
2378 uint64_t exec_offset)
2380 drm_i915_private_t *dev_priv = dev->dev_private;
2381 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2382 (uintptr_t) exec->cliprects_ptr;
2383 int nbox = exec->num_cliprects;
2385 uint32_t exec_start, exec_len;
2388 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2389 exec_len = (uint32_t) exec->batch_len;
2391 if ((exec_start | exec_len) & 0x7) {
2392 DRM_ERROR("alignment\n");
2399 count = nbox ? nbox : 1;
2401 for (i = 0; i < count; i++) {
2403 int ret = i915_emit_box(dev, boxes, i,
2404 exec->DR1, exec->DR4);
2409 if (IS_I830(dev) || IS_845G(dev)) {
2411 OUT_RING(MI_BATCH_BUFFER);
2412 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2413 OUT_RING(exec_start + exec_len - 4);
2418 if (IS_I965G(dev)) {
2419 OUT_RING(MI_BATCH_BUFFER_START |
2421 MI_BATCH_NON_SECURE_I965);
2422 OUT_RING(exec_start);
2424 OUT_RING(MI_BATCH_BUFFER_START |
2426 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2432 /* XXX breadcrumb */
2436 /* Throttle our rendering by waiting until the ring has completed our requests
2437 * emitted over 20 msec ago.
2439 * This should get us reasonable parallelism between CPU and GPU but also
2440 * relatively low latency when blocking on a particular request to finish.
2443 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2445 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2449 mutex_lock(&dev->struct_mutex);
2450 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2451 i915_file_priv->mm.last_gem_throttle_seqno =
2452 i915_file_priv->mm.last_gem_seqno;
2454 ret = i915_wait_request(dev, seqno);
2455 mutex_unlock(&dev->struct_mutex);
2460 i915_gem_execbuffer(struct drm_device *dev, void *data,
2461 struct drm_file *file_priv)
2463 drm_i915_private_t *dev_priv = dev->dev_private;
2464 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2465 struct drm_i915_gem_execbuffer *args = data;
2466 struct drm_i915_gem_exec_object *exec_list = NULL;
2467 struct drm_gem_object **object_list = NULL;
2468 struct drm_gem_object *batch_obj;
2469 int ret, i, pinned = 0;
2470 uint64_t exec_offset;
2471 uint32_t seqno, flush_domains;
2475 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2476 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2479 if (args->buffer_count < 1) {
2480 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2483 /* Copy in the exec list from userland */
2484 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2486 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2488 if (exec_list == NULL || object_list == NULL) {
2489 DRM_ERROR("Failed to allocate exec or object list "
2491 args->buffer_count);
2495 ret = copy_from_user(exec_list,
2496 (struct drm_i915_relocation_entry __user *)
2497 (uintptr_t) args->buffers_ptr,
2498 sizeof(*exec_list) * args->buffer_count);
2500 DRM_ERROR("copy %d exec entries failed %d\n",
2501 args->buffer_count, ret);
2505 mutex_lock(&dev->struct_mutex);
2507 i915_verify_inactive(dev, __FILE__, __LINE__);
2509 if (dev_priv->mm.wedged) {
2510 DRM_ERROR("Execbuf while wedged\n");
2511 mutex_unlock(&dev->struct_mutex);
2516 if (dev_priv->mm.suspended) {
2517 DRM_ERROR("Execbuf while VT-switched.\n");
2518 mutex_unlock(&dev->struct_mutex);
2523 /* Look up object handles */
2524 for (i = 0; i < args->buffer_count; i++) {
2525 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2526 exec_list[i].handle);
2527 if (object_list[i] == NULL) {
2528 DRM_ERROR("Invalid object handle %d at index %d\n",
2529 exec_list[i].handle, i);
2535 /* Pin and relocate */
2536 for (pin_tries = 0; ; pin_tries++) {
2538 for (i = 0; i < args->buffer_count; i++) {
2539 object_list[i]->pending_read_domains = 0;
2540 object_list[i]->pending_write_domain = 0;
2541 ret = i915_gem_object_pin_and_relocate(object_list[i],
2552 /* error other than GTT full, or we've already tried again */
2553 if (ret != -ENOMEM || pin_tries >= 1) {
2554 if (ret != -ERESTARTSYS)
2555 DRM_ERROR("Failed to pin buffers %d\n", ret);
2559 /* unpin all of our buffers */
2560 for (i = 0; i < pinned; i++)
2561 i915_gem_object_unpin(object_list[i]);
2564 /* evict everyone we can from the aperture */
2565 ret = i915_gem_evict_everything(dev);
2570 /* Set the pending read domains for the batch buffer to COMMAND */
2571 batch_obj = object_list[args->buffer_count-1];
2572 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2573 batch_obj->pending_write_domain = 0;
2575 i915_verify_inactive(dev, __FILE__, __LINE__);
2577 /* Zero the global flush/invalidate flags. These
2578 * will be modified as new domains are computed
2581 dev->invalidate_domains = 0;
2582 dev->flush_domains = 0;
2584 for (i = 0; i < args->buffer_count; i++) {
2585 struct drm_gem_object *obj = object_list[i];
2587 /* Compute new gpu domains and update invalidate/flush */
2588 i915_gem_object_set_to_gpu_domain(obj);
2591 i915_verify_inactive(dev, __FILE__, __LINE__);
2593 if (dev->invalidate_domains | dev->flush_domains) {
2595 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2597 dev->invalidate_domains,
2598 dev->flush_domains);
2601 dev->invalidate_domains,
2602 dev->flush_domains);
2603 if (dev->flush_domains)
2604 (void)i915_add_request(dev, dev->flush_domains);
2607 for (i = 0; i < args->buffer_count; i++) {
2608 struct drm_gem_object *obj = object_list[i];
2610 obj->write_domain = obj->pending_write_domain;
2613 i915_verify_inactive(dev, __FILE__, __LINE__);
2616 for (i = 0; i < args->buffer_count; i++) {
2617 i915_gem_object_check_coherency(object_list[i],
2618 exec_list[i].handle);
2622 exec_offset = exec_list[args->buffer_count - 1].offset;
2625 i915_gem_dump_object(object_list[args->buffer_count - 1],
2631 /* Exec the batchbuffer */
2632 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2634 DRM_ERROR("dispatch failed %d\n", ret);
2639 * Ensure that the commands in the batch buffer are
2640 * finished before the interrupt fires
2642 flush_domains = i915_retire_commands(dev);
2644 i915_verify_inactive(dev, __FILE__, __LINE__);
2647 * Get a seqno representing the execution of the current buffer,
2648 * which we can wait on. We would like to mitigate these interrupts,
2649 * likely by only creating seqnos occasionally (so that we have
2650 * *some* interrupts representing completion of buffers that we can
2651 * wait on when trying to clear up gtt space).
2653 seqno = i915_add_request(dev, flush_domains);
2655 i915_file_priv->mm.last_gem_seqno = seqno;
2656 for (i = 0; i < args->buffer_count; i++) {
2657 struct drm_gem_object *obj = object_list[i];
2659 i915_gem_object_move_to_active(obj, seqno);
2661 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2665 i915_dump_lru(dev, __func__);
2668 i915_verify_inactive(dev, __FILE__, __LINE__);
2671 for (i = 0; i < pinned; i++)
2672 i915_gem_object_unpin(object_list[i]);
2674 for (i = 0; i < args->buffer_count; i++)
2675 drm_gem_object_unreference(object_list[i]);
2677 mutex_unlock(&dev->struct_mutex);
2680 /* Copy the new buffer offsets back to the user's exec list. */
2681 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2682 (uintptr_t) args->buffers_ptr,
2684 sizeof(*exec_list) * args->buffer_count);
2686 DRM_ERROR("failed to copy %d exec entries "
2687 "back to user (%d)\n",
2688 args->buffer_count, ret);
2692 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2694 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2701 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2703 struct drm_device *dev = obj->dev;
2704 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2707 i915_verify_inactive(dev, __FILE__, __LINE__);
2708 if (obj_priv->gtt_space == NULL) {
2709 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2711 if (ret != -EBUSY && ret != -ERESTARTSYS)
2712 DRM_ERROR("Failure to bind: %d", ret);
2716 * Pre-965 chips need a fence register set up in order to
2717 * properly handle tiled surfaces.
2719 if (!IS_I965G(dev) &&
2720 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2721 obj_priv->tiling_mode != I915_TILING_NONE)
2722 i915_gem_object_get_fence_reg(obj, true);
2724 obj_priv->pin_count++;
2726 /* If the object is not active and not pending a flush,
2727 * remove it from the inactive list
2729 if (obj_priv->pin_count == 1) {
2730 atomic_inc(&dev->pin_count);
2731 atomic_add(obj->size, &dev->pin_memory);
2732 if (!obj_priv->active &&
2733 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2734 I915_GEM_DOMAIN_GTT)) == 0 &&
2735 !list_empty(&obj_priv->list))
2736 list_del_init(&obj_priv->list);
2738 i915_verify_inactive(dev, __FILE__, __LINE__);
2744 i915_gem_object_unpin(struct drm_gem_object *obj)
2746 struct drm_device *dev = obj->dev;
2747 drm_i915_private_t *dev_priv = dev->dev_private;
2748 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2750 i915_verify_inactive(dev, __FILE__, __LINE__);
2751 obj_priv->pin_count--;
2752 BUG_ON(obj_priv->pin_count < 0);
2753 BUG_ON(obj_priv->gtt_space == NULL);
2755 /* If the object is no longer pinned, and is
2756 * neither active nor being flushed, then stick it on
2759 if (obj_priv->pin_count == 0) {
2760 if (!obj_priv->active &&
2761 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2762 I915_GEM_DOMAIN_GTT)) == 0)
2763 list_move_tail(&obj_priv->list,
2764 &dev_priv->mm.inactive_list);
2765 atomic_dec(&dev->pin_count);
2766 atomic_sub(obj->size, &dev->pin_memory);
2768 i915_verify_inactive(dev, __FILE__, __LINE__);
2772 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2773 struct drm_file *file_priv)
2775 struct drm_i915_gem_pin *args = data;
2776 struct drm_gem_object *obj;
2777 struct drm_i915_gem_object *obj_priv;
2780 mutex_lock(&dev->struct_mutex);
2782 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2784 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2786 mutex_unlock(&dev->struct_mutex);
2789 obj_priv = obj->driver_private;
2791 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2792 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2794 drm_gem_object_unreference(obj);
2795 mutex_unlock(&dev->struct_mutex);
2799 obj_priv->user_pin_count++;
2800 obj_priv->pin_filp = file_priv;
2801 if (obj_priv->user_pin_count == 1) {
2802 ret = i915_gem_object_pin(obj, args->alignment);
2804 drm_gem_object_unreference(obj);
2805 mutex_unlock(&dev->struct_mutex);
2810 /* XXX - flush the CPU caches for pinned objects
2811 * as the X server doesn't manage domains yet
2813 i915_gem_object_flush_cpu_write_domain(obj);
2814 args->offset = obj_priv->gtt_offset;
2815 drm_gem_object_unreference(obj);
2816 mutex_unlock(&dev->struct_mutex);
2822 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2823 struct drm_file *file_priv)
2825 struct drm_i915_gem_pin *args = data;
2826 struct drm_gem_object *obj;
2827 struct drm_i915_gem_object *obj_priv;
2829 mutex_lock(&dev->struct_mutex);
2831 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2833 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2835 mutex_unlock(&dev->struct_mutex);
2839 obj_priv = obj->driver_private;
2840 if (obj_priv->pin_filp != file_priv) {
2841 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2843 drm_gem_object_unreference(obj);
2844 mutex_unlock(&dev->struct_mutex);
2847 obj_priv->user_pin_count--;
2848 if (obj_priv->user_pin_count == 0) {
2849 obj_priv->pin_filp = NULL;
2850 i915_gem_object_unpin(obj);
2853 drm_gem_object_unreference(obj);
2854 mutex_unlock(&dev->struct_mutex);
2859 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2860 struct drm_file *file_priv)
2862 struct drm_i915_gem_busy *args = data;
2863 struct drm_gem_object *obj;
2864 struct drm_i915_gem_object *obj_priv;
2866 mutex_lock(&dev->struct_mutex);
2867 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2869 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2871 mutex_unlock(&dev->struct_mutex);
2875 /* Update the active list for the hardware's current position.
2876 * Otherwise this only updates on a delayed timer or when irqs are
2877 * actually unmasked, and our working set ends up being larger than
2880 i915_gem_retire_requests(dev);
2882 obj_priv = obj->driver_private;
2883 /* Don't count being on the flushing list against the object being
2884 * done. Otherwise, a buffer left on the flushing list but not getting
2885 * flushed (because nobody's flushing that domain) won't ever return
2886 * unbusy and get reused by libdrm's bo cache. The other expected
2887 * consumer of this interface, OpenGL's occlusion queries, also specs
2888 * that the objects get unbusy "eventually" without any interference.
2890 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2892 drm_gem_object_unreference(obj);
2893 mutex_unlock(&dev->struct_mutex);
2898 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2899 struct drm_file *file_priv)
2901 return i915_gem_ring_throttle(dev, file_priv);
2904 int i915_gem_init_object(struct drm_gem_object *obj)
2906 struct drm_i915_gem_object *obj_priv;
2908 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2909 if (obj_priv == NULL)
2913 * We've just allocated pages from the kernel,
2914 * so they've just been written by the CPU with
2915 * zeros. They'll need to be clflushed before we
2916 * use them with the GPU.
2918 obj->write_domain = I915_GEM_DOMAIN_CPU;
2919 obj->read_domains = I915_GEM_DOMAIN_CPU;
2921 obj_priv->agp_type = AGP_USER_MEMORY;
2923 obj->driver_private = obj_priv;
2924 obj_priv->obj = obj;
2925 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2926 INIT_LIST_HEAD(&obj_priv->list);
2931 void i915_gem_free_object(struct drm_gem_object *obj)
2933 struct drm_device *dev = obj->dev;
2934 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2936 while (obj_priv->pin_count > 0)
2937 i915_gem_object_unpin(obj);
2939 if (obj_priv->phys_obj)
2940 i915_gem_detach_phys_object(dev, obj);
2942 i915_gem_object_unbind(obj);
2944 i915_gem_free_mmap_offset(obj);
2946 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2947 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2950 /** Unbinds all objects that are on the given buffer list. */
2952 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2954 struct drm_gem_object *obj;
2955 struct drm_i915_gem_object *obj_priv;
2958 while (!list_empty(head)) {
2959 obj_priv = list_first_entry(head,
2960 struct drm_i915_gem_object,
2962 obj = obj_priv->obj;
2964 if (obj_priv->pin_count != 0) {
2965 DRM_ERROR("Pinned object in unbind list\n");
2966 mutex_unlock(&dev->struct_mutex);
2970 ret = i915_gem_object_unbind(obj);
2972 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2974 mutex_unlock(&dev->struct_mutex);
2984 i915_gem_idle(struct drm_device *dev)
2986 drm_i915_private_t *dev_priv = dev->dev_private;
2987 uint32_t seqno, cur_seqno, last_seqno;
2990 mutex_lock(&dev->struct_mutex);
2992 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2993 mutex_unlock(&dev->struct_mutex);
2997 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2998 * We need to replace this with a semaphore, or something.
3000 dev_priv->mm.suspended = 1;
3002 /* Cancel the retire work handler, wait for it to finish if running
3004 mutex_unlock(&dev->struct_mutex);
3005 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3006 mutex_lock(&dev->struct_mutex);
3008 i915_kernel_lost_context(dev);
3010 /* Flush the GPU along with all non-CPU write domains
3012 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3013 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3014 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3017 mutex_unlock(&dev->struct_mutex);
3021 dev_priv->mm.waiting_gem_seqno = seqno;
3025 cur_seqno = i915_get_gem_seqno(dev);
3026 if (i915_seqno_passed(cur_seqno, seqno))
3028 if (last_seqno == cur_seqno) {
3029 if (stuck++ > 100) {
3030 DRM_ERROR("hardware wedged\n");
3031 dev_priv->mm.wedged = 1;
3032 DRM_WAKEUP(&dev_priv->irq_queue);
3037 last_seqno = cur_seqno;
3039 dev_priv->mm.waiting_gem_seqno = 0;
3041 i915_gem_retire_requests(dev);
3043 if (!dev_priv->mm.wedged) {
3044 /* Active and flushing should now be empty as we've
3045 * waited for a sequence higher than any pending execbuffer
3047 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3048 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3049 /* Request should now be empty as we've also waited
3050 * for the last request in the list
3052 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3055 /* Empty the active and flushing lists to inactive. If there's
3056 * anything left at this point, it means that we're wedged and
3057 * nothing good's going to happen by leaving them there. So strip
3058 * the GPU domains and just stuff them onto inactive.
3060 while (!list_empty(&dev_priv->mm.active_list)) {
3061 struct drm_i915_gem_object *obj_priv;
3063 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3064 struct drm_i915_gem_object,
3066 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3067 i915_gem_object_move_to_inactive(obj_priv->obj);
3070 while (!list_empty(&dev_priv->mm.flushing_list)) {
3071 struct drm_i915_gem_object *obj_priv;
3073 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3074 struct drm_i915_gem_object,
3076 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3077 i915_gem_object_move_to_inactive(obj_priv->obj);
3081 /* Move all inactive buffers out of the GTT. */
3082 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3083 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3085 mutex_unlock(&dev->struct_mutex);
3089 i915_gem_cleanup_ringbuffer(dev);
3090 mutex_unlock(&dev->struct_mutex);
3096 i915_gem_init_hws(struct drm_device *dev)
3098 drm_i915_private_t *dev_priv = dev->dev_private;
3099 struct drm_gem_object *obj;
3100 struct drm_i915_gem_object *obj_priv;
3103 /* If we need a physical address for the status page, it's already
3104 * initialized at driver load time.
3106 if (!I915_NEED_GFX_HWS(dev))
3109 obj = drm_gem_object_alloc(dev, 4096);
3111 DRM_ERROR("Failed to allocate status page\n");
3114 obj_priv = obj->driver_private;
3115 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3117 ret = i915_gem_object_pin(obj, 4096);
3119 drm_gem_object_unreference(obj);
3123 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3125 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3126 if (dev_priv->hw_status_page == NULL) {
3127 DRM_ERROR("Failed to map status page.\n");
3128 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3129 i915_gem_object_unpin(obj);
3130 drm_gem_object_unreference(obj);
3133 dev_priv->hws_obj = obj;
3134 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3135 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3136 I915_READ(HWS_PGA); /* posting read */
3137 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3143 i915_gem_cleanup_hws(struct drm_device *dev)
3145 drm_i915_private_t *dev_priv = dev->dev_private;
3146 struct drm_gem_object *obj;
3147 struct drm_i915_gem_object *obj_priv;
3149 if (dev_priv->hws_obj == NULL)
3152 obj = dev_priv->hws_obj;
3153 obj_priv = obj->driver_private;
3155 kunmap(obj_priv->page_list[0]);
3156 i915_gem_object_unpin(obj);
3157 drm_gem_object_unreference(obj);
3158 dev_priv->hws_obj = NULL;
3160 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3161 dev_priv->hw_status_page = NULL;
3163 /* Write high address into HWS_PGA when disabling. */
3164 I915_WRITE(HWS_PGA, 0x1ffff000);
3168 i915_gem_init_ringbuffer(struct drm_device *dev)
3170 drm_i915_private_t *dev_priv = dev->dev_private;
3171 struct drm_gem_object *obj;
3172 struct drm_i915_gem_object *obj_priv;
3173 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3177 ret = i915_gem_init_hws(dev);
3181 obj = drm_gem_object_alloc(dev, 128 * 1024);
3183 DRM_ERROR("Failed to allocate ringbuffer\n");
3184 i915_gem_cleanup_hws(dev);
3187 obj_priv = obj->driver_private;
3189 ret = i915_gem_object_pin(obj, 4096);
3191 drm_gem_object_unreference(obj);
3192 i915_gem_cleanup_hws(dev);
3196 /* Set up the kernel mapping for the ring. */
3197 ring->Size = obj->size;
3198 ring->tail_mask = obj->size - 1;
3200 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3201 ring->map.size = obj->size;
3203 ring->map.flags = 0;
3206 drm_core_ioremap_wc(&ring->map, dev);
3207 if (ring->map.handle == NULL) {
3208 DRM_ERROR("Failed to map ringbuffer.\n");
3209 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3210 i915_gem_object_unpin(obj);
3211 drm_gem_object_unreference(obj);
3212 i915_gem_cleanup_hws(dev);
3215 ring->ring_obj = obj;
3216 ring->virtual_start = ring->map.handle;
3218 /* Stop the ring if it's running. */
3219 I915_WRITE(PRB0_CTL, 0);
3220 I915_WRITE(PRB0_TAIL, 0);
3221 I915_WRITE(PRB0_HEAD, 0);
3223 /* Initialize the ring. */
3224 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3225 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3227 /* G45 ring initialization fails to reset head to zero */
3229 DRM_ERROR("Ring head not reset to zero "
3230 "ctl %08x head %08x tail %08x start %08x\n",
3231 I915_READ(PRB0_CTL),
3232 I915_READ(PRB0_HEAD),
3233 I915_READ(PRB0_TAIL),
3234 I915_READ(PRB0_START));
3235 I915_WRITE(PRB0_HEAD, 0);
3237 DRM_ERROR("Ring head forced to zero "
3238 "ctl %08x head %08x tail %08x start %08x\n",
3239 I915_READ(PRB0_CTL),
3240 I915_READ(PRB0_HEAD),
3241 I915_READ(PRB0_TAIL),
3242 I915_READ(PRB0_START));
3245 I915_WRITE(PRB0_CTL,
3246 ((obj->size - 4096) & RING_NR_PAGES) |
3250 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3252 /* If the head is still not zero, the ring is dead */
3254 DRM_ERROR("Ring initialization failed "
3255 "ctl %08x head %08x tail %08x start %08x\n",
3256 I915_READ(PRB0_CTL),
3257 I915_READ(PRB0_HEAD),
3258 I915_READ(PRB0_TAIL),
3259 I915_READ(PRB0_START));
3263 /* Update our cache of the ring state */
3264 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3265 i915_kernel_lost_context(dev);
3267 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3268 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3269 ring->space = ring->head - (ring->tail + 8);
3270 if (ring->space < 0)
3271 ring->space += ring->Size;
3278 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3280 drm_i915_private_t *dev_priv = dev->dev_private;
3282 if (dev_priv->ring.ring_obj == NULL)
3285 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3287 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3288 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3289 dev_priv->ring.ring_obj = NULL;
3290 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3292 i915_gem_cleanup_hws(dev);
3296 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3297 struct drm_file *file_priv)
3299 drm_i915_private_t *dev_priv = dev->dev_private;
3302 if (drm_core_check_feature(dev, DRIVER_MODESET))
3305 if (dev_priv->mm.wedged) {
3306 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3307 dev_priv->mm.wedged = 0;
3310 mutex_lock(&dev->struct_mutex);
3311 dev_priv->mm.suspended = 0;
3313 ret = i915_gem_init_ringbuffer(dev);
3317 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3318 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3319 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3320 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3321 mutex_unlock(&dev->struct_mutex);
3323 drm_irq_install(dev);
3329 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file_priv)
3334 if (drm_core_check_feature(dev, DRIVER_MODESET))
3337 ret = i915_gem_idle(dev);
3338 drm_irq_uninstall(dev);
3344 i915_gem_lastclose(struct drm_device *dev)
3348 if (drm_core_check_feature(dev, DRIVER_MODESET))
3351 ret = i915_gem_idle(dev);
3353 DRM_ERROR("failed to idle hardware: %d\n", ret);
3357 i915_gem_load(struct drm_device *dev)
3359 drm_i915_private_t *dev_priv = dev->dev_private;
3361 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3362 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3363 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3364 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3365 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3366 i915_gem_retire_work_handler);
3367 dev_priv->mm.next_gem_seqno = 1;
3369 /* Old X drivers will take 0-2 for front, back, depth buffers */
3370 dev_priv->fence_reg_start = 3;
3372 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3373 dev_priv->num_fence_regs = 16;
3375 dev_priv->num_fence_regs = 8;
3377 i915_gem_detect_bit_6_swizzle(dev);
3381 * Create a physically contiguous memory object for this object
3382 * e.g. for cursor + overlay regs
3384 int i915_gem_init_phys_object(struct drm_device *dev,
3387 drm_i915_private_t *dev_priv = dev->dev_private;
3388 struct drm_i915_gem_phys_object *phys_obj;
3391 if (dev_priv->mm.phys_objs[id - 1] || !size)
3394 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3400 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3401 if (!phys_obj->handle) {
3406 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3409 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3413 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3417 void i915_gem_free_phys_object(struct drm_device *dev, int id)
3419 drm_i915_private_t *dev_priv = dev->dev_private;
3420 struct drm_i915_gem_phys_object *phys_obj;
3422 if (!dev_priv->mm.phys_objs[id - 1])
3425 phys_obj = dev_priv->mm.phys_objs[id - 1];
3426 if (phys_obj->cur_obj) {
3427 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3431 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3433 drm_pci_free(dev, phys_obj->handle);
3435 dev_priv->mm.phys_objs[id - 1] = NULL;
3438 void i915_gem_free_all_phys_object(struct drm_device *dev)
3442 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3443 i915_gem_free_phys_object(dev, i);
3446 void i915_gem_detach_phys_object(struct drm_device *dev,
3447 struct drm_gem_object *obj)
3449 struct drm_i915_gem_object *obj_priv;
3454 obj_priv = obj->driver_private;
3455 if (!obj_priv->phys_obj)
3458 ret = i915_gem_object_get_page_list(obj);
3462 page_count = obj->size / PAGE_SIZE;
3464 for (i = 0; i < page_count; i++) {
3465 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3466 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3468 memcpy(dst, src, PAGE_SIZE);
3469 kunmap_atomic(dst, KM_USER0);
3471 drm_clflush_pages(obj_priv->page_list, page_count);
3472 drm_agp_chipset_flush(dev);
3474 obj_priv->phys_obj->cur_obj = NULL;
3475 obj_priv->phys_obj = NULL;
3479 i915_gem_attach_phys_object(struct drm_device *dev,
3480 struct drm_gem_object *obj, int id)
3482 drm_i915_private_t *dev_priv = dev->dev_private;
3483 struct drm_i915_gem_object *obj_priv;
3488 if (id > I915_MAX_PHYS_OBJECT)
3491 obj_priv = obj->driver_private;
3493 if (obj_priv->phys_obj) {
3494 if (obj_priv->phys_obj->id == id)
3496 i915_gem_detach_phys_object(dev, obj);
3500 /* create a new object */
3501 if (!dev_priv->mm.phys_objs[id - 1]) {
3502 ret = i915_gem_init_phys_object(dev, id,
3505 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
3510 /* bind to the object */
3511 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3512 obj_priv->phys_obj->cur_obj = obj;
3514 ret = i915_gem_object_get_page_list(obj);
3516 DRM_ERROR("failed to get page list\n");
3520 page_count = obj->size / PAGE_SIZE;
3522 for (i = 0; i < page_count; i++) {
3523 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3524 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3526 memcpy(dst, src, PAGE_SIZE);
3527 kunmap_atomic(src, KM_USER0);
3536 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3537 struct drm_i915_gem_pwrite *args,
3538 struct drm_file *file_priv)
3540 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3543 char __user *user_data;
3545 user_data = (char __user *) (uintptr_t) args->data_ptr;
3546 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3548 DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3549 ret = copy_from_user(obj_addr, user_data, args->size);
3553 drm_agp_chipset_flush(dev);