perf_counter: fix update_userpage()
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28
29 #include <asm/irq_regs.h>
30
31 /*
32  * Each CPU has a list of per CPU counters:
33  */
34 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
36 int perf_max_counters __read_mostly = 1;
37 static int perf_reserved_percpu __read_mostly;
38 static int perf_overcommit __read_mostly = 1;
39
40 /*
41  * Mutex for (sysadmin-configurable) counter reservations:
42  */
43 static DEFINE_MUTEX(perf_resource_mutex);
44
45 /*
46  * Architecture provided APIs - weak aliases:
47  */
48 extern __weak const struct hw_perf_counter_ops *
49 hw_perf_counter_init(struct perf_counter *counter)
50 {
51         return NULL;
52 }
53
54 u64 __weak hw_perf_save_disable(void)           { return 0; }
55 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
56 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
57 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58                struct perf_cpu_context *cpuctx,
59                struct perf_counter_context *ctx, int cpu)
60 {
61         return 0;
62 }
63
64 void __weak perf_counter_print_debug(void)      { }
65
66 static void
67 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69         struct perf_counter *group_leader = counter->group_leader;
70
71         /*
72          * Depending on whether it is a standalone or sibling counter,
73          * add it straight to the context's counter list, or to the group
74          * leader's sibling list:
75          */
76         if (counter->group_leader == counter)
77                 list_add_tail(&counter->list_entry, &ctx->counter_list);
78         else {
79                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
80                 group_leader->nr_siblings++;
81         }
82
83         list_add_rcu(&counter->event_entry, &ctx->event_list);
84 }
85
86 static void
87 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
88 {
89         struct perf_counter *sibling, *tmp;
90
91         list_del_init(&counter->list_entry);
92         list_del_rcu(&counter->event_entry);
93
94         if (counter->group_leader != counter)
95                 counter->group_leader->nr_siblings--;
96
97         /*
98          * If this was a group counter with sibling counters then
99          * upgrade the siblings to singleton counters by adding them
100          * to the context list directly:
101          */
102         list_for_each_entry_safe(sibling, tmp,
103                                  &counter->sibling_list, list_entry) {
104
105                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
106                 sibling->group_leader = sibling;
107         }
108 }
109
110 static void
111 counter_sched_out(struct perf_counter *counter,
112                   struct perf_cpu_context *cpuctx,
113                   struct perf_counter_context *ctx)
114 {
115         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116                 return;
117
118         counter->state = PERF_COUNTER_STATE_INACTIVE;
119         counter->tstamp_stopped = ctx->time_now;
120         counter->hw_ops->disable(counter);
121         counter->oncpu = -1;
122
123         if (!is_software_counter(counter))
124                 cpuctx->active_oncpu--;
125         ctx->nr_active--;
126         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
127                 cpuctx->exclusive = 0;
128 }
129
130 static void
131 group_sched_out(struct perf_counter *group_counter,
132                 struct perf_cpu_context *cpuctx,
133                 struct perf_counter_context *ctx)
134 {
135         struct perf_counter *counter;
136
137         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
138                 return;
139
140         counter_sched_out(group_counter, cpuctx, ctx);
141
142         /*
143          * Schedule out siblings (if any):
144          */
145         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
146                 counter_sched_out(counter, cpuctx, ctx);
147
148         if (group_counter->hw_event.exclusive)
149                 cpuctx->exclusive = 0;
150 }
151
152 /*
153  * Cross CPU call to remove a performance counter
154  *
155  * We disable the counter on the hardware level first. After that we
156  * remove it from the context list.
157  */
158 static void __perf_counter_remove_from_context(void *info)
159 {
160         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
161         struct perf_counter *counter = info;
162         struct perf_counter_context *ctx = counter->ctx;
163         unsigned long flags;
164         u64 perf_flags;
165
166         /*
167          * If this is a task context, we need to check whether it is
168          * the current task context of this cpu. If not it has been
169          * scheduled out before the smp call arrived.
170          */
171         if (ctx->task && cpuctx->task_ctx != ctx)
172                 return;
173
174         curr_rq_lock_irq_save(&flags);
175         spin_lock(&ctx->lock);
176
177         counter_sched_out(counter, cpuctx, ctx);
178
179         counter->task = NULL;
180         ctx->nr_counters--;
181
182         /*
183          * Protect the list operation against NMI by disabling the
184          * counters on a global level. NOP for non NMI based counters.
185          */
186         perf_flags = hw_perf_save_disable();
187         list_del_counter(counter, ctx);
188         hw_perf_restore(perf_flags);
189
190         if (!ctx->task) {
191                 /*
192                  * Allow more per task counters with respect to the
193                  * reservation:
194                  */
195                 cpuctx->max_pertask =
196                         min(perf_max_counters - ctx->nr_counters,
197                             perf_max_counters - perf_reserved_percpu);
198         }
199
200         spin_unlock(&ctx->lock);
201         curr_rq_unlock_irq_restore(&flags);
202 }
203
204
205 /*
206  * Remove the counter from a task's (or a CPU's) list of counters.
207  *
208  * Must be called with counter->mutex and ctx->mutex held.
209  *
210  * CPU counters are removed with a smp call. For task counters we only
211  * call when the task is on a CPU.
212  */
213 static void perf_counter_remove_from_context(struct perf_counter *counter)
214 {
215         struct perf_counter_context *ctx = counter->ctx;
216         struct task_struct *task = ctx->task;
217
218         if (!task) {
219                 /*
220                  * Per cpu counters are removed via an smp call and
221                  * the removal is always sucessful.
222                  */
223                 smp_call_function_single(counter->cpu,
224                                          __perf_counter_remove_from_context,
225                                          counter, 1);
226                 return;
227         }
228
229 retry:
230         task_oncpu_function_call(task, __perf_counter_remove_from_context,
231                                  counter);
232
233         spin_lock_irq(&ctx->lock);
234         /*
235          * If the context is active we need to retry the smp call.
236          */
237         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
238                 spin_unlock_irq(&ctx->lock);
239                 goto retry;
240         }
241
242         /*
243          * The lock prevents that this context is scheduled in so we
244          * can remove the counter safely, if the call above did not
245          * succeed.
246          */
247         if (!list_empty(&counter->list_entry)) {
248                 ctx->nr_counters--;
249                 list_del_counter(counter, ctx);
250                 counter->task = NULL;
251         }
252         spin_unlock_irq(&ctx->lock);
253 }
254
255 /*
256  * Get the current time for this context.
257  * If this is a task context, we use the task's task clock,
258  * or for a per-cpu context, we use the cpu clock.
259  */
260 static u64 get_context_time(struct perf_counter_context *ctx, int update)
261 {
262         struct task_struct *curr = ctx->task;
263
264         if (!curr)
265                 return cpu_clock(smp_processor_id());
266
267         return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
268 }
269
270 /*
271  * Update the record of the current time in a context.
272  */
273 static void update_context_time(struct perf_counter_context *ctx, int update)
274 {
275         ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
276 }
277
278 /*
279  * Update the total_time_enabled and total_time_running fields for a counter.
280  */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283         struct perf_counter_context *ctx = counter->ctx;
284         u64 run_end;
285
286         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
287                 counter->total_time_enabled = ctx->time_now -
288                         counter->tstamp_enabled;
289                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290                         run_end = counter->tstamp_stopped;
291                 else
292                         run_end = ctx->time_now;
293                 counter->total_time_running = run_end - counter->tstamp_running;
294         }
295 }
296
297 /*
298  * Update total_time_enabled and total_time_running for all counters in a group.
299  */
300 static void update_group_times(struct perf_counter *leader)
301 {
302         struct perf_counter *counter;
303
304         update_counter_times(leader);
305         list_for_each_entry(counter, &leader->sibling_list, list_entry)
306                 update_counter_times(counter);
307 }
308
309 /*
310  * Cross CPU call to disable a performance counter
311  */
312 static void __perf_counter_disable(void *info)
313 {
314         struct perf_counter *counter = info;
315         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316         struct perf_counter_context *ctx = counter->ctx;
317         unsigned long flags;
318
319         /*
320          * If this is a per-task counter, need to check whether this
321          * counter's task is the current task on this cpu.
322          */
323         if (ctx->task && cpuctx->task_ctx != ctx)
324                 return;
325
326         curr_rq_lock_irq_save(&flags);
327         spin_lock(&ctx->lock);
328
329         /*
330          * If the counter is on, turn it off.
331          * If it is in error state, leave it in error state.
332          */
333         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334                 update_context_time(ctx, 1);
335                 update_counter_times(counter);
336                 if (counter == counter->group_leader)
337                         group_sched_out(counter, cpuctx, ctx);
338                 else
339                         counter_sched_out(counter, cpuctx, ctx);
340                 counter->state = PERF_COUNTER_STATE_OFF;
341         }
342
343         spin_unlock(&ctx->lock);
344         curr_rq_unlock_irq_restore(&flags);
345 }
346
347 /*
348  * Disable a counter.
349  */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Disable the counter on the cpu that it's on
358                  */
359                 smp_call_function_single(counter->cpu, __perf_counter_disable,
360                                          counter, 1);
361                 return;
362         }
363
364  retry:
365         task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367         spin_lock_irq(&ctx->lock);
368         /*
369          * If the counter is still active, we need to retry the cross-call.
370          */
371         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372                 spin_unlock_irq(&ctx->lock);
373                 goto retry;
374         }
375
376         /*
377          * Since we have the lock this context can't be scheduled
378          * in, so we can change the state safely.
379          */
380         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381                 update_counter_times(counter);
382                 counter->state = PERF_COUNTER_STATE_OFF;
383         }
384
385         spin_unlock_irq(&ctx->lock);
386 }
387
388 /*
389  * Disable a counter and all its children.
390  */
391 static void perf_counter_disable_family(struct perf_counter *counter)
392 {
393         struct perf_counter *child;
394
395         perf_counter_disable(counter);
396
397         /*
398          * Lock the mutex to protect the list of children
399          */
400         mutex_lock(&counter->mutex);
401         list_for_each_entry(child, &counter->child_list, child_list)
402                 perf_counter_disable(child);
403         mutex_unlock(&counter->mutex);
404 }
405
406 static int
407 counter_sched_in(struct perf_counter *counter,
408                  struct perf_cpu_context *cpuctx,
409                  struct perf_counter_context *ctx,
410                  int cpu)
411 {
412         if (counter->state <= PERF_COUNTER_STATE_OFF)
413                 return 0;
414
415         counter->state = PERF_COUNTER_STATE_ACTIVE;
416         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
417         /*
418          * The new state must be visible before we turn it on in the hardware:
419          */
420         smp_wmb();
421
422         if (counter->hw_ops->enable(counter)) {
423                 counter->state = PERF_COUNTER_STATE_INACTIVE;
424                 counter->oncpu = -1;
425                 return -EAGAIN;
426         }
427
428         counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
429
430         if (!is_software_counter(counter))
431                 cpuctx->active_oncpu++;
432         ctx->nr_active++;
433
434         if (counter->hw_event.exclusive)
435                 cpuctx->exclusive = 1;
436
437         return 0;
438 }
439
440 /*
441  * Return 1 for a group consisting entirely of software counters,
442  * 0 if the group contains any hardware counters.
443  */
444 static int is_software_only_group(struct perf_counter *leader)
445 {
446         struct perf_counter *counter;
447
448         if (!is_software_counter(leader))
449                 return 0;
450
451         list_for_each_entry(counter, &leader->sibling_list, list_entry)
452                 if (!is_software_counter(counter))
453                         return 0;
454
455         return 1;
456 }
457
458 /*
459  * Work out whether we can put this counter group on the CPU now.
460  */
461 static int group_can_go_on(struct perf_counter *counter,
462                            struct perf_cpu_context *cpuctx,
463                            int can_add_hw)
464 {
465         /*
466          * Groups consisting entirely of software counters can always go on.
467          */
468         if (is_software_only_group(counter))
469                 return 1;
470         /*
471          * If an exclusive group is already on, no other hardware
472          * counters can go on.
473          */
474         if (cpuctx->exclusive)
475                 return 0;
476         /*
477          * If this group is exclusive and there are already
478          * counters on the CPU, it can't go on.
479          */
480         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
481                 return 0;
482         /*
483          * Otherwise, try to add it if all previous groups were able
484          * to go on.
485          */
486         return can_add_hw;
487 }
488
489 static void add_counter_to_ctx(struct perf_counter *counter,
490                                struct perf_counter_context *ctx)
491 {
492         list_add_counter(counter, ctx);
493         ctx->nr_counters++;
494         counter->prev_state = PERF_COUNTER_STATE_OFF;
495         counter->tstamp_enabled = ctx->time_now;
496         counter->tstamp_running = ctx->time_now;
497         counter->tstamp_stopped = ctx->time_now;
498 }
499
500 /*
501  * Cross CPU call to install and enable a performance counter
502  */
503 static void __perf_install_in_context(void *info)
504 {
505         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
506         struct perf_counter *counter = info;
507         struct perf_counter_context *ctx = counter->ctx;
508         struct perf_counter *leader = counter->group_leader;
509         int cpu = smp_processor_id();
510         unsigned long flags;
511         u64 perf_flags;
512         int err;
513
514         /*
515          * If this is a task context, we need to check whether it is
516          * the current task context of this cpu. If not it has been
517          * scheduled out before the smp call arrived.
518          */
519         if (ctx->task && cpuctx->task_ctx != ctx)
520                 return;
521
522         curr_rq_lock_irq_save(&flags);
523         spin_lock(&ctx->lock);
524         update_context_time(ctx, 1);
525
526         /*
527          * Protect the list operation against NMI by disabling the
528          * counters on a global level. NOP for non NMI based counters.
529          */
530         perf_flags = hw_perf_save_disable();
531
532         add_counter_to_ctx(counter, ctx);
533
534         /*
535          * Don't put the counter on if it is disabled or if
536          * it is in a group and the group isn't on.
537          */
538         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
539             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
540                 goto unlock;
541
542         /*
543          * An exclusive counter can't go on if there are already active
544          * hardware counters, and no hardware counter can go on if there
545          * is already an exclusive counter on.
546          */
547         if (!group_can_go_on(counter, cpuctx, 1))
548                 err = -EEXIST;
549         else
550                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
551
552         if (err) {
553                 /*
554                  * This counter couldn't go on.  If it is in a group
555                  * then we have to pull the whole group off.
556                  * If the counter group is pinned then put it in error state.
557                  */
558                 if (leader != counter)
559                         group_sched_out(leader, cpuctx, ctx);
560                 if (leader->hw_event.pinned) {
561                         update_group_times(leader);
562                         leader->state = PERF_COUNTER_STATE_ERROR;
563                 }
564         }
565
566         if (!err && !ctx->task && cpuctx->max_pertask)
567                 cpuctx->max_pertask--;
568
569  unlock:
570         hw_perf_restore(perf_flags);
571
572         spin_unlock(&ctx->lock);
573         curr_rq_unlock_irq_restore(&flags);
574 }
575
576 /*
577  * Attach a performance counter to a context
578  *
579  * First we add the counter to the list with the hardware enable bit
580  * in counter->hw_config cleared.
581  *
582  * If the counter is attached to a task which is on a CPU we use a smp
583  * call to enable it in the task context. The task might have been
584  * scheduled away, but we check this in the smp call again.
585  *
586  * Must be called with ctx->mutex held.
587  */
588 static void
589 perf_install_in_context(struct perf_counter_context *ctx,
590                         struct perf_counter *counter,
591                         int cpu)
592 {
593         struct task_struct *task = ctx->task;
594
595         if (!task) {
596                 /*
597                  * Per cpu counters are installed via an smp call and
598                  * the install is always sucessful.
599                  */
600                 smp_call_function_single(cpu, __perf_install_in_context,
601                                          counter, 1);
602                 return;
603         }
604
605         counter->task = task;
606 retry:
607         task_oncpu_function_call(task, __perf_install_in_context,
608                                  counter);
609
610         spin_lock_irq(&ctx->lock);
611         /*
612          * we need to retry the smp call.
613          */
614         if (ctx->is_active && list_empty(&counter->list_entry)) {
615                 spin_unlock_irq(&ctx->lock);
616                 goto retry;
617         }
618
619         /*
620          * The lock prevents that this context is scheduled in so we
621          * can add the counter safely, if it the call above did not
622          * succeed.
623          */
624         if (list_empty(&counter->list_entry))
625                 add_counter_to_ctx(counter, ctx);
626         spin_unlock_irq(&ctx->lock);
627 }
628
629 /*
630  * Cross CPU call to enable a performance counter
631  */
632 static void __perf_counter_enable(void *info)
633 {
634         struct perf_counter *counter = info;
635         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
636         struct perf_counter_context *ctx = counter->ctx;
637         struct perf_counter *leader = counter->group_leader;
638         unsigned long flags;
639         int err;
640
641         /*
642          * If this is a per-task counter, need to check whether this
643          * counter's task is the current task on this cpu.
644          */
645         if (ctx->task && cpuctx->task_ctx != ctx)
646                 return;
647
648         curr_rq_lock_irq_save(&flags);
649         spin_lock(&ctx->lock);
650         update_context_time(ctx, 1);
651
652         counter->prev_state = counter->state;
653         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
654                 goto unlock;
655         counter->state = PERF_COUNTER_STATE_INACTIVE;
656         counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
657
658         /*
659          * If the counter is in a group and isn't the group leader,
660          * then don't put it on unless the group is on.
661          */
662         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
663                 goto unlock;
664
665         if (!group_can_go_on(counter, cpuctx, 1))
666                 err = -EEXIST;
667         else
668                 err = counter_sched_in(counter, cpuctx, ctx,
669                                        smp_processor_id());
670
671         if (err) {
672                 /*
673                  * If this counter can't go on and it's part of a
674                  * group, then the whole group has to come off.
675                  */
676                 if (leader != counter)
677                         group_sched_out(leader, cpuctx, ctx);
678                 if (leader->hw_event.pinned) {
679                         update_group_times(leader);
680                         leader->state = PERF_COUNTER_STATE_ERROR;
681                 }
682         }
683
684  unlock:
685         spin_unlock(&ctx->lock);
686         curr_rq_unlock_irq_restore(&flags);
687 }
688
689 /*
690  * Enable a counter.
691  */
692 static void perf_counter_enable(struct perf_counter *counter)
693 {
694         struct perf_counter_context *ctx = counter->ctx;
695         struct task_struct *task = ctx->task;
696
697         if (!task) {
698                 /*
699                  * Enable the counter on the cpu that it's on
700                  */
701                 smp_call_function_single(counter->cpu, __perf_counter_enable,
702                                          counter, 1);
703                 return;
704         }
705
706         spin_lock_irq(&ctx->lock);
707         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
708                 goto out;
709
710         /*
711          * If the counter is in error state, clear that first.
712          * That way, if we see the counter in error state below, we
713          * know that it has gone back into error state, as distinct
714          * from the task having been scheduled away before the
715          * cross-call arrived.
716          */
717         if (counter->state == PERF_COUNTER_STATE_ERROR)
718                 counter->state = PERF_COUNTER_STATE_OFF;
719
720  retry:
721         spin_unlock_irq(&ctx->lock);
722         task_oncpu_function_call(task, __perf_counter_enable, counter);
723
724         spin_lock_irq(&ctx->lock);
725
726         /*
727          * If the context is active and the counter is still off,
728          * we need to retry the cross-call.
729          */
730         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
731                 goto retry;
732
733         /*
734          * Since we have the lock this context can't be scheduled
735          * in, so we can change the state safely.
736          */
737         if (counter->state == PERF_COUNTER_STATE_OFF) {
738                 counter->state = PERF_COUNTER_STATE_INACTIVE;
739                 counter->tstamp_enabled = ctx->time_now -
740                         counter->total_time_enabled;
741         }
742  out:
743         spin_unlock_irq(&ctx->lock);
744 }
745
746 /*
747  * Enable a counter and all its children.
748  */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751         struct perf_counter *child;
752
753         perf_counter_enable(counter);
754
755         /*
756          * Lock the mutex to protect the list of children
757          */
758         mutex_lock(&counter->mutex);
759         list_for_each_entry(child, &counter->child_list, child_list)
760                 perf_counter_enable(child);
761         mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765                               struct perf_cpu_context *cpuctx)
766 {
767         struct perf_counter *counter;
768         u64 flags;
769
770         spin_lock(&ctx->lock);
771         ctx->is_active = 0;
772         if (likely(!ctx->nr_counters))
773                 goto out;
774         update_context_time(ctx, 0);
775
776         flags = hw_perf_save_disable();
777         if (ctx->nr_active) {
778                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779                         group_sched_out(counter, cpuctx, ctx);
780         }
781         hw_perf_restore(flags);
782  out:
783         spin_unlock(&ctx->lock);
784 }
785
786 /*
787  * Called from scheduler to remove the counters of the current task,
788  * with interrupts disabled.
789  *
790  * We stop each counter and update the counter value in counter->count.
791  *
792  * This does not protect us against NMI, but disable()
793  * sets the disabled bit in the control field of counter _before_
794  * accessing the counter control register. If a NMI hits, then it will
795  * not restart the counter.
796  */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800         struct perf_counter_context *ctx = &task->perf_counter_ctx;
801         struct pt_regs *regs;
802
803         if (likely(!cpuctx->task_ctx))
804                 return;
805
806         regs = task_pt_regs(task);
807         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
808         __perf_counter_sched_out(ctx, cpuctx);
809
810         cpuctx->task_ctx = NULL;
811 }
812
813 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
814 {
815         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
816 }
817
818 static int
819 group_sched_in(struct perf_counter *group_counter,
820                struct perf_cpu_context *cpuctx,
821                struct perf_counter_context *ctx,
822                int cpu)
823 {
824         struct perf_counter *counter, *partial_group;
825         int ret;
826
827         if (group_counter->state == PERF_COUNTER_STATE_OFF)
828                 return 0;
829
830         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
831         if (ret)
832                 return ret < 0 ? ret : 0;
833
834         group_counter->prev_state = group_counter->state;
835         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
836                 return -EAGAIN;
837
838         /*
839          * Schedule in siblings as one group (if any):
840          */
841         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
842                 counter->prev_state = counter->state;
843                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
844                         partial_group = counter;
845                         goto group_error;
846                 }
847         }
848
849         return 0;
850
851 group_error:
852         /*
853          * Groups can be scheduled in as one unit only, so undo any
854          * partial group before returning:
855          */
856         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
857                 if (counter == partial_group)
858                         break;
859                 counter_sched_out(counter, cpuctx, ctx);
860         }
861         counter_sched_out(group_counter, cpuctx, ctx);
862
863         return -EAGAIN;
864 }
865
866 static void
867 __perf_counter_sched_in(struct perf_counter_context *ctx,
868                         struct perf_cpu_context *cpuctx, int cpu)
869 {
870         struct perf_counter *counter;
871         u64 flags;
872         int can_add_hw = 1;
873
874         spin_lock(&ctx->lock);
875         ctx->is_active = 1;
876         if (likely(!ctx->nr_counters))
877                 goto out;
878
879         /*
880          * Add any time since the last sched_out to the lost time
881          * so it doesn't get included in the total_time_enabled and
882          * total_time_running measures for counters in the context.
883          */
884         ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
885
886         flags = hw_perf_save_disable();
887
888         /*
889          * First go through the list and put on any pinned groups
890          * in order to give them the best chance of going on.
891          */
892         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
893                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
894                     !counter->hw_event.pinned)
895                         continue;
896                 if (counter->cpu != -1 && counter->cpu != cpu)
897                         continue;
898
899                 if (group_can_go_on(counter, cpuctx, 1))
900                         group_sched_in(counter, cpuctx, ctx, cpu);
901
902                 /*
903                  * If this pinned group hasn't been scheduled,
904                  * put it in error state.
905                  */
906                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
907                         update_group_times(counter);
908                         counter->state = PERF_COUNTER_STATE_ERROR;
909                 }
910         }
911
912         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
913                 /*
914                  * Ignore counters in OFF or ERROR state, and
915                  * ignore pinned counters since we did them already.
916                  */
917                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
918                     counter->hw_event.pinned)
919                         continue;
920
921                 /*
922                  * Listen to the 'cpu' scheduling filter constraint
923                  * of counters:
924                  */
925                 if (counter->cpu != -1 && counter->cpu != cpu)
926                         continue;
927
928                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
929                         if (group_sched_in(counter, cpuctx, ctx, cpu))
930                                 can_add_hw = 0;
931                 }
932         }
933         hw_perf_restore(flags);
934  out:
935         spin_unlock(&ctx->lock);
936 }
937
938 /*
939  * Called from scheduler to add the counters of the current task
940  * with interrupts disabled.
941  *
942  * We restore the counter value and then enable it.
943  *
944  * This does not protect us against NMI, but enable()
945  * sets the enabled bit in the control field of counter _before_
946  * accessing the counter control register. If a NMI hits, then it will
947  * keep the counter running.
948  */
949 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
950 {
951         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
952         struct perf_counter_context *ctx = &task->perf_counter_ctx;
953
954         __perf_counter_sched_in(ctx, cpuctx, cpu);
955         cpuctx->task_ctx = ctx;
956 }
957
958 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
959 {
960         struct perf_counter_context *ctx = &cpuctx->ctx;
961
962         __perf_counter_sched_in(ctx, cpuctx, cpu);
963 }
964
965 int perf_counter_task_disable(void)
966 {
967         struct task_struct *curr = current;
968         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
969         struct perf_counter *counter;
970         unsigned long flags;
971         u64 perf_flags;
972         int cpu;
973
974         if (likely(!ctx->nr_counters))
975                 return 0;
976
977         curr_rq_lock_irq_save(&flags);
978         cpu = smp_processor_id();
979
980         /* force the update of the task clock: */
981         __task_delta_exec(curr, 1);
982
983         perf_counter_task_sched_out(curr, cpu);
984
985         spin_lock(&ctx->lock);
986
987         /*
988          * Disable all the counters:
989          */
990         perf_flags = hw_perf_save_disable();
991
992         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
993                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
994                         update_group_times(counter);
995                         counter->state = PERF_COUNTER_STATE_OFF;
996                 }
997         }
998
999         hw_perf_restore(perf_flags);
1000
1001         spin_unlock(&ctx->lock);
1002
1003         curr_rq_unlock_irq_restore(&flags);
1004
1005         return 0;
1006 }
1007
1008 int perf_counter_task_enable(void)
1009 {
1010         struct task_struct *curr = current;
1011         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1012         struct perf_counter *counter;
1013         unsigned long flags;
1014         u64 perf_flags;
1015         int cpu;
1016
1017         if (likely(!ctx->nr_counters))
1018                 return 0;
1019
1020         curr_rq_lock_irq_save(&flags);
1021         cpu = smp_processor_id();
1022
1023         /* force the update of the task clock: */
1024         __task_delta_exec(curr, 1);
1025
1026         perf_counter_task_sched_out(curr, cpu);
1027
1028         spin_lock(&ctx->lock);
1029
1030         /*
1031          * Disable all the counters:
1032          */
1033         perf_flags = hw_perf_save_disable();
1034
1035         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036                 if (counter->state > PERF_COUNTER_STATE_OFF)
1037                         continue;
1038                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1039                 counter->tstamp_enabled = ctx->time_now -
1040                         counter->total_time_enabled;
1041                 counter->hw_event.disabled = 0;
1042         }
1043         hw_perf_restore(perf_flags);
1044
1045         spin_unlock(&ctx->lock);
1046
1047         perf_counter_task_sched_in(curr, cpu);
1048
1049         curr_rq_unlock_irq_restore(&flags);
1050
1051         return 0;
1052 }
1053
1054 /*
1055  * Round-robin a context's counters:
1056  */
1057 static void rotate_ctx(struct perf_counter_context *ctx)
1058 {
1059         struct perf_counter *counter;
1060         u64 perf_flags;
1061
1062         if (!ctx->nr_counters)
1063                 return;
1064
1065         spin_lock(&ctx->lock);
1066         /*
1067          * Rotate the first entry last (works just fine for group counters too):
1068          */
1069         perf_flags = hw_perf_save_disable();
1070         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1071                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1072                 break;
1073         }
1074         hw_perf_restore(perf_flags);
1075
1076         spin_unlock(&ctx->lock);
1077 }
1078
1079 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1080 {
1081         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1082         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1083         const int rotate_percpu = 0;
1084
1085         if (rotate_percpu)
1086                 perf_counter_cpu_sched_out(cpuctx);
1087         perf_counter_task_sched_out(curr, cpu);
1088
1089         if (rotate_percpu)
1090                 rotate_ctx(&cpuctx->ctx);
1091         rotate_ctx(ctx);
1092
1093         if (rotate_percpu)
1094                 perf_counter_cpu_sched_in(cpuctx, cpu);
1095         perf_counter_task_sched_in(curr, cpu);
1096 }
1097
1098 /*
1099  * Cross CPU call to read the hardware counter
1100  */
1101 static void __read(void *info)
1102 {
1103         struct perf_counter *counter = info;
1104         struct perf_counter_context *ctx = counter->ctx;
1105         unsigned long flags;
1106
1107         curr_rq_lock_irq_save(&flags);
1108         if (ctx->is_active)
1109                 update_context_time(ctx, 1);
1110         counter->hw_ops->read(counter);
1111         update_counter_times(counter);
1112         curr_rq_unlock_irq_restore(&flags);
1113 }
1114
1115 static u64 perf_counter_read(struct perf_counter *counter)
1116 {
1117         /*
1118          * If counter is enabled and currently active on a CPU, update the
1119          * value in the counter structure:
1120          */
1121         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1122                 smp_call_function_single(counter->oncpu,
1123                                          __read, counter, 1);
1124         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1125                 update_counter_times(counter);
1126         }
1127
1128         return atomic64_read(&counter->count);
1129 }
1130
1131 static void put_context(struct perf_counter_context *ctx)
1132 {
1133         if (ctx->task)
1134                 put_task_struct(ctx->task);
1135 }
1136
1137 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1138 {
1139         struct perf_cpu_context *cpuctx;
1140         struct perf_counter_context *ctx;
1141         struct task_struct *task;
1142
1143         /*
1144          * If cpu is not a wildcard then this is a percpu counter:
1145          */
1146         if (cpu != -1) {
1147                 /* Must be root to operate on a CPU counter: */
1148                 if (!capable(CAP_SYS_ADMIN))
1149                         return ERR_PTR(-EACCES);
1150
1151                 if (cpu < 0 || cpu > num_possible_cpus())
1152                         return ERR_PTR(-EINVAL);
1153
1154                 /*
1155                  * We could be clever and allow to attach a counter to an
1156                  * offline CPU and activate it when the CPU comes up, but
1157                  * that's for later.
1158                  */
1159                 if (!cpu_isset(cpu, cpu_online_map))
1160                         return ERR_PTR(-ENODEV);
1161
1162                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1163                 ctx = &cpuctx->ctx;
1164
1165                 return ctx;
1166         }
1167
1168         rcu_read_lock();
1169         if (!pid)
1170                 task = current;
1171         else
1172                 task = find_task_by_vpid(pid);
1173         if (task)
1174                 get_task_struct(task);
1175         rcu_read_unlock();
1176
1177         if (!task)
1178                 return ERR_PTR(-ESRCH);
1179
1180         ctx = &task->perf_counter_ctx;
1181         ctx->task = task;
1182
1183         /* Reuse ptrace permission checks for now. */
1184         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1185                 put_context(ctx);
1186                 return ERR_PTR(-EACCES);
1187         }
1188
1189         return ctx;
1190 }
1191
1192 static void free_counter_rcu(struct rcu_head *head)
1193 {
1194         struct perf_counter *counter;
1195
1196         counter = container_of(head, struct perf_counter, rcu_head);
1197         kfree(counter);
1198 }
1199
1200 static void perf_pending_sync(struct perf_counter *counter);
1201
1202 static void free_counter(struct perf_counter *counter)
1203 {
1204         perf_pending_sync(counter);
1205
1206         if (counter->destroy)
1207                 counter->destroy(counter);
1208
1209         call_rcu(&counter->rcu_head, free_counter_rcu);
1210 }
1211
1212 /*
1213  * Called when the last reference to the file is gone.
1214  */
1215 static int perf_release(struct inode *inode, struct file *file)
1216 {
1217         struct perf_counter *counter = file->private_data;
1218         struct perf_counter_context *ctx = counter->ctx;
1219
1220         file->private_data = NULL;
1221
1222         mutex_lock(&ctx->mutex);
1223         mutex_lock(&counter->mutex);
1224
1225         perf_counter_remove_from_context(counter);
1226
1227         mutex_unlock(&counter->mutex);
1228         mutex_unlock(&ctx->mutex);
1229
1230         free_counter(counter);
1231         put_context(ctx);
1232
1233         return 0;
1234 }
1235
1236 /*
1237  * Read the performance counter - simple non blocking version for now
1238  */
1239 static ssize_t
1240 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1241 {
1242         u64 values[3];
1243         int n;
1244
1245         /*
1246          * Return end-of-file for a read on a counter that is in
1247          * error state (i.e. because it was pinned but it couldn't be
1248          * scheduled on to the CPU at some point).
1249          */
1250         if (counter->state == PERF_COUNTER_STATE_ERROR)
1251                 return 0;
1252
1253         mutex_lock(&counter->mutex);
1254         values[0] = perf_counter_read(counter);
1255         n = 1;
1256         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257                 values[n++] = counter->total_time_enabled +
1258                         atomic64_read(&counter->child_total_time_enabled);
1259         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260                 values[n++] = counter->total_time_running +
1261                         atomic64_read(&counter->child_total_time_running);
1262         mutex_unlock(&counter->mutex);
1263
1264         if (count < n * sizeof(u64))
1265                 return -EINVAL;
1266         count = n * sizeof(u64);
1267
1268         if (copy_to_user(buf, values, count))
1269                 return -EFAULT;
1270
1271         return count;
1272 }
1273
1274 static ssize_t
1275 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1276 {
1277         struct perf_counter *counter = file->private_data;
1278
1279         return perf_read_hw(counter, buf, count);
1280 }
1281
1282 static unsigned int perf_poll(struct file *file, poll_table *wait)
1283 {
1284         struct perf_counter *counter = file->private_data;
1285         struct perf_mmap_data *data;
1286         unsigned int events;
1287
1288         rcu_read_lock();
1289         data = rcu_dereference(counter->data);
1290         if (data)
1291                 events = atomic_xchg(&data->wakeup, 0);
1292         else
1293                 events = POLL_HUP;
1294         rcu_read_unlock();
1295
1296         poll_wait(file, &counter->waitq, wait);
1297
1298         return events;
1299 }
1300
1301 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1302 {
1303         struct perf_counter *counter = file->private_data;
1304         int err = 0;
1305
1306         switch (cmd) {
1307         case PERF_COUNTER_IOC_ENABLE:
1308                 perf_counter_enable_family(counter);
1309                 break;
1310         case PERF_COUNTER_IOC_DISABLE:
1311                 perf_counter_disable_family(counter);
1312                 break;
1313         default:
1314                 err = -ENOTTY;
1315         }
1316         return err;
1317 }
1318
1319 /*
1320  * Callers need to ensure there can be no nesting of this function, otherwise
1321  * the seqlock logic goes bad. We can not serialize this because the arch
1322  * code calls this from NMI context.
1323  */
1324 void perf_counter_update_userpage(struct perf_counter *counter)
1325 {
1326         struct perf_mmap_data *data;
1327         struct perf_counter_mmap_page *userpg;
1328
1329         rcu_read_lock();
1330         data = rcu_dereference(counter->data);
1331         if (!data)
1332                 goto unlock;
1333
1334         userpg = data->user_page;
1335
1336         /*
1337          * Disable preemption so as to not let the corresponding user-space
1338          * spin too long if we get preempted.
1339          */
1340         preempt_disable();
1341         ++userpg->lock;
1342         smp_wmb();
1343         userpg->index = counter->hw.idx;
1344         userpg->offset = atomic64_read(&counter->count);
1345         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1346                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1347
1348         smp_wmb();
1349         ++userpg->lock;
1350         preempt_enable();
1351 unlock:
1352         rcu_read_unlock();
1353 }
1354
1355 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1356 {
1357         struct perf_counter *counter = vma->vm_file->private_data;
1358         struct perf_mmap_data *data;
1359         int ret = VM_FAULT_SIGBUS;
1360
1361         rcu_read_lock();
1362         data = rcu_dereference(counter->data);
1363         if (!data)
1364                 goto unlock;
1365
1366         if (vmf->pgoff == 0) {
1367                 vmf->page = virt_to_page(data->user_page);
1368         } else {
1369                 int nr = vmf->pgoff - 1;
1370
1371                 if ((unsigned)nr > data->nr_pages)
1372                         goto unlock;
1373
1374                 vmf->page = virt_to_page(data->data_pages[nr]);
1375         }
1376         get_page(vmf->page);
1377         ret = 0;
1378 unlock:
1379         rcu_read_unlock();
1380
1381         return ret;
1382 }
1383
1384 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1385 {
1386         struct perf_mmap_data *data;
1387         unsigned long size;
1388         int i;
1389
1390         WARN_ON(atomic_read(&counter->mmap_count));
1391
1392         size = sizeof(struct perf_mmap_data);
1393         size += nr_pages * sizeof(void *);
1394
1395         data = kzalloc(size, GFP_KERNEL);
1396         if (!data)
1397                 goto fail;
1398
1399         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1400         if (!data->user_page)
1401                 goto fail_user_page;
1402
1403         for (i = 0; i < nr_pages; i++) {
1404                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1405                 if (!data->data_pages[i])
1406                         goto fail_data_pages;
1407         }
1408
1409         data->nr_pages = nr_pages;
1410
1411         rcu_assign_pointer(counter->data, data);
1412
1413         return 0;
1414
1415 fail_data_pages:
1416         for (i--; i >= 0; i--)
1417                 free_page((unsigned long)data->data_pages[i]);
1418
1419         free_page((unsigned long)data->user_page);
1420
1421 fail_user_page:
1422         kfree(data);
1423
1424 fail:
1425         return -ENOMEM;
1426 }
1427
1428 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1429 {
1430         struct perf_mmap_data *data = container_of(rcu_head,
1431                         struct perf_mmap_data, rcu_head);
1432         int i;
1433
1434         free_page((unsigned long)data->user_page);
1435         for (i = 0; i < data->nr_pages; i++)
1436                 free_page((unsigned long)data->data_pages[i]);
1437         kfree(data);
1438 }
1439
1440 static void perf_mmap_data_free(struct perf_counter *counter)
1441 {
1442         struct perf_mmap_data *data = counter->data;
1443
1444         WARN_ON(atomic_read(&counter->mmap_count));
1445
1446         rcu_assign_pointer(counter->data, NULL);
1447         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1448 }
1449
1450 static void perf_mmap_open(struct vm_area_struct *vma)
1451 {
1452         struct perf_counter *counter = vma->vm_file->private_data;
1453
1454         atomic_inc(&counter->mmap_count);
1455 }
1456
1457 static void perf_mmap_close(struct vm_area_struct *vma)
1458 {
1459         struct perf_counter *counter = vma->vm_file->private_data;
1460
1461         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1462                                       &counter->mmap_mutex)) {
1463                 perf_mmap_data_free(counter);
1464                 mutex_unlock(&counter->mmap_mutex);
1465         }
1466 }
1467
1468 static struct vm_operations_struct perf_mmap_vmops = {
1469         .open = perf_mmap_open,
1470         .close = perf_mmap_close,
1471         .fault = perf_mmap_fault,
1472 };
1473
1474 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1475 {
1476         struct perf_counter *counter = file->private_data;
1477         unsigned long vma_size;
1478         unsigned long nr_pages;
1479         unsigned long locked, lock_limit;
1480         int ret = 0;
1481
1482         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1483                 return -EINVAL;
1484
1485         vma_size = vma->vm_end - vma->vm_start;
1486         nr_pages = (vma_size / PAGE_SIZE) - 1;
1487
1488         /*
1489          * If we have data pages ensure they're a power-of-two number, so we
1490          * can do bitmasks instead of modulo.
1491          */
1492         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1493                 return -EINVAL;
1494
1495         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1496                 return -EINVAL;
1497
1498         if (vma->vm_pgoff != 0)
1499                 return -EINVAL;
1500
1501         locked = vma_size >>  PAGE_SHIFT;
1502         locked += vma->vm_mm->locked_vm;
1503
1504         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1505         lock_limit >>= PAGE_SHIFT;
1506
1507         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1508                 return -EPERM;
1509
1510         mutex_lock(&counter->mmap_mutex);
1511         if (atomic_inc_not_zero(&counter->mmap_count))
1512                 goto out;
1513
1514         WARN_ON(counter->data);
1515         ret = perf_mmap_data_alloc(counter, nr_pages);
1516         if (!ret)
1517                 atomic_set(&counter->mmap_count, 1);
1518 out:
1519         mutex_unlock(&counter->mmap_mutex);
1520
1521         vma->vm_flags &= ~VM_MAYWRITE;
1522         vma->vm_flags |= VM_RESERVED;
1523         vma->vm_ops = &perf_mmap_vmops;
1524
1525         return ret;
1526 }
1527
1528 static const struct file_operations perf_fops = {
1529         .release                = perf_release,
1530         .read                   = perf_read,
1531         .poll                   = perf_poll,
1532         .unlocked_ioctl         = perf_ioctl,
1533         .compat_ioctl           = perf_ioctl,
1534         .mmap                   = perf_mmap,
1535 };
1536
1537 /*
1538  * Perf counter wakeup
1539  *
1540  * If there's data, ensure we set the poll() state and publish everything
1541  * to user-space before waking everybody up.
1542  */
1543
1544 void perf_counter_wakeup(struct perf_counter *counter)
1545 {
1546         struct perf_mmap_data *data;
1547
1548         rcu_read_lock();
1549         data = rcu_dereference(counter->data);
1550         if (data) {
1551                 (void)atomic_xchg(&data->wakeup, POLL_IN);
1552                 /*
1553                  * Ensure all data writes are issued before updating the
1554                  * user-space data head information. The matching rmb()
1555                  * will be in userspace after reading this value.
1556                  */
1557                 smp_wmb();
1558                 data->user_page->data_head = atomic_read(&data->head);
1559         }
1560         rcu_read_unlock();
1561
1562         wake_up_all(&counter->waitq);
1563 }
1564
1565 /*
1566  * Pending wakeups
1567  *
1568  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1569  *
1570  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1571  * single linked list and use cmpxchg() to add entries lockless.
1572  */
1573
1574 #define PENDING_TAIL ((struct perf_wakeup_entry *)-1UL)
1575
1576 static DEFINE_PER_CPU(struct perf_wakeup_entry *, perf_wakeup_head) = {
1577         PENDING_TAIL,
1578 };
1579
1580 static void perf_pending_queue(struct perf_counter *counter)
1581 {
1582         struct perf_wakeup_entry **head;
1583         struct perf_wakeup_entry *prev, *next;
1584
1585         if (cmpxchg(&counter->wakeup.next, NULL, PENDING_TAIL) != NULL)
1586                 return;
1587
1588         head = &get_cpu_var(perf_wakeup_head);
1589
1590         do {
1591                 prev = counter->wakeup.next = *head;
1592                 next = &counter->wakeup;
1593         } while (cmpxchg(head, prev, next) != prev);
1594
1595         set_perf_counter_pending();
1596
1597         put_cpu_var(perf_wakeup_head);
1598 }
1599
1600 static int __perf_pending_run(void)
1601 {
1602         struct perf_wakeup_entry *list;
1603         int nr = 0;
1604
1605         list = xchg(&__get_cpu_var(perf_wakeup_head), PENDING_TAIL);
1606         while (list != PENDING_TAIL) {
1607                 struct perf_counter *counter = container_of(list,
1608                                 struct perf_counter, wakeup);
1609
1610                 list = list->next;
1611
1612                 counter->wakeup.next = NULL;
1613                 /*
1614                  * Ensure we observe the unqueue before we issue the wakeup,
1615                  * so that we won't be waiting forever.
1616                  * -- see perf_not_pending().
1617                  */
1618                 smp_wmb();
1619
1620                 perf_counter_wakeup(counter);
1621                 nr++;
1622         }
1623
1624         return nr;
1625 }
1626
1627 static inline int perf_not_pending(struct perf_counter *counter)
1628 {
1629         /*
1630          * If we flush on whatever cpu we run, there is a chance we don't
1631          * need to wait.
1632          */
1633         get_cpu();
1634         __perf_pending_run();
1635         put_cpu();
1636
1637         /*
1638          * Ensure we see the proper queue state before going to sleep
1639          * so that we do not miss the wakeup. -- see perf_pending_handle()
1640          */
1641         smp_rmb();
1642         return counter->wakeup.next == NULL;
1643 }
1644
1645 static void perf_pending_sync(struct perf_counter *counter)
1646 {
1647         wait_event(counter->waitq, perf_not_pending(counter));
1648 }
1649
1650 void perf_counter_do_pending(void)
1651 {
1652         __perf_pending_run();
1653 }
1654
1655 /*
1656  * Output
1657  */
1658
1659 struct perf_output_handle {
1660         struct perf_counter     *counter;
1661         struct perf_mmap_data   *data;
1662         unsigned int            offset;
1663         unsigned int            head;
1664         int                     wakeup;
1665 };
1666
1667 static int perf_output_begin(struct perf_output_handle *handle,
1668                              struct perf_counter *counter, unsigned int size)
1669 {
1670         struct perf_mmap_data *data;
1671         unsigned int offset, head;
1672
1673         rcu_read_lock();
1674         data = rcu_dereference(counter->data);
1675         if (!data)
1676                 goto out;
1677
1678         if (!data->nr_pages)
1679                 goto out;
1680
1681         do {
1682                 offset = head = atomic_read(&data->head);
1683                 head += size;
1684         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1685
1686         handle->counter = counter;
1687         handle->data    = data;
1688         handle->offset  = offset;
1689         handle->head    = head;
1690         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1691
1692         return 0;
1693
1694 out:
1695         rcu_read_unlock();
1696
1697         return -ENOSPC;
1698 }
1699
1700 static void perf_output_copy(struct perf_output_handle *handle,
1701                              void *buf, unsigned int len)
1702 {
1703         unsigned int pages_mask;
1704         unsigned int offset;
1705         unsigned int size;
1706         void **pages;
1707
1708         offset          = handle->offset;
1709         pages_mask      = handle->data->nr_pages - 1;
1710         pages           = handle->data->data_pages;
1711
1712         do {
1713                 unsigned int page_offset;
1714                 int nr;
1715
1716                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1717                 page_offset = offset & (PAGE_SIZE - 1);
1718                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1719
1720                 memcpy(pages[nr] + page_offset, buf, size);
1721
1722                 len         -= size;
1723                 buf         += size;
1724                 offset      += size;
1725         } while (len);
1726
1727         handle->offset = offset;
1728
1729         WARN_ON_ONCE(handle->offset > handle->head);
1730 }
1731
1732 #define perf_output_put(handle, x) \
1733         perf_output_copy((handle), &(x), sizeof(x))
1734
1735 static void perf_output_end(struct perf_output_handle *handle, int nmi)
1736 {
1737         if (handle->wakeup) {
1738                 if (nmi)
1739                         perf_pending_queue(handle->counter);
1740                 else
1741                         perf_counter_wakeup(handle->counter);
1742         }
1743         rcu_read_unlock();
1744 }
1745
1746 static int perf_output_write(struct perf_counter *counter, int nmi,
1747                              void *buf, ssize_t size)
1748 {
1749         struct perf_output_handle handle;
1750         int ret;
1751
1752         ret = perf_output_begin(&handle, counter, size);
1753         if (ret)
1754                 goto out;
1755
1756         perf_output_copy(&handle, buf, size);
1757         perf_output_end(&handle, nmi);
1758
1759 out:
1760         return ret;
1761 }
1762
1763 static void perf_output_simple(struct perf_counter *counter,
1764                                int nmi, struct pt_regs *regs)
1765 {
1766         unsigned int size;
1767         struct {
1768                 struct perf_event_header header;
1769                 u64 ip;
1770                 u32 pid, tid;
1771         } event;
1772
1773         event.header.type = PERF_EVENT_IP;
1774         event.ip = instruction_pointer(regs);
1775
1776         size = sizeof(event);
1777
1778         if (counter->hw_event.include_tid) {
1779                 /* namespace issues */
1780                 event.pid = current->group_leader->pid;
1781                 event.tid = current->pid;
1782
1783                 event.header.type |= __PERF_EVENT_TID;
1784         } else
1785                 size -= sizeof(u64);
1786
1787         event.header.size = size;
1788
1789         perf_output_write(counter, nmi, &event, size);
1790 }
1791
1792 static void perf_output_group(struct perf_counter *counter, int nmi)
1793 {
1794         struct perf_output_handle handle;
1795         struct perf_event_header header;
1796         struct perf_counter *leader, *sub;
1797         unsigned int size;
1798         struct {
1799                 u64 event;
1800                 u64 counter;
1801         } entry;
1802         int ret;
1803
1804         size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1805
1806         ret = perf_output_begin(&handle, counter, size);
1807         if (ret)
1808                 return;
1809
1810         header.type = PERF_EVENT_GROUP;
1811         header.size = size;
1812
1813         perf_output_put(&handle, header);
1814
1815         leader = counter->group_leader;
1816         list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1817                 if (sub != counter)
1818                         sub->hw_ops->read(sub);
1819
1820                 entry.event = sub->hw_event.config;
1821                 entry.counter = atomic64_read(&sub->count);
1822
1823                 perf_output_put(&handle, entry);
1824         }
1825
1826         perf_output_end(&handle, nmi);
1827 }
1828
1829 void perf_counter_output(struct perf_counter *counter,
1830                          int nmi, struct pt_regs *regs)
1831 {
1832         switch (counter->hw_event.record_type) {
1833         case PERF_RECORD_SIMPLE:
1834                 return;
1835
1836         case PERF_RECORD_IRQ:
1837                 perf_output_simple(counter, nmi, regs);
1838                 break;
1839
1840         case PERF_RECORD_GROUP:
1841                 perf_output_group(counter, nmi);
1842                 break;
1843         }
1844 }
1845
1846 /*
1847  * Generic software counter infrastructure
1848  */
1849
1850 static void perf_swcounter_update(struct perf_counter *counter)
1851 {
1852         struct hw_perf_counter *hwc = &counter->hw;
1853         u64 prev, now;
1854         s64 delta;
1855
1856 again:
1857         prev = atomic64_read(&hwc->prev_count);
1858         now = atomic64_read(&hwc->count);
1859         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1860                 goto again;
1861
1862         delta = now - prev;
1863
1864         atomic64_add(delta, &counter->count);
1865         atomic64_sub(delta, &hwc->period_left);
1866 }
1867
1868 static void perf_swcounter_set_period(struct perf_counter *counter)
1869 {
1870         struct hw_perf_counter *hwc = &counter->hw;
1871         s64 left = atomic64_read(&hwc->period_left);
1872         s64 period = hwc->irq_period;
1873
1874         if (unlikely(left <= -period)) {
1875                 left = period;
1876                 atomic64_set(&hwc->period_left, left);
1877         }
1878
1879         if (unlikely(left <= 0)) {
1880                 left += period;
1881                 atomic64_add(period, &hwc->period_left);
1882         }
1883
1884         atomic64_set(&hwc->prev_count, -left);
1885         atomic64_set(&hwc->count, -left);
1886 }
1887
1888 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1889 {
1890         struct perf_counter *counter;
1891         struct pt_regs *regs;
1892
1893         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1894         counter->hw_ops->read(counter);
1895
1896         regs = get_irq_regs();
1897         /*
1898          * In case we exclude kernel IPs or are somehow not in interrupt
1899          * context, provide the next best thing, the user IP.
1900          */
1901         if ((counter->hw_event.exclude_kernel || !regs) &&
1902                         !counter->hw_event.exclude_user)
1903                 regs = task_pt_regs(current);
1904
1905         if (regs)
1906                 perf_counter_output(counter, 0, regs);
1907
1908         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1909
1910         return HRTIMER_RESTART;
1911 }
1912
1913 static void perf_swcounter_overflow(struct perf_counter *counter,
1914                                     int nmi, struct pt_regs *regs)
1915 {
1916         perf_swcounter_update(counter);
1917         perf_swcounter_set_period(counter);
1918         perf_counter_output(counter, nmi, regs);
1919 }
1920
1921 static int perf_swcounter_match(struct perf_counter *counter,
1922                                 enum perf_event_types type,
1923                                 u32 event, struct pt_regs *regs)
1924 {
1925         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1926                 return 0;
1927
1928         if (perf_event_raw(&counter->hw_event))
1929                 return 0;
1930
1931         if (perf_event_type(&counter->hw_event) != type)
1932                 return 0;
1933
1934         if (perf_event_id(&counter->hw_event) != event)
1935                 return 0;
1936
1937         if (counter->hw_event.exclude_user && user_mode(regs))
1938                 return 0;
1939
1940         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1941                 return 0;
1942
1943         return 1;
1944 }
1945
1946 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1947                                int nmi, struct pt_regs *regs)
1948 {
1949         int neg = atomic64_add_negative(nr, &counter->hw.count);
1950         if (counter->hw.irq_period && !neg)
1951                 perf_swcounter_overflow(counter, nmi, regs);
1952 }
1953
1954 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1955                                      enum perf_event_types type, u32 event,
1956                                      u64 nr, int nmi, struct pt_regs *regs)
1957 {
1958         struct perf_counter *counter;
1959
1960         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1961                 return;
1962
1963         rcu_read_lock();
1964         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1965                 if (perf_swcounter_match(counter, type, event, regs))
1966                         perf_swcounter_add(counter, nr, nmi, regs);
1967         }
1968         rcu_read_unlock();
1969 }
1970
1971 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1972 {
1973         if (in_nmi())
1974                 return &cpuctx->recursion[3];
1975
1976         if (in_irq())
1977                 return &cpuctx->recursion[2];
1978
1979         if (in_softirq())
1980                 return &cpuctx->recursion[1];
1981
1982         return &cpuctx->recursion[0];
1983 }
1984
1985 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1986                                    u64 nr, int nmi, struct pt_regs *regs)
1987 {
1988         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1989         int *recursion = perf_swcounter_recursion_context(cpuctx);
1990
1991         if (*recursion)
1992                 goto out;
1993
1994         (*recursion)++;
1995         barrier();
1996
1997         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1998         if (cpuctx->task_ctx) {
1999                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2000                                 nr, nmi, regs);
2001         }
2002
2003         barrier();
2004         (*recursion)--;
2005
2006 out:
2007         put_cpu_var(perf_cpu_context);
2008 }
2009
2010 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2011 {
2012         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2013 }
2014
2015 static void perf_swcounter_read(struct perf_counter *counter)
2016 {
2017         perf_swcounter_update(counter);
2018 }
2019
2020 static int perf_swcounter_enable(struct perf_counter *counter)
2021 {
2022         perf_swcounter_set_period(counter);
2023         return 0;
2024 }
2025
2026 static void perf_swcounter_disable(struct perf_counter *counter)
2027 {
2028         perf_swcounter_update(counter);
2029 }
2030
2031 static const struct hw_perf_counter_ops perf_ops_generic = {
2032         .enable         = perf_swcounter_enable,
2033         .disable        = perf_swcounter_disable,
2034         .read           = perf_swcounter_read,
2035 };
2036
2037 /*
2038  * Software counter: cpu wall time clock
2039  */
2040
2041 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2042 {
2043         int cpu = raw_smp_processor_id();
2044         s64 prev;
2045         u64 now;
2046
2047         now = cpu_clock(cpu);
2048         prev = atomic64_read(&counter->hw.prev_count);
2049         atomic64_set(&counter->hw.prev_count, now);
2050         atomic64_add(now - prev, &counter->count);
2051 }
2052
2053 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2054 {
2055         struct hw_perf_counter *hwc = &counter->hw;
2056         int cpu = raw_smp_processor_id();
2057
2058         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2059         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2060         hwc->hrtimer.function = perf_swcounter_hrtimer;
2061         if (hwc->irq_period) {
2062                 __hrtimer_start_range_ns(&hwc->hrtimer,
2063                                 ns_to_ktime(hwc->irq_period), 0,
2064                                 HRTIMER_MODE_REL, 0);
2065         }
2066
2067         return 0;
2068 }
2069
2070 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2071 {
2072         hrtimer_cancel(&counter->hw.hrtimer);
2073         cpu_clock_perf_counter_update(counter);
2074 }
2075
2076 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2077 {
2078         cpu_clock_perf_counter_update(counter);
2079 }
2080
2081 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2082         .enable         = cpu_clock_perf_counter_enable,
2083         .disable        = cpu_clock_perf_counter_disable,
2084         .read           = cpu_clock_perf_counter_read,
2085 };
2086
2087 /*
2088  * Software counter: task time clock
2089  */
2090
2091 /*
2092  * Called from within the scheduler:
2093  */
2094 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2095 {
2096         struct task_struct *curr = counter->task;
2097         u64 delta;
2098
2099         delta = __task_delta_exec(curr, update);
2100
2101         return curr->se.sum_exec_runtime + delta;
2102 }
2103
2104 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2105 {
2106         u64 prev;
2107         s64 delta;
2108
2109         prev = atomic64_read(&counter->hw.prev_count);
2110
2111         atomic64_set(&counter->hw.prev_count, now);
2112
2113         delta = now - prev;
2114
2115         atomic64_add(delta, &counter->count);
2116 }
2117
2118 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2119 {
2120         struct hw_perf_counter *hwc = &counter->hw;
2121
2122         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2123         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2124         hwc->hrtimer.function = perf_swcounter_hrtimer;
2125         if (hwc->irq_period) {
2126                 __hrtimer_start_range_ns(&hwc->hrtimer,
2127                                 ns_to_ktime(hwc->irq_period), 0,
2128                                 HRTIMER_MODE_REL, 0);
2129         }
2130
2131         return 0;
2132 }
2133
2134 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2135 {
2136         hrtimer_cancel(&counter->hw.hrtimer);
2137         task_clock_perf_counter_update(counter,
2138                         task_clock_perf_counter_val(counter, 0));
2139 }
2140
2141 static void task_clock_perf_counter_read(struct perf_counter *counter)
2142 {
2143         task_clock_perf_counter_update(counter,
2144                         task_clock_perf_counter_val(counter, 1));
2145 }
2146
2147 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2148         .enable         = task_clock_perf_counter_enable,
2149         .disable        = task_clock_perf_counter_disable,
2150         .read           = task_clock_perf_counter_read,
2151 };
2152
2153 /*
2154  * Software counter: cpu migrations
2155  */
2156
2157 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2158 {
2159         struct task_struct *curr = counter->ctx->task;
2160
2161         if (curr)
2162                 return curr->se.nr_migrations;
2163         return cpu_nr_migrations(smp_processor_id());
2164 }
2165
2166 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2167 {
2168         u64 prev, now;
2169         s64 delta;
2170
2171         prev = atomic64_read(&counter->hw.prev_count);
2172         now = get_cpu_migrations(counter);
2173
2174         atomic64_set(&counter->hw.prev_count, now);
2175
2176         delta = now - prev;
2177
2178         atomic64_add(delta, &counter->count);
2179 }
2180
2181 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2182 {
2183         cpu_migrations_perf_counter_update(counter);
2184 }
2185
2186 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2187 {
2188         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2189                 atomic64_set(&counter->hw.prev_count,
2190                              get_cpu_migrations(counter));
2191         return 0;
2192 }
2193
2194 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2195 {
2196         cpu_migrations_perf_counter_update(counter);
2197 }
2198
2199 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2200         .enable         = cpu_migrations_perf_counter_enable,
2201         .disable        = cpu_migrations_perf_counter_disable,
2202         .read           = cpu_migrations_perf_counter_read,
2203 };
2204
2205 #ifdef CONFIG_EVENT_PROFILE
2206 void perf_tpcounter_event(int event_id)
2207 {
2208         struct pt_regs *regs = get_irq_regs();
2209
2210         if (!regs)
2211                 regs = task_pt_regs(current);
2212
2213         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2214 }
2215
2216 extern int ftrace_profile_enable(int);
2217 extern void ftrace_profile_disable(int);
2218
2219 static void tp_perf_counter_destroy(struct perf_counter *counter)
2220 {
2221         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2222 }
2223
2224 static const struct hw_perf_counter_ops *
2225 tp_perf_counter_init(struct perf_counter *counter)
2226 {
2227         int event_id = perf_event_id(&counter->hw_event);
2228         int ret;
2229
2230         ret = ftrace_profile_enable(event_id);
2231         if (ret)
2232                 return NULL;
2233
2234         counter->destroy = tp_perf_counter_destroy;
2235         counter->hw.irq_period = counter->hw_event.irq_period;
2236
2237         return &perf_ops_generic;
2238 }
2239 #else
2240 static const struct hw_perf_counter_ops *
2241 tp_perf_counter_init(struct perf_counter *counter)
2242 {
2243         return NULL;
2244 }
2245 #endif
2246
2247 static const struct hw_perf_counter_ops *
2248 sw_perf_counter_init(struct perf_counter *counter)
2249 {
2250         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2251         const struct hw_perf_counter_ops *hw_ops = NULL;
2252         struct hw_perf_counter *hwc = &counter->hw;
2253
2254         /*
2255          * Software counters (currently) can't in general distinguish
2256          * between user, kernel and hypervisor events.
2257          * However, context switches and cpu migrations are considered
2258          * to be kernel events, and page faults are never hypervisor
2259          * events.
2260          */
2261         switch (perf_event_id(&counter->hw_event)) {
2262         case PERF_COUNT_CPU_CLOCK:
2263                 hw_ops = &perf_ops_cpu_clock;
2264
2265                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2266                         hw_event->irq_period = 10000;
2267                 break;
2268         case PERF_COUNT_TASK_CLOCK:
2269                 /*
2270                  * If the user instantiates this as a per-cpu counter,
2271                  * use the cpu_clock counter instead.
2272                  */
2273                 if (counter->ctx->task)
2274                         hw_ops = &perf_ops_task_clock;
2275                 else
2276                         hw_ops = &perf_ops_cpu_clock;
2277
2278                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2279                         hw_event->irq_period = 10000;
2280                 break;
2281         case PERF_COUNT_PAGE_FAULTS:
2282         case PERF_COUNT_PAGE_FAULTS_MIN:
2283         case PERF_COUNT_PAGE_FAULTS_MAJ:
2284         case PERF_COUNT_CONTEXT_SWITCHES:
2285                 hw_ops = &perf_ops_generic;
2286                 break;
2287         case PERF_COUNT_CPU_MIGRATIONS:
2288                 if (!counter->hw_event.exclude_kernel)
2289                         hw_ops = &perf_ops_cpu_migrations;
2290                 break;
2291         }
2292
2293         if (hw_ops)
2294                 hwc->irq_period = hw_event->irq_period;
2295
2296         return hw_ops;
2297 }
2298
2299 /*
2300  * Allocate and initialize a counter structure
2301  */
2302 static struct perf_counter *
2303 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2304                    int cpu,
2305                    struct perf_counter_context *ctx,
2306                    struct perf_counter *group_leader,
2307                    gfp_t gfpflags)
2308 {
2309         const struct hw_perf_counter_ops *hw_ops;
2310         struct perf_counter *counter;
2311
2312         counter = kzalloc(sizeof(*counter), gfpflags);
2313         if (!counter)
2314                 return NULL;
2315
2316         /*
2317          * Single counters are their own group leaders, with an
2318          * empty sibling list:
2319          */
2320         if (!group_leader)
2321                 group_leader = counter;
2322
2323         mutex_init(&counter->mutex);
2324         INIT_LIST_HEAD(&counter->list_entry);
2325         INIT_LIST_HEAD(&counter->event_entry);
2326         INIT_LIST_HEAD(&counter->sibling_list);
2327         init_waitqueue_head(&counter->waitq);
2328
2329         mutex_init(&counter->mmap_mutex);
2330
2331         INIT_LIST_HEAD(&counter->child_list);
2332
2333         counter->cpu                    = cpu;
2334         counter->hw_event               = *hw_event;
2335         counter->group_leader           = group_leader;
2336         counter->hw_ops                 = NULL;
2337         counter->ctx                    = ctx;
2338
2339         counter->state = PERF_COUNTER_STATE_INACTIVE;
2340         if (hw_event->disabled)
2341                 counter->state = PERF_COUNTER_STATE_OFF;
2342
2343         hw_ops = NULL;
2344
2345         if (perf_event_raw(hw_event)) {
2346                 hw_ops = hw_perf_counter_init(counter);
2347                 goto done;
2348         }
2349
2350         switch (perf_event_type(hw_event)) {
2351         case PERF_TYPE_HARDWARE:
2352                 hw_ops = hw_perf_counter_init(counter);
2353                 break;
2354
2355         case PERF_TYPE_SOFTWARE:
2356                 hw_ops = sw_perf_counter_init(counter);
2357                 break;
2358
2359         case PERF_TYPE_TRACEPOINT:
2360                 hw_ops = tp_perf_counter_init(counter);
2361                 break;
2362         }
2363
2364         if (!hw_ops) {
2365                 kfree(counter);
2366                 return NULL;
2367         }
2368 done:
2369         counter->hw_ops = hw_ops;
2370
2371         return counter;
2372 }
2373
2374 /**
2375  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2376  *
2377  * @hw_event_uptr:      event type attributes for monitoring/sampling
2378  * @pid:                target pid
2379  * @cpu:                target cpu
2380  * @group_fd:           group leader counter fd
2381  */
2382 SYSCALL_DEFINE5(perf_counter_open,
2383                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2384                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2385 {
2386         struct perf_counter *counter, *group_leader;
2387         struct perf_counter_hw_event hw_event;
2388         struct perf_counter_context *ctx;
2389         struct file *counter_file = NULL;
2390         struct file *group_file = NULL;
2391         int fput_needed = 0;
2392         int fput_needed2 = 0;
2393         int ret;
2394
2395         /* for future expandability... */
2396         if (flags)
2397                 return -EINVAL;
2398
2399         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2400                 return -EFAULT;
2401
2402         /*
2403          * Get the target context (task or percpu):
2404          */
2405         ctx = find_get_context(pid, cpu);
2406         if (IS_ERR(ctx))
2407                 return PTR_ERR(ctx);
2408
2409         /*
2410          * Look up the group leader (we will attach this counter to it):
2411          */
2412         group_leader = NULL;
2413         if (group_fd != -1) {
2414                 ret = -EINVAL;
2415                 group_file = fget_light(group_fd, &fput_needed);
2416                 if (!group_file)
2417                         goto err_put_context;
2418                 if (group_file->f_op != &perf_fops)
2419                         goto err_put_context;
2420
2421                 group_leader = group_file->private_data;
2422                 /*
2423                  * Do not allow a recursive hierarchy (this new sibling
2424                  * becoming part of another group-sibling):
2425                  */
2426                 if (group_leader->group_leader != group_leader)
2427                         goto err_put_context;
2428                 /*
2429                  * Do not allow to attach to a group in a different
2430                  * task or CPU context:
2431                  */
2432                 if (group_leader->ctx != ctx)
2433                         goto err_put_context;
2434                 /*
2435                  * Only a group leader can be exclusive or pinned
2436                  */
2437                 if (hw_event.exclusive || hw_event.pinned)
2438                         goto err_put_context;
2439         }
2440
2441         ret = -EINVAL;
2442         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2443                                      GFP_KERNEL);
2444         if (!counter)
2445                 goto err_put_context;
2446
2447         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2448         if (ret < 0)
2449                 goto err_free_put_context;
2450
2451         counter_file = fget_light(ret, &fput_needed2);
2452         if (!counter_file)
2453                 goto err_free_put_context;
2454
2455         counter->filp = counter_file;
2456         mutex_lock(&ctx->mutex);
2457         perf_install_in_context(ctx, counter, cpu);
2458         mutex_unlock(&ctx->mutex);
2459
2460         fput_light(counter_file, fput_needed2);
2461
2462 out_fput:
2463         fput_light(group_file, fput_needed);
2464
2465         return ret;
2466
2467 err_free_put_context:
2468         kfree(counter);
2469
2470 err_put_context:
2471         put_context(ctx);
2472
2473         goto out_fput;
2474 }
2475
2476 /*
2477  * Initialize the perf_counter context in a task_struct:
2478  */
2479 static void
2480 __perf_counter_init_context(struct perf_counter_context *ctx,
2481                             struct task_struct *task)
2482 {
2483         memset(ctx, 0, sizeof(*ctx));
2484         spin_lock_init(&ctx->lock);
2485         mutex_init(&ctx->mutex);
2486         INIT_LIST_HEAD(&ctx->counter_list);
2487         INIT_LIST_HEAD(&ctx->event_list);
2488         ctx->task = task;
2489 }
2490
2491 /*
2492  * inherit a counter from parent task to child task:
2493  */
2494 static struct perf_counter *
2495 inherit_counter(struct perf_counter *parent_counter,
2496               struct task_struct *parent,
2497               struct perf_counter_context *parent_ctx,
2498               struct task_struct *child,
2499               struct perf_counter *group_leader,
2500               struct perf_counter_context *child_ctx)
2501 {
2502         struct perf_counter *child_counter;
2503
2504         /*
2505          * Instead of creating recursive hierarchies of counters,
2506          * we link inherited counters back to the original parent,
2507          * which has a filp for sure, which we use as the reference
2508          * count:
2509          */
2510         if (parent_counter->parent)
2511                 parent_counter = parent_counter->parent;
2512
2513         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2514                                            parent_counter->cpu, child_ctx,
2515                                            group_leader, GFP_KERNEL);
2516         if (!child_counter)
2517                 return NULL;
2518
2519         /*
2520          * Link it up in the child's context:
2521          */
2522         child_counter->task = child;
2523         add_counter_to_ctx(child_counter, child_ctx);
2524
2525         child_counter->parent = parent_counter;
2526         /*
2527          * inherit into child's child as well:
2528          */
2529         child_counter->hw_event.inherit = 1;
2530
2531         /*
2532          * Get a reference to the parent filp - we will fput it
2533          * when the child counter exits. This is safe to do because
2534          * we are in the parent and we know that the filp still
2535          * exists and has a nonzero count:
2536          */
2537         atomic_long_inc(&parent_counter->filp->f_count);
2538
2539         /*
2540          * Link this into the parent counter's child list
2541          */
2542         mutex_lock(&parent_counter->mutex);
2543         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2544
2545         /*
2546          * Make the child state follow the state of the parent counter,
2547          * not its hw_event.disabled bit.  We hold the parent's mutex,
2548          * so we won't race with perf_counter_{en,dis}able_family.
2549          */
2550         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2551                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2552         else
2553                 child_counter->state = PERF_COUNTER_STATE_OFF;
2554
2555         mutex_unlock(&parent_counter->mutex);
2556
2557         return child_counter;
2558 }
2559
2560 static int inherit_group(struct perf_counter *parent_counter,
2561               struct task_struct *parent,
2562               struct perf_counter_context *parent_ctx,
2563               struct task_struct *child,
2564               struct perf_counter_context *child_ctx)
2565 {
2566         struct perf_counter *leader;
2567         struct perf_counter *sub;
2568
2569         leader = inherit_counter(parent_counter, parent, parent_ctx,
2570                                  child, NULL, child_ctx);
2571         if (!leader)
2572                 return -ENOMEM;
2573         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2574                 if (!inherit_counter(sub, parent, parent_ctx,
2575                                      child, leader, child_ctx))
2576                         return -ENOMEM;
2577         }
2578         return 0;
2579 }
2580
2581 static void sync_child_counter(struct perf_counter *child_counter,
2582                                struct perf_counter *parent_counter)
2583 {
2584         u64 parent_val, child_val;
2585
2586         parent_val = atomic64_read(&parent_counter->count);
2587         child_val = atomic64_read(&child_counter->count);
2588
2589         /*
2590          * Add back the child's count to the parent's count:
2591          */
2592         atomic64_add(child_val, &parent_counter->count);
2593         atomic64_add(child_counter->total_time_enabled,
2594                      &parent_counter->child_total_time_enabled);
2595         atomic64_add(child_counter->total_time_running,
2596                      &parent_counter->child_total_time_running);
2597
2598         /*
2599          * Remove this counter from the parent's list
2600          */
2601         mutex_lock(&parent_counter->mutex);
2602         list_del_init(&child_counter->child_list);
2603         mutex_unlock(&parent_counter->mutex);
2604
2605         /*
2606          * Release the parent counter, if this was the last
2607          * reference to it.
2608          */
2609         fput(parent_counter->filp);
2610 }
2611
2612 static void
2613 __perf_counter_exit_task(struct task_struct *child,
2614                          struct perf_counter *child_counter,
2615                          struct perf_counter_context *child_ctx)
2616 {
2617         struct perf_counter *parent_counter;
2618         struct perf_counter *sub, *tmp;
2619
2620         /*
2621          * If we do not self-reap then we have to wait for the
2622          * child task to unschedule (it will happen for sure),
2623          * so that its counter is at its final count. (This
2624          * condition triggers rarely - child tasks usually get
2625          * off their CPU before the parent has a chance to
2626          * get this far into the reaping action)
2627          */
2628         if (child != current) {
2629                 wait_task_inactive(child, 0);
2630                 list_del_init(&child_counter->list_entry);
2631                 update_counter_times(child_counter);
2632         } else {
2633                 struct perf_cpu_context *cpuctx;
2634                 unsigned long flags;
2635                 u64 perf_flags;
2636
2637                 /*
2638                  * Disable and unlink this counter.
2639                  *
2640                  * Be careful about zapping the list - IRQ/NMI context
2641                  * could still be processing it:
2642                  */
2643                 curr_rq_lock_irq_save(&flags);
2644                 perf_flags = hw_perf_save_disable();
2645
2646                 cpuctx = &__get_cpu_var(perf_cpu_context);
2647
2648                 group_sched_out(child_counter, cpuctx, child_ctx);
2649                 update_counter_times(child_counter);
2650
2651                 list_del_init(&child_counter->list_entry);
2652
2653                 child_ctx->nr_counters--;
2654
2655                 hw_perf_restore(perf_flags);
2656                 curr_rq_unlock_irq_restore(&flags);
2657         }
2658
2659         parent_counter = child_counter->parent;
2660         /*
2661          * It can happen that parent exits first, and has counters
2662          * that are still around due to the child reference. These
2663          * counters need to be zapped - but otherwise linger.
2664          */
2665         if (parent_counter) {
2666                 sync_child_counter(child_counter, parent_counter);
2667                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2668                                          list_entry) {
2669                         if (sub->parent) {
2670                                 sync_child_counter(sub, sub->parent);
2671                                 free_counter(sub);
2672                         }
2673                 }
2674                 free_counter(child_counter);
2675         }
2676 }
2677
2678 /*
2679  * When a child task exits, feed back counter values to parent counters.
2680  *
2681  * Note: we may be running in child context, but the PID is not hashed
2682  * anymore so new counters will not be added.
2683  */
2684 void perf_counter_exit_task(struct task_struct *child)
2685 {
2686         struct perf_counter *child_counter, *tmp;
2687         struct perf_counter_context *child_ctx;
2688
2689         child_ctx = &child->perf_counter_ctx;
2690
2691         if (likely(!child_ctx->nr_counters))
2692                 return;
2693
2694         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2695                                  list_entry)
2696                 __perf_counter_exit_task(child, child_counter, child_ctx);
2697 }
2698
2699 /*
2700  * Initialize the perf_counter context in task_struct
2701  */
2702 void perf_counter_init_task(struct task_struct *child)
2703 {
2704         struct perf_counter_context *child_ctx, *parent_ctx;
2705         struct perf_counter *counter;
2706         struct task_struct *parent = current;
2707
2708         child_ctx  =  &child->perf_counter_ctx;
2709         parent_ctx = &parent->perf_counter_ctx;
2710
2711         __perf_counter_init_context(child_ctx, child);
2712
2713         /*
2714          * This is executed from the parent task context, so inherit
2715          * counters that have been marked for cloning:
2716          */
2717
2718         if (likely(!parent_ctx->nr_counters))
2719                 return;
2720
2721         /*
2722          * Lock the parent list. No need to lock the child - not PID
2723          * hashed yet and not running, so nobody can access it.
2724          */
2725         mutex_lock(&parent_ctx->mutex);
2726
2727         /*
2728          * We dont have to disable NMIs - we are only looking at
2729          * the list, not manipulating it:
2730          */
2731         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2732                 if (!counter->hw_event.inherit)
2733                         continue;
2734
2735                 if (inherit_group(counter, parent,
2736                                   parent_ctx, child, child_ctx))
2737                         break;
2738         }
2739
2740         mutex_unlock(&parent_ctx->mutex);
2741 }
2742
2743 static void __cpuinit perf_counter_init_cpu(int cpu)
2744 {
2745         struct perf_cpu_context *cpuctx;
2746
2747         cpuctx = &per_cpu(perf_cpu_context, cpu);
2748         __perf_counter_init_context(&cpuctx->ctx, NULL);
2749
2750         mutex_lock(&perf_resource_mutex);
2751         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2752         mutex_unlock(&perf_resource_mutex);
2753
2754         hw_perf_counter_setup(cpu);
2755 }
2756
2757 #ifdef CONFIG_HOTPLUG_CPU
2758 static void __perf_counter_exit_cpu(void *info)
2759 {
2760         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2761         struct perf_counter_context *ctx = &cpuctx->ctx;
2762         struct perf_counter *counter, *tmp;
2763
2764         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2765                 __perf_counter_remove_from_context(counter);
2766 }
2767 static void perf_counter_exit_cpu(int cpu)
2768 {
2769         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2770         struct perf_counter_context *ctx = &cpuctx->ctx;
2771
2772         mutex_lock(&ctx->mutex);
2773         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2774         mutex_unlock(&ctx->mutex);
2775 }
2776 #else
2777 static inline void perf_counter_exit_cpu(int cpu) { }
2778 #endif
2779
2780 static int __cpuinit
2781 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2782 {
2783         unsigned int cpu = (long)hcpu;
2784
2785         switch (action) {
2786
2787         case CPU_UP_PREPARE:
2788         case CPU_UP_PREPARE_FROZEN:
2789                 perf_counter_init_cpu(cpu);
2790                 break;
2791
2792         case CPU_DOWN_PREPARE:
2793         case CPU_DOWN_PREPARE_FROZEN:
2794                 perf_counter_exit_cpu(cpu);
2795                 break;
2796
2797         default:
2798                 break;
2799         }
2800
2801         return NOTIFY_OK;
2802 }
2803
2804 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2805         .notifier_call          = perf_cpu_notify,
2806 };
2807
2808 static int __init perf_counter_init(void)
2809 {
2810         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2811                         (void *)(long)smp_processor_id());
2812         register_cpu_notifier(&perf_cpu_nb);
2813
2814         return 0;
2815 }
2816 early_initcall(perf_counter_init);
2817
2818 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2819 {
2820         return sprintf(buf, "%d\n", perf_reserved_percpu);
2821 }
2822
2823 static ssize_t
2824 perf_set_reserve_percpu(struct sysdev_class *class,
2825                         const char *buf,
2826                         size_t count)
2827 {
2828         struct perf_cpu_context *cpuctx;
2829         unsigned long val;
2830         int err, cpu, mpt;
2831
2832         err = strict_strtoul(buf, 10, &val);
2833         if (err)
2834                 return err;
2835         if (val > perf_max_counters)
2836                 return -EINVAL;
2837
2838         mutex_lock(&perf_resource_mutex);
2839         perf_reserved_percpu = val;
2840         for_each_online_cpu(cpu) {
2841                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2842                 spin_lock_irq(&cpuctx->ctx.lock);
2843                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2844                           perf_max_counters - perf_reserved_percpu);
2845                 cpuctx->max_pertask = mpt;
2846                 spin_unlock_irq(&cpuctx->ctx.lock);
2847         }
2848         mutex_unlock(&perf_resource_mutex);
2849
2850         return count;
2851 }
2852
2853 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2854 {
2855         return sprintf(buf, "%d\n", perf_overcommit);
2856 }
2857
2858 static ssize_t
2859 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2860 {
2861         unsigned long val;
2862         int err;
2863
2864         err = strict_strtoul(buf, 10, &val);
2865         if (err)
2866                 return err;
2867         if (val > 1)
2868                 return -EINVAL;
2869
2870         mutex_lock(&perf_resource_mutex);
2871         perf_overcommit = val;
2872         mutex_unlock(&perf_resource_mutex);
2873
2874         return count;
2875 }
2876
2877 static SYSDEV_CLASS_ATTR(
2878                                 reserve_percpu,
2879                                 0644,
2880                                 perf_show_reserve_percpu,
2881                                 perf_set_reserve_percpu
2882                         );
2883
2884 static SYSDEV_CLASS_ATTR(
2885                                 overcommit,
2886                                 0644,
2887                                 perf_show_overcommit,
2888                                 perf_set_overcommit
2889                         );
2890
2891 static struct attribute *perfclass_attrs[] = {
2892         &attr_reserve_percpu.attr,
2893         &attr_overcommit.attr,
2894         NULL
2895 };
2896
2897 static struct attribute_group perfclass_attr_group = {
2898         .attrs                  = perfclass_attrs,
2899         .name                   = "perf_counters",
2900 };
2901
2902 static int __init perf_counter_sysfs_init(void)
2903 {
2904         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2905                                   &perfclass_attr_group);
2906 }
2907 device_initcall(perf_counter_sysfs_init);