perf_counter: Remove perf_counter_context::nr_enabled
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102         atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107         if (atomic_dec_and_test(&ctx->refcount)) {
108                 if (ctx->parent_ctx)
109                         put_ctx(ctx->parent_ctx);
110                 kfree(ctx);
111         }
112 }
113
114 /*
115  * Add a counter from the lists for its context.
116  * Must be called with ctx->mutex and ctx->lock held.
117  */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121         struct perf_counter *group_leader = counter->group_leader;
122
123         /*
124          * Depending on whether it is a standalone or sibling counter,
125          * add it straight to the context's counter list, or to the group
126          * leader's sibling list:
127          */
128         if (group_leader == counter)
129                 list_add_tail(&counter->list_entry, &ctx->counter_list);
130         else {
131                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132                 group_leader->nr_siblings++;
133         }
134
135         list_add_rcu(&counter->event_entry, &ctx->event_list);
136         ctx->nr_counters++;
137 }
138
139 /*
140  * Remove a counter from the lists for its context.
141  * Must be called with ctx->mutex and ctx->lock held.
142  */
143 static void
144 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
145 {
146         struct perf_counter *sibling, *tmp;
147
148         if (list_empty(&counter->list_entry))
149                 return;
150         ctx->nr_counters--;
151
152         list_del_init(&counter->list_entry);
153         list_del_rcu(&counter->event_entry);
154
155         if (counter->group_leader != counter)
156                 counter->group_leader->nr_siblings--;
157
158         /*
159          * If this was a group counter with sibling counters then
160          * upgrade the siblings to singleton counters by adding them
161          * to the context list directly:
162          */
163         list_for_each_entry_safe(sibling, tmp,
164                                  &counter->sibling_list, list_entry) {
165
166                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167                 sibling->group_leader = sibling;
168         }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173                   struct perf_cpu_context *cpuctx,
174                   struct perf_counter_context *ctx)
175 {
176         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177                 return;
178
179         counter->state = PERF_COUNTER_STATE_INACTIVE;
180         counter->tstamp_stopped = ctx->time;
181         counter->pmu->disable(counter);
182         counter->oncpu = -1;
183
184         if (!is_software_counter(counter))
185                 cpuctx->active_oncpu--;
186         ctx->nr_active--;
187         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188                 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193                 struct perf_cpu_context *cpuctx,
194                 struct perf_counter_context *ctx)
195 {
196         struct perf_counter *counter;
197
198         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199                 return;
200
201         counter_sched_out(group_counter, cpuctx, ctx);
202
203         /*
204          * Schedule out siblings (if any):
205          */
206         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207                 counter_sched_out(counter, cpuctx, ctx);
208
209         if (group_counter->hw_event.exclusive)
210                 cpuctx->exclusive = 0;
211 }
212
213 /*
214  * Mark this context as not being a clone of another.
215  * Called when counters are added to or removed from this context.
216  * We also increment our generation number so that anything that
217  * was cloned from this context before this will not match anything
218  * cloned from this context after this.
219  */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222         ++ctx->generation;
223         if (!ctx->parent_ctx)
224                 return;
225         put_ctx(ctx->parent_ctx);
226         ctx->parent_ctx = NULL;
227 }
228
229 /*
230  * Cross CPU call to remove a performance counter
231  *
232  * We disable the counter on the hardware level first. After that we
233  * remove it from the context list.
234  */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238         struct perf_counter *counter = info;
239         struct perf_counter_context *ctx = counter->ctx;
240         unsigned long flags;
241
242         /*
243          * If this is a task context, we need to check whether it is
244          * the current task context of this cpu. If not it has been
245          * scheduled out before the smp call arrived.
246          */
247         if (ctx->task && cpuctx->task_ctx != ctx)
248                 return;
249
250         spin_lock_irqsave(&ctx->lock, flags);
251         /*
252          * Protect the list operation against NMI by disabling the
253          * counters on a global level.
254          */
255         perf_disable();
256
257         counter_sched_out(counter, cpuctx, ctx);
258
259         list_del_counter(counter, ctx);
260
261         if (!ctx->task) {
262                 /*
263                  * Allow more per task counters with respect to the
264                  * reservation:
265                  */
266                 cpuctx->max_pertask =
267                         min(perf_max_counters - ctx->nr_counters,
268                             perf_max_counters - perf_reserved_percpu);
269         }
270
271         perf_enable();
272         spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277  * Remove the counter from a task's (or a CPU's) list of counters.
278  *
279  * Must be called with ctx->mutex held.
280  *
281  * CPU counters are removed with a smp call. For task counters we only
282  * call when the task is on a CPU.
283  */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286         struct perf_counter_context *ctx = counter->ctx;
287         struct task_struct *task = ctx->task;
288
289         unclone_ctx(ctx);
290         if (!task) {
291                 /*
292                  * Per cpu counters are removed via an smp call and
293                  * the removal is always sucessful.
294                  */
295                 smp_call_function_single(counter->cpu,
296                                          __perf_counter_remove_from_context,
297                                          counter, 1);
298                 return;
299         }
300
301 retry:
302         task_oncpu_function_call(task, __perf_counter_remove_from_context,
303                                  counter);
304
305         spin_lock_irq(&ctx->lock);
306         /*
307          * If the context is active we need to retry the smp call.
308          */
309         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310                 spin_unlock_irq(&ctx->lock);
311                 goto retry;
312         }
313
314         /*
315          * The lock prevents that this context is scheduled in so we
316          * can remove the counter safely, if the call above did not
317          * succeed.
318          */
319         if (!list_empty(&counter->list_entry)) {
320                 list_del_counter(counter, ctx);
321         }
322         spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327         return cpu_clock(smp_processor_id());
328 }
329
330 /*
331  * Update the record of the current time in a context.
332  */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335         u64 now = perf_clock();
336
337         ctx->time += now - ctx->timestamp;
338         ctx->timestamp = now;
339 }
340
341 /*
342  * Update the total_time_enabled and total_time_running fields for a counter.
343  */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346         struct perf_counter_context *ctx = counter->ctx;
347         u64 run_end;
348
349         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350                 return;
351
352         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355                 run_end = counter->tstamp_stopped;
356         else
357                 run_end = ctx->time;
358
359         counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363  * Update total_time_enabled and total_time_running for all counters in a group.
364  */
365 static void update_group_times(struct perf_counter *leader)
366 {
367         struct perf_counter *counter;
368
369         update_counter_times(leader);
370         list_for_each_entry(counter, &leader->sibling_list, list_entry)
371                 update_counter_times(counter);
372 }
373
374 /*
375  * Cross CPU call to disable a performance counter
376  */
377 static void __perf_counter_disable(void *info)
378 {
379         struct perf_counter *counter = info;
380         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381         struct perf_counter_context *ctx = counter->ctx;
382         unsigned long flags;
383
384         /*
385          * If this is a per-task counter, need to check whether this
386          * counter's task is the current task on this cpu.
387          */
388         if (ctx->task && cpuctx->task_ctx != ctx)
389                 return;
390
391         spin_lock_irqsave(&ctx->lock, flags);
392
393         /*
394          * If the counter is on, turn it off.
395          * If it is in error state, leave it in error state.
396          */
397         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398                 update_context_time(ctx);
399                 update_counter_times(counter);
400                 if (counter == counter->group_leader)
401                         group_sched_out(counter, cpuctx, ctx);
402                 else
403                         counter_sched_out(counter, cpuctx, ctx);
404                 counter->state = PERF_COUNTER_STATE_OFF;
405         }
406
407         spin_unlock_irqrestore(&ctx->lock, flags);
408 }
409
410 /*
411  * Disable a counter.
412  */
413 static void perf_counter_disable(struct perf_counter *counter)
414 {
415         struct perf_counter_context *ctx = counter->ctx;
416         struct task_struct *task = ctx->task;
417
418         if (!task) {
419                 /*
420                  * Disable the counter on the cpu that it's on
421                  */
422                 smp_call_function_single(counter->cpu, __perf_counter_disable,
423                                          counter, 1);
424                 return;
425         }
426
427  retry:
428         task_oncpu_function_call(task, __perf_counter_disable, counter);
429
430         spin_lock_irq(&ctx->lock);
431         /*
432          * If the counter is still active, we need to retry the cross-call.
433          */
434         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
435                 spin_unlock_irq(&ctx->lock);
436                 goto retry;
437         }
438
439         /*
440          * Since we have the lock this context can't be scheduled
441          * in, so we can change the state safely.
442          */
443         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
444                 update_counter_times(counter);
445                 counter->state = PERF_COUNTER_STATE_OFF;
446         }
447
448         spin_unlock_irq(&ctx->lock);
449 }
450
451 static int
452 counter_sched_in(struct perf_counter *counter,
453                  struct perf_cpu_context *cpuctx,
454                  struct perf_counter_context *ctx,
455                  int cpu)
456 {
457         if (counter->state <= PERF_COUNTER_STATE_OFF)
458                 return 0;
459
460         counter->state = PERF_COUNTER_STATE_ACTIVE;
461         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
462         /*
463          * The new state must be visible before we turn it on in the hardware:
464          */
465         smp_wmb();
466
467         if (counter->pmu->enable(counter)) {
468                 counter->state = PERF_COUNTER_STATE_INACTIVE;
469                 counter->oncpu = -1;
470                 return -EAGAIN;
471         }
472
473         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
474
475         if (!is_software_counter(counter))
476                 cpuctx->active_oncpu++;
477         ctx->nr_active++;
478
479         if (counter->hw_event.exclusive)
480                 cpuctx->exclusive = 1;
481
482         return 0;
483 }
484
485 static int
486 group_sched_in(struct perf_counter *group_counter,
487                struct perf_cpu_context *cpuctx,
488                struct perf_counter_context *ctx,
489                int cpu)
490 {
491         struct perf_counter *counter, *partial_group;
492         int ret;
493
494         if (group_counter->state == PERF_COUNTER_STATE_OFF)
495                 return 0;
496
497         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
498         if (ret)
499                 return ret < 0 ? ret : 0;
500
501         group_counter->prev_state = group_counter->state;
502         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
503                 return -EAGAIN;
504
505         /*
506          * Schedule in siblings as one group (if any):
507          */
508         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
509                 counter->prev_state = counter->state;
510                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
511                         partial_group = counter;
512                         goto group_error;
513                 }
514         }
515
516         return 0;
517
518 group_error:
519         /*
520          * Groups can be scheduled in as one unit only, so undo any
521          * partial group before returning:
522          */
523         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
524                 if (counter == partial_group)
525                         break;
526                 counter_sched_out(counter, cpuctx, ctx);
527         }
528         counter_sched_out(group_counter, cpuctx, ctx);
529
530         return -EAGAIN;
531 }
532
533 /*
534  * Return 1 for a group consisting entirely of software counters,
535  * 0 if the group contains any hardware counters.
536  */
537 static int is_software_only_group(struct perf_counter *leader)
538 {
539         struct perf_counter *counter;
540
541         if (!is_software_counter(leader))
542                 return 0;
543
544         list_for_each_entry(counter, &leader->sibling_list, list_entry)
545                 if (!is_software_counter(counter))
546                         return 0;
547
548         return 1;
549 }
550
551 /*
552  * Work out whether we can put this counter group on the CPU now.
553  */
554 static int group_can_go_on(struct perf_counter *counter,
555                            struct perf_cpu_context *cpuctx,
556                            int can_add_hw)
557 {
558         /*
559          * Groups consisting entirely of software counters can always go on.
560          */
561         if (is_software_only_group(counter))
562                 return 1;
563         /*
564          * If an exclusive group is already on, no other hardware
565          * counters can go on.
566          */
567         if (cpuctx->exclusive)
568                 return 0;
569         /*
570          * If this group is exclusive and there are already
571          * counters on the CPU, it can't go on.
572          */
573         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
574                 return 0;
575         /*
576          * Otherwise, try to add it if all previous groups were able
577          * to go on.
578          */
579         return can_add_hw;
580 }
581
582 static void add_counter_to_ctx(struct perf_counter *counter,
583                                struct perf_counter_context *ctx)
584 {
585         list_add_counter(counter, ctx);
586         counter->prev_state = PERF_COUNTER_STATE_OFF;
587         counter->tstamp_enabled = ctx->time;
588         counter->tstamp_running = ctx->time;
589         counter->tstamp_stopped = ctx->time;
590 }
591
592 /*
593  * Cross CPU call to install and enable a performance counter
594  *
595  * Must be called with ctx->mutex held
596  */
597 static void __perf_install_in_context(void *info)
598 {
599         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600         struct perf_counter *counter = info;
601         struct perf_counter_context *ctx = counter->ctx;
602         struct perf_counter *leader = counter->group_leader;
603         int cpu = smp_processor_id();
604         unsigned long flags;
605         int err;
606
607         /*
608          * If this is a task context, we need to check whether it is
609          * the current task context of this cpu. If not it has been
610          * scheduled out before the smp call arrived.
611          * Or possibly this is the right context but it isn't
612          * on this cpu because it had no counters.
613          */
614         if (ctx->task && cpuctx->task_ctx != ctx) {
615                 if (cpuctx->task_ctx || ctx->task != current)
616                         return;
617                 cpuctx->task_ctx = ctx;
618         }
619
620         spin_lock_irqsave(&ctx->lock, flags);
621         ctx->is_active = 1;
622         update_context_time(ctx);
623
624         /*
625          * Protect the list operation against NMI by disabling the
626          * counters on a global level. NOP for non NMI based counters.
627          */
628         perf_disable();
629
630         add_counter_to_ctx(counter, ctx);
631
632         /*
633          * Don't put the counter on if it is disabled or if
634          * it is in a group and the group isn't on.
635          */
636         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638                 goto unlock;
639
640         /*
641          * An exclusive counter can't go on if there are already active
642          * hardware counters, and no hardware counter can go on if there
643          * is already an exclusive counter on.
644          */
645         if (!group_can_go_on(counter, cpuctx, 1))
646                 err = -EEXIST;
647         else
648                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650         if (err) {
651                 /*
652                  * This counter couldn't go on.  If it is in a group
653                  * then we have to pull the whole group off.
654                  * If the counter group is pinned then put it in error state.
655                  */
656                 if (leader != counter)
657                         group_sched_out(leader, cpuctx, ctx);
658                 if (leader->hw_event.pinned) {
659                         update_group_times(leader);
660                         leader->state = PERF_COUNTER_STATE_ERROR;
661                 }
662         }
663
664         if (!err && !ctx->task && cpuctx->max_pertask)
665                 cpuctx->max_pertask--;
666
667  unlock:
668         perf_enable();
669
670         spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674  * Attach a performance counter to a context
675  *
676  * First we add the counter to the list with the hardware enable bit
677  * in counter->hw_config cleared.
678  *
679  * If the counter is attached to a task which is on a CPU we use a smp
680  * call to enable it in the task context. The task might have been
681  * scheduled away, but we check this in the smp call again.
682  *
683  * Must be called with ctx->mutex held.
684  */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687                         struct perf_counter *counter,
688                         int cpu)
689 {
690         struct task_struct *task = ctx->task;
691
692         if (!task) {
693                 /*
694                  * Per cpu counters are installed via an smp call and
695                  * the install is always sucessful.
696                  */
697                 smp_call_function_single(cpu, __perf_install_in_context,
698                                          counter, 1);
699                 return;
700         }
701
702 retry:
703         task_oncpu_function_call(task, __perf_install_in_context,
704                                  counter);
705
706         spin_lock_irq(&ctx->lock);
707         /*
708          * we need to retry the smp call.
709          */
710         if (ctx->is_active && list_empty(&counter->list_entry)) {
711                 spin_unlock_irq(&ctx->lock);
712                 goto retry;
713         }
714
715         /*
716          * The lock prevents that this context is scheduled in so we
717          * can add the counter safely, if it the call above did not
718          * succeed.
719          */
720         if (list_empty(&counter->list_entry))
721                 add_counter_to_ctx(counter, ctx);
722         spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726  * Cross CPU call to enable a performance counter
727  */
728 static void __perf_counter_enable(void *info)
729 {
730         struct perf_counter *counter = info;
731         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732         struct perf_counter_context *ctx = counter->ctx;
733         struct perf_counter *leader = counter->group_leader;
734         unsigned long flags;
735         int err;
736
737         /*
738          * If this is a per-task counter, need to check whether this
739          * counter's task is the current task on this cpu.
740          */
741         if (ctx->task && cpuctx->task_ctx != ctx) {
742                 if (cpuctx->task_ctx || ctx->task != current)
743                         return;
744                 cpuctx->task_ctx = ctx;
745         }
746
747         spin_lock_irqsave(&ctx->lock, flags);
748         ctx->is_active = 1;
749         update_context_time(ctx);
750
751         counter->prev_state = counter->state;
752         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753                 goto unlock;
754         counter->state = PERF_COUNTER_STATE_INACTIVE;
755         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756
757         /*
758          * If the counter is in a group and isn't the group leader,
759          * then don't put it on unless the group is on.
760          */
761         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
762                 goto unlock;
763
764         if (!group_can_go_on(counter, cpuctx, 1)) {
765                 err = -EEXIST;
766         } else {
767                 perf_disable();
768                 if (counter == leader)
769                         err = group_sched_in(counter, cpuctx, ctx,
770                                              smp_processor_id());
771                 else
772                         err = counter_sched_in(counter, cpuctx, ctx,
773                                                smp_processor_id());
774                 perf_enable();
775         }
776
777         if (err) {
778                 /*
779                  * If this counter can't go on and it's part of a
780                  * group, then the whole group has to come off.
781                  */
782                 if (leader != counter)
783                         group_sched_out(leader, cpuctx, ctx);
784                 if (leader->hw_event.pinned) {
785                         update_group_times(leader);
786                         leader->state = PERF_COUNTER_STATE_ERROR;
787                 }
788         }
789
790  unlock:
791         spin_unlock_irqrestore(&ctx->lock, flags);
792 }
793
794 /*
795  * Enable a counter.
796  */
797 static void perf_counter_enable(struct perf_counter *counter)
798 {
799         struct perf_counter_context *ctx = counter->ctx;
800         struct task_struct *task = ctx->task;
801
802         if (!task) {
803                 /*
804                  * Enable the counter on the cpu that it's on
805                  */
806                 smp_call_function_single(counter->cpu, __perf_counter_enable,
807                                          counter, 1);
808                 return;
809         }
810
811         spin_lock_irq(&ctx->lock);
812         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
813                 goto out;
814
815         /*
816          * If the counter is in error state, clear that first.
817          * That way, if we see the counter in error state below, we
818          * know that it has gone back into error state, as distinct
819          * from the task having been scheduled away before the
820          * cross-call arrived.
821          */
822         if (counter->state == PERF_COUNTER_STATE_ERROR)
823                 counter->state = PERF_COUNTER_STATE_OFF;
824
825  retry:
826         spin_unlock_irq(&ctx->lock);
827         task_oncpu_function_call(task, __perf_counter_enable, counter);
828
829         spin_lock_irq(&ctx->lock);
830
831         /*
832          * If the context is active and the counter is still off,
833          * we need to retry the cross-call.
834          */
835         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
836                 goto retry;
837
838         /*
839          * Since we have the lock this context can't be scheduled
840          * in, so we can change the state safely.
841          */
842         if (counter->state == PERF_COUNTER_STATE_OFF) {
843                 counter->state = PERF_COUNTER_STATE_INACTIVE;
844                 counter->tstamp_enabled =
845                         ctx->time - counter->total_time_enabled;
846         }
847  out:
848         spin_unlock_irq(&ctx->lock);
849 }
850
851 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
852 {
853         /*
854          * not supported on inherited counters
855          */
856         if (counter->hw_event.inherit)
857                 return -EINVAL;
858
859         atomic_add(refresh, &counter->event_limit);
860         perf_counter_enable(counter);
861
862         return 0;
863 }
864
865 void __perf_counter_sched_out(struct perf_counter_context *ctx,
866                               struct perf_cpu_context *cpuctx)
867 {
868         struct perf_counter *counter;
869
870         spin_lock(&ctx->lock);
871         ctx->is_active = 0;
872         if (likely(!ctx->nr_counters))
873                 goto out;
874         update_context_time(ctx);
875
876         perf_disable();
877         if (ctx->nr_active) {
878                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
879                         if (counter != counter->group_leader)
880                                 counter_sched_out(counter, cpuctx, ctx);
881                         else
882                                 group_sched_out(counter, cpuctx, ctx);
883                 }
884         }
885         perf_enable();
886  out:
887         spin_unlock(&ctx->lock);
888 }
889
890 /*
891  * Test whether two contexts are equivalent, i.e. whether they
892  * have both been cloned from the same version of the same context
893  * and they both have the same number of enabled counters.
894  * If the number of enabled counters is the same, then the set
895  * of enabled counters should be the same, because these are both
896  * inherited contexts, therefore we can't access individual counters
897  * in them directly with an fd; we can only enable/disable all
898  * counters via prctl, or enable/disable all counters in a family
899  * via ioctl, which will have the same effect on both contexts.
900  */
901 static int context_equiv(struct perf_counter_context *ctx1,
902                          struct perf_counter_context *ctx2)
903 {
904         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905                 && ctx1->parent_gen == ctx2->parent_gen;
906 }
907
908 /*
909  * Called from scheduler to remove the counters of the current task,
910  * with interrupts disabled.
911  *
912  * We stop each counter and update the counter value in counter->count.
913  *
914  * This does not protect us against NMI, but disable()
915  * sets the disabled bit in the control field of counter _before_
916  * accessing the counter control register. If a NMI hits, then it will
917  * not restart the counter.
918  */
919 void perf_counter_task_sched_out(struct task_struct *task,
920                                  struct task_struct *next, int cpu)
921 {
922         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923         struct perf_counter_context *ctx = task->perf_counter_ctxp;
924         struct perf_counter_context *next_ctx;
925         struct pt_regs *regs;
926
927         if (likely(!ctx || !cpuctx->task_ctx))
928                 return;
929
930         update_context_time(ctx);
931
932         regs = task_pt_regs(task);
933         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
934
935         next_ctx = next->perf_counter_ctxp;
936         if (next_ctx && context_equiv(ctx, next_ctx)) {
937                 task->perf_counter_ctxp = next_ctx;
938                 next->perf_counter_ctxp = ctx;
939                 ctx->task = next;
940                 next_ctx->task = task;
941                 return;
942         }
943
944         __perf_counter_sched_out(ctx, cpuctx);
945
946         cpuctx->task_ctx = NULL;
947 }
948
949 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
950 {
951         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
952
953         if (!cpuctx->task_ctx)
954                 return;
955         __perf_counter_sched_out(ctx, cpuctx);
956         cpuctx->task_ctx = NULL;
957 }
958
959 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
960 {
961         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
962 }
963
964 static void
965 __perf_counter_sched_in(struct perf_counter_context *ctx,
966                         struct perf_cpu_context *cpuctx, int cpu)
967 {
968         struct perf_counter *counter;
969         int can_add_hw = 1;
970
971         spin_lock(&ctx->lock);
972         ctx->is_active = 1;
973         if (likely(!ctx->nr_counters))
974                 goto out;
975
976         ctx->timestamp = perf_clock();
977
978         perf_disable();
979
980         /*
981          * First go through the list and put on any pinned groups
982          * in order to give them the best chance of going on.
983          */
984         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
985                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
986                     !counter->hw_event.pinned)
987                         continue;
988                 if (counter->cpu != -1 && counter->cpu != cpu)
989                         continue;
990
991                 if (counter != counter->group_leader)
992                         counter_sched_in(counter, cpuctx, ctx, cpu);
993                 else {
994                         if (group_can_go_on(counter, cpuctx, 1))
995                                 group_sched_in(counter, cpuctx, ctx, cpu);
996                 }
997
998                 /*
999                  * If this pinned group hasn't been scheduled,
1000                  * put it in error state.
1001                  */
1002                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1003                         update_group_times(counter);
1004                         counter->state = PERF_COUNTER_STATE_ERROR;
1005                 }
1006         }
1007
1008         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1009                 /*
1010                  * Ignore counters in OFF or ERROR state, and
1011                  * ignore pinned counters since we did them already.
1012                  */
1013                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1014                     counter->hw_event.pinned)
1015                         continue;
1016
1017                 /*
1018                  * Listen to the 'cpu' scheduling filter constraint
1019                  * of counters:
1020                  */
1021                 if (counter->cpu != -1 && counter->cpu != cpu)
1022                         continue;
1023
1024                 if (counter != counter->group_leader) {
1025                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1026                                 can_add_hw = 0;
1027                 } else {
1028                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1029                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1030                                         can_add_hw = 0;
1031                         }
1032                 }
1033         }
1034         perf_enable();
1035  out:
1036         spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040  * Called from scheduler to add the counters of the current task
1041  * with interrupts disabled.
1042  *
1043  * We restore the counter value and then enable it.
1044  *
1045  * This does not protect us against NMI, but enable()
1046  * sets the enabled bit in the control field of counter _before_
1047  * accessing the counter control register. If a NMI hits, then it will
1048  * keep the counter running.
1049  */
1050 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1051 {
1052         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1053         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1054
1055         if (likely(!ctx))
1056                 return;
1057         if (cpuctx->task_ctx == ctx)
1058                 return;
1059         __perf_counter_sched_in(ctx, cpuctx, cpu);
1060         cpuctx->task_ctx = ctx;
1061 }
1062
1063 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1064 {
1065         struct perf_counter_context *ctx = &cpuctx->ctx;
1066
1067         __perf_counter_sched_in(ctx, cpuctx, cpu);
1068 }
1069
1070 int perf_counter_task_enable(void)
1071 {
1072         struct perf_counter *counter;
1073
1074         mutex_lock(&current->perf_counter_mutex);
1075         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1076                 perf_counter_enable(counter);
1077         mutex_unlock(&current->perf_counter_mutex);
1078
1079         return 0;
1080 }
1081
1082 int perf_counter_task_disable(void)
1083 {
1084         struct perf_counter *counter;
1085
1086         mutex_lock(&current->perf_counter_mutex);
1087         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1088                 perf_counter_disable(counter);
1089         mutex_unlock(&current->perf_counter_mutex);
1090
1091         return 0;
1092 }
1093
1094 static void perf_log_period(struct perf_counter *counter, u64 period);
1095
1096 static void perf_adjust_freq(struct perf_counter_context *ctx)
1097 {
1098         struct perf_counter *counter;
1099         u64 irq_period;
1100         u64 events, period;
1101         s64 delta;
1102
1103         spin_lock(&ctx->lock);
1104         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1105                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1106                         continue;
1107
1108                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1109                         continue;
1110
1111                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1112                 period = div64_u64(events, counter->hw_event.irq_freq);
1113
1114                 delta = (s64)(1 + period - counter->hw.irq_period);
1115                 delta >>= 1;
1116
1117                 irq_period = counter->hw.irq_period + delta;
1118
1119                 if (!irq_period)
1120                         irq_period = 1;
1121
1122                 perf_log_period(counter, irq_period);
1123
1124                 counter->hw.irq_period = irq_period;
1125                 counter->hw.interrupts = 0;
1126         }
1127         spin_unlock(&ctx->lock);
1128 }
1129
1130 /*
1131  * Round-robin a context's counters:
1132  */
1133 static void rotate_ctx(struct perf_counter_context *ctx)
1134 {
1135         struct perf_counter *counter;
1136
1137         if (!ctx->nr_counters)
1138                 return;
1139
1140         spin_lock(&ctx->lock);
1141         /*
1142          * Rotate the first entry last (works just fine for group counters too):
1143          */
1144         perf_disable();
1145         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1146                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1147                 break;
1148         }
1149         perf_enable();
1150
1151         spin_unlock(&ctx->lock);
1152 }
1153
1154 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1155 {
1156         struct perf_cpu_context *cpuctx;
1157         struct perf_counter_context *ctx;
1158
1159         if (!atomic_read(&nr_counters))
1160                 return;
1161
1162         cpuctx = &per_cpu(perf_cpu_context, cpu);
1163         ctx = curr->perf_counter_ctxp;
1164
1165         perf_adjust_freq(&cpuctx->ctx);
1166         if (ctx)
1167                 perf_adjust_freq(ctx);
1168
1169         perf_counter_cpu_sched_out(cpuctx);
1170         if (ctx)
1171                 __perf_counter_task_sched_out(ctx);
1172
1173         rotate_ctx(&cpuctx->ctx);
1174         if (ctx)
1175                 rotate_ctx(ctx);
1176
1177         perf_counter_cpu_sched_in(cpuctx, cpu);
1178         if (ctx)
1179                 perf_counter_task_sched_in(curr, cpu);
1180 }
1181
1182 /*
1183  * Cross CPU call to read the hardware counter
1184  */
1185 static void __read(void *info)
1186 {
1187         struct perf_counter *counter = info;
1188         struct perf_counter_context *ctx = counter->ctx;
1189         unsigned long flags;
1190
1191         local_irq_save(flags);
1192         if (ctx->is_active)
1193                 update_context_time(ctx);
1194         counter->pmu->read(counter);
1195         update_counter_times(counter);
1196         local_irq_restore(flags);
1197 }
1198
1199 static u64 perf_counter_read(struct perf_counter *counter)
1200 {
1201         /*
1202          * If counter is enabled and currently active on a CPU, update the
1203          * value in the counter structure:
1204          */
1205         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1206                 smp_call_function_single(counter->oncpu,
1207                                          __read, counter, 1);
1208         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1209                 update_counter_times(counter);
1210         }
1211
1212         return atomic64_read(&counter->count);
1213 }
1214
1215 /*
1216  * Initialize the perf_counter context in a task_struct:
1217  */
1218 static void
1219 __perf_counter_init_context(struct perf_counter_context *ctx,
1220                             struct task_struct *task)
1221 {
1222         memset(ctx, 0, sizeof(*ctx));
1223         spin_lock_init(&ctx->lock);
1224         mutex_init(&ctx->mutex);
1225         INIT_LIST_HEAD(&ctx->counter_list);
1226         INIT_LIST_HEAD(&ctx->event_list);
1227         atomic_set(&ctx->refcount, 1);
1228         ctx->task = task;
1229 }
1230
1231 static void put_context(struct perf_counter_context *ctx)
1232 {
1233         if (ctx->task)
1234                 put_task_struct(ctx->task);
1235 }
1236
1237 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1238 {
1239         struct perf_cpu_context *cpuctx;
1240         struct perf_counter_context *ctx;
1241         struct perf_counter_context *tctx;
1242         struct task_struct *task;
1243
1244         /*
1245          * If cpu is not a wildcard then this is a percpu counter:
1246          */
1247         if (cpu != -1) {
1248                 /* Must be root to operate on a CPU counter: */
1249                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1250                         return ERR_PTR(-EACCES);
1251
1252                 if (cpu < 0 || cpu > num_possible_cpus())
1253                         return ERR_PTR(-EINVAL);
1254
1255                 /*
1256                  * We could be clever and allow to attach a counter to an
1257                  * offline CPU and activate it when the CPU comes up, but
1258                  * that's for later.
1259                  */
1260                 if (!cpu_isset(cpu, cpu_online_map))
1261                         return ERR_PTR(-ENODEV);
1262
1263                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1264                 ctx = &cpuctx->ctx;
1265
1266                 return ctx;
1267         }
1268
1269         rcu_read_lock();
1270         if (!pid)
1271                 task = current;
1272         else
1273                 task = find_task_by_vpid(pid);
1274         if (task)
1275                 get_task_struct(task);
1276         rcu_read_unlock();
1277
1278         if (!task)
1279                 return ERR_PTR(-ESRCH);
1280
1281         /* Reuse ptrace permission checks for now. */
1282         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1283                 put_task_struct(task);
1284                 return ERR_PTR(-EACCES);
1285         }
1286
1287         ctx = task->perf_counter_ctxp;
1288         if (!ctx) {
1289                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1290                 if (!ctx) {
1291                         put_task_struct(task);
1292                         return ERR_PTR(-ENOMEM);
1293                 }
1294                 __perf_counter_init_context(ctx, task);
1295                 /*
1296                  * Make sure other cpus see correct values for *ctx
1297                  * once task->perf_counter_ctxp is visible to them.
1298                  */
1299                 smp_wmb();
1300                 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1301                 if (tctx) {
1302                         /*
1303                          * We raced with some other task; use
1304                          * the context they set.
1305                          */
1306                         kfree(ctx);
1307                         ctx = tctx;
1308                 }
1309         }
1310
1311         return ctx;
1312 }
1313
1314 static void free_counter_rcu(struct rcu_head *head)
1315 {
1316         struct perf_counter *counter;
1317
1318         counter = container_of(head, struct perf_counter, rcu_head);
1319         put_ctx(counter->ctx);
1320         kfree(counter);
1321 }
1322
1323 static void perf_pending_sync(struct perf_counter *counter);
1324
1325 static void free_counter(struct perf_counter *counter)
1326 {
1327         perf_pending_sync(counter);
1328
1329         atomic_dec(&nr_counters);
1330         if (counter->hw_event.mmap)
1331                 atomic_dec(&nr_mmap_tracking);
1332         if (counter->hw_event.munmap)
1333                 atomic_dec(&nr_munmap_tracking);
1334         if (counter->hw_event.comm)
1335                 atomic_dec(&nr_comm_tracking);
1336
1337         if (counter->destroy)
1338                 counter->destroy(counter);
1339
1340         call_rcu(&counter->rcu_head, free_counter_rcu);
1341 }
1342
1343 /*
1344  * Called when the last reference to the file is gone.
1345  */
1346 static int perf_release(struct inode *inode, struct file *file)
1347 {
1348         struct perf_counter *counter = file->private_data;
1349         struct perf_counter_context *ctx = counter->ctx;
1350
1351         file->private_data = NULL;
1352
1353         mutex_lock(&ctx->mutex);
1354         perf_counter_remove_from_context(counter);
1355         mutex_unlock(&ctx->mutex);
1356
1357         mutex_lock(&counter->owner->perf_counter_mutex);
1358         list_del_init(&counter->owner_entry);
1359         mutex_unlock(&counter->owner->perf_counter_mutex);
1360         put_task_struct(counter->owner);
1361
1362         free_counter(counter);
1363         put_context(ctx);
1364
1365         return 0;
1366 }
1367
1368 /*
1369  * Read the performance counter - simple non blocking version for now
1370  */
1371 static ssize_t
1372 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1373 {
1374         u64 values[3];
1375         int n;
1376
1377         /*
1378          * Return end-of-file for a read on a counter that is in
1379          * error state (i.e. because it was pinned but it couldn't be
1380          * scheduled on to the CPU at some point).
1381          */
1382         if (counter->state == PERF_COUNTER_STATE_ERROR)
1383                 return 0;
1384
1385         mutex_lock(&counter->child_mutex);
1386         values[0] = perf_counter_read(counter);
1387         n = 1;
1388         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1389                 values[n++] = counter->total_time_enabled +
1390                         atomic64_read(&counter->child_total_time_enabled);
1391         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1392                 values[n++] = counter->total_time_running +
1393                         atomic64_read(&counter->child_total_time_running);
1394         mutex_unlock(&counter->child_mutex);
1395
1396         if (count < n * sizeof(u64))
1397                 return -EINVAL;
1398         count = n * sizeof(u64);
1399
1400         if (copy_to_user(buf, values, count))
1401                 return -EFAULT;
1402
1403         return count;
1404 }
1405
1406 static ssize_t
1407 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1408 {
1409         struct perf_counter *counter = file->private_data;
1410
1411         return perf_read_hw(counter, buf, count);
1412 }
1413
1414 static unsigned int perf_poll(struct file *file, poll_table *wait)
1415 {
1416         struct perf_counter *counter = file->private_data;
1417         struct perf_mmap_data *data;
1418         unsigned int events = POLL_HUP;
1419
1420         rcu_read_lock();
1421         data = rcu_dereference(counter->data);
1422         if (data)
1423                 events = atomic_xchg(&data->poll, 0);
1424         rcu_read_unlock();
1425
1426         poll_wait(file, &counter->waitq, wait);
1427
1428         return events;
1429 }
1430
1431 static void perf_counter_reset(struct perf_counter *counter)
1432 {
1433         (void)perf_counter_read(counter);
1434         atomic64_set(&counter->count, 0);
1435         perf_counter_update_userpage(counter);
1436 }
1437
1438 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1439                                           void (*func)(struct perf_counter *))
1440 {
1441         struct perf_counter_context *ctx = counter->ctx;
1442         struct perf_counter *sibling;
1443
1444         mutex_lock(&ctx->mutex);
1445         counter = counter->group_leader;
1446
1447         func(counter);
1448         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1449                 func(sibling);
1450         mutex_unlock(&ctx->mutex);
1451 }
1452
1453 static void perf_counter_for_each_child(struct perf_counter *counter,
1454                                         void (*func)(struct perf_counter *))
1455 {
1456         struct perf_counter *child;
1457
1458         mutex_lock(&counter->child_mutex);
1459         func(counter);
1460         list_for_each_entry(child, &counter->child_list, child_list)
1461                 func(child);
1462         mutex_unlock(&counter->child_mutex);
1463 }
1464
1465 static void perf_counter_for_each(struct perf_counter *counter,
1466                                   void (*func)(struct perf_counter *))
1467 {
1468         struct perf_counter *child;
1469
1470         mutex_lock(&counter->child_mutex);
1471         perf_counter_for_each_sibling(counter, func);
1472         list_for_each_entry(child, &counter->child_list, child_list)
1473                 perf_counter_for_each_sibling(child, func);
1474         mutex_unlock(&counter->child_mutex);
1475 }
1476
1477 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1478 {
1479         struct perf_counter *counter = file->private_data;
1480         void (*func)(struct perf_counter *);
1481         u32 flags = arg;
1482
1483         switch (cmd) {
1484         case PERF_COUNTER_IOC_ENABLE:
1485                 func = perf_counter_enable;
1486                 break;
1487         case PERF_COUNTER_IOC_DISABLE:
1488                 func = perf_counter_disable;
1489                 break;
1490         case PERF_COUNTER_IOC_RESET:
1491                 func = perf_counter_reset;
1492                 break;
1493
1494         case PERF_COUNTER_IOC_REFRESH:
1495                 return perf_counter_refresh(counter, arg);
1496         default:
1497                 return -ENOTTY;
1498         }
1499
1500         if (flags & PERF_IOC_FLAG_GROUP)
1501                 perf_counter_for_each(counter, func);
1502         else
1503                 perf_counter_for_each_child(counter, func);
1504
1505         return 0;
1506 }
1507
1508 /*
1509  * Callers need to ensure there can be no nesting of this function, otherwise
1510  * the seqlock logic goes bad. We can not serialize this because the arch
1511  * code calls this from NMI context.
1512  */
1513 void perf_counter_update_userpage(struct perf_counter *counter)
1514 {
1515         struct perf_mmap_data *data;
1516         struct perf_counter_mmap_page *userpg;
1517
1518         rcu_read_lock();
1519         data = rcu_dereference(counter->data);
1520         if (!data)
1521                 goto unlock;
1522
1523         userpg = data->user_page;
1524
1525         /*
1526          * Disable preemption so as to not let the corresponding user-space
1527          * spin too long if we get preempted.
1528          */
1529         preempt_disable();
1530         ++userpg->lock;
1531         barrier();
1532         userpg->index = counter->hw.idx;
1533         userpg->offset = atomic64_read(&counter->count);
1534         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1535                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1536
1537         barrier();
1538         ++userpg->lock;
1539         preempt_enable();
1540 unlock:
1541         rcu_read_unlock();
1542 }
1543
1544 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1545 {
1546         struct perf_counter *counter = vma->vm_file->private_data;
1547         struct perf_mmap_data *data;
1548         int ret = VM_FAULT_SIGBUS;
1549
1550         rcu_read_lock();
1551         data = rcu_dereference(counter->data);
1552         if (!data)
1553                 goto unlock;
1554
1555         if (vmf->pgoff == 0) {
1556                 vmf->page = virt_to_page(data->user_page);
1557         } else {
1558                 int nr = vmf->pgoff - 1;
1559
1560                 if ((unsigned)nr > data->nr_pages)
1561                         goto unlock;
1562
1563                 vmf->page = virt_to_page(data->data_pages[nr]);
1564         }
1565         get_page(vmf->page);
1566         ret = 0;
1567 unlock:
1568         rcu_read_unlock();
1569
1570         return ret;
1571 }
1572
1573 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1574 {
1575         struct perf_mmap_data *data;
1576         unsigned long size;
1577         int i;
1578
1579         WARN_ON(atomic_read(&counter->mmap_count));
1580
1581         size = sizeof(struct perf_mmap_data);
1582         size += nr_pages * sizeof(void *);
1583
1584         data = kzalloc(size, GFP_KERNEL);
1585         if (!data)
1586                 goto fail;
1587
1588         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1589         if (!data->user_page)
1590                 goto fail_user_page;
1591
1592         for (i = 0; i < nr_pages; i++) {
1593                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1594                 if (!data->data_pages[i])
1595                         goto fail_data_pages;
1596         }
1597
1598         data->nr_pages = nr_pages;
1599         atomic_set(&data->lock, -1);
1600
1601         rcu_assign_pointer(counter->data, data);
1602
1603         return 0;
1604
1605 fail_data_pages:
1606         for (i--; i >= 0; i--)
1607                 free_page((unsigned long)data->data_pages[i]);
1608
1609         free_page((unsigned long)data->user_page);
1610
1611 fail_user_page:
1612         kfree(data);
1613
1614 fail:
1615         return -ENOMEM;
1616 }
1617
1618 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1619 {
1620         struct perf_mmap_data *data = container_of(rcu_head,
1621                         struct perf_mmap_data, rcu_head);
1622         int i;
1623
1624         free_page((unsigned long)data->user_page);
1625         for (i = 0; i < data->nr_pages; i++)
1626                 free_page((unsigned long)data->data_pages[i]);
1627         kfree(data);
1628 }
1629
1630 static void perf_mmap_data_free(struct perf_counter *counter)
1631 {
1632         struct perf_mmap_data *data = counter->data;
1633
1634         WARN_ON(atomic_read(&counter->mmap_count));
1635
1636         rcu_assign_pointer(counter->data, NULL);
1637         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1638 }
1639
1640 static void perf_mmap_open(struct vm_area_struct *vma)
1641 {
1642         struct perf_counter *counter = vma->vm_file->private_data;
1643
1644         atomic_inc(&counter->mmap_count);
1645 }
1646
1647 static void perf_mmap_close(struct vm_area_struct *vma)
1648 {
1649         struct perf_counter *counter = vma->vm_file->private_data;
1650
1651         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1652                                       &counter->mmap_mutex)) {
1653                 struct user_struct *user = current_user();
1654
1655                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1656                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1657                 perf_mmap_data_free(counter);
1658                 mutex_unlock(&counter->mmap_mutex);
1659         }
1660 }
1661
1662 static struct vm_operations_struct perf_mmap_vmops = {
1663         .open  = perf_mmap_open,
1664         .close = perf_mmap_close,
1665         .fault = perf_mmap_fault,
1666 };
1667
1668 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1669 {
1670         struct perf_counter *counter = file->private_data;
1671         struct user_struct *user = current_user();
1672         unsigned long vma_size;
1673         unsigned long nr_pages;
1674         unsigned long user_locked, user_lock_limit;
1675         unsigned long locked, lock_limit;
1676         long user_extra, extra;
1677         int ret = 0;
1678
1679         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1680                 return -EINVAL;
1681
1682         vma_size = vma->vm_end - vma->vm_start;
1683         nr_pages = (vma_size / PAGE_SIZE) - 1;
1684
1685         /*
1686          * If we have data pages ensure they're a power-of-two number, so we
1687          * can do bitmasks instead of modulo.
1688          */
1689         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1690                 return -EINVAL;
1691
1692         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1693                 return -EINVAL;
1694
1695         if (vma->vm_pgoff != 0)
1696                 return -EINVAL;
1697
1698         mutex_lock(&counter->mmap_mutex);
1699         if (atomic_inc_not_zero(&counter->mmap_count)) {
1700                 if (nr_pages != counter->data->nr_pages)
1701                         ret = -EINVAL;
1702                 goto unlock;
1703         }
1704
1705         user_extra = nr_pages + 1;
1706         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1707         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1708
1709         extra = 0;
1710         if (user_locked > user_lock_limit)
1711                 extra = user_locked - user_lock_limit;
1712
1713         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1714         lock_limit >>= PAGE_SHIFT;
1715         locked = vma->vm_mm->locked_vm + extra;
1716
1717         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1718                 ret = -EPERM;
1719                 goto unlock;
1720         }
1721
1722         WARN_ON(counter->data);
1723         ret = perf_mmap_data_alloc(counter, nr_pages);
1724         if (ret)
1725                 goto unlock;
1726
1727         atomic_set(&counter->mmap_count, 1);
1728         atomic_long_add(user_extra, &user->locked_vm);
1729         vma->vm_mm->locked_vm += extra;
1730         counter->data->nr_locked = extra;
1731 unlock:
1732         mutex_unlock(&counter->mmap_mutex);
1733
1734         vma->vm_flags &= ~VM_MAYWRITE;
1735         vma->vm_flags |= VM_RESERVED;
1736         vma->vm_ops = &perf_mmap_vmops;
1737
1738         return ret;
1739 }
1740
1741 static int perf_fasync(int fd, struct file *filp, int on)
1742 {
1743         struct perf_counter *counter = filp->private_data;
1744         struct inode *inode = filp->f_path.dentry->d_inode;
1745         int retval;
1746
1747         mutex_lock(&inode->i_mutex);
1748         retval = fasync_helper(fd, filp, on, &counter->fasync);
1749         mutex_unlock(&inode->i_mutex);
1750
1751         if (retval < 0)
1752                 return retval;
1753
1754         return 0;
1755 }
1756
1757 static const struct file_operations perf_fops = {
1758         .release                = perf_release,
1759         .read                   = perf_read,
1760         .poll                   = perf_poll,
1761         .unlocked_ioctl         = perf_ioctl,
1762         .compat_ioctl           = perf_ioctl,
1763         .mmap                   = perf_mmap,
1764         .fasync                 = perf_fasync,
1765 };
1766
1767 /*
1768  * Perf counter wakeup
1769  *
1770  * If there's data, ensure we set the poll() state and publish everything
1771  * to user-space before waking everybody up.
1772  */
1773
1774 void perf_counter_wakeup(struct perf_counter *counter)
1775 {
1776         wake_up_all(&counter->waitq);
1777
1778         if (counter->pending_kill) {
1779                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1780                 counter->pending_kill = 0;
1781         }
1782 }
1783
1784 /*
1785  * Pending wakeups
1786  *
1787  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1788  *
1789  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1790  * single linked list and use cmpxchg() to add entries lockless.
1791  */
1792
1793 static void perf_pending_counter(struct perf_pending_entry *entry)
1794 {
1795         struct perf_counter *counter = container_of(entry,
1796                         struct perf_counter, pending);
1797
1798         if (counter->pending_disable) {
1799                 counter->pending_disable = 0;
1800                 perf_counter_disable(counter);
1801         }
1802
1803         if (counter->pending_wakeup) {
1804                 counter->pending_wakeup = 0;
1805                 perf_counter_wakeup(counter);
1806         }
1807 }
1808
1809 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1810
1811 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1812         PENDING_TAIL,
1813 };
1814
1815 static void perf_pending_queue(struct perf_pending_entry *entry,
1816                                void (*func)(struct perf_pending_entry *))
1817 {
1818         struct perf_pending_entry **head;
1819
1820         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1821                 return;
1822
1823         entry->func = func;
1824
1825         head = &get_cpu_var(perf_pending_head);
1826
1827         do {
1828                 entry->next = *head;
1829         } while (cmpxchg(head, entry->next, entry) != entry->next);
1830
1831         set_perf_counter_pending();
1832
1833         put_cpu_var(perf_pending_head);
1834 }
1835
1836 static int __perf_pending_run(void)
1837 {
1838         struct perf_pending_entry *list;
1839         int nr = 0;
1840
1841         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1842         while (list != PENDING_TAIL) {
1843                 void (*func)(struct perf_pending_entry *);
1844                 struct perf_pending_entry *entry = list;
1845
1846                 list = list->next;
1847
1848                 func = entry->func;
1849                 entry->next = NULL;
1850                 /*
1851                  * Ensure we observe the unqueue before we issue the wakeup,
1852                  * so that we won't be waiting forever.
1853                  * -- see perf_not_pending().
1854                  */
1855                 smp_wmb();
1856
1857                 func(entry);
1858                 nr++;
1859         }
1860
1861         return nr;
1862 }
1863
1864 static inline int perf_not_pending(struct perf_counter *counter)
1865 {
1866         /*
1867          * If we flush on whatever cpu we run, there is a chance we don't
1868          * need to wait.
1869          */
1870         get_cpu();
1871         __perf_pending_run();
1872         put_cpu();
1873
1874         /*
1875          * Ensure we see the proper queue state before going to sleep
1876          * so that we do not miss the wakeup. -- see perf_pending_handle()
1877          */
1878         smp_rmb();
1879         return counter->pending.next == NULL;
1880 }
1881
1882 static void perf_pending_sync(struct perf_counter *counter)
1883 {
1884         wait_event(counter->waitq, perf_not_pending(counter));
1885 }
1886
1887 void perf_counter_do_pending(void)
1888 {
1889         __perf_pending_run();
1890 }
1891
1892 /*
1893  * Callchain support -- arch specific
1894  */
1895
1896 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1897 {
1898         return NULL;
1899 }
1900
1901 /*
1902  * Output
1903  */
1904
1905 struct perf_output_handle {
1906         struct perf_counter     *counter;
1907         struct perf_mmap_data   *data;
1908         unsigned int            offset;
1909         unsigned int            head;
1910         int                     nmi;
1911         int                     overflow;
1912         int                     locked;
1913         unsigned long           flags;
1914 };
1915
1916 static void perf_output_wakeup(struct perf_output_handle *handle)
1917 {
1918         atomic_set(&handle->data->poll, POLL_IN);
1919
1920         if (handle->nmi) {
1921                 handle->counter->pending_wakeup = 1;
1922                 perf_pending_queue(&handle->counter->pending,
1923                                    perf_pending_counter);
1924         } else
1925                 perf_counter_wakeup(handle->counter);
1926 }
1927
1928 /*
1929  * Curious locking construct.
1930  *
1931  * We need to ensure a later event doesn't publish a head when a former
1932  * event isn't done writing. However since we need to deal with NMIs we
1933  * cannot fully serialize things.
1934  *
1935  * What we do is serialize between CPUs so we only have to deal with NMI
1936  * nesting on a single CPU.
1937  *
1938  * We only publish the head (and generate a wakeup) when the outer-most
1939  * event completes.
1940  */
1941 static void perf_output_lock(struct perf_output_handle *handle)
1942 {
1943         struct perf_mmap_data *data = handle->data;
1944         int cpu;
1945
1946         handle->locked = 0;
1947
1948         local_irq_save(handle->flags);
1949         cpu = smp_processor_id();
1950
1951         if (in_nmi() && atomic_read(&data->lock) == cpu)
1952                 return;
1953
1954         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1955                 cpu_relax();
1956
1957         handle->locked = 1;
1958 }
1959
1960 static void perf_output_unlock(struct perf_output_handle *handle)
1961 {
1962         struct perf_mmap_data *data = handle->data;
1963         int head, cpu;
1964
1965         data->done_head = data->head;
1966
1967         if (!handle->locked)
1968                 goto out;
1969
1970 again:
1971         /*
1972          * The xchg implies a full barrier that ensures all writes are done
1973          * before we publish the new head, matched by a rmb() in userspace when
1974          * reading this position.
1975          */
1976         while ((head = atomic_xchg(&data->done_head, 0)))
1977                 data->user_page->data_head = head;
1978
1979         /*
1980          * NMI can happen here, which means we can miss a done_head update.
1981          */
1982
1983         cpu = atomic_xchg(&data->lock, -1);
1984         WARN_ON_ONCE(cpu != smp_processor_id());
1985
1986         /*
1987          * Therefore we have to validate we did not indeed do so.
1988          */
1989         if (unlikely(atomic_read(&data->done_head))) {
1990                 /*
1991                  * Since we had it locked, we can lock it again.
1992                  */
1993                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1994                         cpu_relax();
1995
1996                 goto again;
1997         }
1998
1999         if (atomic_xchg(&data->wakeup, 0))
2000                 perf_output_wakeup(handle);
2001 out:
2002         local_irq_restore(handle->flags);
2003 }
2004
2005 static int perf_output_begin(struct perf_output_handle *handle,
2006                              struct perf_counter *counter, unsigned int size,
2007                              int nmi, int overflow)
2008 {
2009         struct perf_mmap_data *data;
2010         unsigned int offset, head;
2011
2012         /*
2013          * For inherited counters we send all the output towards the parent.
2014          */
2015         if (counter->parent)
2016                 counter = counter->parent;
2017
2018         rcu_read_lock();
2019         data = rcu_dereference(counter->data);
2020         if (!data)
2021                 goto out;
2022
2023         handle->data     = data;
2024         handle->counter  = counter;
2025         handle->nmi      = nmi;
2026         handle->overflow = overflow;
2027
2028         if (!data->nr_pages)
2029                 goto fail;
2030
2031         perf_output_lock(handle);
2032
2033         do {
2034                 offset = head = atomic_read(&data->head);
2035                 head += size;
2036         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2037
2038         handle->offset  = offset;
2039         handle->head    = head;
2040
2041         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2042                 atomic_set(&data->wakeup, 1);
2043
2044         return 0;
2045
2046 fail:
2047         perf_output_wakeup(handle);
2048 out:
2049         rcu_read_unlock();
2050
2051         return -ENOSPC;
2052 }
2053
2054 static void perf_output_copy(struct perf_output_handle *handle,
2055                              void *buf, unsigned int len)
2056 {
2057         unsigned int pages_mask;
2058         unsigned int offset;
2059         unsigned int size;
2060         void **pages;
2061
2062         offset          = handle->offset;
2063         pages_mask      = handle->data->nr_pages - 1;
2064         pages           = handle->data->data_pages;
2065
2066         do {
2067                 unsigned int page_offset;
2068                 int nr;
2069
2070                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2071                 page_offset = offset & (PAGE_SIZE - 1);
2072                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2073
2074                 memcpy(pages[nr] + page_offset, buf, size);
2075
2076                 len         -= size;
2077                 buf         += size;
2078                 offset      += size;
2079         } while (len);
2080
2081         handle->offset = offset;
2082
2083         /*
2084          * Check we didn't copy past our reservation window, taking the
2085          * possible unsigned int wrap into account.
2086          */
2087         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2088 }
2089
2090 #define perf_output_put(handle, x) \
2091         perf_output_copy((handle), &(x), sizeof(x))
2092
2093 static void perf_output_end(struct perf_output_handle *handle)
2094 {
2095         struct perf_counter *counter = handle->counter;
2096         struct perf_mmap_data *data = handle->data;
2097
2098         int wakeup_events = counter->hw_event.wakeup_events;
2099
2100         if (handle->overflow && wakeup_events) {
2101                 int events = atomic_inc_return(&data->events);
2102                 if (events >= wakeup_events) {
2103                         atomic_sub(wakeup_events, &data->events);
2104                         atomic_set(&data->wakeup, 1);
2105                 }
2106         }
2107
2108         perf_output_unlock(handle);
2109         rcu_read_unlock();
2110 }
2111
2112 static void perf_counter_output(struct perf_counter *counter,
2113                                 int nmi, struct pt_regs *regs, u64 addr)
2114 {
2115         int ret;
2116         u64 record_type = counter->hw_event.record_type;
2117         struct perf_output_handle handle;
2118         struct perf_event_header header;
2119         u64 ip;
2120         struct {
2121                 u32 pid, tid;
2122         } tid_entry;
2123         struct {
2124                 u64 event;
2125                 u64 counter;
2126         } group_entry;
2127         struct perf_callchain_entry *callchain = NULL;
2128         int callchain_size = 0;
2129         u64 time;
2130         struct {
2131                 u32 cpu, reserved;
2132         } cpu_entry;
2133
2134         header.type = 0;
2135         header.size = sizeof(header);
2136
2137         header.misc = PERF_EVENT_MISC_OVERFLOW;
2138         header.misc |= perf_misc_flags(regs);
2139
2140         if (record_type & PERF_RECORD_IP) {
2141                 ip = perf_instruction_pointer(regs);
2142                 header.type |= PERF_RECORD_IP;
2143                 header.size += sizeof(ip);
2144         }
2145
2146         if (record_type & PERF_RECORD_TID) {
2147                 /* namespace issues */
2148                 tid_entry.pid = current->group_leader->pid;
2149                 tid_entry.tid = current->pid;
2150
2151                 header.type |= PERF_RECORD_TID;
2152                 header.size += sizeof(tid_entry);
2153         }
2154
2155         if (record_type & PERF_RECORD_TIME) {
2156                 /*
2157                  * Maybe do better on x86 and provide cpu_clock_nmi()
2158                  */
2159                 time = sched_clock();
2160
2161                 header.type |= PERF_RECORD_TIME;
2162                 header.size += sizeof(u64);
2163         }
2164
2165         if (record_type & PERF_RECORD_ADDR) {
2166                 header.type |= PERF_RECORD_ADDR;
2167                 header.size += sizeof(u64);
2168         }
2169
2170         if (record_type & PERF_RECORD_CONFIG) {
2171                 header.type |= PERF_RECORD_CONFIG;
2172                 header.size += sizeof(u64);
2173         }
2174
2175         if (record_type & PERF_RECORD_CPU) {
2176                 header.type |= PERF_RECORD_CPU;
2177                 header.size += sizeof(cpu_entry);
2178
2179                 cpu_entry.cpu = raw_smp_processor_id();
2180         }
2181
2182         if (record_type & PERF_RECORD_GROUP) {
2183                 header.type |= PERF_RECORD_GROUP;
2184                 header.size += sizeof(u64) +
2185                         counter->nr_siblings * sizeof(group_entry);
2186         }
2187
2188         if (record_type & PERF_RECORD_CALLCHAIN) {
2189                 callchain = perf_callchain(regs);
2190
2191                 if (callchain) {
2192                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2193
2194                         header.type |= PERF_RECORD_CALLCHAIN;
2195                         header.size += callchain_size;
2196                 }
2197         }
2198
2199         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2200         if (ret)
2201                 return;
2202
2203         perf_output_put(&handle, header);
2204
2205         if (record_type & PERF_RECORD_IP)
2206                 perf_output_put(&handle, ip);
2207
2208         if (record_type & PERF_RECORD_TID)
2209                 perf_output_put(&handle, tid_entry);
2210
2211         if (record_type & PERF_RECORD_TIME)
2212                 perf_output_put(&handle, time);
2213
2214         if (record_type & PERF_RECORD_ADDR)
2215                 perf_output_put(&handle, addr);
2216
2217         if (record_type & PERF_RECORD_CONFIG)
2218                 perf_output_put(&handle, counter->hw_event.config);
2219
2220         if (record_type & PERF_RECORD_CPU)
2221                 perf_output_put(&handle, cpu_entry);
2222
2223         /*
2224          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2225          */
2226         if (record_type & PERF_RECORD_GROUP) {
2227                 struct perf_counter *leader, *sub;
2228                 u64 nr = counter->nr_siblings;
2229
2230                 perf_output_put(&handle, nr);
2231
2232                 leader = counter->group_leader;
2233                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2234                         if (sub != counter)
2235                                 sub->pmu->read(sub);
2236
2237                         group_entry.event = sub->hw_event.config;
2238                         group_entry.counter = atomic64_read(&sub->count);
2239
2240                         perf_output_put(&handle, group_entry);
2241                 }
2242         }
2243
2244         if (callchain)
2245                 perf_output_copy(&handle, callchain, callchain_size);
2246
2247         perf_output_end(&handle);
2248 }
2249
2250 /*
2251  * comm tracking
2252  */
2253
2254 struct perf_comm_event {
2255         struct task_struct      *task;
2256         char                    *comm;
2257         int                     comm_size;
2258
2259         struct {
2260                 struct perf_event_header        header;
2261
2262                 u32                             pid;
2263                 u32                             tid;
2264         } event;
2265 };
2266
2267 static void perf_counter_comm_output(struct perf_counter *counter,
2268                                      struct perf_comm_event *comm_event)
2269 {
2270         struct perf_output_handle handle;
2271         int size = comm_event->event.header.size;
2272         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2273
2274         if (ret)
2275                 return;
2276
2277         perf_output_put(&handle, comm_event->event);
2278         perf_output_copy(&handle, comm_event->comm,
2279                                    comm_event->comm_size);
2280         perf_output_end(&handle);
2281 }
2282
2283 static int perf_counter_comm_match(struct perf_counter *counter,
2284                                    struct perf_comm_event *comm_event)
2285 {
2286         if (counter->hw_event.comm &&
2287             comm_event->event.header.type == PERF_EVENT_COMM)
2288                 return 1;
2289
2290         return 0;
2291 }
2292
2293 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2294                                   struct perf_comm_event *comm_event)
2295 {
2296         struct perf_counter *counter;
2297
2298         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2299                 return;
2300
2301         rcu_read_lock();
2302         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2303                 if (perf_counter_comm_match(counter, comm_event))
2304                         perf_counter_comm_output(counter, comm_event);
2305         }
2306         rcu_read_unlock();
2307 }
2308
2309 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2310 {
2311         struct perf_cpu_context *cpuctx;
2312         unsigned int size;
2313         char *comm = comm_event->task->comm;
2314
2315         size = ALIGN(strlen(comm)+1, sizeof(u64));
2316
2317         comm_event->comm = comm;
2318         comm_event->comm_size = size;
2319
2320         comm_event->event.header.size = sizeof(comm_event->event) + size;
2321
2322         cpuctx = &get_cpu_var(perf_cpu_context);
2323         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2324         put_cpu_var(perf_cpu_context);
2325
2326         perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2327 }
2328
2329 void perf_counter_comm(struct task_struct *task)
2330 {
2331         struct perf_comm_event comm_event;
2332
2333         if (!atomic_read(&nr_comm_tracking))
2334                 return;
2335         if (!current->perf_counter_ctxp)
2336                 return;
2337
2338         comm_event = (struct perf_comm_event){
2339                 .task   = task,
2340                 .event  = {
2341                         .header = { .type = PERF_EVENT_COMM, },
2342                         .pid    = task->group_leader->pid,
2343                         .tid    = task->pid,
2344                 },
2345         };
2346
2347         perf_counter_comm_event(&comm_event);
2348 }
2349
2350 /*
2351  * mmap tracking
2352  */
2353
2354 struct perf_mmap_event {
2355         struct file     *file;
2356         char            *file_name;
2357         int             file_size;
2358
2359         struct {
2360                 struct perf_event_header        header;
2361
2362                 u32                             pid;
2363                 u32                             tid;
2364                 u64                             start;
2365                 u64                             len;
2366                 u64                             pgoff;
2367         } event;
2368 };
2369
2370 static void perf_counter_mmap_output(struct perf_counter *counter,
2371                                      struct perf_mmap_event *mmap_event)
2372 {
2373         struct perf_output_handle handle;
2374         int size = mmap_event->event.header.size;
2375         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2376
2377         if (ret)
2378                 return;
2379
2380         perf_output_put(&handle, mmap_event->event);
2381         perf_output_copy(&handle, mmap_event->file_name,
2382                                    mmap_event->file_size);
2383         perf_output_end(&handle);
2384 }
2385
2386 static int perf_counter_mmap_match(struct perf_counter *counter,
2387                                    struct perf_mmap_event *mmap_event)
2388 {
2389         if (counter->hw_event.mmap &&
2390             mmap_event->event.header.type == PERF_EVENT_MMAP)
2391                 return 1;
2392
2393         if (counter->hw_event.munmap &&
2394             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2395                 return 1;
2396
2397         return 0;
2398 }
2399
2400 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2401                                   struct perf_mmap_event *mmap_event)
2402 {
2403         struct perf_counter *counter;
2404
2405         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2406                 return;
2407
2408         rcu_read_lock();
2409         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2410                 if (perf_counter_mmap_match(counter, mmap_event))
2411                         perf_counter_mmap_output(counter, mmap_event);
2412         }
2413         rcu_read_unlock();
2414 }
2415
2416 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2417 {
2418         struct perf_cpu_context *cpuctx;
2419         struct file *file = mmap_event->file;
2420         unsigned int size;
2421         char tmp[16];
2422         char *buf = NULL;
2423         char *name;
2424
2425         if (file) {
2426                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2427                 if (!buf) {
2428                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2429                         goto got_name;
2430                 }
2431                 name = d_path(&file->f_path, buf, PATH_MAX);
2432                 if (IS_ERR(name)) {
2433                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2434                         goto got_name;
2435                 }
2436         } else {
2437                 name = strncpy(tmp, "//anon", sizeof(tmp));
2438                 goto got_name;
2439         }
2440
2441 got_name:
2442         size = ALIGN(strlen(name)+1, sizeof(u64));
2443
2444         mmap_event->file_name = name;
2445         mmap_event->file_size = size;
2446
2447         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2448
2449         cpuctx = &get_cpu_var(perf_cpu_context);
2450         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2451         put_cpu_var(perf_cpu_context);
2452
2453         perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2454
2455         kfree(buf);
2456 }
2457
2458 void perf_counter_mmap(unsigned long addr, unsigned long len,
2459                        unsigned long pgoff, struct file *file)
2460 {
2461         struct perf_mmap_event mmap_event;
2462
2463         if (!atomic_read(&nr_mmap_tracking))
2464                 return;
2465         if (!current->perf_counter_ctxp)
2466                 return;
2467
2468         mmap_event = (struct perf_mmap_event){
2469                 .file   = file,
2470                 .event  = {
2471                         .header = { .type = PERF_EVENT_MMAP, },
2472                         .pid    = current->group_leader->pid,
2473                         .tid    = current->pid,
2474                         .start  = addr,
2475                         .len    = len,
2476                         .pgoff  = pgoff,
2477                 },
2478         };
2479
2480         perf_counter_mmap_event(&mmap_event);
2481 }
2482
2483 void perf_counter_munmap(unsigned long addr, unsigned long len,
2484                          unsigned long pgoff, struct file *file)
2485 {
2486         struct perf_mmap_event mmap_event;
2487
2488         if (!atomic_read(&nr_munmap_tracking))
2489                 return;
2490
2491         mmap_event = (struct perf_mmap_event){
2492                 .file   = file,
2493                 .event  = {
2494                         .header = { .type = PERF_EVENT_MUNMAP, },
2495                         .pid    = current->group_leader->pid,
2496                         .tid    = current->pid,
2497                         .start  = addr,
2498                         .len    = len,
2499                         .pgoff  = pgoff,
2500                 },
2501         };
2502
2503         perf_counter_mmap_event(&mmap_event);
2504 }
2505
2506 /*
2507  * Log irq_period changes so that analyzing tools can re-normalize the
2508  * event flow.
2509  */
2510
2511 static void perf_log_period(struct perf_counter *counter, u64 period)
2512 {
2513         struct perf_output_handle handle;
2514         int ret;
2515
2516         struct {
2517                 struct perf_event_header        header;
2518                 u64                             time;
2519                 u64                             period;
2520         } freq_event = {
2521                 .header = {
2522                         .type = PERF_EVENT_PERIOD,
2523                         .misc = 0,
2524                         .size = sizeof(freq_event),
2525                 },
2526                 .time = sched_clock(),
2527                 .period = period,
2528         };
2529
2530         if (counter->hw.irq_period == period)
2531                 return;
2532
2533         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2534         if (ret)
2535                 return;
2536
2537         perf_output_put(&handle, freq_event);
2538         perf_output_end(&handle);
2539 }
2540
2541 /*
2542  * Generic counter overflow handling.
2543  */
2544
2545 int perf_counter_overflow(struct perf_counter *counter,
2546                           int nmi, struct pt_regs *regs, u64 addr)
2547 {
2548         int events = atomic_read(&counter->event_limit);
2549         int ret = 0;
2550
2551         counter->hw.interrupts++;
2552
2553         /*
2554          * XXX event_limit might not quite work as expected on inherited
2555          * counters
2556          */
2557
2558         counter->pending_kill = POLL_IN;
2559         if (events && atomic_dec_and_test(&counter->event_limit)) {
2560                 ret = 1;
2561                 counter->pending_kill = POLL_HUP;
2562                 if (nmi) {
2563                         counter->pending_disable = 1;
2564                         perf_pending_queue(&counter->pending,
2565                                            perf_pending_counter);
2566                 } else
2567                         perf_counter_disable(counter);
2568         }
2569
2570         perf_counter_output(counter, nmi, regs, addr);
2571         return ret;
2572 }
2573
2574 /*
2575  * Generic software counter infrastructure
2576  */
2577
2578 static void perf_swcounter_update(struct perf_counter *counter)
2579 {
2580         struct hw_perf_counter *hwc = &counter->hw;
2581         u64 prev, now;
2582         s64 delta;
2583
2584 again:
2585         prev = atomic64_read(&hwc->prev_count);
2586         now = atomic64_read(&hwc->count);
2587         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2588                 goto again;
2589
2590         delta = now - prev;
2591
2592         atomic64_add(delta, &counter->count);
2593         atomic64_sub(delta, &hwc->period_left);
2594 }
2595
2596 static void perf_swcounter_set_period(struct perf_counter *counter)
2597 {
2598         struct hw_perf_counter *hwc = &counter->hw;
2599         s64 left = atomic64_read(&hwc->period_left);
2600         s64 period = hwc->irq_period;
2601
2602         if (unlikely(left <= -period)) {
2603                 left = period;
2604                 atomic64_set(&hwc->period_left, left);
2605         }
2606
2607         if (unlikely(left <= 0)) {
2608                 left += period;
2609                 atomic64_add(period, &hwc->period_left);
2610         }
2611
2612         atomic64_set(&hwc->prev_count, -left);
2613         atomic64_set(&hwc->count, -left);
2614 }
2615
2616 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2617 {
2618         enum hrtimer_restart ret = HRTIMER_RESTART;
2619         struct perf_counter *counter;
2620         struct pt_regs *regs;
2621         u64 period;
2622
2623         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2624         counter->pmu->read(counter);
2625
2626         regs = get_irq_regs();
2627         /*
2628          * In case we exclude kernel IPs or are somehow not in interrupt
2629          * context, provide the next best thing, the user IP.
2630          */
2631         if ((counter->hw_event.exclude_kernel || !regs) &&
2632                         !counter->hw_event.exclude_user)
2633                 regs = task_pt_regs(current);
2634
2635         if (regs) {
2636                 if (perf_counter_overflow(counter, 0, regs, 0))
2637                         ret = HRTIMER_NORESTART;
2638         }
2639
2640         period = max_t(u64, 10000, counter->hw.irq_period);
2641         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2642
2643         return ret;
2644 }
2645
2646 static void perf_swcounter_overflow(struct perf_counter *counter,
2647                                     int nmi, struct pt_regs *regs, u64 addr)
2648 {
2649         perf_swcounter_update(counter);
2650         perf_swcounter_set_period(counter);
2651         if (perf_counter_overflow(counter, nmi, regs, addr))
2652                 /* soft-disable the counter */
2653                 ;
2654
2655 }
2656
2657 static int perf_swcounter_match(struct perf_counter *counter,
2658                                 enum perf_event_types type,
2659                                 u32 event, struct pt_regs *regs)
2660 {
2661         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2662                 return 0;
2663
2664         if (perf_event_raw(&counter->hw_event))
2665                 return 0;
2666
2667         if (perf_event_type(&counter->hw_event) != type)
2668                 return 0;
2669
2670         if (perf_event_id(&counter->hw_event) != event)
2671                 return 0;
2672
2673         if (counter->hw_event.exclude_user && user_mode(regs))
2674                 return 0;
2675
2676         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2677                 return 0;
2678
2679         return 1;
2680 }
2681
2682 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2683                                int nmi, struct pt_regs *regs, u64 addr)
2684 {
2685         int neg = atomic64_add_negative(nr, &counter->hw.count);
2686         if (counter->hw.irq_period && !neg)
2687                 perf_swcounter_overflow(counter, nmi, regs, addr);
2688 }
2689
2690 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2691                                      enum perf_event_types type, u32 event,
2692                                      u64 nr, int nmi, struct pt_regs *regs,
2693                                      u64 addr)
2694 {
2695         struct perf_counter *counter;
2696
2697         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2698                 return;
2699
2700         rcu_read_lock();
2701         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2702                 if (perf_swcounter_match(counter, type, event, regs))
2703                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2704         }
2705         rcu_read_unlock();
2706 }
2707
2708 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2709 {
2710         if (in_nmi())
2711                 return &cpuctx->recursion[3];
2712
2713         if (in_irq())
2714                 return &cpuctx->recursion[2];
2715
2716         if (in_softirq())
2717                 return &cpuctx->recursion[1];
2718
2719         return &cpuctx->recursion[0];
2720 }
2721
2722 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2723                                    u64 nr, int nmi, struct pt_regs *regs,
2724                                    u64 addr)
2725 {
2726         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2727         int *recursion = perf_swcounter_recursion_context(cpuctx);
2728
2729         if (*recursion)
2730                 goto out;
2731
2732         (*recursion)++;
2733         barrier();
2734
2735         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2736                                  nr, nmi, regs, addr);
2737         if (cpuctx->task_ctx) {
2738                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2739                                          nr, nmi, regs, addr);
2740         }
2741
2742         barrier();
2743         (*recursion)--;
2744
2745 out:
2746         put_cpu_var(perf_cpu_context);
2747 }
2748
2749 void
2750 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2751 {
2752         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2753 }
2754
2755 static void perf_swcounter_read(struct perf_counter *counter)
2756 {
2757         perf_swcounter_update(counter);
2758 }
2759
2760 static int perf_swcounter_enable(struct perf_counter *counter)
2761 {
2762         perf_swcounter_set_period(counter);
2763         return 0;
2764 }
2765
2766 static void perf_swcounter_disable(struct perf_counter *counter)
2767 {
2768         perf_swcounter_update(counter);
2769 }
2770
2771 static const struct pmu perf_ops_generic = {
2772         .enable         = perf_swcounter_enable,
2773         .disable        = perf_swcounter_disable,
2774         .read           = perf_swcounter_read,
2775 };
2776
2777 /*
2778  * Software counter: cpu wall time clock
2779  */
2780
2781 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2782 {
2783         int cpu = raw_smp_processor_id();
2784         s64 prev;
2785         u64 now;
2786
2787         now = cpu_clock(cpu);
2788         prev = atomic64_read(&counter->hw.prev_count);
2789         atomic64_set(&counter->hw.prev_count, now);
2790         atomic64_add(now - prev, &counter->count);
2791 }
2792
2793 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2794 {
2795         struct hw_perf_counter *hwc = &counter->hw;
2796         int cpu = raw_smp_processor_id();
2797
2798         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2799         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2800         hwc->hrtimer.function = perf_swcounter_hrtimer;
2801         if (hwc->irq_period) {
2802                 u64 period = max_t(u64, 10000, hwc->irq_period);
2803                 __hrtimer_start_range_ns(&hwc->hrtimer,
2804                                 ns_to_ktime(period), 0,
2805                                 HRTIMER_MODE_REL, 0);
2806         }
2807
2808         return 0;
2809 }
2810
2811 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2812 {
2813         if (counter->hw.irq_period)
2814                 hrtimer_cancel(&counter->hw.hrtimer);
2815         cpu_clock_perf_counter_update(counter);
2816 }
2817
2818 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2819 {
2820         cpu_clock_perf_counter_update(counter);
2821 }
2822
2823 static const struct pmu perf_ops_cpu_clock = {
2824         .enable         = cpu_clock_perf_counter_enable,
2825         .disable        = cpu_clock_perf_counter_disable,
2826         .read           = cpu_clock_perf_counter_read,
2827 };
2828
2829 /*
2830  * Software counter: task time clock
2831  */
2832
2833 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2834 {
2835         u64 prev;
2836         s64 delta;
2837
2838         prev = atomic64_xchg(&counter->hw.prev_count, now);
2839         delta = now - prev;
2840         atomic64_add(delta, &counter->count);
2841 }
2842
2843 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2844 {
2845         struct hw_perf_counter *hwc = &counter->hw;
2846         u64 now;
2847
2848         now = counter->ctx->time;
2849
2850         atomic64_set(&hwc->prev_count, now);
2851         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2852         hwc->hrtimer.function = perf_swcounter_hrtimer;
2853         if (hwc->irq_period) {
2854                 u64 period = max_t(u64, 10000, hwc->irq_period);
2855                 __hrtimer_start_range_ns(&hwc->hrtimer,
2856                                 ns_to_ktime(period), 0,
2857                                 HRTIMER_MODE_REL, 0);
2858         }
2859
2860         return 0;
2861 }
2862
2863 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2864 {
2865         if (counter->hw.irq_period)
2866                 hrtimer_cancel(&counter->hw.hrtimer);
2867         task_clock_perf_counter_update(counter, counter->ctx->time);
2868
2869 }
2870
2871 static void task_clock_perf_counter_read(struct perf_counter *counter)
2872 {
2873         u64 time;
2874
2875         if (!in_nmi()) {
2876                 update_context_time(counter->ctx);
2877                 time = counter->ctx->time;
2878         } else {
2879                 u64 now = perf_clock();
2880                 u64 delta = now - counter->ctx->timestamp;
2881                 time = counter->ctx->time + delta;
2882         }
2883
2884         task_clock_perf_counter_update(counter, time);
2885 }
2886
2887 static const struct pmu perf_ops_task_clock = {
2888         .enable         = task_clock_perf_counter_enable,
2889         .disable        = task_clock_perf_counter_disable,
2890         .read           = task_clock_perf_counter_read,
2891 };
2892
2893 /*
2894  * Software counter: cpu migrations
2895  */
2896
2897 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2898 {
2899         struct task_struct *curr = counter->ctx->task;
2900
2901         if (curr)
2902                 return curr->se.nr_migrations;
2903         return cpu_nr_migrations(smp_processor_id());
2904 }
2905
2906 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2907 {
2908         u64 prev, now;
2909         s64 delta;
2910
2911         prev = atomic64_read(&counter->hw.prev_count);
2912         now = get_cpu_migrations(counter);
2913
2914         atomic64_set(&counter->hw.prev_count, now);
2915
2916         delta = now - prev;
2917
2918         atomic64_add(delta, &counter->count);
2919 }
2920
2921 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2922 {
2923         cpu_migrations_perf_counter_update(counter);
2924 }
2925
2926 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2927 {
2928         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2929                 atomic64_set(&counter->hw.prev_count,
2930                              get_cpu_migrations(counter));
2931         return 0;
2932 }
2933
2934 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2935 {
2936         cpu_migrations_perf_counter_update(counter);
2937 }
2938
2939 static const struct pmu perf_ops_cpu_migrations = {
2940         .enable         = cpu_migrations_perf_counter_enable,
2941         .disable        = cpu_migrations_perf_counter_disable,
2942         .read           = cpu_migrations_perf_counter_read,
2943 };
2944
2945 #ifdef CONFIG_EVENT_PROFILE
2946 void perf_tpcounter_event(int event_id)
2947 {
2948         struct pt_regs *regs = get_irq_regs();
2949
2950         if (!regs)
2951                 regs = task_pt_regs(current);
2952
2953         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2954 }
2955 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2956
2957 extern int ftrace_profile_enable(int);
2958 extern void ftrace_profile_disable(int);
2959
2960 static void tp_perf_counter_destroy(struct perf_counter *counter)
2961 {
2962         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2963 }
2964
2965 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2966 {
2967         int event_id = perf_event_id(&counter->hw_event);
2968         int ret;
2969
2970         ret = ftrace_profile_enable(event_id);
2971         if (ret)
2972                 return NULL;
2973
2974         counter->destroy = tp_perf_counter_destroy;
2975         counter->hw.irq_period = counter->hw_event.irq_period;
2976
2977         return &perf_ops_generic;
2978 }
2979 #else
2980 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2981 {
2982         return NULL;
2983 }
2984 #endif
2985
2986 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2987 {
2988         const struct pmu *pmu = NULL;
2989
2990         /*
2991          * Software counters (currently) can't in general distinguish
2992          * between user, kernel and hypervisor events.
2993          * However, context switches and cpu migrations are considered
2994          * to be kernel events, and page faults are never hypervisor
2995          * events.
2996          */
2997         switch (perf_event_id(&counter->hw_event)) {
2998         case PERF_COUNT_CPU_CLOCK:
2999                 pmu = &perf_ops_cpu_clock;
3000
3001                 break;
3002         case PERF_COUNT_TASK_CLOCK:
3003                 /*
3004                  * If the user instantiates this as a per-cpu counter,
3005                  * use the cpu_clock counter instead.
3006                  */
3007                 if (counter->ctx->task)
3008                         pmu = &perf_ops_task_clock;
3009                 else
3010                         pmu = &perf_ops_cpu_clock;
3011
3012                 break;
3013         case PERF_COUNT_PAGE_FAULTS:
3014         case PERF_COUNT_PAGE_FAULTS_MIN:
3015         case PERF_COUNT_PAGE_FAULTS_MAJ:
3016         case PERF_COUNT_CONTEXT_SWITCHES:
3017                 pmu = &perf_ops_generic;
3018                 break;
3019         case PERF_COUNT_CPU_MIGRATIONS:
3020                 if (!counter->hw_event.exclude_kernel)
3021                         pmu = &perf_ops_cpu_migrations;
3022                 break;
3023         }
3024
3025         return pmu;
3026 }
3027
3028 /*
3029  * Allocate and initialize a counter structure
3030  */
3031 static struct perf_counter *
3032 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3033                    int cpu,
3034                    struct perf_counter_context *ctx,
3035                    struct perf_counter *group_leader,
3036                    gfp_t gfpflags)
3037 {
3038         const struct pmu *pmu;
3039         struct perf_counter *counter;
3040         struct hw_perf_counter *hwc;
3041         long err;
3042
3043         counter = kzalloc(sizeof(*counter), gfpflags);
3044         if (!counter)
3045                 return ERR_PTR(-ENOMEM);
3046
3047         /*
3048          * Single counters are their own group leaders, with an
3049          * empty sibling list:
3050          */
3051         if (!group_leader)
3052                 group_leader = counter;
3053
3054         mutex_init(&counter->child_mutex);
3055         INIT_LIST_HEAD(&counter->child_list);
3056
3057         INIT_LIST_HEAD(&counter->list_entry);
3058         INIT_LIST_HEAD(&counter->event_entry);
3059         INIT_LIST_HEAD(&counter->sibling_list);
3060         init_waitqueue_head(&counter->waitq);
3061
3062         mutex_init(&counter->mmap_mutex);
3063
3064         counter->cpu                    = cpu;
3065         counter->hw_event               = *hw_event;
3066         counter->group_leader           = group_leader;
3067         counter->pmu                    = NULL;
3068         counter->ctx                    = ctx;
3069         get_ctx(ctx);
3070
3071         counter->state = PERF_COUNTER_STATE_INACTIVE;
3072         if (hw_event->disabled)
3073                 counter->state = PERF_COUNTER_STATE_OFF;
3074
3075         pmu = NULL;
3076
3077         hwc = &counter->hw;
3078         if (hw_event->freq && hw_event->irq_freq)
3079                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3080         else
3081                 hwc->irq_period = hw_event->irq_period;
3082
3083         /*
3084          * we currently do not support PERF_RECORD_GROUP on inherited counters
3085          */
3086         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3087                 goto done;
3088
3089         if (perf_event_raw(hw_event)) {
3090                 pmu = hw_perf_counter_init(counter);
3091                 goto done;
3092         }
3093
3094         switch (perf_event_type(hw_event)) {
3095         case PERF_TYPE_HARDWARE:
3096                 pmu = hw_perf_counter_init(counter);
3097                 break;
3098
3099         case PERF_TYPE_SOFTWARE:
3100                 pmu = sw_perf_counter_init(counter);
3101                 break;
3102
3103         case PERF_TYPE_TRACEPOINT:
3104                 pmu = tp_perf_counter_init(counter);
3105                 break;
3106         }
3107 done:
3108         err = 0;
3109         if (!pmu)
3110                 err = -EINVAL;
3111         else if (IS_ERR(pmu))
3112                 err = PTR_ERR(pmu);
3113
3114         if (err) {
3115                 kfree(counter);
3116                 return ERR_PTR(err);
3117         }
3118
3119         counter->pmu = pmu;
3120
3121         atomic_inc(&nr_counters);
3122         if (counter->hw_event.mmap)
3123                 atomic_inc(&nr_mmap_tracking);
3124         if (counter->hw_event.munmap)
3125                 atomic_inc(&nr_munmap_tracking);
3126         if (counter->hw_event.comm)
3127                 atomic_inc(&nr_comm_tracking);
3128
3129         return counter;
3130 }
3131
3132 /**
3133  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3134  *
3135  * @hw_event_uptr:      event type attributes for monitoring/sampling
3136  * @pid:                target pid
3137  * @cpu:                target cpu
3138  * @group_fd:           group leader counter fd
3139  */
3140 SYSCALL_DEFINE5(perf_counter_open,
3141                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3142                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3143 {
3144         struct perf_counter *counter, *group_leader;
3145         struct perf_counter_hw_event hw_event;
3146         struct perf_counter_context *ctx;
3147         struct file *counter_file = NULL;
3148         struct file *group_file = NULL;
3149         int fput_needed = 0;
3150         int fput_needed2 = 0;
3151         int ret;
3152
3153         /* for future expandability... */
3154         if (flags)
3155                 return -EINVAL;
3156
3157         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3158                 return -EFAULT;
3159
3160         /*
3161          * Get the target context (task or percpu):
3162          */
3163         ctx = find_get_context(pid, cpu);
3164         if (IS_ERR(ctx))
3165                 return PTR_ERR(ctx);
3166
3167         /*
3168          * Look up the group leader (we will attach this counter to it):
3169          */
3170         group_leader = NULL;
3171         if (group_fd != -1) {
3172                 ret = -EINVAL;
3173                 group_file = fget_light(group_fd, &fput_needed);
3174                 if (!group_file)
3175                         goto err_put_context;
3176                 if (group_file->f_op != &perf_fops)
3177                         goto err_put_context;
3178
3179                 group_leader = group_file->private_data;
3180                 /*
3181                  * Do not allow a recursive hierarchy (this new sibling
3182                  * becoming part of another group-sibling):
3183                  */
3184                 if (group_leader->group_leader != group_leader)
3185                         goto err_put_context;
3186                 /*
3187                  * Do not allow to attach to a group in a different
3188                  * task or CPU context:
3189                  */
3190                 if (group_leader->ctx != ctx)
3191                         goto err_put_context;
3192                 /*
3193                  * Only a group leader can be exclusive or pinned
3194                  */
3195                 if (hw_event.exclusive || hw_event.pinned)
3196                         goto err_put_context;
3197         }
3198
3199         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3200                                      GFP_KERNEL);
3201         ret = PTR_ERR(counter);
3202         if (IS_ERR(counter))
3203                 goto err_put_context;
3204
3205         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3206         if (ret < 0)
3207                 goto err_free_put_context;
3208
3209         counter_file = fget_light(ret, &fput_needed2);
3210         if (!counter_file)
3211                 goto err_free_put_context;
3212
3213         counter->filp = counter_file;
3214         mutex_lock(&ctx->mutex);
3215         perf_install_in_context(ctx, counter, cpu);
3216         mutex_unlock(&ctx->mutex);
3217
3218         counter->owner = current;
3219         get_task_struct(current);
3220         mutex_lock(&current->perf_counter_mutex);
3221         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3222         mutex_unlock(&current->perf_counter_mutex);
3223
3224         fput_light(counter_file, fput_needed2);
3225
3226 out_fput:
3227         fput_light(group_file, fput_needed);
3228
3229         return ret;
3230
3231 err_free_put_context:
3232         kfree(counter);
3233
3234 err_put_context:
3235         put_context(ctx);
3236
3237         goto out_fput;
3238 }
3239
3240 /*
3241  * inherit a counter from parent task to child task:
3242  */
3243 static struct perf_counter *
3244 inherit_counter(struct perf_counter *parent_counter,
3245               struct task_struct *parent,
3246               struct perf_counter_context *parent_ctx,
3247               struct task_struct *child,
3248               struct perf_counter *group_leader,
3249               struct perf_counter_context *child_ctx)
3250 {
3251         struct perf_counter *child_counter;
3252
3253         /*
3254          * Instead of creating recursive hierarchies of counters,
3255          * we link inherited counters back to the original parent,
3256          * which has a filp for sure, which we use as the reference
3257          * count:
3258          */
3259         if (parent_counter->parent)
3260                 parent_counter = parent_counter->parent;
3261
3262         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3263                                            parent_counter->cpu, child_ctx,
3264                                            group_leader, GFP_KERNEL);
3265         if (IS_ERR(child_counter))
3266                 return child_counter;
3267
3268         /*
3269          * Make the child state follow the state of the parent counter,
3270          * not its hw_event.disabled bit.  We hold the parent's mutex,
3271          * so we won't race with perf_counter_{en,dis}able_family.
3272          */
3273         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3274                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3275         else
3276                 child_counter->state = PERF_COUNTER_STATE_OFF;
3277
3278         /*
3279          * Link it up in the child's context:
3280          */
3281         add_counter_to_ctx(child_counter, child_ctx);
3282
3283         child_counter->parent = parent_counter;
3284         /*
3285          * inherit into child's child as well:
3286          */
3287         child_counter->hw_event.inherit = 1;
3288
3289         /*
3290          * Get a reference to the parent filp - we will fput it
3291          * when the child counter exits. This is safe to do because
3292          * we are in the parent and we know that the filp still
3293          * exists and has a nonzero count:
3294          */
3295         atomic_long_inc(&parent_counter->filp->f_count);
3296
3297         /*
3298          * Link this into the parent counter's child list
3299          */
3300         mutex_lock(&parent_counter->child_mutex);
3301         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3302         mutex_unlock(&parent_counter->child_mutex);
3303
3304         return child_counter;
3305 }
3306
3307 static int inherit_group(struct perf_counter *parent_counter,
3308               struct task_struct *parent,
3309               struct perf_counter_context *parent_ctx,
3310               struct task_struct *child,
3311               struct perf_counter_context *child_ctx)
3312 {
3313         struct perf_counter *leader;
3314         struct perf_counter *sub;
3315         struct perf_counter *child_ctr;
3316
3317         leader = inherit_counter(parent_counter, parent, parent_ctx,
3318                                  child, NULL, child_ctx);
3319         if (IS_ERR(leader))
3320                 return PTR_ERR(leader);
3321         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3322                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3323                                             child, leader, child_ctx);
3324                 if (IS_ERR(child_ctr))
3325                         return PTR_ERR(child_ctr);
3326         }
3327         return 0;
3328 }
3329
3330 static void sync_child_counter(struct perf_counter *child_counter,
3331                                struct perf_counter *parent_counter)
3332 {
3333         u64 child_val;
3334
3335         child_val = atomic64_read(&child_counter->count);
3336
3337         /*
3338          * Add back the child's count to the parent's count:
3339          */
3340         atomic64_add(child_val, &parent_counter->count);
3341         atomic64_add(child_counter->total_time_enabled,
3342                      &parent_counter->child_total_time_enabled);
3343         atomic64_add(child_counter->total_time_running,
3344                      &parent_counter->child_total_time_running);
3345
3346         /*
3347          * Remove this counter from the parent's list
3348          */
3349         mutex_lock(&parent_counter->child_mutex);
3350         list_del_init(&child_counter->child_list);
3351         mutex_unlock(&parent_counter->child_mutex);
3352
3353         /*
3354          * Release the parent counter, if this was the last
3355          * reference to it.
3356          */
3357         fput(parent_counter->filp);
3358 }
3359
3360 static void
3361 __perf_counter_exit_task(struct task_struct *child,
3362                          struct perf_counter *child_counter,
3363                          struct perf_counter_context *child_ctx)
3364 {
3365         struct perf_counter *parent_counter;
3366
3367         update_counter_times(child_counter);
3368         perf_counter_remove_from_context(child_counter);
3369
3370         parent_counter = child_counter->parent;
3371         /*
3372          * It can happen that parent exits first, and has counters
3373          * that are still around due to the child reference. These
3374          * counters need to be zapped - but otherwise linger.
3375          */
3376         if (parent_counter) {
3377                 sync_child_counter(child_counter, parent_counter);
3378                 free_counter(child_counter);
3379         }
3380 }
3381
3382 /*
3383  * When a child task exits, feed back counter values to parent counters.
3384  *
3385  * Note: we may be running in child context, but the PID is not hashed
3386  * anymore so new counters will not be added.
3387  * (XXX not sure that is true when we get called from flush_old_exec.
3388  *  -- paulus)
3389  */
3390 void perf_counter_exit_task(struct task_struct *child)
3391 {
3392         struct perf_counter *child_counter, *tmp;
3393         struct perf_counter_context *child_ctx;
3394         unsigned long flags;
3395
3396         WARN_ON_ONCE(child != current);
3397
3398         child_ctx = child->perf_counter_ctxp;
3399
3400         if (likely(!child_ctx))
3401                 return;
3402
3403         local_irq_save(flags);
3404         __perf_counter_task_sched_out(child_ctx);
3405         child->perf_counter_ctxp = NULL;
3406         local_irq_restore(flags);
3407
3408         mutex_lock(&child_ctx->mutex);
3409
3410 again:
3411         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3412                                  list_entry)
3413                 __perf_counter_exit_task(child, child_counter, child_ctx);
3414
3415         /*
3416          * If the last counter was a group counter, it will have appended all
3417          * its siblings to the list, but we obtained 'tmp' before that which
3418          * will still point to the list head terminating the iteration.
3419          */
3420         if (!list_empty(&child_ctx->counter_list))
3421                 goto again;
3422
3423         mutex_unlock(&child_ctx->mutex);
3424
3425         put_ctx(child_ctx);
3426 }
3427
3428 /*
3429  * Initialize the perf_counter context in task_struct
3430  */
3431 void perf_counter_init_task(struct task_struct *child)
3432 {
3433         struct perf_counter_context *child_ctx, *parent_ctx;
3434         struct perf_counter *counter;
3435         struct task_struct *parent = current;
3436         int inherited_all = 1;
3437
3438         child->perf_counter_ctxp = NULL;
3439
3440         mutex_init(&child->perf_counter_mutex);
3441         INIT_LIST_HEAD(&child->perf_counter_list);
3442
3443         /*
3444          * This is executed from the parent task context, so inherit
3445          * counters that have been marked for cloning.
3446          * First allocate and initialize a context for the child.
3447          */
3448
3449         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3450         if (!child_ctx)
3451                 return;
3452
3453         parent_ctx = parent->perf_counter_ctxp;
3454         if (likely(!parent_ctx || !parent_ctx->nr_counters))
3455                 return;
3456
3457         __perf_counter_init_context(child_ctx, child);
3458         child->perf_counter_ctxp = child_ctx;
3459
3460         /*
3461          * Lock the parent list. No need to lock the child - not PID
3462          * hashed yet and not running, so nobody can access it.
3463          */
3464         mutex_lock(&parent_ctx->mutex);
3465
3466         /*
3467          * We dont have to disable NMIs - we are only looking at
3468          * the list, not manipulating it:
3469          */
3470         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3471                 if (counter != counter->group_leader)
3472                         continue;
3473
3474                 if (!counter->hw_event.inherit) {
3475                         inherited_all = 0;
3476                         continue;
3477                 }
3478
3479                 if (inherit_group(counter, parent,
3480                                   parent_ctx, child, child_ctx)) {
3481                         inherited_all = 0;
3482                         break;
3483                 }
3484         }
3485
3486         if (inherited_all) {
3487                 /*
3488                  * Mark the child context as a clone of the parent
3489                  * context, or of whatever the parent is a clone of.
3490                  */
3491                 if (parent_ctx->parent_ctx) {
3492                         child_ctx->parent_ctx = parent_ctx->parent_ctx;
3493                         child_ctx->parent_gen = parent_ctx->parent_gen;
3494                 } else {
3495                         child_ctx->parent_ctx = parent_ctx;
3496                         child_ctx->parent_gen = parent_ctx->generation;
3497                 }
3498                 get_ctx(child_ctx->parent_ctx);
3499         }
3500
3501         mutex_unlock(&parent_ctx->mutex);
3502 }
3503
3504 static void __cpuinit perf_counter_init_cpu(int cpu)
3505 {
3506         struct perf_cpu_context *cpuctx;
3507
3508         cpuctx = &per_cpu(perf_cpu_context, cpu);
3509         __perf_counter_init_context(&cpuctx->ctx, NULL);
3510
3511         spin_lock(&perf_resource_lock);
3512         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3513         spin_unlock(&perf_resource_lock);
3514
3515         hw_perf_counter_setup(cpu);
3516 }
3517
3518 #ifdef CONFIG_HOTPLUG_CPU
3519 static void __perf_counter_exit_cpu(void *info)
3520 {
3521         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3522         struct perf_counter_context *ctx = &cpuctx->ctx;
3523         struct perf_counter *counter, *tmp;
3524
3525         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3526                 __perf_counter_remove_from_context(counter);
3527 }
3528 static void perf_counter_exit_cpu(int cpu)
3529 {
3530         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3531         struct perf_counter_context *ctx = &cpuctx->ctx;
3532
3533         mutex_lock(&ctx->mutex);
3534         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3535         mutex_unlock(&ctx->mutex);
3536 }
3537 #else
3538 static inline void perf_counter_exit_cpu(int cpu) { }
3539 #endif
3540
3541 static int __cpuinit
3542 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3543 {
3544         unsigned int cpu = (long)hcpu;
3545
3546         switch (action) {
3547
3548         case CPU_UP_PREPARE:
3549         case CPU_UP_PREPARE_FROZEN:
3550                 perf_counter_init_cpu(cpu);
3551                 break;
3552
3553         case CPU_DOWN_PREPARE:
3554         case CPU_DOWN_PREPARE_FROZEN:
3555                 perf_counter_exit_cpu(cpu);
3556                 break;
3557
3558         default:
3559                 break;
3560         }
3561
3562         return NOTIFY_OK;
3563 }
3564
3565 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3566         .notifier_call          = perf_cpu_notify,
3567 };
3568
3569 void __init perf_counter_init(void)
3570 {
3571         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3572                         (void *)(long)smp_processor_id());
3573         register_cpu_notifier(&perf_cpu_nb);
3574 }
3575
3576 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3577 {
3578         return sprintf(buf, "%d\n", perf_reserved_percpu);
3579 }
3580
3581 static ssize_t
3582 perf_set_reserve_percpu(struct sysdev_class *class,
3583                         const char *buf,
3584                         size_t count)
3585 {
3586         struct perf_cpu_context *cpuctx;
3587         unsigned long val;
3588         int err, cpu, mpt;
3589
3590         err = strict_strtoul(buf, 10, &val);
3591         if (err)
3592                 return err;
3593         if (val > perf_max_counters)
3594                 return -EINVAL;
3595
3596         spin_lock(&perf_resource_lock);
3597         perf_reserved_percpu = val;
3598         for_each_online_cpu(cpu) {
3599                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3600                 spin_lock_irq(&cpuctx->ctx.lock);
3601                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3602                           perf_max_counters - perf_reserved_percpu);
3603                 cpuctx->max_pertask = mpt;
3604                 spin_unlock_irq(&cpuctx->ctx.lock);
3605         }
3606         spin_unlock(&perf_resource_lock);
3607
3608         return count;
3609 }
3610
3611 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3612 {
3613         return sprintf(buf, "%d\n", perf_overcommit);
3614 }
3615
3616 static ssize_t
3617 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3618 {
3619         unsigned long val;
3620         int err;
3621
3622         err = strict_strtoul(buf, 10, &val);
3623         if (err)
3624                 return err;
3625         if (val > 1)
3626                 return -EINVAL;
3627
3628         spin_lock(&perf_resource_lock);
3629         perf_overcommit = val;
3630         spin_unlock(&perf_resource_lock);
3631
3632         return count;
3633 }
3634
3635 static SYSDEV_CLASS_ATTR(
3636                                 reserve_percpu,
3637                                 0644,
3638                                 perf_show_reserve_percpu,
3639                                 perf_set_reserve_percpu
3640                         );
3641
3642 static SYSDEV_CLASS_ATTR(
3643                                 overcommit,
3644                                 0644,
3645                                 perf_show_overcommit,
3646                                 perf_set_overcommit
3647                         );
3648
3649 static struct attribute *perfclass_attrs[] = {
3650         &attr_reserve_percpu.attr,
3651         &attr_overcommit.attr,
3652         NULL
3653 };
3654
3655 static struct attribute_group perfclass_attr_group = {
3656         .attrs                  = perfclass_attrs,
3657         .name                   = "perf_counters",
3658 };
3659
3660 static int __init perf_counter_sysfs_init(void)
3661 {
3662         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3663                                   &perfclass_attr_group);
3664 }
3665 device_initcall(perf_counter_sysfs_init);