2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 drm_i915_private_t *dev_priv = dev->dev_private;
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 dev->gtt_total = (uint32_t) (end - start);
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
79 struct drm_i915_gem_init *args = data;
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 mutex_unlock(&dev->struct_mutex);
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
93 struct drm_i915_gem_get_aperture *args = data;
95 if (!(dev->driver->driver_features & DRIVER_GEM))
98 args->aper_size = dev->gtt_total;
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
107 * Creates a new mm object and returns a handle to it.
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
117 args->size = roundup(args->size, PAGE_SIZE);
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
132 args->handle = handle;
138 fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150 kunmap_atomic(vaddr, KM_USER0);
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
168 slow_shmem_copy(struct page *dst_page,
170 struct page *src_page,
174 char *dst_vaddr, *src_vaddr;
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
195 slow_shmem_bit17_copy(struct page *gpu_page,
197 struct page *cpu_page,
202 char *gpu_vaddr, *cpu_vaddr;
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
272 mutex_lock(&dev->struct_mutex);
274 ret = i915_gem_object_get_pages(obj);
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 obj_priv = obj->driver_private;
284 offset = args->offset;
287 /* Operation in this page
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
311 i915_gem_object_put_pages(obj);
313 mutex_unlock(&dev->struct_mutex);
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
339 uint64_t data_ptr = args->data_ptr;
340 int do_bit17_swizzling;
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
352 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353 if (user_pages == NULL)
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358 num_pages, 1, 0, user_pages, NULL);
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
362 goto fail_put_user_pages;
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367 mutex_lock(&dev->struct_mutex);
369 ret = i915_gem_object_get_pages(obj);
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
378 obj_priv = obj->driver_private;
379 offset = args->offset;
382 /* Operation in this page
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404 user_pages[data_page_index],
409 ret = slow_shmem_copy(user_pages[data_page_index],
411 obj_priv->pages[shmem_page_index],
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
424 i915_gem_object_put_pages(obj);
426 mutex_unlock(&dev->struct_mutex);
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
432 drm_free_large(user_pages);
438 * Reads data from the object referenced by handle.
440 * On error, the contents of *data are undefined.
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
454 obj_priv = obj->driver_private;
456 /* Bounds check source.
458 * XXX: This could use review for overflow issues...
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
475 drm_gem_object_unreference(obj);
480 /* This is the fast write path which cannot handle
481 * page faults in the source data
485 fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
491 unsigned long unwritten;
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496 io_mapping_unmap_atomic(vaddr_atomic);
502 /* Here's the write path which can sleep for
507 slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
512 char *src_vaddr, *dst_vaddr;
513 unsigned long unwritten;
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
528 fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
534 unsigned long unwritten;
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540 kunmap_atomic(vaddr, KM_USER0);
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
557 drm_i915_private_t *dev_priv = dev->dev_private;
559 loff_t offset, page_base;
560 char __user *user_data;
561 int page_offset, page_length;
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
566 if (!access_ok(VERIFY_READ, user_data, remain))
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
573 mutex_unlock(&dev->struct_mutex);
576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
584 /* Operation in this page
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
599 /* If we get a fault while copying data, then (presumably) our
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
640 uint64_t data_ptr = args->data_ptr;
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
652 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653 if (user_pages == NULL)
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
662 goto out_unpin_pages;
665 mutex_lock(&dev->struct_mutex);
666 ret = i915_gem_object_pin(obj, 0);
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672 goto out_unpin_object;
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
678 /* Operation in this page
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
708 goto out_unpin_object;
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
716 i915_gem_object_unpin(obj);
718 mutex_unlock(&dev->struct_mutex);
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
722 drm_free_large(user_pages);
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
746 mutex_lock(&dev->struct_mutex);
748 ret = i915_gem_object_get_pages(obj);
752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
756 obj_priv = obj->driver_private;
757 offset = args->offset;
761 /* Operation in this page
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
785 i915_gem_object_put_pages(obj);
787 mutex_unlock(&dev->struct_mutex);
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
814 uint64_t data_ptr = args->data_ptr;
815 int do_bit17_swizzling;
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
827 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828 if (user_pages == NULL)
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
837 goto fail_put_user_pages;
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842 mutex_lock(&dev->struct_mutex);
844 ret = i915_gem_object_get_pages(obj);
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
852 obj_priv = obj->driver_private;
853 offset = args->offset;
857 /* Operation in this page
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879 user_pages[data_page_index],
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886 user_pages[data_page_index],
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
899 i915_gem_object_put_pages(obj);
901 mutex_unlock(&dev->struct_mutex);
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
905 drm_free_large(user_pages);
911 * Writes data to the object referenced by handle.
913 * On error, the contents of the buffer that were to be modified are undefined.
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
927 obj_priv = obj->driver_private;
929 /* Bounds check destination.
931 * XXX: This could use review for overflow issues...
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
966 DRM_INFO("pwrite failed %d\n", ret);
969 drm_gem_object_unreference(obj);
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
988 if (!(dev->driver->driver_features & DRIVER_GEM))
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
995 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1001 if (write_domain != 0 && read_domains != write_domain)
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008 mutex_lock(&dev->struct_mutex);
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011 obj, obj->size, read_domains, write_domain);
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1032 * Called when user space has done writes to this buffer
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1049 mutex_unlock(&dev->struct_mutex);
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1057 obj_priv = obj->driver_private;
1059 /* Pinned buffers may be scanout, so flush the cache */
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1069 * Maps the contents of an object, returning the address it is mapped
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091 offset = args->offset;
1093 down_write(¤t->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1097 up_write(¤t->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1104 args->addr_ptr = (uint64_t) addr;
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1149 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1151 mutex_unlock(&dev->struct_mutex);
1152 return VM_FAULT_SIGBUS;
1155 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1158 /* Need a new fence register? */
1159 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1160 obj_priv->tiling_mode != I915_TILING_NONE) {
1161 ret = i915_gem_object_get_fence_reg(obj, write);
1163 mutex_unlock(&dev->struct_mutex);
1164 return VM_FAULT_SIGBUS;
1168 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1174 mutex_unlock(&dev->struct_mutex);
1179 return VM_FAULT_OOM;
1182 return VM_FAULT_SIGBUS;
1184 return VM_FAULT_NOPAGE;
1189 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190 * @obj: obj in question
1192 * GEM memory mapping works by handing back to userspace a fake mmap offset
1193 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1194 * up the object based on the offset and sets up the various memory mapping
1197 * This routine allocates and attaches a fake offset for @obj.
1200 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1202 struct drm_device *dev = obj->dev;
1203 struct drm_gem_mm *mm = dev->mm_private;
1204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205 struct drm_map_list *list;
1206 struct drm_local_map *map;
1209 /* Set the object up for mmap'ing */
1210 list = &obj->map_list;
1211 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1217 map->type = _DRM_GEM;
1218 map->size = obj->size;
1221 /* Get a DRM GEM mmap offset allocated... */
1222 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1223 obj->size / PAGE_SIZE, 0, 0);
1224 if (!list->file_offset_node) {
1225 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1230 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1231 obj->size / PAGE_SIZE, 0);
1232 if (!list->file_offset_node) {
1237 list->hash.key = list->file_offset_node->start;
1238 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1239 DRM_ERROR("failed to add to map hash\n");
1243 /* By now we should be all set, any drm_mmap request on the offset
1244 * below will get to our mmap & fault handler */
1245 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1250 drm_mm_put_block(list->file_offset_node);
1252 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1258 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1260 struct drm_device *dev = obj->dev;
1261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262 struct drm_gem_mm *mm = dev->mm_private;
1263 struct drm_map_list *list;
1265 list = &obj->map_list;
1266 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1268 if (list->file_offset_node) {
1269 drm_mm_put_block(list->file_offset_node);
1270 list->file_offset_node = NULL;
1274 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1278 obj_priv->mmap_offset = 0;
1282 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1283 * @obj: object to check
1285 * Return the required GTT alignment for an object, taking into account
1286 * potential fence register mapping if needed.
1289 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1291 struct drm_device *dev = obj->dev;
1292 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1296 * Minimum alignment is 4k (GTT page size), but might be greater
1297 * if a fence register is needed for the object.
1299 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1303 * Previous chips need to be aligned to the size of the smallest
1304 * fence register that can contain the object.
1311 for (i = start; i < obj->size; i <<= 1)
1318 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1320 * @data: GTT mapping ioctl data
1321 * @file_priv: GEM object info
1323 * Simply returns the fake offset to userspace so it can mmap it.
1324 * The mmap call will end up in drm_gem_mmap(), which will set things
1325 * up so we can get faults in the handler above.
1327 * The fault handler will take care of binding the object into the GTT
1328 * (since it may have been evicted to make room for something), allocating
1329 * a fence register, and mapping the appropriate aperture address into
1333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1334 struct drm_file *file_priv)
1336 struct drm_i915_gem_mmap_gtt *args = data;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 struct drm_gem_object *obj;
1339 struct drm_i915_gem_object *obj_priv;
1342 if (!(dev->driver->driver_features & DRIVER_GEM))
1345 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1349 mutex_lock(&dev->struct_mutex);
1351 obj_priv = obj->driver_private;
1353 if (!obj_priv->mmap_offset) {
1354 ret = i915_gem_create_mmap_offset(obj);
1356 drm_gem_object_unreference(obj);
1357 mutex_unlock(&dev->struct_mutex);
1362 args->offset = obj_priv->mmap_offset;
1364 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1366 /* Make sure the alignment is correct for fence regs etc */
1367 if (obj_priv->agp_mem &&
1368 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1369 drm_gem_object_unreference(obj);
1370 mutex_unlock(&dev->struct_mutex);
1375 * Pull it into the GTT so that we have a page list (makes the
1376 * initial fault faster and any subsequent flushing possible).
1378 if (!obj_priv->agp_mem) {
1379 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1385 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1388 drm_gem_object_unreference(obj);
1389 mutex_unlock(&dev->struct_mutex);
1395 i915_gem_object_put_pages(struct drm_gem_object *obj)
1397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1398 int page_count = obj->size / PAGE_SIZE;
1401 BUG_ON(obj_priv->pages_refcount == 0);
1403 if (--obj_priv->pages_refcount != 0)
1406 if (obj_priv->tiling_mode != I915_TILING_NONE)
1407 i915_gem_object_save_bit_17_swizzle(obj);
1409 for (i = 0; i < page_count; i++)
1410 if (obj_priv->pages[i] != NULL) {
1411 if (obj_priv->dirty)
1412 set_page_dirty(obj_priv->pages[i]);
1413 mark_page_accessed(obj_priv->pages[i]);
1414 page_cache_release(obj_priv->pages[i]);
1416 obj_priv->dirty = 0;
1418 drm_free_large(obj_priv->pages);
1419 obj_priv->pages = NULL;
1423 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1425 struct drm_device *dev = obj->dev;
1426 drm_i915_private_t *dev_priv = dev->dev_private;
1427 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1429 /* Add a reference if we're newly entering the active list. */
1430 if (!obj_priv->active) {
1431 drm_gem_object_reference(obj);
1432 obj_priv->active = 1;
1434 /* Move from whatever list we were on to the tail of execution. */
1435 spin_lock(&dev_priv->mm.active_list_lock);
1436 list_move_tail(&obj_priv->list,
1437 &dev_priv->mm.active_list);
1438 spin_unlock(&dev_priv->mm.active_list_lock);
1439 obj_priv->last_rendering_seqno = seqno;
1443 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1445 struct drm_device *dev = obj->dev;
1446 drm_i915_private_t *dev_priv = dev->dev_private;
1447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1449 BUG_ON(!obj_priv->active);
1450 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1451 obj_priv->last_rendering_seqno = 0;
1455 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1457 struct drm_device *dev = obj->dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1461 i915_verify_inactive(dev, __FILE__, __LINE__);
1462 if (obj_priv->pin_count != 0)
1463 list_del_init(&obj_priv->list);
1465 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1467 obj_priv->last_rendering_seqno = 0;
1468 if (obj_priv->active) {
1469 obj_priv->active = 0;
1470 drm_gem_object_unreference(obj);
1472 i915_verify_inactive(dev, __FILE__, __LINE__);
1476 * Creates a new sequence number, emitting a write of it to the status page
1477 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1479 * Must be called with struct_lock held.
1481 * Returned sequence numbers are nonzero on success.
1484 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1486 drm_i915_private_t *dev_priv = dev->dev_private;
1487 struct drm_i915_gem_request *request;
1492 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1493 if (request == NULL)
1496 /* Grab the seqno we're going to make this request be, and bump the
1497 * next (skipping 0 so it can be the reserved no-seqno value).
1499 seqno = dev_priv->mm.next_gem_seqno;
1500 dev_priv->mm.next_gem_seqno++;
1501 if (dev_priv->mm.next_gem_seqno == 0)
1502 dev_priv->mm.next_gem_seqno++;
1505 OUT_RING(MI_STORE_DWORD_INDEX);
1506 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1509 OUT_RING(MI_USER_INTERRUPT);
1512 DRM_DEBUG("%d\n", seqno);
1514 request->seqno = seqno;
1515 request->emitted_jiffies = jiffies;
1516 was_empty = list_empty(&dev_priv->mm.request_list);
1517 list_add_tail(&request->list, &dev_priv->mm.request_list);
1519 /* Associate any objects on the flushing list matching the write
1520 * domain we're flushing with our flush.
1522 if (flush_domains != 0) {
1523 struct drm_i915_gem_object *obj_priv, *next;
1525 list_for_each_entry_safe(obj_priv, next,
1526 &dev_priv->mm.flushing_list, list) {
1527 struct drm_gem_object *obj = obj_priv->obj;
1529 if ((obj->write_domain & flush_domains) ==
1530 obj->write_domain) {
1531 obj->write_domain = 0;
1532 i915_gem_object_move_to_active(obj, seqno);
1538 if (was_empty && !dev_priv->mm.suspended)
1539 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1544 * Command execution barrier
1546 * Ensures that all commands in the ring are finished
1547 * before signalling the CPU
1550 i915_retire_commands(struct drm_device *dev)
1552 drm_i915_private_t *dev_priv = dev->dev_private;
1553 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1554 uint32_t flush_domains = 0;
1557 /* The sampler always gets flushed on i965 (sigh) */
1559 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1562 OUT_RING(0); /* noop */
1564 return flush_domains;
1568 * Moves buffers associated only with the given active seqno from the active
1569 * to inactive list, potentially freeing them.
1572 i915_gem_retire_request(struct drm_device *dev,
1573 struct drm_i915_gem_request *request)
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1577 /* Move any buffers on the active list that are no longer referenced
1578 * by the ringbuffer to the flushing/inactive lists as appropriate.
1580 spin_lock(&dev_priv->mm.active_list_lock);
1581 while (!list_empty(&dev_priv->mm.active_list)) {
1582 struct drm_gem_object *obj;
1583 struct drm_i915_gem_object *obj_priv;
1585 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1586 struct drm_i915_gem_object,
1588 obj = obj_priv->obj;
1590 /* If the seqno being retired doesn't match the oldest in the
1591 * list, then the oldest in the list must still be newer than
1594 if (obj_priv->last_rendering_seqno != request->seqno)
1598 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1599 __func__, request->seqno, obj);
1602 if (obj->write_domain != 0)
1603 i915_gem_object_move_to_flushing(obj);
1605 /* Take a reference on the object so it won't be
1606 * freed while the spinlock is held. The list
1607 * protection for this spinlock is safe when breaking
1608 * the lock like this since the next thing we do
1609 * is just get the head of the list again.
1611 drm_gem_object_reference(obj);
1612 i915_gem_object_move_to_inactive(obj);
1613 spin_unlock(&dev_priv->mm.active_list_lock);
1614 drm_gem_object_unreference(obj);
1615 spin_lock(&dev_priv->mm.active_list_lock);
1619 spin_unlock(&dev_priv->mm.active_list_lock);
1623 * Returns true if seq1 is later than seq2.
1626 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1628 return (int32_t)(seq1 - seq2) >= 0;
1632 i915_get_gem_seqno(struct drm_device *dev)
1634 drm_i915_private_t *dev_priv = dev->dev_private;
1636 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1640 * This function clears the request list as sequence numbers are passed.
1643 i915_gem_retire_requests(struct drm_device *dev)
1645 drm_i915_private_t *dev_priv = dev->dev_private;
1648 if (!dev_priv->hw_status_page)
1651 seqno = i915_get_gem_seqno(dev);
1653 while (!list_empty(&dev_priv->mm.request_list)) {
1654 struct drm_i915_gem_request *request;
1655 uint32_t retiring_seqno;
1657 request = list_first_entry(&dev_priv->mm.request_list,
1658 struct drm_i915_gem_request,
1660 retiring_seqno = request->seqno;
1662 if (i915_seqno_passed(seqno, retiring_seqno) ||
1663 dev_priv->mm.wedged) {
1664 i915_gem_retire_request(dev, request);
1666 list_del(&request->list);
1667 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1674 i915_gem_retire_work_handler(struct work_struct *work)
1676 drm_i915_private_t *dev_priv;
1677 struct drm_device *dev;
1679 dev_priv = container_of(work, drm_i915_private_t,
1680 mm.retire_work.work);
1681 dev = dev_priv->dev;
1683 mutex_lock(&dev->struct_mutex);
1684 i915_gem_retire_requests(dev);
1685 if (!dev_priv->mm.suspended &&
1686 !list_empty(&dev_priv->mm.request_list))
1687 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1688 mutex_unlock(&dev->struct_mutex);
1692 * Waits for a sequence number to be signaled, and cleans up the
1693 * request and object lists appropriately for that event.
1696 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1698 drm_i915_private_t *dev_priv = dev->dev_private;
1704 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1705 ier = I915_READ(IER);
1707 DRM_ERROR("something (likely vbetool) disabled "
1708 "interrupts, re-enabling\n");
1709 i915_driver_irq_preinstall(dev);
1710 i915_driver_irq_postinstall(dev);
1713 dev_priv->mm.waiting_gem_seqno = seqno;
1714 i915_user_irq_get(dev);
1715 ret = wait_event_interruptible(dev_priv->irq_queue,
1716 i915_seqno_passed(i915_get_gem_seqno(dev),
1718 dev_priv->mm.wedged);
1719 i915_user_irq_put(dev);
1720 dev_priv->mm.waiting_gem_seqno = 0;
1722 if (dev_priv->mm.wedged)
1725 if (ret && ret != -ERESTARTSYS)
1726 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1727 __func__, ret, seqno, i915_get_gem_seqno(dev));
1729 /* Directly dispatch request retiring. While we have the work queue
1730 * to handle this, the waiter on a request often wants an associated
1731 * buffer to have made it to the inactive list, and we would need
1732 * a separate wait queue to handle that.
1735 i915_gem_retire_requests(dev);
1741 i915_gem_flush(struct drm_device *dev,
1742 uint32_t invalidate_domains,
1743 uint32_t flush_domains)
1745 drm_i915_private_t *dev_priv = dev->dev_private;
1750 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1751 invalidate_domains, flush_domains);
1754 if (flush_domains & I915_GEM_DOMAIN_CPU)
1755 drm_agp_chipset_flush(dev);
1757 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1758 I915_GEM_DOMAIN_GTT)) {
1760 * read/write caches:
1762 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1763 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1764 * also flushed at 2d versus 3d pipeline switches.
1768 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1769 * MI_READ_FLUSH is set, and is always flushed on 965.
1771 * I915_GEM_DOMAIN_COMMAND may not exist?
1773 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1774 * invalidated when MI_EXE_FLUSH is set.
1776 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1777 * invalidated with every MI_FLUSH.
1781 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1782 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1783 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1784 * are flushed at any MI_FLUSH.
1787 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1788 if ((invalidate_domains|flush_domains) &
1789 I915_GEM_DOMAIN_RENDER)
1790 cmd &= ~MI_NO_WRITE_FLUSH;
1791 if (!IS_I965G(dev)) {
1793 * On the 965, the sampler cache always gets flushed
1794 * and this bit is reserved.
1796 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1797 cmd |= MI_READ_FLUSH;
1799 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1800 cmd |= MI_EXE_FLUSH;
1803 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1807 OUT_RING(0); /* noop */
1813 * Ensures that all rendering to the object has completed and the object is
1814 * safe to unbind from the GTT or access from the CPU.
1817 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1819 struct drm_device *dev = obj->dev;
1820 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1823 /* This function only exists to support waiting for existing rendering,
1824 * not for emitting required flushes.
1826 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1828 /* If there is rendering queued on the buffer being evicted, wait for
1831 if (obj_priv->active) {
1833 DRM_INFO("%s: object %p wait for seqno %08x\n",
1834 __func__, obj, obj_priv->last_rendering_seqno);
1836 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1845 * Unbinds an object from the GTT aperture.
1848 i915_gem_object_unbind(struct drm_gem_object *obj)
1850 struct drm_device *dev = obj->dev;
1851 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1856 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1857 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1859 if (obj_priv->gtt_space == NULL)
1862 if (obj_priv->pin_count != 0) {
1863 DRM_ERROR("Attempting to unbind pinned buffer\n");
1867 /* Move the object to the CPU domain to ensure that
1868 * any possible CPU writes while it's not in the GTT
1869 * are flushed when we go to remap it. This will
1870 * also ensure that all pending GPU writes are finished
1873 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1875 if (ret != -ERESTARTSYS)
1876 DRM_ERROR("set_domain failed: %d\n", ret);
1880 if (obj_priv->agp_mem != NULL) {
1881 drm_unbind_agp(obj_priv->agp_mem);
1882 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1883 obj_priv->agp_mem = NULL;
1886 BUG_ON(obj_priv->active);
1888 /* blow away mappings if mapped through GTT */
1889 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1890 if (dev->dev_mapping)
1891 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1893 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1894 i915_gem_clear_fence_reg(obj);
1896 i915_gem_object_put_pages(obj);
1898 if (obj_priv->gtt_space) {
1899 atomic_dec(&dev->gtt_count);
1900 atomic_sub(obj->size, &dev->gtt_memory);
1902 drm_mm_put_block(obj_priv->gtt_space);
1903 obj_priv->gtt_space = NULL;
1906 /* Remove ourselves from the LRU list if present. */
1907 if (!list_empty(&obj_priv->list))
1908 list_del_init(&obj_priv->list);
1914 i915_gem_evict_something(struct drm_device *dev)
1916 drm_i915_private_t *dev_priv = dev->dev_private;
1917 struct drm_gem_object *obj;
1918 struct drm_i915_gem_object *obj_priv;
1922 /* If there's an inactive buffer available now, grab it
1925 if (!list_empty(&dev_priv->mm.inactive_list)) {
1926 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1927 struct drm_i915_gem_object,
1929 obj = obj_priv->obj;
1930 BUG_ON(obj_priv->pin_count != 0);
1932 DRM_INFO("%s: evicting %p\n", __func__, obj);
1934 BUG_ON(obj_priv->active);
1936 /* Wait on the rendering and unbind the buffer. */
1937 ret = i915_gem_object_unbind(obj);
1941 /* If we didn't get anything, but the ring is still processing
1942 * things, wait for one of those things to finish and hopefully
1943 * leave us a buffer to evict.
1945 if (!list_empty(&dev_priv->mm.request_list)) {
1946 struct drm_i915_gem_request *request;
1948 request = list_first_entry(&dev_priv->mm.request_list,
1949 struct drm_i915_gem_request,
1952 ret = i915_wait_request(dev, request->seqno);
1956 /* if waiting caused an object to become inactive,
1957 * then loop around and wait for it. Otherwise, we
1958 * assume that waiting freed and unbound something,
1959 * so there should now be some space in the GTT
1961 if (!list_empty(&dev_priv->mm.inactive_list))
1966 /* If we didn't have anything on the request list but there
1967 * are buffers awaiting a flush, emit one and try again.
1968 * When we wait on it, those buffers waiting for that flush
1969 * will get moved to inactive.
1971 if (!list_empty(&dev_priv->mm.flushing_list)) {
1972 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1973 struct drm_i915_gem_object,
1975 obj = obj_priv->obj;
1980 i915_add_request(dev, obj->write_domain);
1986 DRM_ERROR("inactive empty %d request empty %d "
1987 "flushing empty %d\n",
1988 list_empty(&dev_priv->mm.inactive_list),
1989 list_empty(&dev_priv->mm.request_list),
1990 list_empty(&dev_priv->mm.flushing_list));
1991 /* If we didn't do any of the above, there's nothing to be done
1992 * and we just can't fit it in.
2000 i915_gem_evict_everything(struct drm_device *dev)
2005 ret = i915_gem_evict_something(dev);
2015 i915_gem_object_get_pages(struct drm_gem_object *obj)
2017 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2019 struct address_space *mapping;
2020 struct inode *inode;
2024 if (obj_priv->pages_refcount++ != 0)
2027 /* Get the list of pages out of our struct file. They'll be pinned
2028 * at this point until we release them.
2030 page_count = obj->size / PAGE_SIZE;
2031 BUG_ON(obj_priv->pages != NULL);
2032 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2033 if (obj_priv->pages == NULL) {
2034 DRM_ERROR("Faled to allocate page list\n");
2035 obj_priv->pages_refcount--;
2039 inode = obj->filp->f_path.dentry->d_inode;
2040 mapping = inode->i_mapping;
2041 for (i = 0; i < page_count; i++) {
2042 page = read_mapping_page(mapping, i, NULL);
2044 ret = PTR_ERR(page);
2045 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2046 i915_gem_object_put_pages(obj);
2049 obj_priv->pages[i] = page;
2052 if (obj_priv->tiling_mode != I915_TILING_NONE)
2053 i915_gem_object_do_bit_17_swizzle(obj);
2058 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2060 struct drm_gem_object *obj = reg->obj;
2061 struct drm_device *dev = obj->dev;
2062 drm_i915_private_t *dev_priv = dev->dev_private;
2063 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2064 int regnum = obj_priv->fence_reg;
2067 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2069 val |= obj_priv->gtt_offset & 0xfffff000;
2070 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2071 if (obj_priv->tiling_mode == I915_TILING_Y)
2072 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2073 val |= I965_FENCE_REG_VALID;
2075 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2078 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2080 struct drm_gem_object *obj = reg->obj;
2081 struct drm_device *dev = obj->dev;
2082 drm_i915_private_t *dev_priv = dev->dev_private;
2083 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2084 int regnum = obj_priv->fence_reg;
2086 uint32_t fence_reg, val;
2089 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2090 (obj_priv->gtt_offset & (obj->size - 1))) {
2091 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2092 __func__, obj_priv->gtt_offset, obj->size);
2096 if (obj_priv->tiling_mode == I915_TILING_Y &&
2097 HAS_128_BYTE_Y_TILING(dev))
2102 /* Note: pitch better be a power of two tile widths */
2103 pitch_val = obj_priv->stride / tile_width;
2104 pitch_val = ffs(pitch_val) - 1;
2106 val = obj_priv->gtt_offset;
2107 if (obj_priv->tiling_mode == I915_TILING_Y)
2108 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2109 val |= I915_FENCE_SIZE_BITS(obj->size);
2110 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2111 val |= I830_FENCE_REG_VALID;
2114 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2116 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2117 I915_WRITE(fence_reg, val);
2120 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2122 struct drm_gem_object *obj = reg->obj;
2123 struct drm_device *dev = obj->dev;
2124 drm_i915_private_t *dev_priv = dev->dev_private;
2125 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2126 int regnum = obj_priv->fence_reg;
2129 uint32_t fence_size_bits;
2131 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2132 (obj_priv->gtt_offset & (obj->size - 1))) {
2133 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2134 __func__, obj_priv->gtt_offset);
2138 pitch_val = obj_priv->stride / 128;
2139 pitch_val = ffs(pitch_val) - 1;
2140 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2142 val = obj_priv->gtt_offset;
2143 if (obj_priv->tiling_mode == I915_TILING_Y)
2144 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2145 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2146 WARN_ON(fence_size_bits & ~0x00000f00);
2147 val |= fence_size_bits;
2148 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2149 val |= I830_FENCE_REG_VALID;
2151 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2156 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2157 * @obj: object to map through a fence reg
2158 * @write: object is about to be written
2160 * When mapping objects through the GTT, userspace wants to be able to write
2161 * to them without having to worry about swizzling if the object is tiled.
2163 * This function walks the fence regs looking for a free one for @obj,
2164 * stealing one if it can't find any.
2166 * It then sets up the reg based on the object's properties: address, pitch
2167 * and tiling format.
2170 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2172 struct drm_device *dev = obj->dev;
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2175 struct drm_i915_fence_reg *reg = NULL;
2176 struct drm_i915_gem_object *old_obj_priv = NULL;
2179 switch (obj_priv->tiling_mode) {
2180 case I915_TILING_NONE:
2181 WARN(1, "allocating a fence for non-tiled object?\n");
2184 if (!obj_priv->stride)
2186 WARN((obj_priv->stride & (512 - 1)),
2187 "object 0x%08x is X tiled but has non-512B pitch\n",
2188 obj_priv->gtt_offset);
2191 if (!obj_priv->stride)
2193 WARN((obj_priv->stride & (128 - 1)),
2194 "object 0x%08x is Y tiled but has non-128B pitch\n",
2195 obj_priv->gtt_offset);
2199 /* First try to find a free reg */
2202 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2203 reg = &dev_priv->fence_regs[i];
2207 old_obj_priv = reg->obj->driver_private;
2208 if (!old_obj_priv->pin_count)
2212 /* None available, try to steal one or wait for a user to finish */
2213 if (i == dev_priv->num_fence_regs) {
2214 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2220 for (i = dev_priv->fence_reg_start;
2221 i < dev_priv->num_fence_regs; i++) {
2222 uint32_t this_seqno;
2224 reg = &dev_priv->fence_regs[i];
2225 old_obj_priv = reg->obj->driver_private;
2227 if (old_obj_priv->pin_count)
2230 /* i915 uses fences for GPU access to tiled buffers */
2231 if (IS_I965G(dev) || !old_obj_priv->active)
2234 /* find the seqno of the first available fence */
2235 this_seqno = old_obj_priv->last_rendering_seqno;
2236 if (this_seqno != 0 &&
2237 reg->obj->write_domain == 0 &&
2238 i915_seqno_passed(seqno, this_seqno))
2243 * Now things get ugly... we have to wait for one of the
2244 * objects to finish before trying again.
2246 if (i == dev_priv->num_fence_regs) {
2247 if (seqno == dev_priv->mm.next_gem_seqno) {
2249 I915_GEM_GPU_DOMAINS,
2250 I915_GEM_GPU_DOMAINS);
2251 seqno = i915_add_request(dev,
2252 I915_GEM_GPU_DOMAINS);
2257 ret = i915_wait_request(dev, seqno);
2263 BUG_ON(old_obj_priv->active ||
2264 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2267 * Zap this virtual mapping so we can set up a fence again
2268 * for this object next time we need it.
2270 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2271 if (dev->dev_mapping)
2272 unmap_mapping_range(dev->dev_mapping, offset,
2274 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2277 obj_priv->fence_reg = i;
2281 i965_write_fence_reg(reg);
2282 else if (IS_I9XX(dev))
2283 i915_write_fence_reg(reg);
2285 i830_write_fence_reg(reg);
2291 * i915_gem_clear_fence_reg - clear out fence register info
2292 * @obj: object to clear
2294 * Zeroes out the fence register itself and clears out the associated
2295 * data structures in dev_priv and obj_priv.
2298 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2300 struct drm_device *dev = obj->dev;
2301 drm_i915_private_t *dev_priv = dev->dev_private;
2302 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2305 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2309 if (obj_priv->fence_reg < 8)
2310 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2312 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2315 I915_WRITE(fence_reg, 0);
2318 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2319 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2323 * Finds free space in the GTT aperture and binds the object there.
2326 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2328 struct drm_device *dev = obj->dev;
2329 drm_i915_private_t *dev_priv = dev->dev_private;
2330 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2331 struct drm_mm_node *free_space;
2332 int page_count, ret;
2334 if (dev_priv->mm.suspended)
2337 alignment = i915_gem_get_gtt_alignment(obj);
2338 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2339 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2344 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2345 obj->size, alignment, 0);
2346 if (free_space != NULL) {
2347 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2349 if (obj_priv->gtt_space != NULL) {
2350 obj_priv->gtt_space->private = obj;
2351 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2354 if (obj_priv->gtt_space == NULL) {
2357 /* If the gtt is empty and we're still having trouble
2358 * fitting our object in, we're out of memory.
2361 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2363 spin_lock(&dev_priv->mm.active_list_lock);
2364 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2365 list_empty(&dev_priv->mm.flushing_list) &&
2366 list_empty(&dev_priv->mm.active_list));
2367 spin_unlock(&dev_priv->mm.active_list_lock);
2369 DRM_ERROR("GTT full, but LRU list empty\n");
2373 ret = i915_gem_evict_something(dev);
2375 if (ret != -ERESTARTSYS)
2376 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2383 DRM_INFO("Binding object of size %d at 0x%08x\n",
2384 obj->size, obj_priv->gtt_offset);
2386 ret = i915_gem_object_get_pages(obj);
2388 drm_mm_put_block(obj_priv->gtt_space);
2389 obj_priv->gtt_space = NULL;
2393 page_count = obj->size / PAGE_SIZE;
2394 /* Create an AGP memory structure pointing at our pages, and bind it
2397 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2400 obj_priv->gtt_offset,
2401 obj_priv->agp_type);
2402 if (obj_priv->agp_mem == NULL) {
2403 i915_gem_object_put_pages(obj);
2404 drm_mm_put_block(obj_priv->gtt_space);
2405 obj_priv->gtt_space = NULL;
2408 atomic_inc(&dev->gtt_count);
2409 atomic_add(obj->size, &dev->gtt_memory);
2411 /* Assert that the object is not currently in any GPU domain. As it
2412 * wasn't in the GTT, there shouldn't be any way it could have been in
2415 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2416 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2422 i915_gem_clflush_object(struct drm_gem_object *obj)
2424 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2426 /* If we don't have a page list set up, then we're not pinned
2427 * to GPU, and we can ignore the cache flush because it'll happen
2428 * again at bind time.
2430 if (obj_priv->pages == NULL)
2433 /* XXX: The 865 in particular appears to be weird in how it handles
2434 * cache flushing. We haven't figured it out, but the
2435 * clflush+agp_chipset_flush doesn't appear to successfully get the
2436 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2438 if (IS_I865G(obj->dev)) {
2443 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2446 /** Flushes any GPU write domain for the object if it's dirty. */
2448 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2450 struct drm_device *dev = obj->dev;
2453 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2456 /* Queue the GPU write cache flushing we need. */
2457 i915_gem_flush(dev, 0, obj->write_domain);
2458 seqno = i915_add_request(dev, obj->write_domain);
2459 obj->write_domain = 0;
2460 i915_gem_object_move_to_active(obj, seqno);
2463 /** Flushes the GTT write domain for the object if it's dirty. */
2465 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2467 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2470 /* No actual flushing is required for the GTT write domain. Writes
2471 * to it immediately go to main memory as far as we know, so there's
2472 * no chipset flush. It also doesn't land in render cache.
2474 obj->write_domain = 0;
2477 /** Flushes the CPU write domain for the object if it's dirty. */
2479 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2481 struct drm_device *dev = obj->dev;
2483 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2486 i915_gem_clflush_object(obj);
2487 drm_agp_chipset_flush(dev);
2488 obj->write_domain = 0;
2492 * Moves a single object to the GTT read, and possibly write domain.
2494 * This function returns when the move is complete, including waiting on
2498 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2500 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2503 /* Not valid to be called on unbound objects. */
2504 if (obj_priv->gtt_space == NULL)
2507 i915_gem_object_flush_gpu_write_domain(obj);
2508 /* Wait on any GPU rendering and flushing to occur. */
2509 ret = i915_gem_object_wait_rendering(obj);
2513 /* If we're writing through the GTT domain, then CPU and GPU caches
2514 * will need to be invalidated at next use.
2517 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2519 i915_gem_object_flush_cpu_write_domain(obj);
2521 /* It should now be out of any other write domains, and we can update
2522 * the domain values for our changes.
2524 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2525 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2527 obj->write_domain = I915_GEM_DOMAIN_GTT;
2528 obj_priv->dirty = 1;
2535 * Moves a single object to the CPU read, and possibly write domain.
2537 * This function returns when the move is complete, including waiting on
2541 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2545 i915_gem_object_flush_gpu_write_domain(obj);
2546 /* Wait on any GPU rendering and flushing to occur. */
2547 ret = i915_gem_object_wait_rendering(obj);
2551 i915_gem_object_flush_gtt_write_domain(obj);
2553 /* If we have a partially-valid cache of the object in the CPU,
2554 * finish invalidating it and free the per-page flags.
2556 i915_gem_object_set_to_full_cpu_read_domain(obj);
2558 /* Flush the CPU cache if it's still invalid. */
2559 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2560 i915_gem_clflush_object(obj);
2562 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2565 /* It should now be out of any other write domains, and we can update
2566 * the domain values for our changes.
2568 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2570 /* If we're writing through the CPU, then the GPU read domains will
2571 * need to be invalidated at next use.
2574 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2575 obj->write_domain = I915_GEM_DOMAIN_CPU;
2582 * Set the next domain for the specified object. This
2583 * may not actually perform the necessary flushing/invaliding though,
2584 * as that may want to be batched with other set_domain operations
2586 * This is (we hope) the only really tricky part of gem. The goal
2587 * is fairly simple -- track which caches hold bits of the object
2588 * and make sure they remain coherent. A few concrete examples may
2589 * help to explain how it works. For shorthand, we use the notation
2590 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2591 * a pair of read and write domain masks.
2593 * Case 1: the batch buffer
2599 * 5. Unmapped from GTT
2602 * Let's take these a step at a time
2605 * Pages allocated from the kernel may still have
2606 * cache contents, so we set them to (CPU, CPU) always.
2607 * 2. Written by CPU (using pwrite)
2608 * The pwrite function calls set_domain (CPU, CPU) and
2609 * this function does nothing (as nothing changes)
2611 * This function asserts that the object is not
2612 * currently in any GPU-based read or write domains
2614 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2615 * As write_domain is zero, this function adds in the
2616 * current read domains (CPU+COMMAND, 0).
2617 * flush_domains is set to CPU.
2618 * invalidate_domains is set to COMMAND
2619 * clflush is run to get data out of the CPU caches
2620 * then i915_dev_set_domain calls i915_gem_flush to
2621 * emit an MI_FLUSH and drm_agp_chipset_flush
2622 * 5. Unmapped from GTT
2623 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2624 * flush_domains and invalidate_domains end up both zero
2625 * so no flushing/invalidating happens
2629 * Case 2: The shared render buffer
2633 * 3. Read/written by GPU
2634 * 4. set_domain to (CPU,CPU)
2635 * 5. Read/written by CPU
2636 * 6. Read/written by GPU
2639 * Same as last example, (CPU, CPU)
2641 * Nothing changes (assertions find that it is not in the GPU)
2642 * 3. Read/written by GPU
2643 * execbuffer calls set_domain (RENDER, RENDER)
2644 * flush_domains gets CPU
2645 * invalidate_domains gets GPU
2647 * MI_FLUSH and drm_agp_chipset_flush
2648 * 4. set_domain (CPU, CPU)
2649 * flush_domains gets GPU
2650 * invalidate_domains gets CPU
2651 * wait_rendering (obj) to make sure all drawing is complete.
2652 * This will include an MI_FLUSH to get the data from GPU
2654 * clflush (obj) to invalidate the CPU cache
2655 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2656 * 5. Read/written by CPU
2657 * cache lines are loaded and dirtied
2658 * 6. Read written by GPU
2659 * Same as last GPU access
2661 * Case 3: The constant buffer
2666 * 4. Updated (written) by CPU again
2675 * flush_domains = CPU
2676 * invalidate_domains = RENDER
2679 * drm_agp_chipset_flush
2680 * 4. Updated (written) by CPU again
2682 * flush_domains = 0 (no previous write domain)
2683 * invalidate_domains = 0 (no new read domains)
2686 * flush_domains = CPU
2687 * invalidate_domains = RENDER
2690 * drm_agp_chipset_flush
2693 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2695 struct drm_device *dev = obj->dev;
2696 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2697 uint32_t invalidate_domains = 0;
2698 uint32_t flush_domains = 0;
2700 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2701 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2704 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2706 obj->read_domains, obj->pending_read_domains,
2707 obj->write_domain, obj->pending_write_domain);
2710 * If the object isn't moving to a new write domain,
2711 * let the object stay in multiple read domains
2713 if (obj->pending_write_domain == 0)
2714 obj->pending_read_domains |= obj->read_domains;
2716 obj_priv->dirty = 1;
2719 * Flush the current write domain if
2720 * the new read domains don't match. Invalidate
2721 * any read domains which differ from the old
2724 if (obj->write_domain &&
2725 obj->write_domain != obj->pending_read_domains) {
2726 flush_domains |= obj->write_domain;
2727 invalidate_domains |=
2728 obj->pending_read_domains & ~obj->write_domain;
2731 * Invalidate any read caches which may have
2732 * stale data. That is, any new read domains.
2734 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2735 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2737 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2738 __func__, flush_domains, invalidate_domains);
2740 i915_gem_clflush_object(obj);
2743 /* The actual obj->write_domain will be updated with
2744 * pending_write_domain after we emit the accumulated flush for all
2745 * of our domain changes in execbuffers (which clears objects'
2746 * write_domains). So if we have a current write domain that we
2747 * aren't changing, set pending_write_domain to that.
2749 if (flush_domains == 0 && obj->pending_write_domain == 0)
2750 obj->pending_write_domain = obj->write_domain;
2751 obj->read_domains = obj->pending_read_domains;
2753 dev->invalidate_domains |= invalidate_domains;
2754 dev->flush_domains |= flush_domains;
2756 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2758 obj->read_domains, obj->write_domain,
2759 dev->invalidate_domains, dev->flush_domains);
2764 * Moves the object from a partially CPU read to a full one.
2766 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2767 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2770 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2772 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2774 if (!obj_priv->page_cpu_valid)
2777 /* If we're partially in the CPU read domain, finish moving it in.
2779 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2782 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2783 if (obj_priv->page_cpu_valid[i])
2785 drm_clflush_pages(obj_priv->pages + i, 1);
2789 /* Free the page_cpu_valid mappings which are now stale, whether
2790 * or not we've got I915_GEM_DOMAIN_CPU.
2792 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2794 obj_priv->page_cpu_valid = NULL;
2798 * Set the CPU read domain on a range of the object.
2800 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2801 * not entirely valid. The page_cpu_valid member of the object flags which
2802 * pages have been flushed, and will be respected by
2803 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2804 * of the whole object.
2806 * This function returns when the move is complete, including waiting on
2810 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2811 uint64_t offset, uint64_t size)
2813 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2816 if (offset == 0 && size == obj->size)
2817 return i915_gem_object_set_to_cpu_domain(obj, 0);
2819 i915_gem_object_flush_gpu_write_domain(obj);
2820 /* Wait on any GPU rendering and flushing to occur. */
2821 ret = i915_gem_object_wait_rendering(obj);
2824 i915_gem_object_flush_gtt_write_domain(obj);
2826 /* If we're already fully in the CPU read domain, we're done. */
2827 if (obj_priv->page_cpu_valid == NULL &&
2828 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2831 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2832 * newly adding I915_GEM_DOMAIN_CPU
2834 if (obj_priv->page_cpu_valid == NULL) {
2835 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2837 if (obj_priv->page_cpu_valid == NULL)
2839 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2840 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2842 /* Flush the cache on any pages that are still invalid from the CPU's
2845 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2847 if (obj_priv->page_cpu_valid[i])
2850 drm_clflush_pages(obj_priv->pages + i, 1);
2852 obj_priv->page_cpu_valid[i] = 1;
2855 /* It should now be out of any other write domains, and we can update
2856 * the domain values for our changes.
2858 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2860 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2866 * Pin an object to the GTT and evaluate the relocations landing in it.
2869 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2870 struct drm_file *file_priv,
2871 struct drm_i915_gem_exec_object *entry,
2872 struct drm_i915_gem_relocation_entry *relocs)
2874 struct drm_device *dev = obj->dev;
2875 drm_i915_private_t *dev_priv = dev->dev_private;
2876 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2878 void __iomem *reloc_page;
2880 /* Choose the GTT offset for our buffer and put it there. */
2881 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2885 entry->offset = obj_priv->gtt_offset;
2887 /* Apply the relocations, using the GTT aperture to avoid cache
2888 * flushing requirements.
2890 for (i = 0; i < entry->relocation_count; i++) {
2891 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2892 struct drm_gem_object *target_obj;
2893 struct drm_i915_gem_object *target_obj_priv;
2894 uint32_t reloc_val, reloc_offset;
2895 uint32_t __iomem *reloc_entry;
2897 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2898 reloc->target_handle);
2899 if (target_obj == NULL) {
2900 i915_gem_object_unpin(obj);
2903 target_obj_priv = target_obj->driver_private;
2905 /* The target buffer should have appeared before us in the
2906 * exec_object list, so it should have a GTT space bound by now.
2908 if (target_obj_priv->gtt_space == NULL) {
2909 DRM_ERROR("No GTT space found for object %d\n",
2910 reloc->target_handle);
2911 drm_gem_object_unreference(target_obj);
2912 i915_gem_object_unpin(obj);
2916 if (reloc->offset > obj->size - 4) {
2917 DRM_ERROR("Relocation beyond object bounds: "
2918 "obj %p target %d offset %d size %d.\n",
2919 obj, reloc->target_handle,
2920 (int) reloc->offset, (int) obj->size);
2921 drm_gem_object_unreference(target_obj);
2922 i915_gem_object_unpin(obj);
2925 if (reloc->offset & 3) {
2926 DRM_ERROR("Relocation not 4-byte aligned: "
2927 "obj %p target %d offset %d.\n",
2928 obj, reloc->target_handle,
2929 (int) reloc->offset);
2930 drm_gem_object_unreference(target_obj);
2931 i915_gem_object_unpin(obj);
2935 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2936 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2937 DRM_ERROR("reloc with read/write CPU domains: "
2938 "obj %p target %d offset %d "
2939 "read %08x write %08x",
2940 obj, reloc->target_handle,
2941 (int) reloc->offset,
2942 reloc->read_domains,
2943 reloc->write_domain);
2944 drm_gem_object_unreference(target_obj);
2945 i915_gem_object_unpin(obj);
2949 if (reloc->write_domain && target_obj->pending_write_domain &&
2950 reloc->write_domain != target_obj->pending_write_domain) {
2951 DRM_ERROR("Write domain conflict: "
2952 "obj %p target %d offset %d "
2953 "new %08x old %08x\n",
2954 obj, reloc->target_handle,
2955 (int) reloc->offset,
2956 reloc->write_domain,
2957 target_obj->pending_write_domain);
2958 drm_gem_object_unreference(target_obj);
2959 i915_gem_object_unpin(obj);
2964 DRM_INFO("%s: obj %p offset %08x target %d "
2965 "read %08x write %08x gtt %08x "
2966 "presumed %08x delta %08x\n",
2969 (int) reloc->offset,
2970 (int) reloc->target_handle,
2971 (int) reloc->read_domains,
2972 (int) reloc->write_domain,
2973 (int) target_obj_priv->gtt_offset,
2974 (int) reloc->presumed_offset,
2978 target_obj->pending_read_domains |= reloc->read_domains;
2979 target_obj->pending_write_domain |= reloc->write_domain;
2981 /* If the relocation already has the right value in it, no
2982 * more work needs to be done.
2984 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2985 drm_gem_object_unreference(target_obj);
2989 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2991 drm_gem_object_unreference(target_obj);
2992 i915_gem_object_unpin(obj);
2996 /* Map the page containing the relocation we're going to
2999 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3000 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3003 reloc_entry = (uint32_t __iomem *)(reloc_page +
3004 (reloc_offset & (PAGE_SIZE - 1)));
3005 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3008 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3009 obj, (unsigned int) reloc->offset,
3010 readl(reloc_entry), reloc_val);
3012 writel(reloc_val, reloc_entry);
3013 io_mapping_unmap_atomic(reloc_page);
3015 /* The updated presumed offset for this entry will be
3016 * copied back out to the user.
3018 reloc->presumed_offset = target_obj_priv->gtt_offset;
3020 drm_gem_object_unreference(target_obj);
3025 i915_gem_dump_object(obj, 128, __func__, ~0);
3030 /** Dispatch a batchbuffer to the ring
3033 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3034 struct drm_i915_gem_execbuffer *exec,
3035 struct drm_clip_rect *cliprects,
3036 uint64_t exec_offset)
3038 drm_i915_private_t *dev_priv = dev->dev_private;
3039 int nbox = exec->num_cliprects;
3041 uint32_t exec_start, exec_len;
3044 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3045 exec_len = (uint32_t) exec->batch_len;
3047 if ((exec_start | exec_len) & 0x7) {
3048 DRM_ERROR("alignment\n");
3055 count = nbox ? nbox : 1;
3057 for (i = 0; i < count; i++) {
3059 int ret = i915_emit_box(dev, cliprects, i,
3060 exec->DR1, exec->DR4);
3065 if (IS_I830(dev) || IS_845G(dev)) {
3067 OUT_RING(MI_BATCH_BUFFER);
3068 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3069 OUT_RING(exec_start + exec_len - 4);
3074 if (IS_I965G(dev)) {
3075 OUT_RING(MI_BATCH_BUFFER_START |
3077 MI_BATCH_NON_SECURE_I965);
3078 OUT_RING(exec_start);
3080 OUT_RING(MI_BATCH_BUFFER_START |
3082 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3088 /* XXX breadcrumb */
3092 /* Throttle our rendering by waiting until the ring has completed our requests
3093 * emitted over 20 msec ago.
3095 * This should get us reasonable parallelism between CPU and GPU but also
3096 * relatively low latency when blocking on a particular request to finish.
3099 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3101 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3105 mutex_lock(&dev->struct_mutex);
3106 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
3107 i915_file_priv->mm.last_gem_throttle_seqno =
3108 i915_file_priv->mm.last_gem_seqno;
3110 ret = i915_wait_request(dev, seqno);
3111 mutex_unlock(&dev->struct_mutex);
3116 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3117 uint32_t buffer_count,
3118 struct drm_i915_gem_relocation_entry **relocs)
3120 uint32_t reloc_count = 0, reloc_index = 0, i;
3124 for (i = 0; i < buffer_count; i++) {
3125 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3127 reloc_count += exec_list[i].relocation_count;
3130 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3131 if (*relocs == NULL)
3134 for (i = 0; i < buffer_count; i++) {
3135 struct drm_i915_gem_relocation_entry __user *user_relocs;
3137 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3139 ret = copy_from_user(&(*relocs)[reloc_index],
3141 exec_list[i].relocation_count *
3144 drm_free_large(*relocs);
3149 reloc_index += exec_list[i].relocation_count;
3156 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3157 uint32_t buffer_count,
3158 struct drm_i915_gem_relocation_entry *relocs)
3160 uint32_t reloc_count = 0, i;
3163 for (i = 0; i < buffer_count; i++) {
3164 struct drm_i915_gem_relocation_entry __user *user_relocs;
3167 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3169 unwritten = copy_to_user(user_relocs,
3170 &relocs[reloc_count],
3171 exec_list[i].relocation_count *
3179 reloc_count += exec_list[i].relocation_count;
3183 drm_free_large(relocs);
3189 i915_gem_execbuffer(struct drm_device *dev, void *data,
3190 struct drm_file *file_priv)
3192 drm_i915_private_t *dev_priv = dev->dev_private;
3193 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3194 struct drm_i915_gem_execbuffer *args = data;
3195 struct drm_i915_gem_exec_object *exec_list = NULL;
3196 struct drm_gem_object **object_list = NULL;
3197 struct drm_gem_object *batch_obj;
3198 struct drm_i915_gem_object *obj_priv;
3199 struct drm_clip_rect *cliprects = NULL;
3200 struct drm_i915_gem_relocation_entry *relocs;
3201 int ret, ret2, i, pinned = 0;
3202 uint64_t exec_offset;
3203 uint32_t seqno, flush_domains, reloc_index;
3207 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3208 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3211 if (args->buffer_count < 1) {
3212 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3215 /* Copy in the exec list from userland */
3216 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3217 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3218 if (exec_list == NULL || object_list == NULL) {
3219 DRM_ERROR("Failed to allocate exec or object list "
3221 args->buffer_count);
3225 ret = copy_from_user(exec_list,
3226 (struct drm_i915_relocation_entry __user *)
3227 (uintptr_t) args->buffers_ptr,
3228 sizeof(*exec_list) * args->buffer_count);
3230 DRM_ERROR("copy %d exec entries failed %d\n",
3231 args->buffer_count, ret);
3235 if (args->num_cliprects != 0) {
3236 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3238 if (cliprects == NULL)
3241 ret = copy_from_user(cliprects,
3242 (struct drm_clip_rect __user *)
3243 (uintptr_t) args->cliprects_ptr,
3244 sizeof(*cliprects) * args->num_cliprects);
3246 DRM_ERROR("copy %d cliprects failed: %d\n",
3247 args->num_cliprects, ret);
3252 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3257 mutex_lock(&dev->struct_mutex);
3259 i915_verify_inactive(dev, __FILE__, __LINE__);
3261 if (dev_priv->mm.wedged) {
3262 DRM_ERROR("Execbuf while wedged\n");
3263 mutex_unlock(&dev->struct_mutex);
3268 if (dev_priv->mm.suspended) {
3269 DRM_ERROR("Execbuf while VT-switched.\n");
3270 mutex_unlock(&dev->struct_mutex);
3275 /* Look up object handles */
3276 for (i = 0; i < args->buffer_count; i++) {
3277 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3278 exec_list[i].handle);
3279 if (object_list[i] == NULL) {
3280 DRM_ERROR("Invalid object handle %d at index %d\n",
3281 exec_list[i].handle, i);
3286 obj_priv = object_list[i]->driver_private;
3287 if (obj_priv->in_execbuffer) {
3288 DRM_ERROR("Object %p appears more than once in object list\n",
3293 obj_priv->in_execbuffer = true;
3296 /* Pin and relocate */
3297 for (pin_tries = 0; ; pin_tries++) {
3301 for (i = 0; i < args->buffer_count; i++) {
3302 object_list[i]->pending_read_domains = 0;
3303 object_list[i]->pending_write_domain = 0;
3304 ret = i915_gem_object_pin_and_relocate(object_list[i],
3307 &relocs[reloc_index]);
3311 reloc_index += exec_list[i].relocation_count;
3317 /* error other than GTT full, or we've already tried again */
3318 if (ret != -ENOMEM || pin_tries >= 1) {
3319 if (ret != -ERESTARTSYS)
3320 DRM_ERROR("Failed to pin buffers %d\n", ret);
3324 /* unpin all of our buffers */
3325 for (i = 0; i < pinned; i++)
3326 i915_gem_object_unpin(object_list[i]);
3329 /* evict everyone we can from the aperture */
3330 ret = i915_gem_evict_everything(dev);
3335 /* Set the pending read domains for the batch buffer to COMMAND */
3336 batch_obj = object_list[args->buffer_count-1];
3337 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3338 batch_obj->pending_write_domain = 0;
3340 i915_verify_inactive(dev, __FILE__, __LINE__);
3342 /* Zero the global flush/invalidate flags. These
3343 * will be modified as new domains are computed
3346 dev->invalidate_domains = 0;
3347 dev->flush_domains = 0;
3349 for (i = 0; i < args->buffer_count; i++) {
3350 struct drm_gem_object *obj = object_list[i];
3352 /* Compute new gpu domains and update invalidate/flush */
3353 i915_gem_object_set_to_gpu_domain(obj);
3356 i915_verify_inactive(dev, __FILE__, __LINE__);
3358 if (dev->invalidate_domains | dev->flush_domains) {
3360 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3362 dev->invalidate_domains,
3363 dev->flush_domains);
3366 dev->invalidate_domains,
3367 dev->flush_domains);
3368 if (dev->flush_domains)
3369 (void)i915_add_request(dev, dev->flush_domains);
3372 for (i = 0; i < args->buffer_count; i++) {
3373 struct drm_gem_object *obj = object_list[i];
3375 obj->write_domain = obj->pending_write_domain;
3378 i915_verify_inactive(dev, __FILE__, __LINE__);
3381 for (i = 0; i < args->buffer_count; i++) {
3382 i915_gem_object_check_coherency(object_list[i],
3383 exec_list[i].handle);
3387 exec_offset = exec_list[args->buffer_count - 1].offset;
3390 i915_gem_dump_object(batch_obj,
3396 /* Exec the batchbuffer */
3397 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3399 DRM_ERROR("dispatch failed %d\n", ret);
3404 * Ensure that the commands in the batch buffer are
3405 * finished before the interrupt fires
3407 flush_domains = i915_retire_commands(dev);
3409 i915_verify_inactive(dev, __FILE__, __LINE__);
3412 * Get a seqno representing the execution of the current buffer,
3413 * which we can wait on. We would like to mitigate these interrupts,
3414 * likely by only creating seqnos occasionally (so that we have
3415 * *some* interrupts representing completion of buffers that we can
3416 * wait on when trying to clear up gtt space).
3418 seqno = i915_add_request(dev, flush_domains);
3420 i915_file_priv->mm.last_gem_seqno = seqno;
3421 for (i = 0; i < args->buffer_count; i++) {
3422 struct drm_gem_object *obj = object_list[i];
3424 i915_gem_object_move_to_active(obj, seqno);
3426 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3430 i915_dump_lru(dev, __func__);
3433 i915_verify_inactive(dev, __FILE__, __LINE__);
3436 for (i = 0; i < pinned; i++)
3437 i915_gem_object_unpin(object_list[i]);
3439 for (i = 0; i < args->buffer_count; i++) {
3440 if (object_list[i]) {
3441 obj_priv = object_list[i]->driver_private;
3442 obj_priv->in_execbuffer = false;
3444 drm_gem_object_unreference(object_list[i]);
3447 mutex_unlock(&dev->struct_mutex);
3450 /* Copy the new buffer offsets back to the user's exec list. */
3451 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3452 (uintptr_t) args->buffers_ptr,
3454 sizeof(*exec_list) * args->buffer_count);
3457 DRM_ERROR("failed to copy %d exec entries "
3458 "back to user (%d)\n",
3459 args->buffer_count, ret);
3463 /* Copy the updated relocations out regardless of current error
3464 * state. Failure to update the relocs would mean that the next
3465 * time userland calls execbuf, it would do so with presumed offset
3466 * state that didn't match the actual object state.
3468 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3471 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3478 drm_free_large(object_list);
3479 drm_free_large(exec_list);
3480 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3487 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3489 struct drm_device *dev = obj->dev;
3490 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3493 i915_verify_inactive(dev, __FILE__, __LINE__);
3494 if (obj_priv->gtt_space == NULL) {
3495 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3497 if (ret != -EBUSY && ret != -ERESTARTSYS)
3498 DRM_ERROR("Failure to bind: %d\n", ret);
3503 * Pre-965 chips need a fence register set up in order to
3504 * properly handle tiled surfaces.
3506 if (!IS_I965G(dev) &&
3507 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3508 obj_priv->tiling_mode != I915_TILING_NONE) {
3509 ret = i915_gem_object_get_fence_reg(obj, true);
3511 if (ret != -EBUSY && ret != -ERESTARTSYS)
3512 DRM_ERROR("Failure to install fence: %d\n",
3517 obj_priv->pin_count++;
3519 /* If the object is not active and not pending a flush,
3520 * remove it from the inactive list
3522 if (obj_priv->pin_count == 1) {
3523 atomic_inc(&dev->pin_count);
3524 atomic_add(obj->size, &dev->pin_memory);
3525 if (!obj_priv->active &&
3526 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3527 I915_GEM_DOMAIN_GTT)) == 0 &&
3528 !list_empty(&obj_priv->list))
3529 list_del_init(&obj_priv->list);
3531 i915_verify_inactive(dev, __FILE__, __LINE__);
3537 i915_gem_object_unpin(struct drm_gem_object *obj)
3539 struct drm_device *dev = obj->dev;
3540 drm_i915_private_t *dev_priv = dev->dev_private;
3541 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3543 i915_verify_inactive(dev, __FILE__, __LINE__);
3544 obj_priv->pin_count--;
3545 BUG_ON(obj_priv->pin_count < 0);
3546 BUG_ON(obj_priv->gtt_space == NULL);
3548 /* If the object is no longer pinned, and is
3549 * neither active nor being flushed, then stick it on
3552 if (obj_priv->pin_count == 0) {
3553 if (!obj_priv->active &&
3554 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3555 I915_GEM_DOMAIN_GTT)) == 0)
3556 list_move_tail(&obj_priv->list,
3557 &dev_priv->mm.inactive_list);
3558 atomic_dec(&dev->pin_count);
3559 atomic_sub(obj->size, &dev->pin_memory);
3561 i915_verify_inactive(dev, __FILE__, __LINE__);
3565 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3566 struct drm_file *file_priv)
3568 struct drm_i915_gem_pin *args = data;
3569 struct drm_gem_object *obj;
3570 struct drm_i915_gem_object *obj_priv;
3573 mutex_lock(&dev->struct_mutex);
3575 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3577 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3579 mutex_unlock(&dev->struct_mutex);
3582 obj_priv = obj->driver_private;
3584 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3585 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3587 drm_gem_object_unreference(obj);
3588 mutex_unlock(&dev->struct_mutex);
3592 obj_priv->user_pin_count++;
3593 obj_priv->pin_filp = file_priv;
3594 if (obj_priv->user_pin_count == 1) {
3595 ret = i915_gem_object_pin(obj, args->alignment);
3597 drm_gem_object_unreference(obj);
3598 mutex_unlock(&dev->struct_mutex);
3603 /* XXX - flush the CPU caches for pinned objects
3604 * as the X server doesn't manage domains yet
3606 i915_gem_object_flush_cpu_write_domain(obj);
3607 args->offset = obj_priv->gtt_offset;
3608 drm_gem_object_unreference(obj);
3609 mutex_unlock(&dev->struct_mutex);
3615 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3616 struct drm_file *file_priv)
3618 struct drm_i915_gem_pin *args = data;
3619 struct drm_gem_object *obj;
3620 struct drm_i915_gem_object *obj_priv;
3622 mutex_lock(&dev->struct_mutex);
3624 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3626 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3628 mutex_unlock(&dev->struct_mutex);
3632 obj_priv = obj->driver_private;
3633 if (obj_priv->pin_filp != file_priv) {
3634 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3636 drm_gem_object_unreference(obj);
3637 mutex_unlock(&dev->struct_mutex);
3640 obj_priv->user_pin_count--;
3641 if (obj_priv->user_pin_count == 0) {
3642 obj_priv->pin_filp = NULL;
3643 i915_gem_object_unpin(obj);
3646 drm_gem_object_unreference(obj);
3647 mutex_unlock(&dev->struct_mutex);
3652 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3653 struct drm_file *file_priv)
3655 struct drm_i915_gem_busy *args = data;
3656 struct drm_gem_object *obj;
3657 struct drm_i915_gem_object *obj_priv;
3659 mutex_lock(&dev->struct_mutex);
3660 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3662 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3664 mutex_unlock(&dev->struct_mutex);
3668 /* Update the active list for the hardware's current position.
3669 * Otherwise this only updates on a delayed timer or when irqs are
3670 * actually unmasked, and our working set ends up being larger than
3673 i915_gem_retire_requests(dev);
3675 obj_priv = obj->driver_private;
3676 /* Don't count being on the flushing list against the object being
3677 * done. Otherwise, a buffer left on the flushing list but not getting
3678 * flushed (because nobody's flushing that domain) won't ever return
3679 * unbusy and get reused by libdrm's bo cache. The other expected
3680 * consumer of this interface, OpenGL's occlusion queries, also specs
3681 * that the objects get unbusy "eventually" without any interference.
3683 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3685 drm_gem_object_unreference(obj);
3686 mutex_unlock(&dev->struct_mutex);
3691 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3692 struct drm_file *file_priv)
3694 return i915_gem_ring_throttle(dev, file_priv);
3697 int i915_gem_init_object(struct drm_gem_object *obj)
3699 struct drm_i915_gem_object *obj_priv;
3701 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3702 if (obj_priv == NULL)
3706 * We've just allocated pages from the kernel,
3707 * so they've just been written by the CPU with
3708 * zeros. They'll need to be clflushed before we
3709 * use them with the GPU.
3711 obj->write_domain = I915_GEM_DOMAIN_CPU;
3712 obj->read_domains = I915_GEM_DOMAIN_CPU;
3714 obj_priv->agp_type = AGP_USER_MEMORY;
3716 obj->driver_private = obj_priv;
3717 obj_priv->obj = obj;
3718 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3719 INIT_LIST_HEAD(&obj_priv->list);
3724 void i915_gem_free_object(struct drm_gem_object *obj)
3726 struct drm_device *dev = obj->dev;
3727 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3729 while (obj_priv->pin_count > 0)
3730 i915_gem_object_unpin(obj);
3732 if (obj_priv->phys_obj)
3733 i915_gem_detach_phys_object(dev, obj);
3735 i915_gem_object_unbind(obj);
3737 i915_gem_free_mmap_offset(obj);
3739 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3740 kfree(obj_priv->bit_17);
3741 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3744 /** Unbinds all objects that are on the given buffer list. */
3746 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3748 struct drm_gem_object *obj;
3749 struct drm_i915_gem_object *obj_priv;
3752 while (!list_empty(head)) {
3753 obj_priv = list_first_entry(head,
3754 struct drm_i915_gem_object,
3756 obj = obj_priv->obj;
3758 if (obj_priv->pin_count != 0) {
3759 DRM_ERROR("Pinned object in unbind list\n");
3760 mutex_unlock(&dev->struct_mutex);
3764 ret = i915_gem_object_unbind(obj);
3766 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3768 mutex_unlock(&dev->struct_mutex);
3778 i915_gem_idle(struct drm_device *dev)
3780 drm_i915_private_t *dev_priv = dev->dev_private;
3781 uint32_t seqno, cur_seqno, last_seqno;
3784 mutex_lock(&dev->struct_mutex);
3786 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3787 mutex_unlock(&dev->struct_mutex);
3791 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3792 * We need to replace this with a semaphore, or something.
3794 dev_priv->mm.suspended = 1;
3796 /* Cancel the retire work handler, wait for it to finish if running
3798 mutex_unlock(&dev->struct_mutex);
3799 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3800 mutex_lock(&dev->struct_mutex);
3802 i915_kernel_lost_context(dev);
3804 /* Flush the GPU along with all non-CPU write domains
3806 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3807 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3808 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3811 mutex_unlock(&dev->struct_mutex);
3815 dev_priv->mm.waiting_gem_seqno = seqno;
3819 cur_seqno = i915_get_gem_seqno(dev);
3820 if (i915_seqno_passed(cur_seqno, seqno))
3822 if (last_seqno == cur_seqno) {
3823 if (stuck++ > 100) {
3824 DRM_ERROR("hardware wedged\n");
3825 dev_priv->mm.wedged = 1;
3826 DRM_WAKEUP(&dev_priv->irq_queue);
3831 last_seqno = cur_seqno;
3833 dev_priv->mm.waiting_gem_seqno = 0;
3835 i915_gem_retire_requests(dev);
3837 spin_lock(&dev_priv->mm.active_list_lock);
3838 if (!dev_priv->mm.wedged) {
3839 /* Active and flushing should now be empty as we've
3840 * waited for a sequence higher than any pending execbuffer
3842 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3843 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3844 /* Request should now be empty as we've also waited
3845 * for the last request in the list
3847 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3850 /* Empty the active and flushing lists to inactive. If there's
3851 * anything left at this point, it means that we're wedged and
3852 * nothing good's going to happen by leaving them there. So strip
3853 * the GPU domains and just stuff them onto inactive.
3855 while (!list_empty(&dev_priv->mm.active_list)) {
3856 struct drm_i915_gem_object *obj_priv;
3858 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3859 struct drm_i915_gem_object,
3861 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3862 i915_gem_object_move_to_inactive(obj_priv->obj);
3864 spin_unlock(&dev_priv->mm.active_list_lock);
3866 while (!list_empty(&dev_priv->mm.flushing_list)) {
3867 struct drm_i915_gem_object *obj_priv;
3869 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3870 struct drm_i915_gem_object,
3872 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3873 i915_gem_object_move_to_inactive(obj_priv->obj);
3877 /* Move all inactive buffers out of the GTT. */
3878 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3879 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3881 mutex_unlock(&dev->struct_mutex);
3885 i915_gem_cleanup_ringbuffer(dev);
3886 mutex_unlock(&dev->struct_mutex);
3892 i915_gem_init_hws(struct drm_device *dev)
3894 drm_i915_private_t *dev_priv = dev->dev_private;
3895 struct drm_gem_object *obj;
3896 struct drm_i915_gem_object *obj_priv;
3899 /* If we need a physical address for the status page, it's already
3900 * initialized at driver load time.
3902 if (!I915_NEED_GFX_HWS(dev))
3905 obj = drm_gem_object_alloc(dev, 4096);
3907 DRM_ERROR("Failed to allocate status page\n");
3910 obj_priv = obj->driver_private;
3911 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3913 ret = i915_gem_object_pin(obj, 4096);
3915 drm_gem_object_unreference(obj);
3919 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3921 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3922 if (dev_priv->hw_status_page == NULL) {
3923 DRM_ERROR("Failed to map status page.\n");
3924 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3925 i915_gem_object_unpin(obj);
3926 drm_gem_object_unreference(obj);
3929 dev_priv->hws_obj = obj;
3930 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3931 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3932 I915_READ(HWS_PGA); /* posting read */
3933 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3939 i915_gem_cleanup_hws(struct drm_device *dev)
3941 drm_i915_private_t *dev_priv = dev->dev_private;
3942 struct drm_gem_object *obj;
3943 struct drm_i915_gem_object *obj_priv;
3945 if (dev_priv->hws_obj == NULL)
3948 obj = dev_priv->hws_obj;
3949 obj_priv = obj->driver_private;
3951 kunmap(obj_priv->pages[0]);
3952 i915_gem_object_unpin(obj);
3953 drm_gem_object_unreference(obj);
3954 dev_priv->hws_obj = NULL;
3956 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3957 dev_priv->hw_status_page = NULL;
3959 /* Write high address into HWS_PGA when disabling. */
3960 I915_WRITE(HWS_PGA, 0x1ffff000);
3964 i915_gem_init_ringbuffer(struct drm_device *dev)
3966 drm_i915_private_t *dev_priv = dev->dev_private;
3967 struct drm_gem_object *obj;
3968 struct drm_i915_gem_object *obj_priv;
3969 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3973 ret = i915_gem_init_hws(dev);
3977 obj = drm_gem_object_alloc(dev, 128 * 1024);
3979 DRM_ERROR("Failed to allocate ringbuffer\n");
3980 i915_gem_cleanup_hws(dev);
3983 obj_priv = obj->driver_private;
3985 ret = i915_gem_object_pin(obj, 4096);
3987 drm_gem_object_unreference(obj);
3988 i915_gem_cleanup_hws(dev);
3992 /* Set up the kernel mapping for the ring. */
3993 ring->Size = obj->size;
3994 ring->tail_mask = obj->size - 1;
3996 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3997 ring->map.size = obj->size;
3999 ring->map.flags = 0;
4002 drm_core_ioremap_wc(&ring->map, dev);
4003 if (ring->map.handle == NULL) {
4004 DRM_ERROR("Failed to map ringbuffer.\n");
4005 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4006 i915_gem_object_unpin(obj);
4007 drm_gem_object_unreference(obj);
4008 i915_gem_cleanup_hws(dev);
4011 ring->ring_obj = obj;
4012 ring->virtual_start = ring->map.handle;
4014 /* Stop the ring if it's running. */
4015 I915_WRITE(PRB0_CTL, 0);
4016 I915_WRITE(PRB0_TAIL, 0);
4017 I915_WRITE(PRB0_HEAD, 0);
4019 /* Initialize the ring. */
4020 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4021 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4023 /* G45 ring initialization fails to reset head to zero */
4025 DRM_ERROR("Ring head not reset to zero "
4026 "ctl %08x head %08x tail %08x start %08x\n",
4027 I915_READ(PRB0_CTL),
4028 I915_READ(PRB0_HEAD),
4029 I915_READ(PRB0_TAIL),
4030 I915_READ(PRB0_START));
4031 I915_WRITE(PRB0_HEAD, 0);
4033 DRM_ERROR("Ring head forced to zero "
4034 "ctl %08x head %08x tail %08x start %08x\n",
4035 I915_READ(PRB0_CTL),
4036 I915_READ(PRB0_HEAD),
4037 I915_READ(PRB0_TAIL),
4038 I915_READ(PRB0_START));
4041 I915_WRITE(PRB0_CTL,
4042 ((obj->size - 4096) & RING_NR_PAGES) |
4046 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4048 /* If the head is still not zero, the ring is dead */
4050 DRM_ERROR("Ring initialization failed "
4051 "ctl %08x head %08x tail %08x start %08x\n",
4052 I915_READ(PRB0_CTL),
4053 I915_READ(PRB0_HEAD),
4054 I915_READ(PRB0_TAIL),
4055 I915_READ(PRB0_START));
4059 /* Update our cache of the ring state */
4060 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4061 i915_kernel_lost_context(dev);
4063 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4064 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4065 ring->space = ring->head - (ring->tail + 8);
4066 if (ring->space < 0)
4067 ring->space += ring->Size;
4074 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4076 drm_i915_private_t *dev_priv = dev->dev_private;
4078 if (dev_priv->ring.ring_obj == NULL)
4081 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4083 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4084 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4085 dev_priv->ring.ring_obj = NULL;
4086 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4088 i915_gem_cleanup_hws(dev);
4092 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4093 struct drm_file *file_priv)
4095 drm_i915_private_t *dev_priv = dev->dev_private;
4098 if (drm_core_check_feature(dev, DRIVER_MODESET))
4101 if (dev_priv->mm.wedged) {
4102 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4103 dev_priv->mm.wedged = 0;
4106 mutex_lock(&dev->struct_mutex);
4107 dev_priv->mm.suspended = 0;
4109 ret = i915_gem_init_ringbuffer(dev);
4111 mutex_unlock(&dev->struct_mutex);
4115 spin_lock(&dev_priv->mm.active_list_lock);
4116 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4117 spin_unlock(&dev_priv->mm.active_list_lock);
4119 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4120 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4121 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4122 mutex_unlock(&dev->struct_mutex);
4124 drm_irq_install(dev);
4130 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4131 struct drm_file *file_priv)
4135 if (drm_core_check_feature(dev, DRIVER_MODESET))
4138 ret = i915_gem_idle(dev);
4139 drm_irq_uninstall(dev);
4145 i915_gem_lastclose(struct drm_device *dev)
4149 if (drm_core_check_feature(dev, DRIVER_MODESET))
4152 ret = i915_gem_idle(dev);
4154 DRM_ERROR("failed to idle hardware: %d\n", ret);
4158 i915_gem_load(struct drm_device *dev)
4160 drm_i915_private_t *dev_priv = dev->dev_private;
4162 spin_lock_init(&dev_priv->mm.active_list_lock);
4163 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4164 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4165 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4166 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4167 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4168 i915_gem_retire_work_handler);
4169 dev_priv->mm.next_gem_seqno = 1;
4171 /* Old X drivers will take 0-2 for front, back, depth buffers */
4172 dev_priv->fence_reg_start = 3;
4174 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4175 dev_priv->num_fence_regs = 16;
4177 dev_priv->num_fence_regs = 8;
4179 i915_gem_detect_bit_6_swizzle(dev);
4183 * Create a physically contiguous memory object for this object
4184 * e.g. for cursor + overlay regs
4186 int i915_gem_init_phys_object(struct drm_device *dev,
4189 drm_i915_private_t *dev_priv = dev->dev_private;
4190 struct drm_i915_gem_phys_object *phys_obj;
4193 if (dev_priv->mm.phys_objs[id - 1] || !size)
4196 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4202 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4203 if (!phys_obj->handle) {
4208 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4211 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4215 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4219 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4221 drm_i915_private_t *dev_priv = dev->dev_private;
4222 struct drm_i915_gem_phys_object *phys_obj;
4224 if (!dev_priv->mm.phys_objs[id - 1])
4227 phys_obj = dev_priv->mm.phys_objs[id - 1];
4228 if (phys_obj->cur_obj) {
4229 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4233 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4235 drm_pci_free(dev, phys_obj->handle);
4237 dev_priv->mm.phys_objs[id - 1] = NULL;
4240 void i915_gem_free_all_phys_object(struct drm_device *dev)
4244 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4245 i915_gem_free_phys_object(dev, i);
4248 void i915_gem_detach_phys_object(struct drm_device *dev,
4249 struct drm_gem_object *obj)
4251 struct drm_i915_gem_object *obj_priv;
4256 obj_priv = obj->driver_private;
4257 if (!obj_priv->phys_obj)
4260 ret = i915_gem_object_get_pages(obj);
4264 page_count = obj->size / PAGE_SIZE;
4266 for (i = 0; i < page_count; i++) {
4267 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4268 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4270 memcpy(dst, src, PAGE_SIZE);
4271 kunmap_atomic(dst, KM_USER0);
4273 drm_clflush_pages(obj_priv->pages, page_count);
4274 drm_agp_chipset_flush(dev);
4276 obj_priv->phys_obj->cur_obj = NULL;
4277 obj_priv->phys_obj = NULL;
4281 i915_gem_attach_phys_object(struct drm_device *dev,
4282 struct drm_gem_object *obj, int id)
4284 drm_i915_private_t *dev_priv = dev->dev_private;
4285 struct drm_i915_gem_object *obj_priv;
4290 if (id > I915_MAX_PHYS_OBJECT)
4293 obj_priv = obj->driver_private;
4295 if (obj_priv->phys_obj) {
4296 if (obj_priv->phys_obj->id == id)
4298 i915_gem_detach_phys_object(dev, obj);
4302 /* create a new object */
4303 if (!dev_priv->mm.phys_objs[id - 1]) {
4304 ret = i915_gem_init_phys_object(dev, id,
4307 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4312 /* bind to the object */
4313 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4314 obj_priv->phys_obj->cur_obj = obj;
4316 ret = i915_gem_object_get_pages(obj);
4318 DRM_ERROR("failed to get page list\n");
4322 page_count = obj->size / PAGE_SIZE;
4324 for (i = 0; i < page_count; i++) {
4325 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4326 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4328 memcpy(dst, src, PAGE_SIZE);
4329 kunmap_atomic(src, KM_USER0);
4338 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4339 struct drm_i915_gem_pwrite *args,
4340 struct drm_file *file_priv)
4342 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4345 char __user *user_data;
4347 user_data = (char __user *) (uintptr_t) args->data_ptr;
4348 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4350 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4351 ret = copy_from_user(obj_addr, user_data, args->size);
4355 drm_agp_chipset_flush(dev);