2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 drm_i915_private_t *dev_priv = dev->dev_private;
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 dev->gtt_total = (uint32_t) (end - start);
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
79 struct drm_i915_gem_init *args = data;
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 mutex_unlock(&dev->struct_mutex);
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
93 struct drm_i915_gem_get_aperture *args = data;
95 if (!(dev->driver->driver_features & DRIVER_GEM))
98 args->aper_size = dev->gtt_total;
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
107 * Creates a new mm object and returns a handle to it.
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
117 args->size = roundup(args->size, PAGE_SIZE);
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
132 args->handle = handle;
138 fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150 kunmap_atomic(vaddr, KM_USER0);
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
168 slow_shmem_copy(struct page *dst_page,
170 struct page *src_page,
174 char *dst_vaddr, *src_vaddr;
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
195 slow_shmem_bit17_copy(struct page *gpu_page,
197 struct page *cpu_page,
202 char *gpu_vaddr, *cpu_vaddr;
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
272 mutex_lock(&dev->struct_mutex);
274 ret = i915_gem_object_get_pages(obj);
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 obj_priv = obj->driver_private;
284 offset = args->offset;
287 /* Operation in this page
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
311 i915_gem_object_put_pages(obj);
313 mutex_unlock(&dev->struct_mutex);
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
339 uint64_t data_ptr = args->data_ptr;
340 int do_bit17_swizzling;
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
352 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
353 if (user_pages == NULL)
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358 num_pages, 1, 0, user_pages, NULL);
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
362 goto fail_put_user_pages;
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367 mutex_lock(&dev->struct_mutex);
369 ret = i915_gem_object_get_pages(obj);
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
378 obj_priv = obj->driver_private;
379 offset = args->offset;
382 /* Operation in this page
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404 user_pages[data_page_index],
409 ret = slow_shmem_copy(user_pages[data_page_index],
411 obj_priv->pages[shmem_page_index],
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
424 i915_gem_object_put_pages(obj);
426 mutex_unlock(&dev->struct_mutex);
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
438 * Reads data from the object referenced by handle.
440 * On error, the contents of *data are undefined.
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
454 obj_priv = obj->driver_private;
456 /* Bounds check source.
458 * XXX: This could use review for overflow issues...
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
475 drm_gem_object_unreference(obj);
480 /* This is the fast write path which cannot handle
481 * page faults in the source data
485 fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
491 unsigned long unwritten;
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496 io_mapping_unmap_atomic(vaddr_atomic);
502 /* Here's the write path which can sleep for
507 slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
512 char *src_vaddr, *dst_vaddr;
513 unsigned long unwritten;
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
528 fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
534 unsigned long unwritten;
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540 kunmap_atomic(vaddr, KM_USER0);
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
557 drm_i915_private_t *dev_priv = dev->dev_private;
559 loff_t offset, page_base;
560 char __user *user_data;
561 int page_offset, page_length;
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
566 if (!access_ok(VERIFY_READ, user_data, remain))
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
573 mutex_unlock(&dev->struct_mutex);
576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
584 /* Operation in this page
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
599 /* If we get a fault while copying data, then (presumably) our
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
640 uint64_t data_ptr = args->data_ptr;
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
652 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
653 if (user_pages == NULL)
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
662 goto out_unpin_pages;
665 mutex_lock(&dev->struct_mutex);
666 ret = i915_gem_object_pin(obj, 0);
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672 goto out_unpin_object;
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
678 /* Operation in this page
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
708 goto out_unpin_object;
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
716 i915_gem_object_unpin(obj);
718 mutex_unlock(&dev->struct_mutex);
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
746 mutex_lock(&dev->struct_mutex);
748 ret = i915_gem_object_get_pages(obj);
752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
756 obj_priv = obj->driver_private;
757 offset = args->offset;
761 /* Operation in this page
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
785 i915_gem_object_put_pages(obj);
787 mutex_unlock(&dev->struct_mutex);
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
814 uint64_t data_ptr = args->data_ptr;
815 int do_bit17_swizzling;
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
827 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
828 if (user_pages == NULL)
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
837 goto fail_put_user_pages;
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842 mutex_lock(&dev->struct_mutex);
844 ret = i915_gem_object_get_pages(obj);
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
852 obj_priv = obj->driver_private;
853 offset = args->offset;
857 /* Operation in this page
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879 user_pages[data_page_index],
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886 user_pages[data_page_index],
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
899 i915_gem_object_put_pages(obj);
901 mutex_unlock(&dev->struct_mutex);
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
911 * Writes data to the object referenced by handle.
913 * On error, the contents of the buffer that were to be modified are undefined.
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
927 obj_priv = obj->driver_private;
929 /* Bounds check destination.
931 * XXX: This could use review for overflow issues...
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
966 DRM_INFO("pwrite failed %d\n", ret);
969 drm_gem_object_unreference(obj);
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
988 if (!(dev->driver->driver_features & DRIVER_GEM))
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
995 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1001 if (write_domain != 0 && read_domains != write_domain)
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008 mutex_lock(&dev->struct_mutex);
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011 obj, obj->size, read_domains, write_domain);
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1032 * Called when user space has done writes to this buffer
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1049 mutex_unlock(&dev->struct_mutex);
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1057 obj_priv = obj->driver_private;
1059 /* Pinned buffers may be scanout, so flush the cache */
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1069 * Maps the contents of an object, returning the address it is mapped
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091 offset = args->offset;
1093 down_write(¤t->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1097 up_write(¤t->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1104 args->addr_ptr = (uint64_t) addr;
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1148 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1151 /* Need a new fence register? */
1152 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1153 obj_priv->tiling_mode != I915_TILING_NONE) {
1154 ret = i915_gem_object_get_fence_reg(obj, write);
1156 mutex_unlock(&dev->struct_mutex);
1157 return VM_FAULT_SIGBUS;
1161 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1164 /* Finally, remap it using the new GTT offset */
1165 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1167 mutex_unlock(&dev->struct_mutex);
1172 return VM_FAULT_OOM;
1175 return VM_FAULT_SIGBUS;
1177 return VM_FAULT_NOPAGE;
1182 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1183 * @obj: obj in question
1185 * GEM memory mapping works by handing back to userspace a fake mmap offset
1186 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1187 * up the object based on the offset and sets up the various memory mapping
1190 * This routine allocates and attaches a fake offset for @obj.
1193 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1195 struct drm_device *dev = obj->dev;
1196 struct drm_gem_mm *mm = dev->mm_private;
1197 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1198 struct drm_map_list *list;
1199 struct drm_local_map *map;
1202 /* Set the object up for mmap'ing */
1203 list = &obj->map_list;
1204 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1210 map->type = _DRM_GEM;
1211 map->size = obj->size;
1214 /* Get a DRM GEM mmap offset allocated... */
1215 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1216 obj->size / PAGE_SIZE, 0, 0);
1217 if (!list->file_offset_node) {
1218 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1223 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1224 obj->size / PAGE_SIZE, 0);
1225 if (!list->file_offset_node) {
1230 list->hash.key = list->file_offset_node->start;
1231 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1232 DRM_ERROR("failed to add to map hash\n");
1236 /* By now we should be all set, any drm_mmap request on the offset
1237 * below will get to our mmap & fault handler */
1238 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1243 drm_mm_put_block(list->file_offset_node);
1245 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1251 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1253 struct drm_device *dev = obj->dev;
1254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1255 struct drm_gem_mm *mm = dev->mm_private;
1256 struct drm_map_list *list;
1258 list = &obj->map_list;
1259 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1261 if (list->file_offset_node) {
1262 drm_mm_put_block(list->file_offset_node);
1263 list->file_offset_node = NULL;
1267 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1271 obj_priv->mmap_offset = 0;
1275 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1276 * @obj: object to check
1278 * Return the required GTT alignment for an object, taking into account
1279 * potential fence register mapping if needed.
1282 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1284 struct drm_device *dev = obj->dev;
1285 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1289 * Minimum alignment is 4k (GTT page size), but might be greater
1290 * if a fence register is needed for the object.
1292 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1296 * Previous chips need to be aligned to the size of the smallest
1297 * fence register that can contain the object.
1304 for (i = start; i < obj->size; i <<= 1)
1311 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1313 * @data: GTT mapping ioctl data
1314 * @file_priv: GEM object info
1316 * Simply returns the fake offset to userspace so it can mmap it.
1317 * The mmap call will end up in drm_gem_mmap(), which will set things
1318 * up so we can get faults in the handler above.
1320 * The fault handler will take care of binding the object into the GTT
1321 * (since it may have been evicted to make room for something), allocating
1322 * a fence register, and mapping the appropriate aperture address into
1326 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file_priv)
1329 struct drm_i915_gem_mmap_gtt *args = data;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct drm_gem_object *obj;
1332 struct drm_i915_gem_object *obj_priv;
1335 if (!(dev->driver->driver_features & DRIVER_GEM))
1338 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1342 mutex_lock(&dev->struct_mutex);
1344 obj_priv = obj->driver_private;
1346 if (!obj_priv->mmap_offset) {
1347 ret = i915_gem_create_mmap_offset(obj);
1349 drm_gem_object_unreference(obj);
1350 mutex_unlock(&dev->struct_mutex);
1355 args->offset = obj_priv->mmap_offset;
1357 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1359 /* Make sure the alignment is correct for fence regs etc */
1360 if (obj_priv->agp_mem &&
1361 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1362 drm_gem_object_unreference(obj);
1363 mutex_unlock(&dev->struct_mutex);
1368 * Pull it into the GTT so that we have a page list (makes the
1369 * initial fault faster and any subsequent flushing possible).
1371 if (!obj_priv->agp_mem) {
1372 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1374 drm_gem_object_unreference(obj);
1375 mutex_unlock(&dev->struct_mutex);
1378 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1388 i915_gem_object_put_pages(struct drm_gem_object *obj)
1390 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1391 int page_count = obj->size / PAGE_SIZE;
1394 BUG_ON(obj_priv->pages_refcount == 0);
1396 if (--obj_priv->pages_refcount != 0)
1399 if (obj_priv->tiling_mode != I915_TILING_NONE)
1400 i915_gem_object_save_bit_17_swizzle(obj);
1402 for (i = 0; i < page_count; i++)
1403 if (obj_priv->pages[i] != NULL) {
1404 if (obj_priv->dirty)
1405 set_page_dirty(obj_priv->pages[i]);
1406 mark_page_accessed(obj_priv->pages[i]);
1407 page_cache_release(obj_priv->pages[i]);
1409 obj_priv->dirty = 0;
1411 drm_free(obj_priv->pages,
1412 page_count * sizeof(struct page *),
1414 obj_priv->pages = NULL;
1418 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1420 struct drm_device *dev = obj->dev;
1421 drm_i915_private_t *dev_priv = dev->dev_private;
1422 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1424 /* Add a reference if we're newly entering the active list. */
1425 if (!obj_priv->active) {
1426 drm_gem_object_reference(obj);
1427 obj_priv->active = 1;
1429 /* Move from whatever list we were on to the tail of execution. */
1430 spin_lock(&dev_priv->mm.active_list_lock);
1431 list_move_tail(&obj_priv->list,
1432 &dev_priv->mm.active_list);
1433 spin_unlock(&dev_priv->mm.active_list_lock);
1434 obj_priv->last_rendering_seqno = seqno;
1438 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1440 struct drm_device *dev = obj->dev;
1441 drm_i915_private_t *dev_priv = dev->dev_private;
1442 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1444 BUG_ON(!obj_priv->active);
1445 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1446 obj_priv->last_rendering_seqno = 0;
1450 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1452 struct drm_device *dev = obj->dev;
1453 drm_i915_private_t *dev_priv = dev->dev_private;
1454 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1456 i915_verify_inactive(dev, __FILE__, __LINE__);
1457 if (obj_priv->pin_count != 0)
1458 list_del_init(&obj_priv->list);
1460 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1462 obj_priv->last_rendering_seqno = 0;
1463 if (obj_priv->active) {
1464 obj_priv->active = 0;
1465 drm_gem_object_unreference(obj);
1467 i915_verify_inactive(dev, __FILE__, __LINE__);
1471 * Creates a new sequence number, emitting a write of it to the status page
1472 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1474 * Must be called with struct_lock held.
1476 * Returned sequence numbers are nonzero on success.
1479 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_request *request;
1487 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1488 if (request == NULL)
1491 /* Grab the seqno we're going to make this request be, and bump the
1492 * next (skipping 0 so it can be the reserved no-seqno value).
1494 seqno = dev_priv->mm.next_gem_seqno;
1495 dev_priv->mm.next_gem_seqno++;
1496 if (dev_priv->mm.next_gem_seqno == 0)
1497 dev_priv->mm.next_gem_seqno++;
1500 OUT_RING(MI_STORE_DWORD_INDEX);
1501 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1504 OUT_RING(MI_USER_INTERRUPT);
1507 DRM_DEBUG("%d\n", seqno);
1509 request->seqno = seqno;
1510 request->emitted_jiffies = jiffies;
1511 was_empty = list_empty(&dev_priv->mm.request_list);
1512 list_add_tail(&request->list, &dev_priv->mm.request_list);
1514 /* Associate any objects on the flushing list matching the write
1515 * domain we're flushing with our flush.
1517 if (flush_domains != 0) {
1518 struct drm_i915_gem_object *obj_priv, *next;
1520 list_for_each_entry_safe(obj_priv, next,
1521 &dev_priv->mm.flushing_list, list) {
1522 struct drm_gem_object *obj = obj_priv->obj;
1524 if ((obj->write_domain & flush_domains) ==
1525 obj->write_domain) {
1526 obj->write_domain = 0;
1527 i915_gem_object_move_to_active(obj, seqno);
1533 if (was_empty && !dev_priv->mm.suspended)
1534 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1539 * Command execution barrier
1541 * Ensures that all commands in the ring are finished
1542 * before signalling the CPU
1545 i915_retire_commands(struct drm_device *dev)
1547 drm_i915_private_t *dev_priv = dev->dev_private;
1548 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1549 uint32_t flush_domains = 0;
1552 /* The sampler always gets flushed on i965 (sigh) */
1554 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1557 OUT_RING(0); /* noop */
1559 return flush_domains;
1563 * Moves buffers associated only with the given active seqno from the active
1564 * to inactive list, potentially freeing them.
1567 i915_gem_retire_request(struct drm_device *dev,
1568 struct drm_i915_gem_request *request)
1570 drm_i915_private_t *dev_priv = dev->dev_private;
1572 /* Move any buffers on the active list that are no longer referenced
1573 * by the ringbuffer to the flushing/inactive lists as appropriate.
1575 spin_lock(&dev_priv->mm.active_list_lock);
1576 while (!list_empty(&dev_priv->mm.active_list)) {
1577 struct drm_gem_object *obj;
1578 struct drm_i915_gem_object *obj_priv;
1580 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1581 struct drm_i915_gem_object,
1583 obj = obj_priv->obj;
1585 /* If the seqno being retired doesn't match the oldest in the
1586 * list, then the oldest in the list must still be newer than
1589 if (obj_priv->last_rendering_seqno != request->seqno)
1593 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1594 __func__, request->seqno, obj);
1597 if (obj->write_domain != 0)
1598 i915_gem_object_move_to_flushing(obj);
1600 /* Take a reference on the object so it won't be
1601 * freed while the spinlock is held. The list
1602 * protection for this spinlock is safe when breaking
1603 * the lock like this since the next thing we do
1604 * is just get the head of the list again.
1606 drm_gem_object_reference(obj);
1607 i915_gem_object_move_to_inactive(obj);
1608 spin_unlock(&dev_priv->mm.active_list_lock);
1609 drm_gem_object_unreference(obj);
1610 spin_lock(&dev_priv->mm.active_list_lock);
1614 spin_unlock(&dev_priv->mm.active_list_lock);
1618 * Returns true if seq1 is later than seq2.
1621 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1623 return (int32_t)(seq1 - seq2) >= 0;
1627 i915_get_gem_seqno(struct drm_device *dev)
1629 drm_i915_private_t *dev_priv = dev->dev_private;
1631 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1635 * This function clears the request list as sequence numbers are passed.
1638 i915_gem_retire_requests(struct drm_device *dev)
1640 drm_i915_private_t *dev_priv = dev->dev_private;
1643 if (!dev_priv->hw_status_page)
1646 seqno = i915_get_gem_seqno(dev);
1648 while (!list_empty(&dev_priv->mm.request_list)) {
1649 struct drm_i915_gem_request *request;
1650 uint32_t retiring_seqno;
1652 request = list_first_entry(&dev_priv->mm.request_list,
1653 struct drm_i915_gem_request,
1655 retiring_seqno = request->seqno;
1657 if (i915_seqno_passed(seqno, retiring_seqno) ||
1658 dev_priv->mm.wedged) {
1659 i915_gem_retire_request(dev, request);
1661 list_del(&request->list);
1662 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1669 i915_gem_retire_work_handler(struct work_struct *work)
1671 drm_i915_private_t *dev_priv;
1672 struct drm_device *dev;
1674 dev_priv = container_of(work, drm_i915_private_t,
1675 mm.retire_work.work);
1676 dev = dev_priv->dev;
1678 mutex_lock(&dev->struct_mutex);
1679 i915_gem_retire_requests(dev);
1680 if (!dev_priv->mm.suspended &&
1681 !list_empty(&dev_priv->mm.request_list))
1682 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1683 mutex_unlock(&dev->struct_mutex);
1687 * Waits for a sequence number to be signaled, and cleans up the
1688 * request and object lists appropriately for that event.
1691 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1693 drm_i915_private_t *dev_priv = dev->dev_private;
1699 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1700 ier = I915_READ(IER);
1702 DRM_ERROR("something (likely vbetool) disabled "
1703 "interrupts, re-enabling\n");
1704 i915_driver_irq_preinstall(dev);
1705 i915_driver_irq_postinstall(dev);
1708 dev_priv->mm.waiting_gem_seqno = seqno;
1709 i915_user_irq_get(dev);
1710 ret = wait_event_interruptible(dev_priv->irq_queue,
1711 i915_seqno_passed(i915_get_gem_seqno(dev),
1713 dev_priv->mm.wedged);
1714 i915_user_irq_put(dev);
1715 dev_priv->mm.waiting_gem_seqno = 0;
1717 if (dev_priv->mm.wedged)
1720 if (ret && ret != -ERESTARTSYS)
1721 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1722 __func__, ret, seqno, i915_get_gem_seqno(dev));
1724 /* Directly dispatch request retiring. While we have the work queue
1725 * to handle this, the waiter on a request often wants an associated
1726 * buffer to have made it to the inactive list, and we would need
1727 * a separate wait queue to handle that.
1730 i915_gem_retire_requests(dev);
1736 i915_gem_flush(struct drm_device *dev,
1737 uint32_t invalidate_domains,
1738 uint32_t flush_domains)
1740 drm_i915_private_t *dev_priv = dev->dev_private;
1745 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1746 invalidate_domains, flush_domains);
1749 if (flush_domains & I915_GEM_DOMAIN_CPU)
1750 drm_agp_chipset_flush(dev);
1752 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1753 I915_GEM_DOMAIN_GTT)) {
1755 * read/write caches:
1757 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1758 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1759 * also flushed at 2d versus 3d pipeline switches.
1763 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1764 * MI_READ_FLUSH is set, and is always flushed on 965.
1766 * I915_GEM_DOMAIN_COMMAND may not exist?
1768 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1769 * invalidated when MI_EXE_FLUSH is set.
1771 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1772 * invalidated with every MI_FLUSH.
1776 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1777 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1778 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1779 * are flushed at any MI_FLUSH.
1782 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1783 if ((invalidate_domains|flush_domains) &
1784 I915_GEM_DOMAIN_RENDER)
1785 cmd &= ~MI_NO_WRITE_FLUSH;
1786 if (!IS_I965G(dev)) {
1788 * On the 965, the sampler cache always gets flushed
1789 * and this bit is reserved.
1791 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1792 cmd |= MI_READ_FLUSH;
1794 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1795 cmd |= MI_EXE_FLUSH;
1798 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1802 OUT_RING(0); /* noop */
1808 * Ensures that all rendering to the object has completed and the object is
1809 * safe to unbind from the GTT or access from the CPU.
1812 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1814 struct drm_device *dev = obj->dev;
1815 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1818 /* This function only exists to support waiting for existing rendering,
1819 * not for emitting required flushes.
1821 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1823 /* If there is rendering queued on the buffer being evicted, wait for
1826 if (obj_priv->active) {
1828 DRM_INFO("%s: object %p wait for seqno %08x\n",
1829 __func__, obj, obj_priv->last_rendering_seqno);
1831 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1840 * Unbinds an object from the GTT aperture.
1843 i915_gem_object_unbind(struct drm_gem_object *obj)
1845 struct drm_device *dev = obj->dev;
1846 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1851 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1852 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1854 if (obj_priv->gtt_space == NULL)
1857 if (obj_priv->pin_count != 0) {
1858 DRM_ERROR("Attempting to unbind pinned buffer\n");
1862 /* Move the object to the CPU domain to ensure that
1863 * any possible CPU writes while it's not in the GTT
1864 * are flushed when we go to remap it. This will
1865 * also ensure that all pending GPU writes are finished
1868 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1870 if (ret != -ERESTARTSYS)
1871 DRM_ERROR("set_domain failed: %d\n", ret);
1875 if (obj_priv->agp_mem != NULL) {
1876 drm_unbind_agp(obj_priv->agp_mem);
1877 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1878 obj_priv->agp_mem = NULL;
1881 BUG_ON(obj_priv->active);
1883 /* blow away mappings if mapped through GTT */
1884 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1885 if (dev->dev_mapping)
1886 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1888 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1889 i915_gem_clear_fence_reg(obj);
1891 i915_gem_object_put_pages(obj);
1893 if (obj_priv->gtt_space) {
1894 atomic_dec(&dev->gtt_count);
1895 atomic_sub(obj->size, &dev->gtt_memory);
1897 drm_mm_put_block(obj_priv->gtt_space);
1898 obj_priv->gtt_space = NULL;
1901 /* Remove ourselves from the LRU list if present. */
1902 if (!list_empty(&obj_priv->list))
1903 list_del_init(&obj_priv->list);
1909 i915_gem_evict_something(struct drm_device *dev)
1911 drm_i915_private_t *dev_priv = dev->dev_private;
1912 struct drm_gem_object *obj;
1913 struct drm_i915_gem_object *obj_priv;
1917 /* If there's an inactive buffer available now, grab it
1920 if (!list_empty(&dev_priv->mm.inactive_list)) {
1921 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1922 struct drm_i915_gem_object,
1924 obj = obj_priv->obj;
1925 BUG_ON(obj_priv->pin_count != 0);
1927 DRM_INFO("%s: evicting %p\n", __func__, obj);
1929 BUG_ON(obj_priv->active);
1931 /* Wait on the rendering and unbind the buffer. */
1932 ret = i915_gem_object_unbind(obj);
1936 /* If we didn't get anything, but the ring is still processing
1937 * things, wait for one of those things to finish and hopefully
1938 * leave us a buffer to evict.
1940 if (!list_empty(&dev_priv->mm.request_list)) {
1941 struct drm_i915_gem_request *request;
1943 request = list_first_entry(&dev_priv->mm.request_list,
1944 struct drm_i915_gem_request,
1947 ret = i915_wait_request(dev, request->seqno);
1951 /* if waiting caused an object to become inactive,
1952 * then loop around and wait for it. Otherwise, we
1953 * assume that waiting freed and unbound something,
1954 * so there should now be some space in the GTT
1956 if (!list_empty(&dev_priv->mm.inactive_list))
1961 /* If we didn't have anything on the request list but there
1962 * are buffers awaiting a flush, emit one and try again.
1963 * When we wait on it, those buffers waiting for that flush
1964 * will get moved to inactive.
1966 if (!list_empty(&dev_priv->mm.flushing_list)) {
1967 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1968 struct drm_i915_gem_object,
1970 obj = obj_priv->obj;
1975 i915_add_request(dev, obj->write_domain);
1981 DRM_ERROR("inactive empty %d request empty %d "
1982 "flushing empty %d\n",
1983 list_empty(&dev_priv->mm.inactive_list),
1984 list_empty(&dev_priv->mm.request_list),
1985 list_empty(&dev_priv->mm.flushing_list));
1986 /* If we didn't do any of the above, there's nothing to be done
1987 * and we just can't fit it in.
1995 i915_gem_evict_everything(struct drm_device *dev)
2000 ret = i915_gem_evict_something(dev);
2010 i915_gem_object_get_pages(struct drm_gem_object *obj)
2012 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2014 struct address_space *mapping;
2015 struct inode *inode;
2019 if (obj_priv->pages_refcount++ != 0)
2022 /* Get the list of pages out of our struct file. They'll be pinned
2023 * at this point until we release them.
2025 page_count = obj->size / PAGE_SIZE;
2026 BUG_ON(obj_priv->pages != NULL);
2027 obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
2029 if (obj_priv->pages == NULL) {
2030 DRM_ERROR("Faled to allocate page list\n");
2031 obj_priv->pages_refcount--;
2035 inode = obj->filp->f_path.dentry->d_inode;
2036 mapping = inode->i_mapping;
2037 for (i = 0; i < page_count; i++) {
2038 page = read_mapping_page(mapping, i, NULL);
2040 ret = PTR_ERR(page);
2041 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2042 i915_gem_object_put_pages(obj);
2045 obj_priv->pages[i] = page;
2048 if (obj_priv->tiling_mode != I915_TILING_NONE)
2049 i915_gem_object_do_bit_17_swizzle(obj);
2054 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2056 struct drm_gem_object *obj = reg->obj;
2057 struct drm_device *dev = obj->dev;
2058 drm_i915_private_t *dev_priv = dev->dev_private;
2059 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2060 int regnum = obj_priv->fence_reg;
2063 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2065 val |= obj_priv->gtt_offset & 0xfffff000;
2066 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2067 if (obj_priv->tiling_mode == I915_TILING_Y)
2068 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2069 val |= I965_FENCE_REG_VALID;
2071 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2074 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2076 struct drm_gem_object *obj = reg->obj;
2077 struct drm_device *dev = obj->dev;
2078 drm_i915_private_t *dev_priv = dev->dev_private;
2079 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2080 int regnum = obj_priv->fence_reg;
2082 uint32_t fence_reg, val;
2085 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2086 (obj_priv->gtt_offset & (obj->size - 1))) {
2087 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2088 __func__, obj_priv->gtt_offset, obj->size);
2092 if (obj_priv->tiling_mode == I915_TILING_Y &&
2093 HAS_128_BYTE_Y_TILING(dev))
2098 /* Note: pitch better be a power of two tile widths */
2099 pitch_val = obj_priv->stride / tile_width;
2100 pitch_val = ffs(pitch_val) - 1;
2102 val = obj_priv->gtt_offset;
2103 if (obj_priv->tiling_mode == I915_TILING_Y)
2104 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2105 val |= I915_FENCE_SIZE_BITS(obj->size);
2106 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2107 val |= I830_FENCE_REG_VALID;
2110 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2112 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2113 I915_WRITE(fence_reg, val);
2116 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2118 struct drm_gem_object *obj = reg->obj;
2119 struct drm_device *dev = obj->dev;
2120 drm_i915_private_t *dev_priv = dev->dev_private;
2121 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2122 int regnum = obj_priv->fence_reg;
2125 uint32_t fence_size_bits;
2127 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2128 (obj_priv->gtt_offset & (obj->size - 1))) {
2129 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2130 __func__, obj_priv->gtt_offset);
2134 pitch_val = (obj_priv->stride / 128) - 1;
2135 WARN_ON(pitch_val & ~0x0000000f);
2136 val = obj_priv->gtt_offset;
2137 if (obj_priv->tiling_mode == I915_TILING_Y)
2138 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2139 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2140 WARN_ON(fence_size_bits & ~0x00000f00);
2141 val |= fence_size_bits;
2142 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2143 val |= I830_FENCE_REG_VALID;
2145 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2150 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2151 * @obj: object to map through a fence reg
2152 * @write: object is about to be written
2154 * When mapping objects through the GTT, userspace wants to be able to write
2155 * to them without having to worry about swizzling if the object is tiled.
2157 * This function walks the fence regs looking for a free one for @obj,
2158 * stealing one if it can't find any.
2160 * It then sets up the reg based on the object's properties: address, pitch
2161 * and tiling format.
2164 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2166 struct drm_device *dev = obj->dev;
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2169 struct drm_i915_fence_reg *reg = NULL;
2170 struct drm_i915_gem_object *old_obj_priv = NULL;
2173 switch (obj_priv->tiling_mode) {
2174 case I915_TILING_NONE:
2175 WARN(1, "allocating a fence for non-tiled object?\n");
2178 if (!obj_priv->stride)
2180 WARN((obj_priv->stride & (512 - 1)),
2181 "object 0x%08x is X tiled but has non-512B pitch\n",
2182 obj_priv->gtt_offset);
2185 if (!obj_priv->stride)
2187 WARN((obj_priv->stride & (128 - 1)),
2188 "object 0x%08x is Y tiled but has non-128B pitch\n",
2189 obj_priv->gtt_offset);
2193 /* First try to find a free reg */
2196 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2197 reg = &dev_priv->fence_regs[i];
2201 old_obj_priv = reg->obj->driver_private;
2202 if (!old_obj_priv->pin_count)
2206 /* None available, try to steal one or wait for a user to finish */
2207 if (i == dev_priv->num_fence_regs) {
2208 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2214 for (i = dev_priv->fence_reg_start;
2215 i < dev_priv->num_fence_regs; i++) {
2216 uint32_t this_seqno;
2218 reg = &dev_priv->fence_regs[i];
2219 old_obj_priv = reg->obj->driver_private;
2221 if (old_obj_priv->pin_count)
2224 /* i915 uses fences for GPU access to tiled buffers */
2225 if (IS_I965G(dev) || !old_obj_priv->active)
2228 /* find the seqno of the first available fence */
2229 this_seqno = old_obj_priv->last_rendering_seqno;
2230 if (this_seqno != 0 &&
2231 reg->obj->write_domain == 0 &&
2232 i915_seqno_passed(seqno, this_seqno))
2237 * Now things get ugly... we have to wait for one of the
2238 * objects to finish before trying again.
2240 if (i == dev_priv->num_fence_regs) {
2241 if (seqno == dev_priv->mm.next_gem_seqno) {
2243 I915_GEM_GPU_DOMAINS,
2244 I915_GEM_GPU_DOMAINS);
2245 seqno = i915_add_request(dev,
2246 I915_GEM_GPU_DOMAINS);
2251 ret = i915_wait_request(dev, seqno);
2257 BUG_ON(old_obj_priv->active ||
2258 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2261 * Zap this virtual mapping so we can set up a fence again
2262 * for this object next time we need it.
2264 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2265 if (dev->dev_mapping)
2266 unmap_mapping_range(dev->dev_mapping, offset,
2268 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2271 obj_priv->fence_reg = i;
2275 i965_write_fence_reg(reg);
2276 else if (IS_I9XX(dev))
2277 i915_write_fence_reg(reg);
2279 i830_write_fence_reg(reg);
2285 * i915_gem_clear_fence_reg - clear out fence register info
2286 * @obj: object to clear
2288 * Zeroes out the fence register itself and clears out the associated
2289 * data structures in dev_priv and obj_priv.
2292 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2294 struct drm_device *dev = obj->dev;
2295 drm_i915_private_t *dev_priv = dev->dev_private;
2296 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2299 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2303 if (obj_priv->fence_reg < 8)
2304 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2306 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2309 I915_WRITE(fence_reg, 0);
2312 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2313 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2317 * Finds free space in the GTT aperture and binds the object there.
2320 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2322 struct drm_device *dev = obj->dev;
2323 drm_i915_private_t *dev_priv = dev->dev_private;
2324 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2325 struct drm_mm_node *free_space;
2326 int page_count, ret;
2328 if (dev_priv->mm.suspended)
2331 alignment = i915_gem_get_gtt_alignment(obj);
2332 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2333 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2338 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2339 obj->size, alignment, 0);
2340 if (free_space != NULL) {
2341 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2343 if (obj_priv->gtt_space != NULL) {
2344 obj_priv->gtt_space->private = obj;
2345 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2348 if (obj_priv->gtt_space == NULL) {
2351 /* If the gtt is empty and we're still having trouble
2352 * fitting our object in, we're out of memory.
2355 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2357 spin_lock(&dev_priv->mm.active_list_lock);
2358 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2359 list_empty(&dev_priv->mm.flushing_list) &&
2360 list_empty(&dev_priv->mm.active_list));
2361 spin_unlock(&dev_priv->mm.active_list_lock);
2363 DRM_ERROR("GTT full, but LRU list empty\n");
2367 ret = i915_gem_evict_something(dev);
2369 if (ret != -ERESTARTSYS)
2370 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2377 DRM_INFO("Binding object of size %d at 0x%08x\n",
2378 obj->size, obj_priv->gtt_offset);
2380 ret = i915_gem_object_get_pages(obj);
2382 drm_mm_put_block(obj_priv->gtt_space);
2383 obj_priv->gtt_space = NULL;
2387 page_count = obj->size / PAGE_SIZE;
2388 /* Create an AGP memory structure pointing at our pages, and bind it
2391 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2394 obj_priv->gtt_offset,
2395 obj_priv->agp_type);
2396 if (obj_priv->agp_mem == NULL) {
2397 i915_gem_object_put_pages(obj);
2398 drm_mm_put_block(obj_priv->gtt_space);
2399 obj_priv->gtt_space = NULL;
2402 atomic_inc(&dev->gtt_count);
2403 atomic_add(obj->size, &dev->gtt_memory);
2405 /* Assert that the object is not currently in any GPU domain. As it
2406 * wasn't in the GTT, there shouldn't be any way it could have been in
2409 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2410 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2416 i915_gem_clflush_object(struct drm_gem_object *obj)
2418 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2420 /* If we don't have a page list set up, then we're not pinned
2421 * to GPU, and we can ignore the cache flush because it'll happen
2422 * again at bind time.
2424 if (obj_priv->pages == NULL)
2427 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2430 /** Flushes any GPU write domain for the object if it's dirty. */
2432 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2434 struct drm_device *dev = obj->dev;
2437 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2440 /* Queue the GPU write cache flushing we need. */
2441 i915_gem_flush(dev, 0, obj->write_domain);
2442 seqno = i915_add_request(dev, obj->write_domain);
2443 obj->write_domain = 0;
2444 i915_gem_object_move_to_active(obj, seqno);
2447 /** Flushes the GTT write domain for the object if it's dirty. */
2449 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2451 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2454 /* No actual flushing is required for the GTT write domain. Writes
2455 * to it immediately go to main memory as far as we know, so there's
2456 * no chipset flush. It also doesn't land in render cache.
2458 obj->write_domain = 0;
2461 /** Flushes the CPU write domain for the object if it's dirty. */
2463 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2465 struct drm_device *dev = obj->dev;
2467 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2470 i915_gem_clflush_object(obj);
2471 drm_agp_chipset_flush(dev);
2472 obj->write_domain = 0;
2476 * Moves a single object to the GTT read, and possibly write domain.
2478 * This function returns when the move is complete, including waiting on
2482 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2484 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2487 /* Not valid to be called on unbound objects. */
2488 if (obj_priv->gtt_space == NULL)
2491 i915_gem_object_flush_gpu_write_domain(obj);
2492 /* Wait on any GPU rendering and flushing to occur. */
2493 ret = i915_gem_object_wait_rendering(obj);
2497 /* If we're writing through the GTT domain, then CPU and GPU caches
2498 * will need to be invalidated at next use.
2501 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2503 i915_gem_object_flush_cpu_write_domain(obj);
2505 /* It should now be out of any other write domains, and we can update
2506 * the domain values for our changes.
2508 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2509 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2511 obj->write_domain = I915_GEM_DOMAIN_GTT;
2512 obj_priv->dirty = 1;
2519 * Moves a single object to the CPU read, and possibly write domain.
2521 * This function returns when the move is complete, including waiting on
2525 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2529 i915_gem_object_flush_gpu_write_domain(obj);
2530 /* Wait on any GPU rendering and flushing to occur. */
2531 ret = i915_gem_object_wait_rendering(obj);
2535 i915_gem_object_flush_gtt_write_domain(obj);
2537 /* If we have a partially-valid cache of the object in the CPU,
2538 * finish invalidating it and free the per-page flags.
2540 i915_gem_object_set_to_full_cpu_read_domain(obj);
2542 /* Flush the CPU cache if it's still invalid. */
2543 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2544 i915_gem_clflush_object(obj);
2546 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2549 /* It should now be out of any other write domains, and we can update
2550 * the domain values for our changes.
2552 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2554 /* If we're writing through the CPU, then the GPU read domains will
2555 * need to be invalidated at next use.
2558 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2559 obj->write_domain = I915_GEM_DOMAIN_CPU;
2566 * Set the next domain for the specified object. This
2567 * may not actually perform the necessary flushing/invaliding though,
2568 * as that may want to be batched with other set_domain operations
2570 * This is (we hope) the only really tricky part of gem. The goal
2571 * is fairly simple -- track which caches hold bits of the object
2572 * and make sure they remain coherent. A few concrete examples may
2573 * help to explain how it works. For shorthand, we use the notation
2574 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2575 * a pair of read and write domain masks.
2577 * Case 1: the batch buffer
2583 * 5. Unmapped from GTT
2586 * Let's take these a step at a time
2589 * Pages allocated from the kernel may still have
2590 * cache contents, so we set them to (CPU, CPU) always.
2591 * 2. Written by CPU (using pwrite)
2592 * The pwrite function calls set_domain (CPU, CPU) and
2593 * this function does nothing (as nothing changes)
2595 * This function asserts that the object is not
2596 * currently in any GPU-based read or write domains
2598 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2599 * As write_domain is zero, this function adds in the
2600 * current read domains (CPU+COMMAND, 0).
2601 * flush_domains is set to CPU.
2602 * invalidate_domains is set to COMMAND
2603 * clflush is run to get data out of the CPU caches
2604 * then i915_dev_set_domain calls i915_gem_flush to
2605 * emit an MI_FLUSH and drm_agp_chipset_flush
2606 * 5. Unmapped from GTT
2607 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2608 * flush_domains and invalidate_domains end up both zero
2609 * so no flushing/invalidating happens
2613 * Case 2: The shared render buffer
2617 * 3. Read/written by GPU
2618 * 4. set_domain to (CPU,CPU)
2619 * 5. Read/written by CPU
2620 * 6. Read/written by GPU
2623 * Same as last example, (CPU, CPU)
2625 * Nothing changes (assertions find that it is not in the GPU)
2626 * 3. Read/written by GPU
2627 * execbuffer calls set_domain (RENDER, RENDER)
2628 * flush_domains gets CPU
2629 * invalidate_domains gets GPU
2631 * MI_FLUSH and drm_agp_chipset_flush
2632 * 4. set_domain (CPU, CPU)
2633 * flush_domains gets GPU
2634 * invalidate_domains gets CPU
2635 * wait_rendering (obj) to make sure all drawing is complete.
2636 * This will include an MI_FLUSH to get the data from GPU
2638 * clflush (obj) to invalidate the CPU cache
2639 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2640 * 5. Read/written by CPU
2641 * cache lines are loaded and dirtied
2642 * 6. Read written by GPU
2643 * Same as last GPU access
2645 * Case 3: The constant buffer
2650 * 4. Updated (written) by CPU again
2659 * flush_domains = CPU
2660 * invalidate_domains = RENDER
2663 * drm_agp_chipset_flush
2664 * 4. Updated (written) by CPU again
2666 * flush_domains = 0 (no previous write domain)
2667 * invalidate_domains = 0 (no new read domains)
2670 * flush_domains = CPU
2671 * invalidate_domains = RENDER
2674 * drm_agp_chipset_flush
2677 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2679 struct drm_device *dev = obj->dev;
2680 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2681 uint32_t invalidate_domains = 0;
2682 uint32_t flush_domains = 0;
2684 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2685 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2688 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2690 obj->read_domains, obj->pending_read_domains,
2691 obj->write_domain, obj->pending_write_domain);
2694 * If the object isn't moving to a new write domain,
2695 * let the object stay in multiple read domains
2697 if (obj->pending_write_domain == 0)
2698 obj->pending_read_domains |= obj->read_domains;
2700 obj_priv->dirty = 1;
2703 * Flush the current write domain if
2704 * the new read domains don't match. Invalidate
2705 * any read domains which differ from the old
2708 if (obj->write_domain &&
2709 obj->write_domain != obj->pending_read_domains) {
2710 flush_domains |= obj->write_domain;
2711 invalidate_domains |=
2712 obj->pending_read_domains & ~obj->write_domain;
2715 * Invalidate any read caches which may have
2716 * stale data. That is, any new read domains.
2718 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2719 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2721 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2722 __func__, flush_domains, invalidate_domains);
2724 i915_gem_clflush_object(obj);
2727 /* The actual obj->write_domain will be updated with
2728 * pending_write_domain after we emit the accumulated flush for all
2729 * of our domain changes in execbuffers (which clears objects'
2730 * write_domains). So if we have a current write domain that we
2731 * aren't changing, set pending_write_domain to that.
2733 if (flush_domains == 0 && obj->pending_write_domain == 0)
2734 obj->pending_write_domain = obj->write_domain;
2735 obj->read_domains = obj->pending_read_domains;
2737 dev->invalidate_domains |= invalidate_domains;
2738 dev->flush_domains |= flush_domains;
2740 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2742 obj->read_domains, obj->write_domain,
2743 dev->invalidate_domains, dev->flush_domains);
2748 * Moves the object from a partially CPU read to a full one.
2750 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2751 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2754 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2756 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2758 if (!obj_priv->page_cpu_valid)
2761 /* If we're partially in the CPU read domain, finish moving it in.
2763 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2766 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2767 if (obj_priv->page_cpu_valid[i])
2769 drm_clflush_pages(obj_priv->pages + i, 1);
2773 /* Free the page_cpu_valid mappings which are now stale, whether
2774 * or not we've got I915_GEM_DOMAIN_CPU.
2776 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2778 obj_priv->page_cpu_valid = NULL;
2782 * Set the CPU read domain on a range of the object.
2784 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2785 * not entirely valid. The page_cpu_valid member of the object flags which
2786 * pages have been flushed, and will be respected by
2787 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2788 * of the whole object.
2790 * This function returns when the move is complete, including waiting on
2794 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2795 uint64_t offset, uint64_t size)
2797 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2800 if (offset == 0 && size == obj->size)
2801 return i915_gem_object_set_to_cpu_domain(obj, 0);
2803 i915_gem_object_flush_gpu_write_domain(obj);
2804 /* Wait on any GPU rendering and flushing to occur. */
2805 ret = i915_gem_object_wait_rendering(obj);
2808 i915_gem_object_flush_gtt_write_domain(obj);
2810 /* If we're already fully in the CPU read domain, we're done. */
2811 if (obj_priv->page_cpu_valid == NULL &&
2812 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2815 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2816 * newly adding I915_GEM_DOMAIN_CPU
2818 if (obj_priv->page_cpu_valid == NULL) {
2819 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2821 if (obj_priv->page_cpu_valid == NULL)
2823 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2824 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2826 /* Flush the cache on any pages that are still invalid from the CPU's
2829 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2831 if (obj_priv->page_cpu_valid[i])
2834 drm_clflush_pages(obj_priv->pages + i, 1);
2836 obj_priv->page_cpu_valid[i] = 1;
2839 /* It should now be out of any other write domains, and we can update
2840 * the domain values for our changes.
2842 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2844 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2850 * Pin an object to the GTT and evaluate the relocations landing in it.
2853 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2854 struct drm_file *file_priv,
2855 struct drm_i915_gem_exec_object *entry,
2856 struct drm_i915_gem_relocation_entry *relocs)
2858 struct drm_device *dev = obj->dev;
2859 drm_i915_private_t *dev_priv = dev->dev_private;
2860 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2862 void __iomem *reloc_page;
2864 /* Choose the GTT offset for our buffer and put it there. */
2865 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2869 entry->offset = obj_priv->gtt_offset;
2871 /* Apply the relocations, using the GTT aperture to avoid cache
2872 * flushing requirements.
2874 for (i = 0; i < entry->relocation_count; i++) {
2875 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2876 struct drm_gem_object *target_obj;
2877 struct drm_i915_gem_object *target_obj_priv;
2878 uint32_t reloc_val, reloc_offset;
2879 uint32_t __iomem *reloc_entry;
2881 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2882 reloc->target_handle);
2883 if (target_obj == NULL) {
2884 i915_gem_object_unpin(obj);
2887 target_obj_priv = target_obj->driver_private;
2889 /* The target buffer should have appeared before us in the
2890 * exec_object list, so it should have a GTT space bound by now.
2892 if (target_obj_priv->gtt_space == NULL) {
2893 DRM_ERROR("No GTT space found for object %d\n",
2894 reloc->target_handle);
2895 drm_gem_object_unreference(target_obj);
2896 i915_gem_object_unpin(obj);
2900 if (reloc->offset > obj->size - 4) {
2901 DRM_ERROR("Relocation beyond object bounds: "
2902 "obj %p target %d offset %d size %d.\n",
2903 obj, reloc->target_handle,
2904 (int) reloc->offset, (int) obj->size);
2905 drm_gem_object_unreference(target_obj);
2906 i915_gem_object_unpin(obj);
2909 if (reloc->offset & 3) {
2910 DRM_ERROR("Relocation not 4-byte aligned: "
2911 "obj %p target %d offset %d.\n",
2912 obj, reloc->target_handle,
2913 (int) reloc->offset);
2914 drm_gem_object_unreference(target_obj);
2915 i915_gem_object_unpin(obj);
2919 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2920 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2921 DRM_ERROR("reloc with read/write CPU domains: "
2922 "obj %p target %d offset %d "
2923 "read %08x write %08x",
2924 obj, reloc->target_handle,
2925 (int) reloc->offset,
2926 reloc->read_domains,
2927 reloc->write_domain);
2928 drm_gem_object_unreference(target_obj);
2929 i915_gem_object_unpin(obj);
2933 if (reloc->write_domain && target_obj->pending_write_domain &&
2934 reloc->write_domain != target_obj->pending_write_domain) {
2935 DRM_ERROR("Write domain conflict: "
2936 "obj %p target %d offset %d "
2937 "new %08x old %08x\n",
2938 obj, reloc->target_handle,
2939 (int) reloc->offset,
2940 reloc->write_domain,
2941 target_obj->pending_write_domain);
2942 drm_gem_object_unreference(target_obj);
2943 i915_gem_object_unpin(obj);
2948 DRM_INFO("%s: obj %p offset %08x target %d "
2949 "read %08x write %08x gtt %08x "
2950 "presumed %08x delta %08x\n",
2953 (int) reloc->offset,
2954 (int) reloc->target_handle,
2955 (int) reloc->read_domains,
2956 (int) reloc->write_domain,
2957 (int) target_obj_priv->gtt_offset,
2958 (int) reloc->presumed_offset,
2962 target_obj->pending_read_domains |= reloc->read_domains;
2963 target_obj->pending_write_domain |= reloc->write_domain;
2965 /* If the relocation already has the right value in it, no
2966 * more work needs to be done.
2968 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2969 drm_gem_object_unreference(target_obj);
2973 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2975 drm_gem_object_unreference(target_obj);
2976 i915_gem_object_unpin(obj);
2980 /* Map the page containing the relocation we're going to
2983 reloc_offset = obj_priv->gtt_offset + reloc->offset;
2984 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2987 reloc_entry = (uint32_t __iomem *)(reloc_page +
2988 (reloc_offset & (PAGE_SIZE - 1)));
2989 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
2992 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2993 obj, (unsigned int) reloc->offset,
2994 readl(reloc_entry), reloc_val);
2996 writel(reloc_val, reloc_entry);
2997 io_mapping_unmap_atomic(reloc_page);
2999 /* The updated presumed offset for this entry will be
3000 * copied back out to the user.
3002 reloc->presumed_offset = target_obj_priv->gtt_offset;
3004 drm_gem_object_unreference(target_obj);
3009 i915_gem_dump_object(obj, 128, __func__, ~0);
3014 /** Dispatch a batchbuffer to the ring
3017 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3018 struct drm_i915_gem_execbuffer *exec,
3019 struct drm_clip_rect *cliprects,
3020 uint64_t exec_offset)
3022 drm_i915_private_t *dev_priv = dev->dev_private;
3023 int nbox = exec->num_cliprects;
3025 uint32_t exec_start, exec_len;
3028 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3029 exec_len = (uint32_t) exec->batch_len;
3031 if ((exec_start | exec_len) & 0x7) {
3032 DRM_ERROR("alignment\n");
3039 count = nbox ? nbox : 1;
3041 for (i = 0; i < count; i++) {
3043 int ret = i915_emit_box(dev, cliprects, i,
3044 exec->DR1, exec->DR4);
3049 if (IS_I830(dev) || IS_845G(dev)) {
3051 OUT_RING(MI_BATCH_BUFFER);
3052 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3053 OUT_RING(exec_start + exec_len - 4);
3058 if (IS_I965G(dev)) {
3059 OUT_RING(MI_BATCH_BUFFER_START |
3061 MI_BATCH_NON_SECURE_I965);
3062 OUT_RING(exec_start);
3064 OUT_RING(MI_BATCH_BUFFER_START |
3066 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3072 /* XXX breadcrumb */
3076 /* Throttle our rendering by waiting until the ring has completed our requests
3077 * emitted over 20 msec ago.
3079 * This should get us reasonable parallelism between CPU and GPU but also
3080 * relatively low latency when blocking on a particular request to finish.
3083 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3085 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3089 mutex_lock(&dev->struct_mutex);
3090 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
3091 i915_file_priv->mm.last_gem_throttle_seqno =
3092 i915_file_priv->mm.last_gem_seqno;
3094 ret = i915_wait_request(dev, seqno);
3095 mutex_unlock(&dev->struct_mutex);
3100 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3101 uint32_t buffer_count,
3102 struct drm_i915_gem_relocation_entry **relocs)
3104 uint32_t reloc_count = 0, reloc_index = 0, i;
3108 for (i = 0; i < buffer_count; i++) {
3109 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3111 reloc_count += exec_list[i].relocation_count;
3114 *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
3115 if (*relocs == NULL)
3118 for (i = 0; i < buffer_count; i++) {
3119 struct drm_i915_gem_relocation_entry __user *user_relocs;
3121 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3123 ret = copy_from_user(&(*relocs)[reloc_index],
3125 exec_list[i].relocation_count *
3128 drm_free(*relocs, reloc_count * sizeof(**relocs),
3134 reloc_index += exec_list[i].relocation_count;
3141 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3142 uint32_t buffer_count,
3143 struct drm_i915_gem_relocation_entry *relocs)
3145 uint32_t reloc_count = 0, i;
3148 for (i = 0; i < buffer_count; i++) {
3149 struct drm_i915_gem_relocation_entry __user *user_relocs;
3152 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3154 unwritten = copy_to_user(user_relocs,
3155 &relocs[reloc_count],
3156 exec_list[i].relocation_count *
3164 reloc_count += exec_list[i].relocation_count;
3168 drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3174 i915_gem_execbuffer(struct drm_device *dev, void *data,
3175 struct drm_file *file_priv)
3177 drm_i915_private_t *dev_priv = dev->dev_private;
3178 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3179 struct drm_i915_gem_execbuffer *args = data;
3180 struct drm_i915_gem_exec_object *exec_list = NULL;
3181 struct drm_gem_object **object_list = NULL;
3182 struct drm_gem_object *batch_obj;
3183 struct drm_i915_gem_object *obj_priv;
3184 struct drm_clip_rect *cliprects = NULL;
3185 struct drm_i915_gem_relocation_entry *relocs;
3186 int ret, ret2, i, pinned = 0;
3187 uint64_t exec_offset;
3188 uint32_t seqno, flush_domains, reloc_index;
3192 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3193 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3196 if (args->buffer_count < 1) {
3197 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3200 /* Copy in the exec list from userland */
3201 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3203 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3205 if (exec_list == NULL || object_list == NULL) {
3206 DRM_ERROR("Failed to allocate exec or object list "
3208 args->buffer_count);
3212 ret = copy_from_user(exec_list,
3213 (struct drm_i915_relocation_entry __user *)
3214 (uintptr_t) args->buffers_ptr,
3215 sizeof(*exec_list) * args->buffer_count);
3217 DRM_ERROR("copy %d exec entries failed %d\n",
3218 args->buffer_count, ret);
3222 if (args->num_cliprects != 0) {
3223 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3225 if (cliprects == NULL)
3228 ret = copy_from_user(cliprects,
3229 (struct drm_clip_rect __user *)
3230 (uintptr_t) args->cliprects_ptr,
3231 sizeof(*cliprects) * args->num_cliprects);
3233 DRM_ERROR("copy %d cliprects failed: %d\n",
3234 args->num_cliprects, ret);
3239 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3244 mutex_lock(&dev->struct_mutex);
3246 i915_verify_inactive(dev, __FILE__, __LINE__);
3248 if (dev_priv->mm.wedged) {
3249 DRM_ERROR("Execbuf while wedged\n");
3250 mutex_unlock(&dev->struct_mutex);
3255 if (dev_priv->mm.suspended) {
3256 DRM_ERROR("Execbuf while VT-switched.\n");
3257 mutex_unlock(&dev->struct_mutex);
3262 /* Look up object handles */
3263 for (i = 0; i < args->buffer_count; i++) {
3264 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3265 exec_list[i].handle);
3266 if (object_list[i] == NULL) {
3267 DRM_ERROR("Invalid object handle %d at index %d\n",
3268 exec_list[i].handle, i);
3273 obj_priv = object_list[i]->driver_private;
3274 if (obj_priv->in_execbuffer) {
3275 DRM_ERROR("Object %p appears more than once in object list\n",
3280 obj_priv->in_execbuffer = true;
3283 /* Pin and relocate */
3284 for (pin_tries = 0; ; pin_tries++) {
3288 for (i = 0; i < args->buffer_count; i++) {
3289 object_list[i]->pending_read_domains = 0;
3290 object_list[i]->pending_write_domain = 0;
3291 ret = i915_gem_object_pin_and_relocate(object_list[i],
3294 &relocs[reloc_index]);
3298 reloc_index += exec_list[i].relocation_count;
3304 /* error other than GTT full, or we've already tried again */
3305 if (ret != -ENOMEM || pin_tries >= 1) {
3306 if (ret != -ERESTARTSYS)
3307 DRM_ERROR("Failed to pin buffers %d\n", ret);
3311 /* unpin all of our buffers */
3312 for (i = 0; i < pinned; i++)
3313 i915_gem_object_unpin(object_list[i]);
3316 /* evict everyone we can from the aperture */
3317 ret = i915_gem_evict_everything(dev);
3322 /* Set the pending read domains for the batch buffer to COMMAND */
3323 batch_obj = object_list[args->buffer_count-1];
3324 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3325 batch_obj->pending_write_domain = 0;
3327 i915_verify_inactive(dev, __FILE__, __LINE__);
3329 /* Zero the global flush/invalidate flags. These
3330 * will be modified as new domains are computed
3333 dev->invalidate_domains = 0;
3334 dev->flush_domains = 0;
3336 for (i = 0; i < args->buffer_count; i++) {
3337 struct drm_gem_object *obj = object_list[i];
3339 /* Compute new gpu domains and update invalidate/flush */
3340 i915_gem_object_set_to_gpu_domain(obj);
3343 i915_verify_inactive(dev, __FILE__, __LINE__);
3345 if (dev->invalidate_domains | dev->flush_domains) {
3347 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3349 dev->invalidate_domains,
3350 dev->flush_domains);
3353 dev->invalidate_domains,
3354 dev->flush_domains);
3355 if (dev->flush_domains)
3356 (void)i915_add_request(dev, dev->flush_domains);
3359 for (i = 0; i < args->buffer_count; i++) {
3360 struct drm_gem_object *obj = object_list[i];
3362 obj->write_domain = obj->pending_write_domain;
3365 i915_verify_inactive(dev, __FILE__, __LINE__);
3368 for (i = 0; i < args->buffer_count; i++) {
3369 i915_gem_object_check_coherency(object_list[i],
3370 exec_list[i].handle);
3374 exec_offset = exec_list[args->buffer_count - 1].offset;
3377 i915_gem_dump_object(batch_obj,
3383 /* Exec the batchbuffer */
3384 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3386 DRM_ERROR("dispatch failed %d\n", ret);
3391 * Ensure that the commands in the batch buffer are
3392 * finished before the interrupt fires
3394 flush_domains = i915_retire_commands(dev);
3396 i915_verify_inactive(dev, __FILE__, __LINE__);
3399 * Get a seqno representing the execution of the current buffer,
3400 * which we can wait on. We would like to mitigate these interrupts,
3401 * likely by only creating seqnos occasionally (so that we have
3402 * *some* interrupts representing completion of buffers that we can
3403 * wait on when trying to clear up gtt space).
3405 seqno = i915_add_request(dev, flush_domains);
3407 i915_file_priv->mm.last_gem_seqno = seqno;
3408 for (i = 0; i < args->buffer_count; i++) {
3409 struct drm_gem_object *obj = object_list[i];
3411 i915_gem_object_move_to_active(obj, seqno);
3413 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3417 i915_dump_lru(dev, __func__);
3420 i915_verify_inactive(dev, __FILE__, __LINE__);
3423 for (i = 0; i < pinned; i++)
3424 i915_gem_object_unpin(object_list[i]);
3426 for (i = 0; i < args->buffer_count; i++) {
3427 if (object_list[i]) {
3428 obj_priv = object_list[i]->driver_private;
3429 obj_priv->in_execbuffer = false;
3431 drm_gem_object_unreference(object_list[i]);
3434 mutex_unlock(&dev->struct_mutex);
3437 /* Copy the new buffer offsets back to the user's exec list. */
3438 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3439 (uintptr_t) args->buffers_ptr,
3441 sizeof(*exec_list) * args->buffer_count);
3444 DRM_ERROR("failed to copy %d exec entries "
3445 "back to user (%d)\n",
3446 args->buffer_count, ret);
3450 /* Copy the updated relocations out regardless of current error
3451 * state. Failure to update the relocs would mean that the next
3452 * time userland calls execbuf, it would do so with presumed offset
3453 * state that didn't match the actual object state.
3455 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3458 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3465 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3467 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3469 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3476 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3478 struct drm_device *dev = obj->dev;
3479 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3482 i915_verify_inactive(dev, __FILE__, __LINE__);
3483 if (obj_priv->gtt_space == NULL) {
3484 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3486 if (ret != -EBUSY && ret != -ERESTARTSYS)
3487 DRM_ERROR("Failure to bind: %d\n", ret);
3492 * Pre-965 chips need a fence register set up in order to
3493 * properly handle tiled surfaces.
3495 if (!IS_I965G(dev) &&
3496 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3497 obj_priv->tiling_mode != I915_TILING_NONE) {
3498 ret = i915_gem_object_get_fence_reg(obj, true);
3500 if (ret != -EBUSY && ret != -ERESTARTSYS)
3501 DRM_ERROR("Failure to install fence: %d\n",
3506 obj_priv->pin_count++;
3508 /* If the object is not active and not pending a flush,
3509 * remove it from the inactive list
3511 if (obj_priv->pin_count == 1) {
3512 atomic_inc(&dev->pin_count);
3513 atomic_add(obj->size, &dev->pin_memory);
3514 if (!obj_priv->active &&
3515 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3516 I915_GEM_DOMAIN_GTT)) == 0 &&
3517 !list_empty(&obj_priv->list))
3518 list_del_init(&obj_priv->list);
3520 i915_verify_inactive(dev, __FILE__, __LINE__);
3526 i915_gem_object_unpin(struct drm_gem_object *obj)
3528 struct drm_device *dev = obj->dev;
3529 drm_i915_private_t *dev_priv = dev->dev_private;
3530 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3532 i915_verify_inactive(dev, __FILE__, __LINE__);
3533 obj_priv->pin_count--;
3534 BUG_ON(obj_priv->pin_count < 0);
3535 BUG_ON(obj_priv->gtt_space == NULL);
3537 /* If the object is no longer pinned, and is
3538 * neither active nor being flushed, then stick it on
3541 if (obj_priv->pin_count == 0) {
3542 if (!obj_priv->active &&
3543 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3544 I915_GEM_DOMAIN_GTT)) == 0)
3545 list_move_tail(&obj_priv->list,
3546 &dev_priv->mm.inactive_list);
3547 atomic_dec(&dev->pin_count);
3548 atomic_sub(obj->size, &dev->pin_memory);
3550 i915_verify_inactive(dev, __FILE__, __LINE__);
3554 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3555 struct drm_file *file_priv)
3557 struct drm_i915_gem_pin *args = data;
3558 struct drm_gem_object *obj;
3559 struct drm_i915_gem_object *obj_priv;
3562 mutex_lock(&dev->struct_mutex);
3564 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3566 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3568 mutex_unlock(&dev->struct_mutex);
3571 obj_priv = obj->driver_private;
3573 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3574 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3576 drm_gem_object_unreference(obj);
3577 mutex_unlock(&dev->struct_mutex);
3581 obj_priv->user_pin_count++;
3582 obj_priv->pin_filp = file_priv;
3583 if (obj_priv->user_pin_count == 1) {
3584 ret = i915_gem_object_pin(obj, args->alignment);
3586 drm_gem_object_unreference(obj);
3587 mutex_unlock(&dev->struct_mutex);
3592 /* XXX - flush the CPU caches for pinned objects
3593 * as the X server doesn't manage domains yet
3595 i915_gem_object_flush_cpu_write_domain(obj);
3596 args->offset = obj_priv->gtt_offset;
3597 drm_gem_object_unreference(obj);
3598 mutex_unlock(&dev->struct_mutex);
3604 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3605 struct drm_file *file_priv)
3607 struct drm_i915_gem_pin *args = data;
3608 struct drm_gem_object *obj;
3609 struct drm_i915_gem_object *obj_priv;
3611 mutex_lock(&dev->struct_mutex);
3613 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3615 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3617 mutex_unlock(&dev->struct_mutex);
3621 obj_priv = obj->driver_private;
3622 if (obj_priv->pin_filp != file_priv) {
3623 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3625 drm_gem_object_unreference(obj);
3626 mutex_unlock(&dev->struct_mutex);
3629 obj_priv->user_pin_count--;
3630 if (obj_priv->user_pin_count == 0) {
3631 obj_priv->pin_filp = NULL;
3632 i915_gem_object_unpin(obj);
3635 drm_gem_object_unreference(obj);
3636 mutex_unlock(&dev->struct_mutex);
3641 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3642 struct drm_file *file_priv)
3644 struct drm_i915_gem_busy *args = data;
3645 struct drm_gem_object *obj;
3646 struct drm_i915_gem_object *obj_priv;
3648 mutex_lock(&dev->struct_mutex);
3649 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3651 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3653 mutex_unlock(&dev->struct_mutex);
3657 /* Update the active list for the hardware's current position.
3658 * Otherwise this only updates on a delayed timer or when irqs are
3659 * actually unmasked, and our working set ends up being larger than
3662 i915_gem_retire_requests(dev);
3664 obj_priv = obj->driver_private;
3665 /* Don't count being on the flushing list against the object being
3666 * done. Otherwise, a buffer left on the flushing list but not getting
3667 * flushed (because nobody's flushing that domain) won't ever return
3668 * unbusy and get reused by libdrm's bo cache. The other expected
3669 * consumer of this interface, OpenGL's occlusion queries, also specs
3670 * that the objects get unbusy "eventually" without any interference.
3672 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3674 drm_gem_object_unreference(obj);
3675 mutex_unlock(&dev->struct_mutex);
3680 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3681 struct drm_file *file_priv)
3683 return i915_gem_ring_throttle(dev, file_priv);
3686 int i915_gem_init_object(struct drm_gem_object *obj)
3688 struct drm_i915_gem_object *obj_priv;
3690 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3691 if (obj_priv == NULL)
3695 * We've just allocated pages from the kernel,
3696 * so they've just been written by the CPU with
3697 * zeros. They'll need to be clflushed before we
3698 * use them with the GPU.
3700 obj->write_domain = I915_GEM_DOMAIN_CPU;
3701 obj->read_domains = I915_GEM_DOMAIN_CPU;
3703 obj_priv->agp_type = AGP_USER_MEMORY;
3705 obj->driver_private = obj_priv;
3706 obj_priv->obj = obj;
3707 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3708 INIT_LIST_HEAD(&obj_priv->list);
3713 void i915_gem_free_object(struct drm_gem_object *obj)
3715 struct drm_device *dev = obj->dev;
3716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3718 while (obj_priv->pin_count > 0)
3719 i915_gem_object_unpin(obj);
3721 if (obj_priv->phys_obj)
3722 i915_gem_detach_phys_object(dev, obj);
3724 i915_gem_object_unbind(obj);
3726 i915_gem_free_mmap_offset(obj);
3728 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3729 kfree(obj_priv->bit_17);
3730 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3733 /** Unbinds all objects that are on the given buffer list. */
3735 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3737 struct drm_gem_object *obj;
3738 struct drm_i915_gem_object *obj_priv;
3741 while (!list_empty(head)) {
3742 obj_priv = list_first_entry(head,
3743 struct drm_i915_gem_object,
3745 obj = obj_priv->obj;
3747 if (obj_priv->pin_count != 0) {
3748 DRM_ERROR("Pinned object in unbind list\n");
3749 mutex_unlock(&dev->struct_mutex);
3753 ret = i915_gem_object_unbind(obj);
3755 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3757 mutex_unlock(&dev->struct_mutex);
3767 i915_gem_idle(struct drm_device *dev)
3769 drm_i915_private_t *dev_priv = dev->dev_private;
3770 uint32_t seqno, cur_seqno, last_seqno;
3773 mutex_lock(&dev->struct_mutex);
3775 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3776 mutex_unlock(&dev->struct_mutex);
3780 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3781 * We need to replace this with a semaphore, or something.
3783 dev_priv->mm.suspended = 1;
3785 /* Cancel the retire work handler, wait for it to finish if running
3787 mutex_unlock(&dev->struct_mutex);
3788 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3789 mutex_lock(&dev->struct_mutex);
3791 i915_kernel_lost_context(dev);
3793 /* Flush the GPU along with all non-CPU write domains
3795 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3796 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3797 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3800 mutex_unlock(&dev->struct_mutex);
3804 dev_priv->mm.waiting_gem_seqno = seqno;
3808 cur_seqno = i915_get_gem_seqno(dev);
3809 if (i915_seqno_passed(cur_seqno, seqno))
3811 if (last_seqno == cur_seqno) {
3812 if (stuck++ > 100) {
3813 DRM_ERROR("hardware wedged\n");
3814 dev_priv->mm.wedged = 1;
3815 DRM_WAKEUP(&dev_priv->irq_queue);
3820 last_seqno = cur_seqno;
3822 dev_priv->mm.waiting_gem_seqno = 0;
3824 i915_gem_retire_requests(dev);
3826 spin_lock(&dev_priv->mm.active_list_lock);
3827 if (!dev_priv->mm.wedged) {
3828 /* Active and flushing should now be empty as we've
3829 * waited for a sequence higher than any pending execbuffer
3831 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3832 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3833 /* Request should now be empty as we've also waited
3834 * for the last request in the list
3836 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3839 /* Empty the active and flushing lists to inactive. If there's
3840 * anything left at this point, it means that we're wedged and
3841 * nothing good's going to happen by leaving them there. So strip
3842 * the GPU domains and just stuff them onto inactive.
3844 while (!list_empty(&dev_priv->mm.active_list)) {
3845 struct drm_i915_gem_object *obj_priv;
3847 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3848 struct drm_i915_gem_object,
3850 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3851 i915_gem_object_move_to_inactive(obj_priv->obj);
3853 spin_unlock(&dev_priv->mm.active_list_lock);
3855 while (!list_empty(&dev_priv->mm.flushing_list)) {
3856 struct drm_i915_gem_object *obj_priv;
3858 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3859 struct drm_i915_gem_object,
3861 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3862 i915_gem_object_move_to_inactive(obj_priv->obj);
3866 /* Move all inactive buffers out of the GTT. */
3867 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3868 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3870 mutex_unlock(&dev->struct_mutex);
3874 i915_gem_cleanup_ringbuffer(dev);
3875 mutex_unlock(&dev->struct_mutex);
3881 i915_gem_init_hws(struct drm_device *dev)
3883 drm_i915_private_t *dev_priv = dev->dev_private;
3884 struct drm_gem_object *obj;
3885 struct drm_i915_gem_object *obj_priv;
3888 /* If we need a physical address for the status page, it's already
3889 * initialized at driver load time.
3891 if (!I915_NEED_GFX_HWS(dev))
3894 obj = drm_gem_object_alloc(dev, 4096);
3896 DRM_ERROR("Failed to allocate status page\n");
3899 obj_priv = obj->driver_private;
3900 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3902 ret = i915_gem_object_pin(obj, 4096);
3904 drm_gem_object_unreference(obj);
3908 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3910 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3911 if (dev_priv->hw_status_page == NULL) {
3912 DRM_ERROR("Failed to map status page.\n");
3913 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3914 i915_gem_object_unpin(obj);
3915 drm_gem_object_unreference(obj);
3918 dev_priv->hws_obj = obj;
3919 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3920 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3921 I915_READ(HWS_PGA); /* posting read */
3922 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3928 i915_gem_cleanup_hws(struct drm_device *dev)
3930 drm_i915_private_t *dev_priv = dev->dev_private;
3931 struct drm_gem_object *obj;
3932 struct drm_i915_gem_object *obj_priv;
3934 if (dev_priv->hws_obj == NULL)
3937 obj = dev_priv->hws_obj;
3938 obj_priv = obj->driver_private;
3940 kunmap(obj_priv->pages[0]);
3941 i915_gem_object_unpin(obj);
3942 drm_gem_object_unreference(obj);
3943 dev_priv->hws_obj = NULL;
3945 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3946 dev_priv->hw_status_page = NULL;
3948 /* Write high address into HWS_PGA when disabling. */
3949 I915_WRITE(HWS_PGA, 0x1ffff000);
3953 i915_gem_init_ringbuffer(struct drm_device *dev)
3955 drm_i915_private_t *dev_priv = dev->dev_private;
3956 struct drm_gem_object *obj;
3957 struct drm_i915_gem_object *obj_priv;
3958 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3962 ret = i915_gem_init_hws(dev);
3966 obj = drm_gem_object_alloc(dev, 128 * 1024);
3968 DRM_ERROR("Failed to allocate ringbuffer\n");
3969 i915_gem_cleanup_hws(dev);
3972 obj_priv = obj->driver_private;
3974 ret = i915_gem_object_pin(obj, 4096);
3976 drm_gem_object_unreference(obj);
3977 i915_gem_cleanup_hws(dev);
3981 /* Set up the kernel mapping for the ring. */
3982 ring->Size = obj->size;
3983 ring->tail_mask = obj->size - 1;
3985 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3986 ring->map.size = obj->size;
3988 ring->map.flags = 0;
3991 drm_core_ioremap_wc(&ring->map, dev);
3992 if (ring->map.handle == NULL) {
3993 DRM_ERROR("Failed to map ringbuffer.\n");
3994 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3995 i915_gem_object_unpin(obj);
3996 drm_gem_object_unreference(obj);
3997 i915_gem_cleanup_hws(dev);
4000 ring->ring_obj = obj;
4001 ring->virtual_start = ring->map.handle;
4003 /* Stop the ring if it's running. */
4004 I915_WRITE(PRB0_CTL, 0);
4005 I915_WRITE(PRB0_TAIL, 0);
4006 I915_WRITE(PRB0_HEAD, 0);
4008 /* Initialize the ring. */
4009 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4010 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4012 /* G45 ring initialization fails to reset head to zero */
4014 DRM_ERROR("Ring head not reset to zero "
4015 "ctl %08x head %08x tail %08x start %08x\n",
4016 I915_READ(PRB0_CTL),
4017 I915_READ(PRB0_HEAD),
4018 I915_READ(PRB0_TAIL),
4019 I915_READ(PRB0_START));
4020 I915_WRITE(PRB0_HEAD, 0);
4022 DRM_ERROR("Ring head forced to zero "
4023 "ctl %08x head %08x tail %08x start %08x\n",
4024 I915_READ(PRB0_CTL),
4025 I915_READ(PRB0_HEAD),
4026 I915_READ(PRB0_TAIL),
4027 I915_READ(PRB0_START));
4030 I915_WRITE(PRB0_CTL,
4031 ((obj->size - 4096) & RING_NR_PAGES) |
4035 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4037 /* If the head is still not zero, the ring is dead */
4039 DRM_ERROR("Ring initialization failed "
4040 "ctl %08x head %08x tail %08x start %08x\n",
4041 I915_READ(PRB0_CTL),
4042 I915_READ(PRB0_HEAD),
4043 I915_READ(PRB0_TAIL),
4044 I915_READ(PRB0_START));
4048 /* Update our cache of the ring state */
4049 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4050 i915_kernel_lost_context(dev);
4052 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4053 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4054 ring->space = ring->head - (ring->tail + 8);
4055 if (ring->space < 0)
4056 ring->space += ring->Size;
4063 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4065 drm_i915_private_t *dev_priv = dev->dev_private;
4067 if (dev_priv->ring.ring_obj == NULL)
4070 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4072 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4073 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4074 dev_priv->ring.ring_obj = NULL;
4075 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4077 i915_gem_cleanup_hws(dev);
4081 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4082 struct drm_file *file_priv)
4084 drm_i915_private_t *dev_priv = dev->dev_private;
4087 if (drm_core_check_feature(dev, DRIVER_MODESET))
4090 if (dev_priv->mm.wedged) {
4091 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4092 dev_priv->mm.wedged = 0;
4095 mutex_lock(&dev->struct_mutex);
4096 dev_priv->mm.suspended = 0;
4098 ret = i915_gem_init_ringbuffer(dev);
4100 mutex_unlock(&dev->struct_mutex);
4104 spin_lock(&dev_priv->mm.active_list_lock);
4105 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4106 spin_unlock(&dev_priv->mm.active_list_lock);
4108 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4109 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4110 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4111 mutex_unlock(&dev->struct_mutex);
4113 drm_irq_install(dev);
4119 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4120 struct drm_file *file_priv)
4124 if (drm_core_check_feature(dev, DRIVER_MODESET))
4127 ret = i915_gem_idle(dev);
4128 drm_irq_uninstall(dev);
4134 i915_gem_lastclose(struct drm_device *dev)
4138 if (drm_core_check_feature(dev, DRIVER_MODESET))
4141 ret = i915_gem_idle(dev);
4143 DRM_ERROR("failed to idle hardware: %d\n", ret);
4147 i915_gem_load(struct drm_device *dev)
4149 drm_i915_private_t *dev_priv = dev->dev_private;
4151 spin_lock_init(&dev_priv->mm.active_list_lock);
4152 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4153 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4154 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4155 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4156 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4157 i915_gem_retire_work_handler);
4158 dev_priv->mm.next_gem_seqno = 1;
4160 /* Old X drivers will take 0-2 for front, back, depth buffers */
4161 dev_priv->fence_reg_start = 3;
4163 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4164 dev_priv->num_fence_regs = 16;
4166 dev_priv->num_fence_regs = 8;
4168 i915_gem_detect_bit_6_swizzle(dev);
4172 * Create a physically contiguous memory object for this object
4173 * e.g. for cursor + overlay regs
4175 int i915_gem_init_phys_object(struct drm_device *dev,
4178 drm_i915_private_t *dev_priv = dev->dev_private;
4179 struct drm_i915_gem_phys_object *phys_obj;
4182 if (dev_priv->mm.phys_objs[id - 1] || !size)
4185 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4191 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4192 if (!phys_obj->handle) {
4197 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4200 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4204 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4208 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4210 drm_i915_private_t *dev_priv = dev->dev_private;
4211 struct drm_i915_gem_phys_object *phys_obj;
4213 if (!dev_priv->mm.phys_objs[id - 1])
4216 phys_obj = dev_priv->mm.phys_objs[id - 1];
4217 if (phys_obj->cur_obj) {
4218 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4222 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4224 drm_pci_free(dev, phys_obj->handle);
4226 dev_priv->mm.phys_objs[id - 1] = NULL;
4229 void i915_gem_free_all_phys_object(struct drm_device *dev)
4233 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4234 i915_gem_free_phys_object(dev, i);
4237 void i915_gem_detach_phys_object(struct drm_device *dev,
4238 struct drm_gem_object *obj)
4240 struct drm_i915_gem_object *obj_priv;
4245 obj_priv = obj->driver_private;
4246 if (!obj_priv->phys_obj)
4249 ret = i915_gem_object_get_pages(obj);
4253 page_count = obj->size / PAGE_SIZE;
4255 for (i = 0; i < page_count; i++) {
4256 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4257 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4259 memcpy(dst, src, PAGE_SIZE);
4260 kunmap_atomic(dst, KM_USER0);
4262 drm_clflush_pages(obj_priv->pages, page_count);
4263 drm_agp_chipset_flush(dev);
4265 obj_priv->phys_obj->cur_obj = NULL;
4266 obj_priv->phys_obj = NULL;
4270 i915_gem_attach_phys_object(struct drm_device *dev,
4271 struct drm_gem_object *obj, int id)
4273 drm_i915_private_t *dev_priv = dev->dev_private;
4274 struct drm_i915_gem_object *obj_priv;
4279 if (id > I915_MAX_PHYS_OBJECT)
4282 obj_priv = obj->driver_private;
4284 if (obj_priv->phys_obj) {
4285 if (obj_priv->phys_obj->id == id)
4287 i915_gem_detach_phys_object(dev, obj);
4291 /* create a new object */
4292 if (!dev_priv->mm.phys_objs[id - 1]) {
4293 ret = i915_gem_init_phys_object(dev, id,
4296 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4301 /* bind to the object */
4302 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4303 obj_priv->phys_obj->cur_obj = obj;
4305 ret = i915_gem_object_get_pages(obj);
4307 DRM_ERROR("failed to get page list\n");
4311 page_count = obj->size / PAGE_SIZE;
4313 for (i = 0; i < page_count; i++) {
4314 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4315 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4317 memcpy(dst, src, PAGE_SIZE);
4318 kunmap_atomic(src, KM_USER0);
4327 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4328 struct drm_i915_gem_pwrite *args,
4329 struct drm_file *file_priv)
4331 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4334 char __user *user_data;
4336 user_data = (char __user *) (uintptr_t) args->data_ptr;
4337 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4339 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4340 ret = copy_from_user(obj_addr, user_data, args->size);
4344 drm_agp_chipset_flush(dev);