spi: atmel_spi update chipselect handling
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /*
22  * A fast way to enable or disable all ring buffers is to
23  * call tracing_on or tracing_off. Turning off the ring buffers
24  * prevents all ring buffers from being recorded to.
25  * Turning this switch on, makes it OK to write to the
26  * ring buffer, if the ring buffer is enabled itself.
27  *
28  * There's three layers that must be on in order to write
29  * to the ring buffer.
30  *
31  * 1) This global flag must be set.
32  * 2) The ring buffer must be enabled for recording.
33  * 3) The per cpu buffer must be enabled for recording.
34  *
35  * In case of an anomaly, this global flag has a bit set that
36  * will permantly disable all ring buffers.
37  */
38
39 /*
40  * Global flag to disable all recording to ring buffers
41  *  This has two bits: ON, DISABLED
42  *
43  *  ON   DISABLED
44  * ---- ----------
45  *   0      0        : ring buffers are off
46  *   1      0        : ring buffers are on
47  *   X      1        : ring buffers are permanently disabled
48  */
49
50 enum {
51         RB_BUFFERS_ON_BIT       = 0,
52         RB_BUFFERS_DISABLED_BIT = 1,
53 };
54
55 enum {
56         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
57         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
58 };
59
60 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
61
62 /**
63  * tracing_on - enable all tracing buffers
64  *
65  * This function enables all tracing buffers that may have been
66  * disabled with tracing_off.
67  */
68 void tracing_on(void)
69 {
70         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
71 }
72 EXPORT_SYMBOL_GPL(tracing_on);
73
74 /**
75  * tracing_off - turn off all tracing buffers
76  *
77  * This function stops all tracing buffers from recording data.
78  * It does not disable any overhead the tracers themselves may
79  * be causing. This function simply causes all recording to
80  * the ring buffers to fail.
81  */
82 void tracing_off(void)
83 {
84         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
85 }
86 EXPORT_SYMBOL_GPL(tracing_off);
87
88 /**
89  * tracing_off_permanent - permanently disable ring buffers
90  *
91  * This function, once called, will disable all ring buffers
92  * permanenty.
93  */
94 void tracing_off_permanent(void)
95 {
96         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
97 }
98
99 #include "trace.h"
100
101 /* Up this if you want to test the TIME_EXTENTS and normalization */
102 #define DEBUG_SHIFT 0
103
104 /* FIXME!!! */
105 u64 ring_buffer_time_stamp(int cpu)
106 {
107         u64 time;
108
109         preempt_disable_notrace();
110         /* shift to debug/test normalization and TIME_EXTENTS */
111         time = sched_clock() << DEBUG_SHIFT;
112         preempt_enable_no_resched_notrace();
113
114         return time;
115 }
116 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
117
118 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
119 {
120         /* Just stupid testing the normalize function and deltas */
121         *ts >>= DEBUG_SHIFT;
122 }
123 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
124
125 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
126 #define RB_ALIGNMENT_SHIFT      2
127 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
128 #define RB_MAX_SMALL_DATA       28
129
130 enum {
131         RB_LEN_TIME_EXTEND = 8,
132         RB_LEN_TIME_STAMP = 16,
133 };
134
135 /* inline for ring buffer fast paths */
136 static inline unsigned
137 rb_event_length(struct ring_buffer_event *event)
138 {
139         unsigned length;
140
141         switch (event->type) {
142         case RINGBUF_TYPE_PADDING:
143                 /* undefined */
144                 return -1;
145
146         case RINGBUF_TYPE_TIME_EXTEND:
147                 return RB_LEN_TIME_EXTEND;
148
149         case RINGBUF_TYPE_TIME_STAMP:
150                 return RB_LEN_TIME_STAMP;
151
152         case RINGBUF_TYPE_DATA:
153                 if (event->len)
154                         length = event->len << RB_ALIGNMENT_SHIFT;
155                 else
156                         length = event->array[0];
157                 return length + RB_EVNT_HDR_SIZE;
158         default:
159                 BUG();
160         }
161         /* not hit */
162         return 0;
163 }
164
165 /**
166  * ring_buffer_event_length - return the length of the event
167  * @event: the event to get the length of
168  */
169 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
170 {
171         return rb_event_length(event);
172 }
173 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
174
175 /* inline for ring buffer fast paths */
176 static inline void *
177 rb_event_data(struct ring_buffer_event *event)
178 {
179         BUG_ON(event->type != RINGBUF_TYPE_DATA);
180         /* If length is in len field, then array[0] has the data */
181         if (event->len)
182                 return (void *)&event->array[0];
183         /* Otherwise length is in array[0] and array[1] has the data */
184         return (void *)&event->array[1];
185 }
186
187 /**
188  * ring_buffer_event_data - return the data of the event
189  * @event: the event to get the data from
190  */
191 void *ring_buffer_event_data(struct ring_buffer_event *event)
192 {
193         return rb_event_data(event);
194 }
195 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
196
197 #define for_each_buffer_cpu(buffer, cpu)                \
198         for_each_cpu(cpu, buffer->cpumask)
199
200 #define TS_SHIFT        27
201 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
202 #define TS_DELTA_TEST   (~TS_MASK)
203
204 struct buffer_data_page {
205         u64              time_stamp;    /* page time stamp */
206         local_t          commit;        /* write commited index */
207         unsigned char    data[];        /* data of buffer page */
208 };
209
210 struct buffer_page {
211         local_t          write;         /* index for next write */
212         unsigned         read;          /* index for next read */
213         struct list_head list;          /* list of free pages */
214         struct buffer_data_page *page;  /* Actual data page */
215 };
216
217 static void rb_init_page(struct buffer_data_page *bpage)
218 {
219         local_set(&bpage->commit, 0);
220 }
221
222 /*
223  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
224  * this issue out.
225  */
226 static inline void free_buffer_page(struct buffer_page *bpage)
227 {
228         if (bpage->page)
229                 free_page((unsigned long)bpage->page);
230         kfree(bpage);
231 }
232
233 /*
234  * We need to fit the time_stamp delta into 27 bits.
235  */
236 static inline int test_time_stamp(u64 delta)
237 {
238         if (delta & TS_DELTA_TEST)
239                 return 1;
240         return 0;
241 }
242
243 #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
244
245 /*
246  * head_page == tail_page && head == tail then buffer is empty.
247  */
248 struct ring_buffer_per_cpu {
249         int                             cpu;
250         struct ring_buffer              *buffer;
251         spinlock_t                      reader_lock; /* serialize readers */
252         raw_spinlock_t                  lock;
253         struct lock_class_key           lock_key;
254         struct list_head                pages;
255         struct buffer_page              *head_page;     /* read from head */
256         struct buffer_page              *tail_page;     /* write to tail */
257         struct buffer_page              *commit_page;   /* commited pages */
258         struct buffer_page              *reader_page;
259         unsigned long                   overrun;
260         unsigned long                   entries;
261         u64                             write_stamp;
262         u64                             read_stamp;
263         atomic_t                        record_disabled;
264 };
265
266 struct ring_buffer {
267         unsigned                        pages;
268         unsigned                        flags;
269         int                             cpus;
270         cpumask_var_t                   cpumask;
271         atomic_t                        record_disabled;
272
273         struct mutex                    mutex;
274
275         struct ring_buffer_per_cpu      **buffers;
276 };
277
278 struct ring_buffer_iter {
279         struct ring_buffer_per_cpu      *cpu_buffer;
280         unsigned long                   head;
281         struct buffer_page              *head_page;
282         u64                             read_stamp;
283 };
284
285 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
286 #define RB_WARN_ON(buffer, cond)                                \
287         ({                                                      \
288                 int _____ret = unlikely(cond);                  \
289                 if (_____ret) {                                 \
290                         atomic_inc(&buffer->record_disabled);   \
291                         WARN_ON(1);                             \
292                 }                                               \
293                 _____ret;                                       \
294         })
295
296 /**
297  * check_pages - integrity check of buffer pages
298  * @cpu_buffer: CPU buffer with pages to test
299  *
300  * As a safty measure we check to make sure the data pages have not
301  * been corrupted.
302  */
303 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
304 {
305         struct list_head *head = &cpu_buffer->pages;
306         struct buffer_page *bpage, *tmp;
307
308         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
309                 return -1;
310         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
311                 return -1;
312
313         list_for_each_entry_safe(bpage, tmp, head, list) {
314                 if (RB_WARN_ON(cpu_buffer,
315                                bpage->list.next->prev != &bpage->list))
316                         return -1;
317                 if (RB_WARN_ON(cpu_buffer,
318                                bpage->list.prev->next != &bpage->list))
319                         return -1;
320         }
321
322         return 0;
323 }
324
325 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
326                              unsigned nr_pages)
327 {
328         struct list_head *head = &cpu_buffer->pages;
329         struct buffer_page *bpage, *tmp;
330         unsigned long addr;
331         LIST_HEAD(pages);
332         unsigned i;
333
334         for (i = 0; i < nr_pages; i++) {
335                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
336                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
337                 if (!bpage)
338                         goto free_pages;
339                 list_add(&bpage->list, &pages);
340
341                 addr = __get_free_page(GFP_KERNEL);
342                 if (!addr)
343                         goto free_pages;
344                 bpage->page = (void *)addr;
345                 rb_init_page(bpage->page);
346         }
347
348         list_splice(&pages, head);
349
350         rb_check_pages(cpu_buffer);
351
352         return 0;
353
354  free_pages:
355         list_for_each_entry_safe(bpage, tmp, &pages, list) {
356                 list_del_init(&bpage->list);
357                 free_buffer_page(bpage);
358         }
359         return -ENOMEM;
360 }
361
362 static struct ring_buffer_per_cpu *
363 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
364 {
365         struct ring_buffer_per_cpu *cpu_buffer;
366         struct buffer_page *bpage;
367         unsigned long addr;
368         int ret;
369
370         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
371                                   GFP_KERNEL, cpu_to_node(cpu));
372         if (!cpu_buffer)
373                 return NULL;
374
375         cpu_buffer->cpu = cpu;
376         cpu_buffer->buffer = buffer;
377         spin_lock_init(&cpu_buffer->reader_lock);
378         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
379         INIT_LIST_HEAD(&cpu_buffer->pages);
380
381         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
382                             GFP_KERNEL, cpu_to_node(cpu));
383         if (!bpage)
384                 goto fail_free_buffer;
385
386         cpu_buffer->reader_page = bpage;
387         addr = __get_free_page(GFP_KERNEL);
388         if (!addr)
389                 goto fail_free_reader;
390         bpage->page = (void *)addr;
391         rb_init_page(bpage->page);
392
393         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
394
395         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
396         if (ret < 0)
397                 goto fail_free_reader;
398
399         cpu_buffer->head_page
400                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
401         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
402
403         return cpu_buffer;
404
405  fail_free_reader:
406         free_buffer_page(cpu_buffer->reader_page);
407
408  fail_free_buffer:
409         kfree(cpu_buffer);
410         return NULL;
411 }
412
413 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
414 {
415         struct list_head *head = &cpu_buffer->pages;
416         struct buffer_page *bpage, *tmp;
417
418         list_del_init(&cpu_buffer->reader_page->list);
419         free_buffer_page(cpu_buffer->reader_page);
420
421         list_for_each_entry_safe(bpage, tmp, head, list) {
422                 list_del_init(&bpage->list);
423                 free_buffer_page(bpage);
424         }
425         kfree(cpu_buffer);
426 }
427
428 /*
429  * Causes compile errors if the struct buffer_page gets bigger
430  * than the struct page.
431  */
432 extern int ring_buffer_page_too_big(void);
433
434 /**
435  * ring_buffer_alloc - allocate a new ring_buffer
436  * @size: the size in bytes per cpu that is needed.
437  * @flags: attributes to set for the ring buffer.
438  *
439  * Currently the only flag that is available is the RB_FL_OVERWRITE
440  * flag. This flag means that the buffer will overwrite old data
441  * when the buffer wraps. If this flag is not set, the buffer will
442  * drop data when the tail hits the head.
443  */
444 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
445 {
446         struct ring_buffer *buffer;
447         int bsize;
448         int cpu;
449
450         /* Paranoid! Optimizes out when all is well */
451         if (sizeof(struct buffer_page) > sizeof(struct page))
452                 ring_buffer_page_too_big();
453
454
455         /* keep it in its own cache line */
456         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
457                          GFP_KERNEL);
458         if (!buffer)
459                 return NULL;
460
461         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
462                 goto fail_free_buffer;
463
464         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
465         buffer->flags = flags;
466
467         /* need at least two pages */
468         if (buffer->pages == 1)
469                 buffer->pages++;
470
471         cpumask_copy(buffer->cpumask, cpu_possible_mask);
472         buffer->cpus = nr_cpu_ids;
473
474         bsize = sizeof(void *) * nr_cpu_ids;
475         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
476                                   GFP_KERNEL);
477         if (!buffer->buffers)
478                 goto fail_free_cpumask;
479
480         for_each_buffer_cpu(buffer, cpu) {
481                 buffer->buffers[cpu] =
482                         rb_allocate_cpu_buffer(buffer, cpu);
483                 if (!buffer->buffers[cpu])
484                         goto fail_free_buffers;
485         }
486
487         mutex_init(&buffer->mutex);
488
489         return buffer;
490
491  fail_free_buffers:
492         for_each_buffer_cpu(buffer, cpu) {
493                 if (buffer->buffers[cpu])
494                         rb_free_cpu_buffer(buffer->buffers[cpu]);
495         }
496         kfree(buffer->buffers);
497
498  fail_free_cpumask:
499         free_cpumask_var(buffer->cpumask);
500
501  fail_free_buffer:
502         kfree(buffer);
503         return NULL;
504 }
505 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
506
507 /**
508  * ring_buffer_free - free a ring buffer.
509  * @buffer: the buffer to free.
510  */
511 void
512 ring_buffer_free(struct ring_buffer *buffer)
513 {
514         int cpu;
515
516         for_each_buffer_cpu(buffer, cpu)
517                 rb_free_cpu_buffer(buffer->buffers[cpu]);
518
519         free_cpumask_var(buffer->cpumask);
520
521         kfree(buffer);
522 }
523 EXPORT_SYMBOL_GPL(ring_buffer_free);
524
525 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
526
527 static void
528 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
529 {
530         struct buffer_page *bpage;
531         struct list_head *p;
532         unsigned i;
533
534         atomic_inc(&cpu_buffer->record_disabled);
535         synchronize_sched();
536
537         for (i = 0; i < nr_pages; i++) {
538                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
539                         return;
540                 p = cpu_buffer->pages.next;
541                 bpage = list_entry(p, struct buffer_page, list);
542                 list_del_init(&bpage->list);
543                 free_buffer_page(bpage);
544         }
545         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
546                 return;
547
548         rb_reset_cpu(cpu_buffer);
549
550         rb_check_pages(cpu_buffer);
551
552         atomic_dec(&cpu_buffer->record_disabled);
553
554 }
555
556 static void
557 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
558                 struct list_head *pages, unsigned nr_pages)
559 {
560         struct buffer_page *bpage;
561         struct list_head *p;
562         unsigned i;
563
564         atomic_inc(&cpu_buffer->record_disabled);
565         synchronize_sched();
566
567         for (i = 0; i < nr_pages; i++) {
568                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
569                         return;
570                 p = pages->next;
571                 bpage = list_entry(p, struct buffer_page, list);
572                 list_del_init(&bpage->list);
573                 list_add_tail(&bpage->list, &cpu_buffer->pages);
574         }
575         rb_reset_cpu(cpu_buffer);
576
577         rb_check_pages(cpu_buffer);
578
579         atomic_dec(&cpu_buffer->record_disabled);
580 }
581
582 /**
583  * ring_buffer_resize - resize the ring buffer
584  * @buffer: the buffer to resize.
585  * @size: the new size.
586  *
587  * The tracer is responsible for making sure that the buffer is
588  * not being used while changing the size.
589  * Note: We may be able to change the above requirement by using
590  *  RCU synchronizations.
591  *
592  * Minimum size is 2 * BUF_PAGE_SIZE.
593  *
594  * Returns -1 on failure.
595  */
596 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
597 {
598         struct ring_buffer_per_cpu *cpu_buffer;
599         unsigned nr_pages, rm_pages, new_pages;
600         struct buffer_page *bpage, *tmp;
601         unsigned long buffer_size;
602         unsigned long addr;
603         LIST_HEAD(pages);
604         int i, cpu;
605
606         /*
607          * Always succeed at resizing a non-existent buffer:
608          */
609         if (!buffer)
610                 return size;
611
612         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
613         size *= BUF_PAGE_SIZE;
614         buffer_size = buffer->pages * BUF_PAGE_SIZE;
615
616         /* we need a minimum of two pages */
617         if (size < BUF_PAGE_SIZE * 2)
618                 size = BUF_PAGE_SIZE * 2;
619
620         if (size == buffer_size)
621                 return size;
622
623         mutex_lock(&buffer->mutex);
624
625         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
626
627         if (size < buffer_size) {
628
629                 /* easy case, just free pages */
630                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
631                         mutex_unlock(&buffer->mutex);
632                         return -1;
633                 }
634
635                 rm_pages = buffer->pages - nr_pages;
636
637                 for_each_buffer_cpu(buffer, cpu) {
638                         cpu_buffer = buffer->buffers[cpu];
639                         rb_remove_pages(cpu_buffer, rm_pages);
640                 }
641                 goto out;
642         }
643
644         /*
645          * This is a bit more difficult. We only want to add pages
646          * when we can allocate enough for all CPUs. We do this
647          * by allocating all the pages and storing them on a local
648          * link list. If we succeed in our allocation, then we
649          * add these pages to the cpu_buffers. Otherwise we just free
650          * them all and return -ENOMEM;
651          */
652         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
653                 mutex_unlock(&buffer->mutex);
654                 return -1;
655         }
656
657         new_pages = nr_pages - buffer->pages;
658
659         for_each_buffer_cpu(buffer, cpu) {
660                 for (i = 0; i < new_pages; i++) {
661                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
662                                                   cache_line_size()),
663                                             GFP_KERNEL, cpu_to_node(cpu));
664                         if (!bpage)
665                                 goto free_pages;
666                         list_add(&bpage->list, &pages);
667                         addr = __get_free_page(GFP_KERNEL);
668                         if (!addr)
669                                 goto free_pages;
670                         bpage->page = (void *)addr;
671                         rb_init_page(bpage->page);
672                 }
673         }
674
675         for_each_buffer_cpu(buffer, cpu) {
676                 cpu_buffer = buffer->buffers[cpu];
677                 rb_insert_pages(cpu_buffer, &pages, new_pages);
678         }
679
680         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
681                 mutex_unlock(&buffer->mutex);
682                 return -1;
683         }
684
685  out:
686         buffer->pages = nr_pages;
687         mutex_unlock(&buffer->mutex);
688
689         return size;
690
691  free_pages:
692         list_for_each_entry_safe(bpage, tmp, &pages, list) {
693                 list_del_init(&bpage->list);
694                 free_buffer_page(bpage);
695         }
696         mutex_unlock(&buffer->mutex);
697         return -ENOMEM;
698 }
699 EXPORT_SYMBOL_GPL(ring_buffer_resize);
700
701 static inline int rb_null_event(struct ring_buffer_event *event)
702 {
703         return event->type == RINGBUF_TYPE_PADDING;
704 }
705
706 static inline void *
707 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
708 {
709         return bpage->data + index;
710 }
711
712 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
713 {
714         return bpage->page->data + index;
715 }
716
717 static inline struct ring_buffer_event *
718 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720         return __rb_page_index(cpu_buffer->reader_page,
721                                cpu_buffer->reader_page->read);
722 }
723
724 static inline struct ring_buffer_event *
725 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
726 {
727         return __rb_page_index(cpu_buffer->head_page,
728                                cpu_buffer->head_page->read);
729 }
730
731 static inline struct ring_buffer_event *
732 rb_iter_head_event(struct ring_buffer_iter *iter)
733 {
734         return __rb_page_index(iter->head_page, iter->head);
735 }
736
737 static inline unsigned rb_page_write(struct buffer_page *bpage)
738 {
739         return local_read(&bpage->write);
740 }
741
742 static inline unsigned rb_page_commit(struct buffer_page *bpage)
743 {
744         return local_read(&bpage->page->commit);
745 }
746
747 /* Size is determined by what has been commited */
748 static inline unsigned rb_page_size(struct buffer_page *bpage)
749 {
750         return rb_page_commit(bpage);
751 }
752
753 static inline unsigned
754 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
755 {
756         return rb_page_commit(cpu_buffer->commit_page);
757 }
758
759 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
760 {
761         return rb_page_commit(cpu_buffer->head_page);
762 }
763
764 /*
765  * When the tail hits the head and the buffer is in overwrite mode,
766  * the head jumps to the next page and all content on the previous
767  * page is discarded. But before doing so, we update the overrun
768  * variable of the buffer.
769  */
770 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
771 {
772         struct ring_buffer_event *event;
773         unsigned long head;
774
775         for (head = 0; head < rb_head_size(cpu_buffer);
776              head += rb_event_length(event)) {
777
778                 event = __rb_page_index(cpu_buffer->head_page, head);
779                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
780                         return;
781                 /* Only count data entries */
782                 if (event->type != RINGBUF_TYPE_DATA)
783                         continue;
784                 cpu_buffer->overrun++;
785                 cpu_buffer->entries--;
786         }
787 }
788
789 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
790                                struct buffer_page **bpage)
791 {
792         struct list_head *p = (*bpage)->list.next;
793
794         if (p == &cpu_buffer->pages)
795                 p = p->next;
796
797         *bpage = list_entry(p, struct buffer_page, list);
798 }
799
800 static inline unsigned
801 rb_event_index(struct ring_buffer_event *event)
802 {
803         unsigned long addr = (unsigned long)event;
804
805         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
806 }
807
808 static inline int
809 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
810              struct ring_buffer_event *event)
811 {
812         unsigned long addr = (unsigned long)event;
813         unsigned long index;
814
815         index = rb_event_index(event);
816         addr &= PAGE_MASK;
817
818         return cpu_buffer->commit_page->page == (void *)addr &&
819                 rb_commit_index(cpu_buffer) == index;
820 }
821
822 static inline void
823 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
824                     struct ring_buffer_event *event)
825 {
826         unsigned long addr = (unsigned long)event;
827         unsigned long index;
828
829         index = rb_event_index(event);
830         addr &= PAGE_MASK;
831
832         while (cpu_buffer->commit_page->page != (void *)addr) {
833                 if (RB_WARN_ON(cpu_buffer,
834                           cpu_buffer->commit_page == cpu_buffer->tail_page))
835                         return;
836                 cpu_buffer->commit_page->page->commit =
837                         cpu_buffer->commit_page->write;
838                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
839                 cpu_buffer->write_stamp =
840                         cpu_buffer->commit_page->page->time_stamp;
841         }
842
843         /* Now set the commit to the event's index */
844         local_set(&cpu_buffer->commit_page->page->commit, index);
845 }
846
847 static inline void
848 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
849 {
850         /*
851          * We only race with interrupts and NMIs on this CPU.
852          * If we own the commit event, then we can commit
853          * all others that interrupted us, since the interruptions
854          * are in stack format (they finish before they come
855          * back to us). This allows us to do a simple loop to
856          * assign the commit to the tail.
857          */
858  again:
859         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
860                 cpu_buffer->commit_page->page->commit =
861                         cpu_buffer->commit_page->write;
862                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
863                 cpu_buffer->write_stamp =
864                         cpu_buffer->commit_page->page->time_stamp;
865                 /* add barrier to keep gcc from optimizing too much */
866                 barrier();
867         }
868         while (rb_commit_index(cpu_buffer) !=
869                rb_page_write(cpu_buffer->commit_page)) {
870                 cpu_buffer->commit_page->page->commit =
871                         cpu_buffer->commit_page->write;
872                 barrier();
873         }
874
875         /* again, keep gcc from optimizing */
876         barrier();
877
878         /*
879          * If an interrupt came in just after the first while loop
880          * and pushed the tail page forward, we will be left with
881          * a dangling commit that will never go forward.
882          */
883         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
884                 goto again;
885 }
886
887 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
888 {
889         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
890         cpu_buffer->reader_page->read = 0;
891 }
892
893 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
894 {
895         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
896
897         /*
898          * The iterator could be on the reader page (it starts there).
899          * But the head could have moved, since the reader was
900          * found. Check for this case and assign the iterator
901          * to the head page instead of next.
902          */
903         if (iter->head_page == cpu_buffer->reader_page)
904                 iter->head_page = cpu_buffer->head_page;
905         else
906                 rb_inc_page(cpu_buffer, &iter->head_page);
907
908         iter->read_stamp = iter->head_page->page->time_stamp;
909         iter->head = 0;
910 }
911
912 /**
913  * ring_buffer_update_event - update event type and data
914  * @event: the even to update
915  * @type: the type of event
916  * @length: the size of the event field in the ring buffer
917  *
918  * Update the type and data fields of the event. The length
919  * is the actual size that is written to the ring buffer,
920  * and with this, we can determine what to place into the
921  * data field.
922  */
923 static inline void
924 rb_update_event(struct ring_buffer_event *event,
925                          unsigned type, unsigned length)
926 {
927         event->type = type;
928
929         switch (type) {
930
931         case RINGBUF_TYPE_PADDING:
932                 break;
933
934         case RINGBUF_TYPE_TIME_EXTEND:
935                 event->len =
936                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
937                         >> RB_ALIGNMENT_SHIFT;
938                 break;
939
940         case RINGBUF_TYPE_TIME_STAMP:
941                 event->len =
942                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
943                         >> RB_ALIGNMENT_SHIFT;
944                 break;
945
946         case RINGBUF_TYPE_DATA:
947                 length -= RB_EVNT_HDR_SIZE;
948                 if (length > RB_MAX_SMALL_DATA) {
949                         event->len = 0;
950                         event->array[0] = length;
951                 } else
952                         event->len =
953                                 (length + (RB_ALIGNMENT-1))
954                                 >> RB_ALIGNMENT_SHIFT;
955                 break;
956         default:
957                 BUG();
958         }
959 }
960
961 static inline unsigned rb_calculate_event_length(unsigned length)
962 {
963         struct ring_buffer_event event; /* Used only for sizeof array */
964
965         /* zero length can cause confusions */
966         if (!length)
967                 length = 1;
968
969         if (length > RB_MAX_SMALL_DATA)
970                 length += sizeof(event.array[0]);
971
972         length += RB_EVNT_HDR_SIZE;
973         length = ALIGN(length, RB_ALIGNMENT);
974
975         return length;
976 }
977
978 static struct ring_buffer_event *
979 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
980                   unsigned type, unsigned long length, u64 *ts)
981 {
982         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
983         unsigned long tail, write;
984         struct ring_buffer *buffer = cpu_buffer->buffer;
985         struct ring_buffer_event *event;
986         unsigned long flags;
987
988         commit_page = cpu_buffer->commit_page;
989         /* we just need to protect against interrupts */
990         barrier();
991         tail_page = cpu_buffer->tail_page;
992         write = local_add_return(length, &tail_page->write);
993         tail = write - length;
994
995         /* See if we shot pass the end of this buffer page */
996         if (write > BUF_PAGE_SIZE) {
997                 struct buffer_page *next_page = tail_page;
998
999                 local_irq_save(flags);
1000                 __raw_spin_lock(&cpu_buffer->lock);
1001
1002                 rb_inc_page(cpu_buffer, &next_page);
1003
1004                 head_page = cpu_buffer->head_page;
1005                 reader_page = cpu_buffer->reader_page;
1006
1007                 /* we grabbed the lock before incrementing */
1008                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1009                         goto out_unlock;
1010
1011                 /*
1012                  * If for some reason, we had an interrupt storm that made
1013                  * it all the way around the buffer, bail, and warn
1014                  * about it.
1015                  */
1016                 if (unlikely(next_page == commit_page)) {
1017                         WARN_ON_ONCE(1);
1018                         goto out_unlock;
1019                 }
1020
1021                 if (next_page == head_page) {
1022                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
1023                                 /* reset write */
1024                                 if (tail <= BUF_PAGE_SIZE)
1025                                         local_set(&tail_page->write, tail);
1026                                 goto out_unlock;
1027                         }
1028
1029                         /* tail_page has not moved yet? */
1030                         if (tail_page == cpu_buffer->tail_page) {
1031                                 /* count overflows */
1032                                 rb_update_overflow(cpu_buffer);
1033
1034                                 rb_inc_page(cpu_buffer, &head_page);
1035                                 cpu_buffer->head_page = head_page;
1036                                 cpu_buffer->head_page->read = 0;
1037                         }
1038                 }
1039
1040                 /*
1041                  * If the tail page is still the same as what we think
1042                  * it is, then it is up to us to update the tail
1043                  * pointer.
1044                  */
1045                 if (tail_page == cpu_buffer->tail_page) {
1046                         local_set(&next_page->write, 0);
1047                         local_set(&next_page->page->commit, 0);
1048                         cpu_buffer->tail_page = next_page;
1049
1050                         /* reread the time stamp */
1051                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1052                         cpu_buffer->tail_page->page->time_stamp = *ts;
1053                 }
1054
1055                 /*
1056                  * The actual tail page has moved forward.
1057                  */
1058                 if (tail < BUF_PAGE_SIZE) {
1059                         /* Mark the rest of the page with padding */
1060                         event = __rb_page_index(tail_page, tail);
1061                         event->type = RINGBUF_TYPE_PADDING;
1062                 }
1063
1064                 if (tail <= BUF_PAGE_SIZE)
1065                         /* Set the write back to the previous setting */
1066                         local_set(&tail_page->write, tail);
1067
1068                 /*
1069                  * If this was a commit entry that failed,
1070                  * increment that too
1071                  */
1072                 if (tail_page == cpu_buffer->commit_page &&
1073                     tail == rb_commit_index(cpu_buffer)) {
1074                         rb_set_commit_to_write(cpu_buffer);
1075                 }
1076
1077                 __raw_spin_unlock(&cpu_buffer->lock);
1078                 local_irq_restore(flags);
1079
1080                 /* fail and let the caller try again */
1081                 return ERR_PTR(-EAGAIN);
1082         }
1083
1084         /* We reserved something on the buffer */
1085
1086         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1087                 return NULL;
1088
1089         event = __rb_page_index(tail_page, tail);
1090         rb_update_event(event, type, length);
1091
1092         /*
1093          * If this is a commit and the tail is zero, then update
1094          * this page's time stamp.
1095          */
1096         if (!tail && rb_is_commit(cpu_buffer, event))
1097                 cpu_buffer->commit_page->page->time_stamp = *ts;
1098
1099         return event;
1100
1101  out_unlock:
1102         __raw_spin_unlock(&cpu_buffer->lock);
1103         local_irq_restore(flags);
1104         return NULL;
1105 }
1106
1107 static int
1108 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1109                   u64 *ts, u64 *delta)
1110 {
1111         struct ring_buffer_event *event;
1112         static int once;
1113         int ret;
1114
1115         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1116                 printk(KERN_WARNING "Delta way too big! %llu"
1117                        " ts=%llu write stamp = %llu\n",
1118                        (unsigned long long)*delta,
1119                        (unsigned long long)*ts,
1120                        (unsigned long long)cpu_buffer->write_stamp);
1121                 WARN_ON(1);
1122         }
1123
1124         /*
1125          * The delta is too big, we to add a
1126          * new timestamp.
1127          */
1128         event = __rb_reserve_next(cpu_buffer,
1129                                   RINGBUF_TYPE_TIME_EXTEND,
1130                                   RB_LEN_TIME_EXTEND,
1131                                   ts);
1132         if (!event)
1133                 return -EBUSY;
1134
1135         if (PTR_ERR(event) == -EAGAIN)
1136                 return -EAGAIN;
1137
1138         /* Only a commited time event can update the write stamp */
1139         if (rb_is_commit(cpu_buffer, event)) {
1140                 /*
1141                  * If this is the first on the page, then we need to
1142                  * update the page itself, and just put in a zero.
1143                  */
1144                 if (rb_event_index(event)) {
1145                         event->time_delta = *delta & TS_MASK;
1146                         event->array[0] = *delta >> TS_SHIFT;
1147                 } else {
1148                         cpu_buffer->commit_page->page->time_stamp = *ts;
1149                         event->time_delta = 0;
1150                         event->array[0] = 0;
1151                 }
1152                 cpu_buffer->write_stamp = *ts;
1153                 /* let the caller know this was the commit */
1154                 ret = 1;
1155         } else {
1156                 /* Darn, this is just wasted space */
1157                 event->time_delta = 0;
1158                 event->array[0] = 0;
1159                 ret = 0;
1160         }
1161
1162         *delta = 0;
1163
1164         return ret;
1165 }
1166
1167 static struct ring_buffer_event *
1168 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1169                       unsigned type, unsigned long length)
1170 {
1171         struct ring_buffer_event *event;
1172         u64 ts, delta;
1173         int commit = 0;
1174         int nr_loops = 0;
1175
1176  again:
1177         /*
1178          * We allow for interrupts to reenter here and do a trace.
1179          * If one does, it will cause this original code to loop
1180          * back here. Even with heavy interrupts happening, this
1181          * should only happen a few times in a row. If this happens
1182          * 1000 times in a row, there must be either an interrupt
1183          * storm or we have something buggy.
1184          * Bail!
1185          */
1186         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1187                 return NULL;
1188
1189         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1190
1191         /*
1192          * Only the first commit can update the timestamp.
1193          * Yes there is a race here. If an interrupt comes in
1194          * just after the conditional and it traces too, then it
1195          * will also check the deltas. More than one timestamp may
1196          * also be made. But only the entry that did the actual
1197          * commit will be something other than zero.
1198          */
1199         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1200             rb_page_write(cpu_buffer->tail_page) ==
1201             rb_commit_index(cpu_buffer)) {
1202
1203                 delta = ts - cpu_buffer->write_stamp;
1204
1205                 /* make sure this delta is calculated here */
1206                 barrier();
1207
1208                 /* Did the write stamp get updated already? */
1209                 if (unlikely(ts < cpu_buffer->write_stamp))
1210                         delta = 0;
1211
1212                 if (test_time_stamp(delta)) {
1213
1214                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1215
1216                         if (commit == -EBUSY)
1217                                 return NULL;
1218
1219                         if (commit == -EAGAIN)
1220                                 goto again;
1221
1222                         RB_WARN_ON(cpu_buffer, commit < 0);
1223                 }
1224         } else
1225                 /* Non commits have zero deltas */
1226                 delta = 0;
1227
1228         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1229         if (PTR_ERR(event) == -EAGAIN)
1230                 goto again;
1231
1232         if (!event) {
1233                 if (unlikely(commit))
1234                         /*
1235                          * Ouch! We needed a timestamp and it was commited. But
1236                          * we didn't get our event reserved.
1237                          */
1238                         rb_set_commit_to_write(cpu_buffer);
1239                 return NULL;
1240         }
1241
1242         /*
1243          * If the timestamp was commited, make the commit our entry
1244          * now so that we will update it when needed.
1245          */
1246         if (commit)
1247                 rb_set_commit_event(cpu_buffer, event);
1248         else if (!rb_is_commit(cpu_buffer, event))
1249                 delta = 0;
1250
1251         event->time_delta = delta;
1252
1253         return event;
1254 }
1255
1256 static DEFINE_PER_CPU(int, rb_need_resched);
1257
1258 /**
1259  * ring_buffer_lock_reserve - reserve a part of the buffer
1260  * @buffer: the ring buffer to reserve from
1261  * @length: the length of the data to reserve (excluding event header)
1262  * @flags: a pointer to save the interrupt flags
1263  *
1264  * Returns a reseverd event on the ring buffer to copy directly to.
1265  * The user of this interface will need to get the body to write into
1266  * and can use the ring_buffer_event_data() interface.
1267  *
1268  * The length is the length of the data needed, not the event length
1269  * which also includes the event header.
1270  *
1271  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1272  * If NULL is returned, then nothing has been allocated or locked.
1273  */
1274 struct ring_buffer_event *
1275 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1276                          unsigned long length,
1277                          unsigned long *flags)
1278 {
1279         struct ring_buffer_per_cpu *cpu_buffer;
1280         struct ring_buffer_event *event;
1281         int cpu, resched;
1282
1283         if (ring_buffer_flags != RB_BUFFERS_ON)
1284                 return NULL;
1285
1286         if (atomic_read(&buffer->record_disabled))
1287                 return NULL;
1288
1289         /* If we are tracing schedule, we don't want to recurse */
1290         resched = ftrace_preempt_disable();
1291
1292         cpu = raw_smp_processor_id();
1293
1294         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1295                 goto out;
1296
1297         cpu_buffer = buffer->buffers[cpu];
1298
1299         if (atomic_read(&cpu_buffer->record_disabled))
1300                 goto out;
1301
1302         length = rb_calculate_event_length(length);
1303         if (length > BUF_PAGE_SIZE)
1304                 goto out;
1305
1306         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1307         if (!event)
1308                 goto out;
1309
1310         /*
1311          * Need to store resched state on this cpu.
1312          * Only the first needs to.
1313          */
1314
1315         if (preempt_count() == 1)
1316                 per_cpu(rb_need_resched, cpu) = resched;
1317
1318         return event;
1319
1320  out:
1321         ftrace_preempt_enable(resched);
1322         return NULL;
1323 }
1324 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1325
1326 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1327                       struct ring_buffer_event *event)
1328 {
1329         cpu_buffer->entries++;
1330
1331         /* Only process further if we own the commit */
1332         if (!rb_is_commit(cpu_buffer, event))
1333                 return;
1334
1335         cpu_buffer->write_stamp += event->time_delta;
1336
1337         rb_set_commit_to_write(cpu_buffer);
1338 }
1339
1340 /**
1341  * ring_buffer_unlock_commit - commit a reserved
1342  * @buffer: The buffer to commit to
1343  * @event: The event pointer to commit.
1344  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1345  *
1346  * This commits the data to the ring buffer, and releases any locks held.
1347  *
1348  * Must be paired with ring_buffer_lock_reserve.
1349  */
1350 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1351                               struct ring_buffer_event *event,
1352                               unsigned long flags)
1353 {
1354         struct ring_buffer_per_cpu *cpu_buffer;
1355         int cpu = raw_smp_processor_id();
1356
1357         cpu_buffer = buffer->buffers[cpu];
1358
1359         rb_commit(cpu_buffer, event);
1360
1361         /*
1362          * Only the last preempt count needs to restore preemption.
1363          */
1364         if (preempt_count() == 1)
1365                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1366         else
1367                 preempt_enable_no_resched_notrace();
1368
1369         return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1372
1373 /**
1374  * ring_buffer_write - write data to the buffer without reserving
1375  * @buffer: The ring buffer to write to.
1376  * @length: The length of the data being written (excluding the event header)
1377  * @data: The data to write to the buffer.
1378  *
1379  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1380  * one function. If you already have the data to write to the buffer, it
1381  * may be easier to simply call this function.
1382  *
1383  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1384  * and not the length of the event which would hold the header.
1385  */
1386 int ring_buffer_write(struct ring_buffer *buffer,
1387                         unsigned long length,
1388                         void *data)
1389 {
1390         struct ring_buffer_per_cpu *cpu_buffer;
1391         struct ring_buffer_event *event;
1392         unsigned long event_length;
1393         void *body;
1394         int ret = -EBUSY;
1395         int cpu, resched;
1396
1397         if (ring_buffer_flags != RB_BUFFERS_ON)
1398                 return -EBUSY;
1399
1400         if (atomic_read(&buffer->record_disabled))
1401                 return -EBUSY;
1402
1403         resched = ftrace_preempt_disable();
1404
1405         cpu = raw_smp_processor_id();
1406
1407         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1408                 goto out;
1409
1410         cpu_buffer = buffer->buffers[cpu];
1411
1412         if (atomic_read(&cpu_buffer->record_disabled))
1413                 goto out;
1414
1415         event_length = rb_calculate_event_length(length);
1416         event = rb_reserve_next_event(cpu_buffer,
1417                                       RINGBUF_TYPE_DATA, event_length);
1418         if (!event)
1419                 goto out;
1420
1421         body = rb_event_data(event);
1422
1423         memcpy(body, data, length);
1424
1425         rb_commit(cpu_buffer, event);
1426
1427         ret = 0;
1428  out:
1429         ftrace_preempt_enable(resched);
1430
1431         return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(ring_buffer_write);
1434
1435 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1436 {
1437         struct buffer_page *reader = cpu_buffer->reader_page;
1438         struct buffer_page *head = cpu_buffer->head_page;
1439         struct buffer_page *commit = cpu_buffer->commit_page;
1440
1441         return reader->read == rb_page_commit(reader) &&
1442                 (commit == reader ||
1443                  (commit == head &&
1444                   head->read == rb_page_commit(commit)));
1445 }
1446
1447 /**
1448  * ring_buffer_record_disable - stop all writes into the buffer
1449  * @buffer: The ring buffer to stop writes to.
1450  *
1451  * This prevents all writes to the buffer. Any attempt to write
1452  * to the buffer after this will fail and return NULL.
1453  *
1454  * The caller should call synchronize_sched() after this.
1455  */
1456 void ring_buffer_record_disable(struct ring_buffer *buffer)
1457 {
1458         atomic_inc(&buffer->record_disabled);
1459 }
1460 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1461
1462 /**
1463  * ring_buffer_record_enable - enable writes to the buffer
1464  * @buffer: The ring buffer to enable writes
1465  *
1466  * Note, multiple disables will need the same number of enables
1467  * to truely enable the writing (much like preempt_disable).
1468  */
1469 void ring_buffer_record_enable(struct ring_buffer *buffer)
1470 {
1471         atomic_dec(&buffer->record_disabled);
1472 }
1473 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1474
1475 /**
1476  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1477  * @buffer: The ring buffer to stop writes to.
1478  * @cpu: The CPU buffer to stop
1479  *
1480  * This prevents all writes to the buffer. Any attempt to write
1481  * to the buffer after this will fail and return NULL.
1482  *
1483  * The caller should call synchronize_sched() after this.
1484  */
1485 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1486 {
1487         struct ring_buffer_per_cpu *cpu_buffer;
1488
1489         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1490                 return;
1491
1492         cpu_buffer = buffer->buffers[cpu];
1493         atomic_inc(&cpu_buffer->record_disabled);
1494 }
1495 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1496
1497 /**
1498  * ring_buffer_record_enable_cpu - enable writes to the buffer
1499  * @buffer: The ring buffer to enable writes
1500  * @cpu: The CPU to enable.
1501  *
1502  * Note, multiple disables will need the same number of enables
1503  * to truely enable the writing (much like preempt_disable).
1504  */
1505 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1506 {
1507         struct ring_buffer_per_cpu *cpu_buffer;
1508
1509         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1510                 return;
1511
1512         cpu_buffer = buffer->buffers[cpu];
1513         atomic_dec(&cpu_buffer->record_disabled);
1514 }
1515 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1516
1517 /**
1518  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1519  * @buffer: The ring buffer
1520  * @cpu: The per CPU buffer to get the entries from.
1521  */
1522 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1523 {
1524         struct ring_buffer_per_cpu *cpu_buffer;
1525
1526         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1527                 return 0;
1528
1529         cpu_buffer = buffer->buffers[cpu];
1530         return cpu_buffer->entries;
1531 }
1532 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1533
1534 /**
1535  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1536  * @buffer: The ring buffer
1537  * @cpu: The per CPU buffer to get the number of overruns from
1538  */
1539 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1540 {
1541         struct ring_buffer_per_cpu *cpu_buffer;
1542
1543         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1544                 return 0;
1545
1546         cpu_buffer = buffer->buffers[cpu];
1547         return cpu_buffer->overrun;
1548 }
1549 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1550
1551 /**
1552  * ring_buffer_entries - get the number of entries in a buffer
1553  * @buffer: The ring buffer
1554  *
1555  * Returns the total number of entries in the ring buffer
1556  * (all CPU entries)
1557  */
1558 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1559 {
1560         struct ring_buffer_per_cpu *cpu_buffer;
1561         unsigned long entries = 0;
1562         int cpu;
1563
1564         /* if you care about this being correct, lock the buffer */
1565         for_each_buffer_cpu(buffer, cpu) {
1566                 cpu_buffer = buffer->buffers[cpu];
1567                 entries += cpu_buffer->entries;
1568         }
1569
1570         return entries;
1571 }
1572 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1573
1574 /**
1575  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1576  * @buffer: The ring buffer
1577  *
1578  * Returns the total number of overruns in the ring buffer
1579  * (all CPU entries)
1580  */
1581 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1582 {
1583         struct ring_buffer_per_cpu *cpu_buffer;
1584         unsigned long overruns = 0;
1585         int cpu;
1586
1587         /* if you care about this being correct, lock the buffer */
1588         for_each_buffer_cpu(buffer, cpu) {
1589                 cpu_buffer = buffer->buffers[cpu];
1590                 overruns += cpu_buffer->overrun;
1591         }
1592
1593         return overruns;
1594 }
1595 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1596
1597 static void rb_iter_reset(struct ring_buffer_iter *iter)
1598 {
1599         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1600
1601         /* Iterator usage is expected to have record disabled */
1602         if (list_empty(&cpu_buffer->reader_page->list)) {
1603                 iter->head_page = cpu_buffer->head_page;
1604                 iter->head = cpu_buffer->head_page->read;
1605         } else {
1606                 iter->head_page = cpu_buffer->reader_page;
1607                 iter->head = cpu_buffer->reader_page->read;
1608         }
1609         if (iter->head)
1610                 iter->read_stamp = cpu_buffer->read_stamp;
1611         else
1612                 iter->read_stamp = iter->head_page->page->time_stamp;
1613 }
1614
1615 /**
1616  * ring_buffer_iter_reset - reset an iterator
1617  * @iter: The iterator to reset
1618  *
1619  * Resets the iterator, so that it will start from the beginning
1620  * again.
1621  */
1622 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1623 {
1624         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1625         unsigned long flags;
1626
1627         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1628         rb_iter_reset(iter);
1629         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1630 }
1631 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1632
1633 /**
1634  * ring_buffer_iter_empty - check if an iterator has no more to read
1635  * @iter: The iterator to check
1636  */
1637 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1638 {
1639         struct ring_buffer_per_cpu *cpu_buffer;
1640
1641         cpu_buffer = iter->cpu_buffer;
1642
1643         return iter->head_page == cpu_buffer->commit_page &&
1644                 iter->head == rb_commit_index(cpu_buffer);
1645 }
1646 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1647
1648 static void
1649 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1650                      struct ring_buffer_event *event)
1651 {
1652         u64 delta;
1653
1654         switch (event->type) {
1655         case RINGBUF_TYPE_PADDING:
1656                 return;
1657
1658         case RINGBUF_TYPE_TIME_EXTEND:
1659                 delta = event->array[0];
1660                 delta <<= TS_SHIFT;
1661                 delta += event->time_delta;
1662                 cpu_buffer->read_stamp += delta;
1663                 return;
1664
1665         case RINGBUF_TYPE_TIME_STAMP:
1666                 /* FIXME: not implemented */
1667                 return;
1668
1669         case RINGBUF_TYPE_DATA:
1670                 cpu_buffer->read_stamp += event->time_delta;
1671                 return;
1672
1673         default:
1674                 BUG();
1675         }
1676         return;
1677 }
1678
1679 static void
1680 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1681                           struct ring_buffer_event *event)
1682 {
1683         u64 delta;
1684
1685         switch (event->type) {
1686         case RINGBUF_TYPE_PADDING:
1687                 return;
1688
1689         case RINGBUF_TYPE_TIME_EXTEND:
1690                 delta = event->array[0];
1691                 delta <<= TS_SHIFT;
1692                 delta += event->time_delta;
1693                 iter->read_stamp += delta;
1694                 return;
1695
1696         case RINGBUF_TYPE_TIME_STAMP:
1697                 /* FIXME: not implemented */
1698                 return;
1699
1700         case RINGBUF_TYPE_DATA:
1701                 iter->read_stamp += event->time_delta;
1702                 return;
1703
1704         default:
1705                 BUG();
1706         }
1707         return;
1708 }
1709
1710 static struct buffer_page *
1711 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1712 {
1713         struct buffer_page *reader = NULL;
1714         unsigned long flags;
1715         int nr_loops = 0;
1716
1717         local_irq_save(flags);
1718         __raw_spin_lock(&cpu_buffer->lock);
1719
1720  again:
1721         /*
1722          * This should normally only loop twice. But because the
1723          * start of the reader inserts an empty page, it causes
1724          * a case where we will loop three times. There should be no
1725          * reason to loop four times (that I know of).
1726          */
1727         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1728                 reader = NULL;
1729                 goto out;
1730         }
1731
1732         reader = cpu_buffer->reader_page;
1733
1734         /* If there's more to read, return this page */
1735         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1736                 goto out;
1737
1738         /* Never should we have an index greater than the size */
1739         if (RB_WARN_ON(cpu_buffer,
1740                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1741                 goto out;
1742
1743         /* check if we caught up to the tail */
1744         reader = NULL;
1745         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1746                 goto out;
1747
1748         /*
1749          * Splice the empty reader page into the list around the head.
1750          * Reset the reader page to size zero.
1751          */
1752
1753         reader = cpu_buffer->head_page;
1754         cpu_buffer->reader_page->list.next = reader->list.next;
1755         cpu_buffer->reader_page->list.prev = reader->list.prev;
1756
1757         local_set(&cpu_buffer->reader_page->write, 0);
1758         local_set(&cpu_buffer->reader_page->page->commit, 0);
1759
1760         /* Make the reader page now replace the head */
1761         reader->list.prev->next = &cpu_buffer->reader_page->list;
1762         reader->list.next->prev = &cpu_buffer->reader_page->list;
1763
1764         /*
1765          * If the tail is on the reader, then we must set the head
1766          * to the inserted page, otherwise we set it one before.
1767          */
1768         cpu_buffer->head_page = cpu_buffer->reader_page;
1769
1770         if (cpu_buffer->commit_page != reader)
1771                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1772
1773         /* Finally update the reader page to the new head */
1774         cpu_buffer->reader_page = reader;
1775         rb_reset_reader_page(cpu_buffer);
1776
1777         goto again;
1778
1779  out:
1780         __raw_spin_unlock(&cpu_buffer->lock);
1781         local_irq_restore(flags);
1782
1783         return reader;
1784 }
1785
1786 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1787 {
1788         struct ring_buffer_event *event;
1789         struct buffer_page *reader;
1790         unsigned length;
1791
1792         reader = rb_get_reader_page(cpu_buffer);
1793
1794         /* This function should not be called when buffer is empty */
1795         if (RB_WARN_ON(cpu_buffer, !reader))
1796                 return;
1797
1798         event = rb_reader_event(cpu_buffer);
1799
1800         if (event->type == RINGBUF_TYPE_DATA)
1801                 cpu_buffer->entries--;
1802
1803         rb_update_read_stamp(cpu_buffer, event);
1804
1805         length = rb_event_length(event);
1806         cpu_buffer->reader_page->read += length;
1807 }
1808
1809 static void rb_advance_iter(struct ring_buffer_iter *iter)
1810 {
1811         struct ring_buffer *buffer;
1812         struct ring_buffer_per_cpu *cpu_buffer;
1813         struct ring_buffer_event *event;
1814         unsigned length;
1815
1816         cpu_buffer = iter->cpu_buffer;
1817         buffer = cpu_buffer->buffer;
1818
1819         /*
1820          * Check if we are at the end of the buffer.
1821          */
1822         if (iter->head >= rb_page_size(iter->head_page)) {
1823                 if (RB_WARN_ON(buffer,
1824                                iter->head_page == cpu_buffer->commit_page))
1825                         return;
1826                 rb_inc_iter(iter);
1827                 return;
1828         }
1829
1830         event = rb_iter_head_event(iter);
1831
1832         length = rb_event_length(event);
1833
1834         /*
1835          * This should not be called to advance the header if we are
1836          * at the tail of the buffer.
1837          */
1838         if (RB_WARN_ON(cpu_buffer,
1839                        (iter->head_page == cpu_buffer->commit_page) &&
1840                        (iter->head + length > rb_commit_index(cpu_buffer))))
1841                 return;
1842
1843         rb_update_iter_read_stamp(iter, event);
1844
1845         iter->head += length;
1846
1847         /* check for end of page padding */
1848         if ((iter->head >= rb_page_size(iter->head_page)) &&
1849             (iter->head_page != cpu_buffer->commit_page))
1850                 rb_advance_iter(iter);
1851 }
1852
1853 static struct ring_buffer_event *
1854 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1855 {
1856         struct ring_buffer_per_cpu *cpu_buffer;
1857         struct ring_buffer_event *event;
1858         struct buffer_page *reader;
1859         int nr_loops = 0;
1860
1861         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1862                 return NULL;
1863
1864         cpu_buffer = buffer->buffers[cpu];
1865
1866  again:
1867         /*
1868          * We repeat when a timestamp is encountered. It is possible
1869          * to get multiple timestamps from an interrupt entering just
1870          * as one timestamp is about to be written. The max times
1871          * that this can happen is the number of nested interrupts we
1872          * can have.  Nesting 10 deep of interrupts is clearly
1873          * an anomaly.
1874          */
1875         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1876                 return NULL;
1877
1878         reader = rb_get_reader_page(cpu_buffer);
1879         if (!reader)
1880                 return NULL;
1881
1882         event = rb_reader_event(cpu_buffer);
1883
1884         switch (event->type) {
1885         case RINGBUF_TYPE_PADDING:
1886                 RB_WARN_ON(cpu_buffer, 1);
1887                 rb_advance_reader(cpu_buffer);
1888                 return NULL;
1889
1890         case RINGBUF_TYPE_TIME_EXTEND:
1891                 /* Internal data, OK to advance */
1892                 rb_advance_reader(cpu_buffer);
1893                 goto again;
1894
1895         case RINGBUF_TYPE_TIME_STAMP:
1896                 /* FIXME: not implemented */
1897                 rb_advance_reader(cpu_buffer);
1898                 goto again;
1899
1900         case RINGBUF_TYPE_DATA:
1901                 if (ts) {
1902                         *ts = cpu_buffer->read_stamp + event->time_delta;
1903                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1904                 }
1905                 return event;
1906
1907         default:
1908                 BUG();
1909         }
1910
1911         return NULL;
1912 }
1913 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1914
1915 static struct ring_buffer_event *
1916 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1917 {
1918         struct ring_buffer *buffer;
1919         struct ring_buffer_per_cpu *cpu_buffer;
1920         struct ring_buffer_event *event;
1921         int nr_loops = 0;
1922
1923         if (ring_buffer_iter_empty(iter))
1924                 return NULL;
1925
1926         cpu_buffer = iter->cpu_buffer;
1927         buffer = cpu_buffer->buffer;
1928
1929  again:
1930         /*
1931          * We repeat when a timestamp is encountered. It is possible
1932          * to get multiple timestamps from an interrupt entering just
1933          * as one timestamp is about to be written. The max times
1934          * that this can happen is the number of nested interrupts we
1935          * can have. Nesting 10 deep of interrupts is clearly
1936          * an anomaly.
1937          */
1938         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1939                 return NULL;
1940
1941         if (rb_per_cpu_empty(cpu_buffer))
1942                 return NULL;
1943
1944         event = rb_iter_head_event(iter);
1945
1946         switch (event->type) {
1947         case RINGBUF_TYPE_PADDING:
1948                 rb_inc_iter(iter);
1949                 goto again;
1950
1951         case RINGBUF_TYPE_TIME_EXTEND:
1952                 /* Internal data, OK to advance */
1953                 rb_advance_iter(iter);
1954                 goto again;
1955
1956         case RINGBUF_TYPE_TIME_STAMP:
1957                 /* FIXME: not implemented */
1958                 rb_advance_iter(iter);
1959                 goto again;
1960
1961         case RINGBUF_TYPE_DATA:
1962                 if (ts) {
1963                         *ts = iter->read_stamp + event->time_delta;
1964                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1965                 }
1966                 return event;
1967
1968         default:
1969                 BUG();
1970         }
1971
1972         return NULL;
1973 }
1974 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
1975
1976 /**
1977  * ring_buffer_peek - peek at the next event to be read
1978  * @buffer: The ring buffer to read
1979  * @cpu: The cpu to peak at
1980  * @ts: The timestamp counter of this event.
1981  *
1982  * This will return the event that will be read next, but does
1983  * not consume the data.
1984  */
1985 struct ring_buffer_event *
1986 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1987 {
1988         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1989         struct ring_buffer_event *event;
1990         unsigned long flags;
1991
1992         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1993         event = rb_buffer_peek(buffer, cpu, ts);
1994         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1995
1996         return event;
1997 }
1998
1999 /**
2000  * ring_buffer_iter_peek - peek at the next event to be read
2001  * @iter: The ring buffer iterator
2002  * @ts: The timestamp counter of this event.
2003  *
2004  * This will return the event that will be read next, but does
2005  * not increment the iterator.
2006  */
2007 struct ring_buffer_event *
2008 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2009 {
2010         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2011         struct ring_buffer_event *event;
2012         unsigned long flags;
2013
2014         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2015         event = rb_iter_peek(iter, ts);
2016         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2017
2018         return event;
2019 }
2020
2021 /**
2022  * ring_buffer_consume - return an event and consume it
2023  * @buffer: The ring buffer to get the next event from
2024  *
2025  * Returns the next event in the ring buffer, and that event is consumed.
2026  * Meaning, that sequential reads will keep returning a different event,
2027  * and eventually empty the ring buffer if the producer is slower.
2028  */
2029 struct ring_buffer_event *
2030 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2031 {
2032         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2033         struct ring_buffer_event *event;
2034         unsigned long flags;
2035
2036         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2037                 return NULL;
2038
2039         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2040
2041         event = rb_buffer_peek(buffer, cpu, ts);
2042         if (!event)
2043                 goto out;
2044
2045         rb_advance_reader(cpu_buffer);
2046
2047  out:
2048         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2049
2050         return event;
2051 }
2052 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2053
2054 /**
2055  * ring_buffer_read_start - start a non consuming read of the buffer
2056  * @buffer: The ring buffer to read from
2057  * @cpu: The cpu buffer to iterate over
2058  *
2059  * This starts up an iteration through the buffer. It also disables
2060  * the recording to the buffer until the reading is finished.
2061  * This prevents the reading from being corrupted. This is not
2062  * a consuming read, so a producer is not expected.
2063  *
2064  * Must be paired with ring_buffer_finish.
2065  */
2066 struct ring_buffer_iter *
2067 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2068 {
2069         struct ring_buffer_per_cpu *cpu_buffer;
2070         struct ring_buffer_iter *iter;
2071         unsigned long flags;
2072
2073         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2074                 return NULL;
2075
2076         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2077         if (!iter)
2078                 return NULL;
2079
2080         cpu_buffer = buffer->buffers[cpu];
2081
2082         iter->cpu_buffer = cpu_buffer;
2083
2084         atomic_inc(&cpu_buffer->record_disabled);
2085         synchronize_sched();
2086
2087         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2088         __raw_spin_lock(&cpu_buffer->lock);
2089         rb_iter_reset(iter);
2090         __raw_spin_unlock(&cpu_buffer->lock);
2091         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2092
2093         return iter;
2094 }
2095 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2096
2097 /**
2098  * ring_buffer_finish - finish reading the iterator of the buffer
2099  * @iter: The iterator retrieved by ring_buffer_start
2100  *
2101  * This re-enables the recording to the buffer, and frees the
2102  * iterator.
2103  */
2104 void
2105 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2106 {
2107         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2108
2109         atomic_dec(&cpu_buffer->record_disabled);
2110         kfree(iter);
2111 }
2112 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2113
2114 /**
2115  * ring_buffer_read - read the next item in the ring buffer by the iterator
2116  * @iter: The ring buffer iterator
2117  * @ts: The time stamp of the event read.
2118  *
2119  * This reads the next event in the ring buffer and increments the iterator.
2120  */
2121 struct ring_buffer_event *
2122 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2123 {
2124         struct ring_buffer_event *event;
2125         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2126         unsigned long flags;
2127
2128         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2129         event = rb_iter_peek(iter, ts);
2130         if (!event)
2131                 goto out;
2132
2133         rb_advance_iter(iter);
2134  out:
2135         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2136
2137         return event;
2138 }
2139 EXPORT_SYMBOL_GPL(ring_buffer_read);
2140
2141 /**
2142  * ring_buffer_size - return the size of the ring buffer (in bytes)
2143  * @buffer: The ring buffer.
2144  */
2145 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2146 {
2147         return BUF_PAGE_SIZE * buffer->pages;
2148 }
2149 EXPORT_SYMBOL_GPL(ring_buffer_size);
2150
2151 static void
2152 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2153 {
2154         cpu_buffer->head_page
2155                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2156         local_set(&cpu_buffer->head_page->write, 0);
2157         local_set(&cpu_buffer->head_page->page->commit, 0);
2158
2159         cpu_buffer->head_page->read = 0;
2160
2161         cpu_buffer->tail_page = cpu_buffer->head_page;
2162         cpu_buffer->commit_page = cpu_buffer->head_page;
2163
2164         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2165         local_set(&cpu_buffer->reader_page->write, 0);
2166         local_set(&cpu_buffer->reader_page->page->commit, 0);
2167         cpu_buffer->reader_page->read = 0;
2168
2169         cpu_buffer->overrun = 0;
2170         cpu_buffer->entries = 0;
2171 }
2172
2173 /**
2174  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2175  * @buffer: The ring buffer to reset a per cpu buffer of
2176  * @cpu: The CPU buffer to be reset
2177  */
2178 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2179 {
2180         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2181         unsigned long flags;
2182
2183         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2184                 return;
2185
2186         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2187
2188         __raw_spin_lock(&cpu_buffer->lock);
2189
2190         rb_reset_cpu(cpu_buffer);
2191
2192         __raw_spin_unlock(&cpu_buffer->lock);
2193
2194         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2195 }
2196 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2197
2198 /**
2199  * ring_buffer_reset - reset a ring buffer
2200  * @buffer: The ring buffer to reset all cpu buffers
2201  */
2202 void ring_buffer_reset(struct ring_buffer *buffer)
2203 {
2204         int cpu;
2205
2206         for_each_buffer_cpu(buffer, cpu)
2207                 ring_buffer_reset_cpu(buffer, cpu);
2208 }
2209 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2210
2211 /**
2212  * rind_buffer_empty - is the ring buffer empty?
2213  * @buffer: The ring buffer to test
2214  */
2215 int ring_buffer_empty(struct ring_buffer *buffer)
2216 {
2217         struct ring_buffer_per_cpu *cpu_buffer;
2218         int cpu;
2219
2220         /* yes this is racy, but if you don't like the race, lock the buffer */
2221         for_each_buffer_cpu(buffer, cpu) {
2222                 cpu_buffer = buffer->buffers[cpu];
2223                 if (!rb_per_cpu_empty(cpu_buffer))
2224                         return 0;
2225         }
2226         return 1;
2227 }
2228 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2229
2230 /**
2231  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2232  * @buffer: The ring buffer
2233  * @cpu: The CPU buffer to test
2234  */
2235 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2236 {
2237         struct ring_buffer_per_cpu *cpu_buffer;
2238
2239         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2240                 return 1;
2241
2242         cpu_buffer = buffer->buffers[cpu];
2243         return rb_per_cpu_empty(cpu_buffer);
2244 }
2245 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2246
2247 /**
2248  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2249  * @buffer_a: One buffer to swap with
2250  * @buffer_b: The other buffer to swap with
2251  *
2252  * This function is useful for tracers that want to take a "snapshot"
2253  * of a CPU buffer and has another back up buffer lying around.
2254  * it is expected that the tracer handles the cpu buffer not being
2255  * used at the moment.
2256  */
2257 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2258                          struct ring_buffer *buffer_b, int cpu)
2259 {
2260         struct ring_buffer_per_cpu *cpu_buffer_a;
2261         struct ring_buffer_per_cpu *cpu_buffer_b;
2262
2263         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2264             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2265                 return -EINVAL;
2266
2267         /* At least make sure the two buffers are somewhat the same */
2268         if (buffer_a->pages != buffer_b->pages)
2269                 return -EINVAL;
2270
2271         cpu_buffer_a = buffer_a->buffers[cpu];
2272         cpu_buffer_b = buffer_b->buffers[cpu];
2273
2274         /*
2275          * We can't do a synchronize_sched here because this
2276          * function can be called in atomic context.
2277          * Normally this will be called from the same CPU as cpu.
2278          * If not it's up to the caller to protect this.
2279          */
2280         atomic_inc(&cpu_buffer_a->record_disabled);
2281         atomic_inc(&cpu_buffer_b->record_disabled);
2282
2283         buffer_a->buffers[cpu] = cpu_buffer_b;
2284         buffer_b->buffers[cpu] = cpu_buffer_a;
2285
2286         cpu_buffer_b->buffer = buffer_a;
2287         cpu_buffer_a->buffer = buffer_b;
2288
2289         atomic_dec(&cpu_buffer_a->record_disabled);
2290         atomic_dec(&cpu_buffer_b->record_disabled);
2291
2292         return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2295
2296 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2297                               struct buffer_data_page *bpage)
2298 {
2299         struct ring_buffer_event *event;
2300         unsigned long head;
2301
2302         __raw_spin_lock(&cpu_buffer->lock);
2303         for (head = 0; head < local_read(&bpage->commit);
2304              head += rb_event_length(event)) {
2305
2306                 event = __rb_data_page_index(bpage, head);
2307                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2308                         return;
2309                 /* Only count data entries */
2310                 if (event->type != RINGBUF_TYPE_DATA)
2311                         continue;
2312                 cpu_buffer->entries--;
2313         }
2314         __raw_spin_unlock(&cpu_buffer->lock);
2315 }
2316
2317 /**
2318  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2319  * @buffer: the buffer to allocate for.
2320  *
2321  * This function is used in conjunction with ring_buffer_read_page.
2322  * When reading a full page from the ring buffer, these functions
2323  * can be used to speed up the process. The calling function should
2324  * allocate a few pages first with this function. Then when it
2325  * needs to get pages from the ring buffer, it passes the result
2326  * of this function into ring_buffer_read_page, which will swap
2327  * the page that was allocated, with the read page of the buffer.
2328  *
2329  * Returns:
2330  *  The page allocated, or NULL on error.
2331  */
2332 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2333 {
2334         unsigned long addr;
2335         struct buffer_data_page *bpage;
2336
2337         addr = __get_free_page(GFP_KERNEL);
2338         if (!addr)
2339                 return NULL;
2340
2341         bpage = (void *)addr;
2342
2343         return bpage;
2344 }
2345
2346 /**
2347  * ring_buffer_free_read_page - free an allocated read page
2348  * @buffer: the buffer the page was allocate for
2349  * @data: the page to free
2350  *
2351  * Free a page allocated from ring_buffer_alloc_read_page.
2352  */
2353 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2354 {
2355         free_page((unsigned long)data);
2356 }
2357
2358 /**
2359  * ring_buffer_read_page - extract a page from the ring buffer
2360  * @buffer: buffer to extract from
2361  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2362  * @cpu: the cpu of the buffer to extract
2363  * @full: should the extraction only happen when the page is full.
2364  *
2365  * This function will pull out a page from the ring buffer and consume it.
2366  * @data_page must be the address of the variable that was returned
2367  * from ring_buffer_alloc_read_page. This is because the page might be used
2368  * to swap with a page in the ring buffer.
2369  *
2370  * for example:
2371  *      rpage = ring_buffer_alloc_page(buffer);
2372  *      if (!rpage)
2373  *              return error;
2374  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2375  *      if (ret)
2376  *              process_page(rpage);
2377  *
2378  * When @full is set, the function will not return true unless
2379  * the writer is off the reader page.
2380  *
2381  * Note: it is up to the calling functions to handle sleeps and wakeups.
2382  *  The ring buffer can be used anywhere in the kernel and can not
2383  *  blindly call wake_up. The layer that uses the ring buffer must be
2384  *  responsible for that.
2385  *
2386  * Returns:
2387  *  1 if data has been transferred
2388  *  0 if no data has been transferred.
2389  */
2390 int ring_buffer_read_page(struct ring_buffer *buffer,
2391                             void **data_page, int cpu, int full)
2392 {
2393         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2394         struct ring_buffer_event *event;
2395         struct buffer_data_page *bpage;
2396         unsigned long flags;
2397         int ret = 0;
2398
2399         if (!data_page)
2400                 return 0;
2401
2402         bpage = *data_page;
2403         if (!bpage)
2404                 return 0;
2405
2406         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2407
2408         /*
2409          * rb_buffer_peek will get the next ring buffer if
2410          * the current reader page is empty.
2411          */
2412         event = rb_buffer_peek(buffer, cpu, NULL);
2413         if (!event)
2414                 goto out;
2415
2416         /* check for data */
2417         if (!local_read(&cpu_buffer->reader_page->page->commit))
2418                 goto out;
2419         /*
2420          * If the writer is already off of the read page, then simply
2421          * switch the read page with the given page. Otherwise
2422          * we need to copy the data from the reader to the writer.
2423          */
2424         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2425                 unsigned int read = cpu_buffer->reader_page->read;
2426
2427                 if (full)
2428                         goto out;
2429                 /* The writer is still on the reader page, we must copy */
2430                 bpage = cpu_buffer->reader_page->page;
2431                 memcpy(bpage->data,
2432                        cpu_buffer->reader_page->page->data + read,
2433                        local_read(&bpage->commit) - read);
2434
2435                 /* consume what was read */
2436                 cpu_buffer->reader_page += read;
2437
2438         } else {
2439                 /* swap the pages */
2440                 rb_init_page(bpage);
2441                 bpage = cpu_buffer->reader_page->page;
2442                 cpu_buffer->reader_page->page = *data_page;
2443                 cpu_buffer->reader_page->read = 0;
2444                 *data_page = bpage;
2445         }
2446         ret = 1;
2447
2448         /* update the entry counter */
2449         rb_remove_entries(cpu_buffer, bpage);
2450  out:
2451         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2452
2453         return ret;
2454 }
2455
2456 static ssize_t
2457 rb_simple_read(struct file *filp, char __user *ubuf,
2458                size_t cnt, loff_t *ppos)
2459 {
2460         long *p = filp->private_data;
2461         char buf[64];
2462         int r;
2463
2464         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2465                 r = sprintf(buf, "permanently disabled\n");
2466         else
2467                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2468
2469         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2470 }
2471
2472 static ssize_t
2473 rb_simple_write(struct file *filp, const char __user *ubuf,
2474                 size_t cnt, loff_t *ppos)
2475 {
2476         long *p = filp->private_data;
2477         char buf[64];
2478         long val;
2479         int ret;
2480
2481         if (cnt >= sizeof(buf))
2482                 return -EINVAL;
2483
2484         if (copy_from_user(&buf, ubuf, cnt))
2485                 return -EFAULT;
2486
2487         buf[cnt] = 0;
2488
2489         ret = strict_strtoul(buf, 10, &val);
2490         if (ret < 0)
2491                 return ret;
2492
2493         if (val)
2494                 set_bit(RB_BUFFERS_ON_BIT, p);
2495         else
2496                 clear_bit(RB_BUFFERS_ON_BIT, p);
2497
2498         (*ppos)++;
2499
2500         return cnt;
2501 }
2502
2503 static struct file_operations rb_simple_fops = {
2504         .open           = tracing_open_generic,
2505         .read           = rb_simple_read,
2506         .write          = rb_simple_write,
2507 };
2508
2509
2510 static __init int rb_init_debugfs(void)
2511 {
2512         struct dentry *d_tracer;
2513         struct dentry *entry;
2514
2515         d_tracer = tracing_init_dentry();
2516
2517         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2518                                     &ring_buffer_flags, &rb_simple_fops);
2519         if (!entry)
2520                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2521
2522         return 0;
2523 }
2524
2525 fs_initcall(rb_init_debugfs);