perf_counter: sanity check on the output API
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28
29 #include <asm/irq_regs.h>
30
31 /*
32  * Each CPU has a list of per CPU counters:
33  */
34 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
36 int perf_max_counters __read_mostly = 1;
37 static int perf_reserved_percpu __read_mostly;
38 static int perf_overcommit __read_mostly = 1;
39
40 /*
41  * Mutex for (sysadmin-configurable) counter reservations:
42  */
43 static DEFINE_MUTEX(perf_resource_mutex);
44
45 /*
46  * Architecture provided APIs - weak aliases:
47  */
48 extern __weak const struct hw_perf_counter_ops *
49 hw_perf_counter_init(struct perf_counter *counter)
50 {
51         return NULL;
52 }
53
54 u64 __weak hw_perf_save_disable(void)           { return 0; }
55 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
56 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
57 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58                struct perf_cpu_context *cpuctx,
59                struct perf_counter_context *ctx, int cpu)
60 {
61         return 0;
62 }
63
64 void __weak perf_counter_print_debug(void)      { }
65
66 static void
67 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69         struct perf_counter *group_leader = counter->group_leader;
70
71         /*
72          * Depending on whether it is a standalone or sibling counter,
73          * add it straight to the context's counter list, or to the group
74          * leader's sibling list:
75          */
76         if (counter->group_leader == counter)
77                 list_add_tail(&counter->list_entry, &ctx->counter_list);
78         else {
79                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
80                 group_leader->nr_siblings++;
81         }
82
83         list_add_rcu(&counter->event_entry, &ctx->event_list);
84 }
85
86 static void
87 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
88 {
89         struct perf_counter *sibling, *tmp;
90
91         list_del_init(&counter->list_entry);
92         list_del_rcu(&counter->event_entry);
93
94         if (counter->group_leader != counter)
95                 counter->group_leader->nr_siblings--;
96
97         /*
98          * If this was a group counter with sibling counters then
99          * upgrade the siblings to singleton counters by adding them
100          * to the context list directly:
101          */
102         list_for_each_entry_safe(sibling, tmp,
103                                  &counter->sibling_list, list_entry) {
104
105                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
106                 sibling->group_leader = sibling;
107         }
108 }
109
110 static void
111 counter_sched_out(struct perf_counter *counter,
112                   struct perf_cpu_context *cpuctx,
113                   struct perf_counter_context *ctx)
114 {
115         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116                 return;
117
118         counter->state = PERF_COUNTER_STATE_INACTIVE;
119         counter->hw_ops->disable(counter);
120         counter->oncpu = -1;
121
122         if (!is_software_counter(counter))
123                 cpuctx->active_oncpu--;
124         ctx->nr_active--;
125         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
126                 cpuctx->exclusive = 0;
127 }
128
129 static void
130 group_sched_out(struct perf_counter *group_counter,
131                 struct perf_cpu_context *cpuctx,
132                 struct perf_counter_context *ctx)
133 {
134         struct perf_counter *counter;
135
136         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
137                 return;
138
139         counter_sched_out(group_counter, cpuctx, ctx);
140
141         /*
142          * Schedule out siblings (if any):
143          */
144         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
145                 counter_sched_out(counter, cpuctx, ctx);
146
147         if (group_counter->hw_event.exclusive)
148                 cpuctx->exclusive = 0;
149 }
150
151 /*
152  * Cross CPU call to remove a performance counter
153  *
154  * We disable the counter on the hardware level first. After that we
155  * remove it from the context list.
156  */
157 static void __perf_counter_remove_from_context(void *info)
158 {
159         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
160         struct perf_counter *counter = info;
161         struct perf_counter_context *ctx = counter->ctx;
162         unsigned long flags;
163         u64 perf_flags;
164
165         /*
166          * If this is a task context, we need to check whether it is
167          * the current task context of this cpu. If not it has been
168          * scheduled out before the smp call arrived.
169          */
170         if (ctx->task && cpuctx->task_ctx != ctx)
171                 return;
172
173         curr_rq_lock_irq_save(&flags);
174         spin_lock(&ctx->lock);
175
176         counter_sched_out(counter, cpuctx, ctx);
177
178         counter->task = NULL;
179         ctx->nr_counters--;
180
181         /*
182          * Protect the list operation against NMI by disabling the
183          * counters on a global level. NOP for non NMI based counters.
184          */
185         perf_flags = hw_perf_save_disable();
186         list_del_counter(counter, ctx);
187         hw_perf_restore(perf_flags);
188
189         if (!ctx->task) {
190                 /*
191                  * Allow more per task counters with respect to the
192                  * reservation:
193                  */
194                 cpuctx->max_pertask =
195                         min(perf_max_counters - ctx->nr_counters,
196                             perf_max_counters - perf_reserved_percpu);
197         }
198
199         spin_unlock(&ctx->lock);
200         curr_rq_unlock_irq_restore(&flags);
201 }
202
203
204 /*
205  * Remove the counter from a task's (or a CPU's) list of counters.
206  *
207  * Must be called with counter->mutex and ctx->mutex held.
208  *
209  * CPU counters are removed with a smp call. For task counters we only
210  * call when the task is on a CPU.
211  */
212 static void perf_counter_remove_from_context(struct perf_counter *counter)
213 {
214         struct perf_counter_context *ctx = counter->ctx;
215         struct task_struct *task = ctx->task;
216
217         if (!task) {
218                 /*
219                  * Per cpu counters are removed via an smp call and
220                  * the removal is always sucessful.
221                  */
222                 smp_call_function_single(counter->cpu,
223                                          __perf_counter_remove_from_context,
224                                          counter, 1);
225                 return;
226         }
227
228 retry:
229         task_oncpu_function_call(task, __perf_counter_remove_from_context,
230                                  counter);
231
232         spin_lock_irq(&ctx->lock);
233         /*
234          * If the context is active we need to retry the smp call.
235          */
236         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
237                 spin_unlock_irq(&ctx->lock);
238                 goto retry;
239         }
240
241         /*
242          * The lock prevents that this context is scheduled in so we
243          * can remove the counter safely, if the call above did not
244          * succeed.
245          */
246         if (!list_empty(&counter->list_entry)) {
247                 ctx->nr_counters--;
248                 list_del_counter(counter, ctx);
249                 counter->task = NULL;
250         }
251         spin_unlock_irq(&ctx->lock);
252 }
253
254 /*
255  * Cross CPU call to disable a performance counter
256  */
257 static void __perf_counter_disable(void *info)
258 {
259         struct perf_counter *counter = info;
260         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
261         struct perf_counter_context *ctx = counter->ctx;
262         unsigned long flags;
263
264         /*
265          * If this is a per-task counter, need to check whether this
266          * counter's task is the current task on this cpu.
267          */
268         if (ctx->task && cpuctx->task_ctx != ctx)
269                 return;
270
271         curr_rq_lock_irq_save(&flags);
272         spin_lock(&ctx->lock);
273
274         /*
275          * If the counter is on, turn it off.
276          * If it is in error state, leave it in error state.
277          */
278         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
279                 if (counter == counter->group_leader)
280                         group_sched_out(counter, cpuctx, ctx);
281                 else
282                         counter_sched_out(counter, cpuctx, ctx);
283                 counter->state = PERF_COUNTER_STATE_OFF;
284         }
285
286         spin_unlock(&ctx->lock);
287         curr_rq_unlock_irq_restore(&flags);
288 }
289
290 /*
291  * Disable a counter.
292  */
293 static void perf_counter_disable(struct perf_counter *counter)
294 {
295         struct perf_counter_context *ctx = counter->ctx;
296         struct task_struct *task = ctx->task;
297
298         if (!task) {
299                 /*
300                  * Disable the counter on the cpu that it's on
301                  */
302                 smp_call_function_single(counter->cpu, __perf_counter_disable,
303                                          counter, 1);
304                 return;
305         }
306
307  retry:
308         task_oncpu_function_call(task, __perf_counter_disable, counter);
309
310         spin_lock_irq(&ctx->lock);
311         /*
312          * If the counter is still active, we need to retry the cross-call.
313          */
314         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
315                 spin_unlock_irq(&ctx->lock);
316                 goto retry;
317         }
318
319         /*
320          * Since we have the lock this context can't be scheduled
321          * in, so we can change the state safely.
322          */
323         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
324                 counter->state = PERF_COUNTER_STATE_OFF;
325
326         spin_unlock_irq(&ctx->lock);
327 }
328
329 /*
330  * Disable a counter and all its children.
331  */
332 static void perf_counter_disable_family(struct perf_counter *counter)
333 {
334         struct perf_counter *child;
335
336         perf_counter_disable(counter);
337
338         /*
339          * Lock the mutex to protect the list of children
340          */
341         mutex_lock(&counter->mutex);
342         list_for_each_entry(child, &counter->child_list, child_list)
343                 perf_counter_disable(child);
344         mutex_unlock(&counter->mutex);
345 }
346
347 static int
348 counter_sched_in(struct perf_counter *counter,
349                  struct perf_cpu_context *cpuctx,
350                  struct perf_counter_context *ctx,
351                  int cpu)
352 {
353         if (counter->state <= PERF_COUNTER_STATE_OFF)
354                 return 0;
355
356         counter->state = PERF_COUNTER_STATE_ACTIVE;
357         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
358         /*
359          * The new state must be visible before we turn it on in the hardware:
360          */
361         smp_wmb();
362
363         if (counter->hw_ops->enable(counter)) {
364                 counter->state = PERF_COUNTER_STATE_INACTIVE;
365                 counter->oncpu = -1;
366                 return -EAGAIN;
367         }
368
369         if (!is_software_counter(counter))
370                 cpuctx->active_oncpu++;
371         ctx->nr_active++;
372
373         if (counter->hw_event.exclusive)
374                 cpuctx->exclusive = 1;
375
376         return 0;
377 }
378
379 /*
380  * Return 1 for a group consisting entirely of software counters,
381  * 0 if the group contains any hardware counters.
382  */
383 static int is_software_only_group(struct perf_counter *leader)
384 {
385         struct perf_counter *counter;
386
387         if (!is_software_counter(leader))
388                 return 0;
389
390         list_for_each_entry(counter, &leader->sibling_list, list_entry)
391                 if (!is_software_counter(counter))
392                         return 0;
393
394         return 1;
395 }
396
397 /*
398  * Work out whether we can put this counter group on the CPU now.
399  */
400 static int group_can_go_on(struct perf_counter *counter,
401                            struct perf_cpu_context *cpuctx,
402                            int can_add_hw)
403 {
404         /*
405          * Groups consisting entirely of software counters can always go on.
406          */
407         if (is_software_only_group(counter))
408                 return 1;
409         /*
410          * If an exclusive group is already on, no other hardware
411          * counters can go on.
412          */
413         if (cpuctx->exclusive)
414                 return 0;
415         /*
416          * If this group is exclusive and there are already
417          * counters on the CPU, it can't go on.
418          */
419         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
420                 return 0;
421         /*
422          * Otherwise, try to add it if all previous groups were able
423          * to go on.
424          */
425         return can_add_hw;
426 }
427
428 /*
429  * Cross CPU call to install and enable a performance counter
430  */
431 static void __perf_install_in_context(void *info)
432 {
433         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
434         struct perf_counter *counter = info;
435         struct perf_counter_context *ctx = counter->ctx;
436         struct perf_counter *leader = counter->group_leader;
437         int cpu = smp_processor_id();
438         unsigned long flags;
439         u64 perf_flags;
440         int err;
441
442         /*
443          * If this is a task context, we need to check whether it is
444          * the current task context of this cpu. If not it has been
445          * scheduled out before the smp call arrived.
446          */
447         if (ctx->task && cpuctx->task_ctx != ctx)
448                 return;
449
450         curr_rq_lock_irq_save(&flags);
451         spin_lock(&ctx->lock);
452
453         /*
454          * Protect the list operation against NMI by disabling the
455          * counters on a global level. NOP for non NMI based counters.
456          */
457         perf_flags = hw_perf_save_disable();
458
459         list_add_counter(counter, ctx);
460         ctx->nr_counters++;
461         counter->prev_state = PERF_COUNTER_STATE_OFF;
462
463         /*
464          * Don't put the counter on if it is disabled or if
465          * it is in a group and the group isn't on.
466          */
467         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
468             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
469                 goto unlock;
470
471         /*
472          * An exclusive counter can't go on if there are already active
473          * hardware counters, and no hardware counter can go on if there
474          * is already an exclusive counter on.
475          */
476         if (!group_can_go_on(counter, cpuctx, 1))
477                 err = -EEXIST;
478         else
479                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
480
481         if (err) {
482                 /*
483                  * This counter couldn't go on.  If it is in a group
484                  * then we have to pull the whole group off.
485                  * If the counter group is pinned then put it in error state.
486                  */
487                 if (leader != counter)
488                         group_sched_out(leader, cpuctx, ctx);
489                 if (leader->hw_event.pinned)
490                         leader->state = PERF_COUNTER_STATE_ERROR;
491         }
492
493         if (!err && !ctx->task && cpuctx->max_pertask)
494                 cpuctx->max_pertask--;
495
496  unlock:
497         hw_perf_restore(perf_flags);
498
499         spin_unlock(&ctx->lock);
500         curr_rq_unlock_irq_restore(&flags);
501 }
502
503 /*
504  * Attach a performance counter to a context
505  *
506  * First we add the counter to the list with the hardware enable bit
507  * in counter->hw_config cleared.
508  *
509  * If the counter is attached to a task which is on a CPU we use a smp
510  * call to enable it in the task context. The task might have been
511  * scheduled away, but we check this in the smp call again.
512  *
513  * Must be called with ctx->mutex held.
514  */
515 static void
516 perf_install_in_context(struct perf_counter_context *ctx,
517                         struct perf_counter *counter,
518                         int cpu)
519 {
520         struct task_struct *task = ctx->task;
521
522         if (!task) {
523                 /*
524                  * Per cpu counters are installed via an smp call and
525                  * the install is always sucessful.
526                  */
527                 smp_call_function_single(cpu, __perf_install_in_context,
528                                          counter, 1);
529                 return;
530         }
531
532         counter->task = task;
533 retry:
534         task_oncpu_function_call(task, __perf_install_in_context,
535                                  counter);
536
537         spin_lock_irq(&ctx->lock);
538         /*
539          * we need to retry the smp call.
540          */
541         if (ctx->is_active && list_empty(&counter->list_entry)) {
542                 spin_unlock_irq(&ctx->lock);
543                 goto retry;
544         }
545
546         /*
547          * The lock prevents that this context is scheduled in so we
548          * can add the counter safely, if it the call above did not
549          * succeed.
550          */
551         if (list_empty(&counter->list_entry)) {
552                 list_add_counter(counter, ctx);
553                 ctx->nr_counters++;
554         }
555         spin_unlock_irq(&ctx->lock);
556 }
557
558 /*
559  * Cross CPU call to enable a performance counter
560  */
561 static void __perf_counter_enable(void *info)
562 {
563         struct perf_counter *counter = info;
564         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
565         struct perf_counter_context *ctx = counter->ctx;
566         struct perf_counter *leader = counter->group_leader;
567         unsigned long flags;
568         int err;
569
570         /*
571          * If this is a per-task counter, need to check whether this
572          * counter's task is the current task on this cpu.
573          */
574         if (ctx->task && cpuctx->task_ctx != ctx)
575                 return;
576
577         curr_rq_lock_irq_save(&flags);
578         spin_lock(&ctx->lock);
579
580         counter->prev_state = counter->state;
581         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
582                 goto unlock;
583         counter->state = PERF_COUNTER_STATE_INACTIVE;
584
585         /*
586          * If the counter is in a group and isn't the group leader,
587          * then don't put it on unless the group is on.
588          */
589         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
590                 goto unlock;
591
592         if (!group_can_go_on(counter, cpuctx, 1))
593                 err = -EEXIST;
594         else
595                 err = counter_sched_in(counter, cpuctx, ctx,
596                                        smp_processor_id());
597
598         if (err) {
599                 /*
600                  * If this counter can't go on and it's part of a
601                  * group, then the whole group has to come off.
602                  */
603                 if (leader != counter)
604                         group_sched_out(leader, cpuctx, ctx);
605                 if (leader->hw_event.pinned)
606                         leader->state = PERF_COUNTER_STATE_ERROR;
607         }
608
609  unlock:
610         spin_unlock(&ctx->lock);
611         curr_rq_unlock_irq_restore(&flags);
612 }
613
614 /*
615  * Enable a counter.
616  */
617 static void perf_counter_enable(struct perf_counter *counter)
618 {
619         struct perf_counter_context *ctx = counter->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Enable the counter on the cpu that it's on
625                  */
626                 smp_call_function_single(counter->cpu, __perf_counter_enable,
627                                          counter, 1);
628                 return;
629         }
630
631         spin_lock_irq(&ctx->lock);
632         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
633                 goto out;
634
635         /*
636          * If the counter is in error state, clear that first.
637          * That way, if we see the counter in error state below, we
638          * know that it has gone back into error state, as distinct
639          * from the task having been scheduled away before the
640          * cross-call arrived.
641          */
642         if (counter->state == PERF_COUNTER_STATE_ERROR)
643                 counter->state = PERF_COUNTER_STATE_OFF;
644
645  retry:
646         spin_unlock_irq(&ctx->lock);
647         task_oncpu_function_call(task, __perf_counter_enable, counter);
648
649         spin_lock_irq(&ctx->lock);
650
651         /*
652          * If the context is active and the counter is still off,
653          * we need to retry the cross-call.
654          */
655         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
656                 goto retry;
657
658         /*
659          * Since we have the lock this context can't be scheduled
660          * in, so we can change the state safely.
661          */
662         if (counter->state == PERF_COUNTER_STATE_OFF)
663                 counter->state = PERF_COUNTER_STATE_INACTIVE;
664  out:
665         spin_unlock_irq(&ctx->lock);
666 }
667
668 /*
669  * Enable a counter and all its children.
670  */
671 static void perf_counter_enable_family(struct perf_counter *counter)
672 {
673         struct perf_counter *child;
674
675         perf_counter_enable(counter);
676
677         /*
678          * Lock the mutex to protect the list of children
679          */
680         mutex_lock(&counter->mutex);
681         list_for_each_entry(child, &counter->child_list, child_list)
682                 perf_counter_enable(child);
683         mutex_unlock(&counter->mutex);
684 }
685
686 void __perf_counter_sched_out(struct perf_counter_context *ctx,
687                               struct perf_cpu_context *cpuctx)
688 {
689         struct perf_counter *counter;
690         u64 flags;
691
692         spin_lock(&ctx->lock);
693         ctx->is_active = 0;
694         if (likely(!ctx->nr_counters))
695                 goto out;
696
697         flags = hw_perf_save_disable();
698         if (ctx->nr_active) {
699                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
700                         group_sched_out(counter, cpuctx, ctx);
701         }
702         hw_perf_restore(flags);
703  out:
704         spin_unlock(&ctx->lock);
705 }
706
707 /*
708  * Called from scheduler to remove the counters of the current task,
709  * with interrupts disabled.
710  *
711  * We stop each counter and update the counter value in counter->count.
712  *
713  * This does not protect us against NMI, but disable()
714  * sets the disabled bit in the control field of counter _before_
715  * accessing the counter control register. If a NMI hits, then it will
716  * not restart the counter.
717  */
718 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
719 {
720         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
721         struct perf_counter_context *ctx = &task->perf_counter_ctx;
722         struct pt_regs *regs;
723
724         if (likely(!cpuctx->task_ctx))
725                 return;
726
727         regs = task_pt_regs(task);
728         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
729         __perf_counter_sched_out(ctx, cpuctx);
730
731         cpuctx->task_ctx = NULL;
732 }
733
734 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
735 {
736         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
737 }
738
739 static int
740 group_sched_in(struct perf_counter *group_counter,
741                struct perf_cpu_context *cpuctx,
742                struct perf_counter_context *ctx,
743                int cpu)
744 {
745         struct perf_counter *counter, *partial_group;
746         int ret;
747
748         if (group_counter->state == PERF_COUNTER_STATE_OFF)
749                 return 0;
750
751         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
752         if (ret)
753                 return ret < 0 ? ret : 0;
754
755         group_counter->prev_state = group_counter->state;
756         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
757                 return -EAGAIN;
758
759         /*
760          * Schedule in siblings as one group (if any):
761          */
762         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
763                 counter->prev_state = counter->state;
764                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
765                         partial_group = counter;
766                         goto group_error;
767                 }
768         }
769
770         return 0;
771
772 group_error:
773         /*
774          * Groups can be scheduled in as one unit only, so undo any
775          * partial group before returning:
776          */
777         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
778                 if (counter == partial_group)
779                         break;
780                 counter_sched_out(counter, cpuctx, ctx);
781         }
782         counter_sched_out(group_counter, cpuctx, ctx);
783
784         return -EAGAIN;
785 }
786
787 static void
788 __perf_counter_sched_in(struct perf_counter_context *ctx,
789                         struct perf_cpu_context *cpuctx, int cpu)
790 {
791         struct perf_counter *counter;
792         u64 flags;
793         int can_add_hw = 1;
794
795         spin_lock(&ctx->lock);
796         ctx->is_active = 1;
797         if (likely(!ctx->nr_counters))
798                 goto out;
799
800         flags = hw_perf_save_disable();
801
802         /*
803          * First go through the list and put on any pinned groups
804          * in order to give them the best chance of going on.
805          */
806         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
807                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
808                     !counter->hw_event.pinned)
809                         continue;
810                 if (counter->cpu != -1 && counter->cpu != cpu)
811                         continue;
812
813                 if (group_can_go_on(counter, cpuctx, 1))
814                         group_sched_in(counter, cpuctx, ctx, cpu);
815
816                 /*
817                  * If this pinned group hasn't been scheduled,
818                  * put it in error state.
819                  */
820                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
821                         counter->state = PERF_COUNTER_STATE_ERROR;
822         }
823
824         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
825                 /*
826                  * Ignore counters in OFF or ERROR state, and
827                  * ignore pinned counters since we did them already.
828                  */
829                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
830                     counter->hw_event.pinned)
831                         continue;
832
833                 /*
834                  * Listen to the 'cpu' scheduling filter constraint
835                  * of counters:
836                  */
837                 if (counter->cpu != -1 && counter->cpu != cpu)
838                         continue;
839
840                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
841                         if (group_sched_in(counter, cpuctx, ctx, cpu))
842                                 can_add_hw = 0;
843                 }
844         }
845         hw_perf_restore(flags);
846  out:
847         spin_unlock(&ctx->lock);
848 }
849
850 /*
851  * Called from scheduler to add the counters of the current task
852  * with interrupts disabled.
853  *
854  * We restore the counter value and then enable it.
855  *
856  * This does not protect us against NMI, but enable()
857  * sets the enabled bit in the control field of counter _before_
858  * accessing the counter control register. If a NMI hits, then it will
859  * keep the counter running.
860  */
861 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
862 {
863         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
864         struct perf_counter_context *ctx = &task->perf_counter_ctx;
865
866         __perf_counter_sched_in(ctx, cpuctx, cpu);
867         cpuctx->task_ctx = ctx;
868 }
869
870 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
871 {
872         struct perf_counter_context *ctx = &cpuctx->ctx;
873
874         __perf_counter_sched_in(ctx, cpuctx, cpu);
875 }
876
877 int perf_counter_task_disable(void)
878 {
879         struct task_struct *curr = current;
880         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
881         struct perf_counter *counter;
882         unsigned long flags;
883         u64 perf_flags;
884         int cpu;
885
886         if (likely(!ctx->nr_counters))
887                 return 0;
888
889         curr_rq_lock_irq_save(&flags);
890         cpu = smp_processor_id();
891
892         /* force the update of the task clock: */
893         __task_delta_exec(curr, 1);
894
895         perf_counter_task_sched_out(curr, cpu);
896
897         spin_lock(&ctx->lock);
898
899         /*
900          * Disable all the counters:
901          */
902         perf_flags = hw_perf_save_disable();
903
904         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
905                 if (counter->state != PERF_COUNTER_STATE_ERROR)
906                         counter->state = PERF_COUNTER_STATE_OFF;
907         }
908
909         hw_perf_restore(perf_flags);
910
911         spin_unlock(&ctx->lock);
912
913         curr_rq_unlock_irq_restore(&flags);
914
915         return 0;
916 }
917
918 int perf_counter_task_enable(void)
919 {
920         struct task_struct *curr = current;
921         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
922         struct perf_counter *counter;
923         unsigned long flags;
924         u64 perf_flags;
925         int cpu;
926
927         if (likely(!ctx->nr_counters))
928                 return 0;
929
930         curr_rq_lock_irq_save(&flags);
931         cpu = smp_processor_id();
932
933         /* force the update of the task clock: */
934         __task_delta_exec(curr, 1);
935
936         perf_counter_task_sched_out(curr, cpu);
937
938         spin_lock(&ctx->lock);
939
940         /*
941          * Disable all the counters:
942          */
943         perf_flags = hw_perf_save_disable();
944
945         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
946                 if (counter->state > PERF_COUNTER_STATE_OFF)
947                         continue;
948                 counter->state = PERF_COUNTER_STATE_INACTIVE;
949                 counter->hw_event.disabled = 0;
950         }
951         hw_perf_restore(perf_flags);
952
953         spin_unlock(&ctx->lock);
954
955         perf_counter_task_sched_in(curr, cpu);
956
957         curr_rq_unlock_irq_restore(&flags);
958
959         return 0;
960 }
961
962 /*
963  * Round-robin a context's counters:
964  */
965 static void rotate_ctx(struct perf_counter_context *ctx)
966 {
967         struct perf_counter *counter;
968         u64 perf_flags;
969
970         if (!ctx->nr_counters)
971                 return;
972
973         spin_lock(&ctx->lock);
974         /*
975          * Rotate the first entry last (works just fine for group counters too):
976          */
977         perf_flags = hw_perf_save_disable();
978         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979                 list_move_tail(&counter->list_entry, &ctx->counter_list);
980                 break;
981         }
982         hw_perf_restore(perf_flags);
983
984         spin_unlock(&ctx->lock);
985 }
986
987 void perf_counter_task_tick(struct task_struct *curr, int cpu)
988 {
989         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
990         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
991         const int rotate_percpu = 0;
992
993         if (rotate_percpu)
994                 perf_counter_cpu_sched_out(cpuctx);
995         perf_counter_task_sched_out(curr, cpu);
996
997         if (rotate_percpu)
998                 rotate_ctx(&cpuctx->ctx);
999         rotate_ctx(ctx);
1000
1001         if (rotate_percpu)
1002                 perf_counter_cpu_sched_in(cpuctx, cpu);
1003         perf_counter_task_sched_in(curr, cpu);
1004 }
1005
1006 /*
1007  * Cross CPU call to read the hardware counter
1008  */
1009 static void __read(void *info)
1010 {
1011         struct perf_counter *counter = info;
1012         unsigned long flags;
1013
1014         curr_rq_lock_irq_save(&flags);
1015         counter->hw_ops->read(counter);
1016         curr_rq_unlock_irq_restore(&flags);
1017 }
1018
1019 static u64 perf_counter_read(struct perf_counter *counter)
1020 {
1021         /*
1022          * If counter is enabled and currently active on a CPU, update the
1023          * value in the counter structure:
1024          */
1025         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1026                 smp_call_function_single(counter->oncpu,
1027                                          __read, counter, 1);
1028         }
1029
1030         return atomic64_read(&counter->count);
1031 }
1032
1033 static void put_context(struct perf_counter_context *ctx)
1034 {
1035         if (ctx->task)
1036                 put_task_struct(ctx->task);
1037 }
1038
1039 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1040 {
1041         struct perf_cpu_context *cpuctx;
1042         struct perf_counter_context *ctx;
1043         struct task_struct *task;
1044
1045         /*
1046          * If cpu is not a wildcard then this is a percpu counter:
1047          */
1048         if (cpu != -1) {
1049                 /* Must be root to operate on a CPU counter: */
1050                 if (!capable(CAP_SYS_ADMIN))
1051                         return ERR_PTR(-EACCES);
1052
1053                 if (cpu < 0 || cpu > num_possible_cpus())
1054                         return ERR_PTR(-EINVAL);
1055
1056                 /*
1057                  * We could be clever and allow to attach a counter to an
1058                  * offline CPU and activate it when the CPU comes up, but
1059                  * that's for later.
1060                  */
1061                 if (!cpu_isset(cpu, cpu_online_map))
1062                         return ERR_PTR(-ENODEV);
1063
1064                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1065                 ctx = &cpuctx->ctx;
1066
1067                 return ctx;
1068         }
1069
1070         rcu_read_lock();
1071         if (!pid)
1072                 task = current;
1073         else
1074                 task = find_task_by_vpid(pid);
1075         if (task)
1076                 get_task_struct(task);
1077         rcu_read_unlock();
1078
1079         if (!task)
1080                 return ERR_PTR(-ESRCH);
1081
1082         ctx = &task->perf_counter_ctx;
1083         ctx->task = task;
1084
1085         /* Reuse ptrace permission checks for now. */
1086         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1087                 put_context(ctx);
1088                 return ERR_PTR(-EACCES);
1089         }
1090
1091         return ctx;
1092 }
1093
1094 static void free_counter_rcu(struct rcu_head *head)
1095 {
1096         struct perf_counter *counter;
1097
1098         counter = container_of(head, struct perf_counter, rcu_head);
1099         kfree(counter);
1100 }
1101
1102 static void free_counter(struct perf_counter *counter)
1103 {
1104         if (counter->destroy)
1105                 counter->destroy(counter);
1106
1107         call_rcu(&counter->rcu_head, free_counter_rcu);
1108 }
1109
1110 /*
1111  * Called when the last reference to the file is gone.
1112  */
1113 static int perf_release(struct inode *inode, struct file *file)
1114 {
1115         struct perf_counter *counter = file->private_data;
1116         struct perf_counter_context *ctx = counter->ctx;
1117
1118         file->private_data = NULL;
1119
1120         mutex_lock(&ctx->mutex);
1121         mutex_lock(&counter->mutex);
1122
1123         perf_counter_remove_from_context(counter);
1124
1125         mutex_unlock(&counter->mutex);
1126         mutex_unlock(&ctx->mutex);
1127
1128         free_counter(counter);
1129         put_context(ctx);
1130
1131         return 0;
1132 }
1133
1134 /*
1135  * Read the performance counter - simple non blocking version for now
1136  */
1137 static ssize_t
1138 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1139 {
1140         u64 cntval;
1141
1142         if (count < sizeof(cntval))
1143                 return -EINVAL;
1144
1145         /*
1146          * Return end-of-file for a read on a counter that is in
1147          * error state (i.e. because it was pinned but it couldn't be
1148          * scheduled on to the CPU at some point).
1149          */
1150         if (counter->state == PERF_COUNTER_STATE_ERROR)
1151                 return 0;
1152
1153         mutex_lock(&counter->mutex);
1154         cntval = perf_counter_read(counter);
1155         mutex_unlock(&counter->mutex);
1156
1157         return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1158 }
1159
1160 static ssize_t
1161 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1162 {
1163         struct perf_counter *counter = file->private_data;
1164
1165         return perf_read_hw(counter, buf, count);
1166 }
1167
1168 static unsigned int perf_poll(struct file *file, poll_table *wait)
1169 {
1170         struct perf_counter *counter = file->private_data;
1171         struct perf_mmap_data *data;
1172         unsigned int events;
1173
1174         rcu_read_lock();
1175         data = rcu_dereference(counter->data);
1176         if (data)
1177                 events = atomic_xchg(&data->wakeup, 0);
1178         else
1179                 events = POLL_HUP;
1180         rcu_read_unlock();
1181
1182         poll_wait(file, &counter->waitq, wait);
1183
1184         return events;
1185 }
1186
1187 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1188 {
1189         struct perf_counter *counter = file->private_data;
1190         int err = 0;
1191
1192         switch (cmd) {
1193         case PERF_COUNTER_IOC_ENABLE:
1194                 perf_counter_enable_family(counter);
1195                 break;
1196         case PERF_COUNTER_IOC_DISABLE:
1197                 perf_counter_disable_family(counter);
1198                 break;
1199         default:
1200                 err = -ENOTTY;
1201         }
1202         return err;
1203 }
1204
1205 static void __perf_counter_update_userpage(struct perf_counter *counter,
1206                                            struct perf_mmap_data *data)
1207 {
1208         struct perf_counter_mmap_page *userpg = data->user_page;
1209
1210         /*
1211          * Disable preemption so as to not let the corresponding user-space
1212          * spin too long if we get preempted.
1213          */
1214         preempt_disable();
1215         ++userpg->lock;
1216         smp_wmb();
1217         userpg->index = counter->hw.idx;
1218         userpg->offset = atomic64_read(&counter->count);
1219         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1220                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1221
1222         userpg->data_head = atomic_read(&data->head);
1223         smp_wmb();
1224         ++userpg->lock;
1225         preempt_enable();
1226 }
1227
1228 void perf_counter_update_userpage(struct perf_counter *counter)
1229 {
1230         struct perf_mmap_data *data;
1231
1232         rcu_read_lock();
1233         data = rcu_dereference(counter->data);
1234         if (data)
1235                 __perf_counter_update_userpage(counter, data);
1236         rcu_read_unlock();
1237 }
1238
1239 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241         struct perf_counter *counter = vma->vm_file->private_data;
1242         struct perf_mmap_data *data;
1243         int ret = VM_FAULT_SIGBUS;
1244
1245         rcu_read_lock();
1246         data = rcu_dereference(counter->data);
1247         if (!data)
1248                 goto unlock;
1249
1250         if (vmf->pgoff == 0) {
1251                 vmf->page = virt_to_page(data->user_page);
1252         } else {
1253                 int nr = vmf->pgoff - 1;
1254
1255                 if ((unsigned)nr > data->nr_pages)
1256                         goto unlock;
1257
1258                 vmf->page = virt_to_page(data->data_pages[nr]);
1259         }
1260         get_page(vmf->page);
1261         ret = 0;
1262 unlock:
1263         rcu_read_unlock();
1264
1265         return ret;
1266 }
1267
1268 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1269 {
1270         struct perf_mmap_data *data;
1271         unsigned long size;
1272         int i;
1273
1274         WARN_ON(atomic_read(&counter->mmap_count));
1275
1276         size = sizeof(struct perf_mmap_data);
1277         size += nr_pages * sizeof(void *);
1278
1279         data = kzalloc(size, GFP_KERNEL);
1280         if (!data)
1281                 goto fail;
1282
1283         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1284         if (!data->user_page)
1285                 goto fail_user_page;
1286
1287         for (i = 0; i < nr_pages; i++) {
1288                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1289                 if (!data->data_pages[i])
1290                         goto fail_data_pages;
1291         }
1292
1293         data->nr_pages = nr_pages;
1294
1295         rcu_assign_pointer(counter->data, data);
1296
1297         return 0;
1298
1299 fail_data_pages:
1300         for (i--; i >= 0; i--)
1301                 free_page((unsigned long)data->data_pages[i]);
1302
1303         free_page((unsigned long)data->user_page);
1304
1305 fail_user_page:
1306         kfree(data);
1307
1308 fail:
1309         return -ENOMEM;
1310 }
1311
1312 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1313 {
1314         struct perf_mmap_data *data = container_of(rcu_head,
1315                         struct perf_mmap_data, rcu_head);
1316         int i;
1317
1318         free_page((unsigned long)data->user_page);
1319         for (i = 0; i < data->nr_pages; i++)
1320                 free_page((unsigned long)data->data_pages[i]);
1321         kfree(data);
1322 }
1323
1324 static void perf_mmap_data_free(struct perf_counter *counter)
1325 {
1326         struct perf_mmap_data *data = counter->data;
1327
1328         WARN_ON(atomic_read(&counter->mmap_count));
1329
1330         rcu_assign_pointer(counter->data, NULL);
1331         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1332 }
1333
1334 static void perf_mmap_open(struct vm_area_struct *vma)
1335 {
1336         struct perf_counter *counter = vma->vm_file->private_data;
1337
1338         atomic_inc(&counter->mmap_count);
1339 }
1340
1341 static void perf_mmap_close(struct vm_area_struct *vma)
1342 {
1343         struct perf_counter *counter = vma->vm_file->private_data;
1344
1345         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1346                                       &counter->mmap_mutex)) {
1347                 perf_mmap_data_free(counter);
1348                 mutex_unlock(&counter->mmap_mutex);
1349         }
1350 }
1351
1352 static struct vm_operations_struct perf_mmap_vmops = {
1353         .open = perf_mmap_open,
1354         .close = perf_mmap_close,
1355         .fault = perf_mmap_fault,
1356 };
1357
1358 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1359 {
1360         struct perf_counter *counter = file->private_data;
1361         unsigned long vma_size;
1362         unsigned long nr_pages;
1363         unsigned long locked, lock_limit;
1364         int ret = 0;
1365
1366         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1367                 return -EINVAL;
1368
1369         vma_size = vma->vm_end - vma->vm_start;
1370         nr_pages = (vma_size / PAGE_SIZE) - 1;
1371
1372         if (nr_pages == 0 || !is_power_of_2(nr_pages))
1373                 return -EINVAL;
1374
1375         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1376                 return -EINVAL;
1377
1378         if (vma->vm_pgoff != 0)
1379                 return -EINVAL;
1380
1381         locked = vma_size >>  PAGE_SHIFT;
1382         locked += vma->vm_mm->locked_vm;
1383
1384         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1385         lock_limit >>= PAGE_SHIFT;
1386
1387         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1388                 return -EPERM;
1389
1390         mutex_lock(&counter->mmap_mutex);
1391         if (atomic_inc_not_zero(&counter->mmap_count))
1392                 goto out;
1393
1394         WARN_ON(counter->data);
1395         ret = perf_mmap_data_alloc(counter, nr_pages);
1396         if (!ret)
1397                 atomic_set(&counter->mmap_count, 1);
1398 out:
1399         mutex_unlock(&counter->mmap_mutex);
1400
1401         vma->vm_flags &= ~VM_MAYWRITE;
1402         vma->vm_flags |= VM_RESERVED;
1403         vma->vm_ops = &perf_mmap_vmops;
1404
1405         return ret;
1406 }
1407
1408 static const struct file_operations perf_fops = {
1409         .release                = perf_release,
1410         .read                   = perf_read,
1411         .poll                   = perf_poll,
1412         .unlocked_ioctl         = perf_ioctl,
1413         .compat_ioctl           = perf_ioctl,
1414         .mmap                   = perf_mmap,
1415 };
1416
1417 /*
1418  * Output
1419  */
1420
1421 struct perf_output_handle {
1422         struct perf_counter     *counter;
1423         struct perf_mmap_data   *data;
1424         unsigned int            offset;
1425         unsigned int            head;
1426         int                     wakeup;
1427 };
1428
1429 static int perf_output_begin(struct perf_output_handle *handle,
1430                              struct perf_counter *counter, unsigned int size)
1431 {
1432         struct perf_mmap_data *data;
1433         unsigned int offset, head;
1434
1435         rcu_read_lock();
1436         data = rcu_dereference(counter->data);
1437         if (!data)
1438                 goto out;
1439
1440         if (!data->nr_pages)
1441                 goto out;
1442
1443         do {
1444                 offset = head = atomic_read(&data->head);
1445                 head += size;
1446         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1447
1448         handle->counter = counter;
1449         handle->data    = data;
1450         handle->offset  = offset;
1451         handle->head    = head;
1452         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1453
1454         return 0;
1455
1456 out:
1457         rcu_read_unlock();
1458
1459         return -ENOSPC;
1460 }
1461
1462 static void perf_output_copy(struct perf_output_handle *handle,
1463                              void *buf, unsigned int len)
1464 {
1465         unsigned int pages_mask;
1466         unsigned int offset;
1467         unsigned int size;
1468         void **pages;
1469
1470         offset          = handle->offset;
1471         pages_mask      = handle->data->nr_pages - 1;
1472         pages           = handle->data->data_pages;
1473
1474         do {
1475                 unsigned int page_offset;
1476                 int nr;
1477
1478                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1479                 page_offset = offset & (PAGE_SIZE - 1);
1480                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1481
1482                 memcpy(pages[nr] + page_offset, buf, size);
1483
1484                 len         -= size;
1485                 buf         += size;
1486                 offset      += size;
1487         } while (len);
1488
1489         handle->offset = offset;
1490
1491         WARN_ON_ONCE(handle->offset > handle->head);
1492 }
1493
1494 #define perf_output_put(handle, x) \
1495         perf_output_copy((handle), &(x), sizeof(x))
1496
1497 static void perf_output_end(struct perf_output_handle *handle, int nmi)
1498 {
1499         if (handle->wakeup) {
1500                 (void)atomic_xchg(&handle->data->wakeup, POLL_IN);
1501                 __perf_counter_update_userpage(handle->counter, handle->data);
1502                 if (nmi) {
1503                         handle->counter->wakeup_pending = 1;
1504                         set_perf_counter_pending();
1505                 } else
1506                         wake_up(&handle->counter->waitq);
1507         }
1508         rcu_read_unlock();
1509 }
1510
1511 static int perf_output_write(struct perf_counter *counter, int nmi,
1512                              void *buf, ssize_t size)
1513 {
1514         struct perf_output_handle handle;
1515         int ret;
1516
1517         ret = perf_output_begin(&handle, counter, size);
1518         if (ret)
1519                 goto out;
1520
1521         perf_output_copy(&handle, buf, size);
1522         perf_output_end(&handle, nmi);
1523
1524 out:
1525         return ret;
1526 }
1527
1528 static void perf_output_simple(struct perf_counter *counter,
1529                                int nmi, struct pt_regs *regs)
1530 {
1531         struct {
1532                 struct perf_event_header header;
1533                 u64 ip;
1534         } event;
1535
1536         event.header.type = PERF_EVENT_IP;
1537         event.header.size = sizeof(event);
1538         event.ip = instruction_pointer(regs);
1539
1540         perf_output_write(counter, nmi, &event, sizeof(event));
1541 }
1542
1543 static void perf_output_group(struct perf_counter *counter, int nmi)
1544 {
1545         struct perf_output_handle handle;
1546         struct perf_event_header header;
1547         struct perf_counter *leader, *sub;
1548         unsigned int size;
1549         struct {
1550                 u64 event;
1551                 u64 counter;
1552         } entry;
1553         int ret;
1554
1555         size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1556
1557         ret = perf_output_begin(&handle, counter, size);
1558         if (ret)
1559                 return;
1560
1561         header.type = PERF_EVENT_GROUP;
1562         header.size = size;
1563
1564         perf_output_put(&handle, header);
1565
1566         leader = counter->group_leader;
1567         list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1568                 if (sub != counter)
1569                         sub->hw_ops->read(sub);
1570
1571                 entry.event = sub->hw_event.config;
1572                 entry.counter = atomic64_read(&sub->count);
1573
1574                 perf_output_put(&handle, entry);
1575         }
1576
1577         perf_output_end(&handle, nmi);
1578 }
1579
1580 void perf_counter_output(struct perf_counter *counter,
1581                          int nmi, struct pt_regs *regs)
1582 {
1583         switch (counter->hw_event.record_type) {
1584         case PERF_RECORD_SIMPLE:
1585                 return;
1586
1587         case PERF_RECORD_IRQ:
1588                 perf_output_simple(counter, nmi, regs);
1589                 break;
1590
1591         case PERF_RECORD_GROUP:
1592                 perf_output_group(counter, nmi);
1593                 break;
1594         }
1595 }
1596
1597 /*
1598  * Generic software counter infrastructure
1599  */
1600
1601 static void perf_swcounter_update(struct perf_counter *counter)
1602 {
1603         struct hw_perf_counter *hwc = &counter->hw;
1604         u64 prev, now;
1605         s64 delta;
1606
1607 again:
1608         prev = atomic64_read(&hwc->prev_count);
1609         now = atomic64_read(&hwc->count);
1610         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1611                 goto again;
1612
1613         delta = now - prev;
1614
1615         atomic64_add(delta, &counter->count);
1616         atomic64_sub(delta, &hwc->period_left);
1617 }
1618
1619 static void perf_swcounter_set_period(struct perf_counter *counter)
1620 {
1621         struct hw_perf_counter *hwc = &counter->hw;
1622         s64 left = atomic64_read(&hwc->period_left);
1623         s64 period = hwc->irq_period;
1624
1625         if (unlikely(left <= -period)) {
1626                 left = period;
1627                 atomic64_set(&hwc->period_left, left);
1628         }
1629
1630         if (unlikely(left <= 0)) {
1631                 left += period;
1632                 atomic64_add(period, &hwc->period_left);
1633         }
1634
1635         atomic64_set(&hwc->prev_count, -left);
1636         atomic64_set(&hwc->count, -left);
1637 }
1638
1639 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1640 {
1641         struct perf_counter *counter;
1642         struct pt_regs *regs;
1643
1644         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1645         counter->hw_ops->read(counter);
1646
1647         regs = get_irq_regs();
1648         /*
1649          * In case we exclude kernel IPs or are somehow not in interrupt
1650          * context, provide the next best thing, the user IP.
1651          */
1652         if ((counter->hw_event.exclude_kernel || !regs) &&
1653                         !counter->hw_event.exclude_user)
1654                 regs = task_pt_regs(current);
1655
1656         if (regs)
1657                 perf_counter_output(counter, 0, regs);
1658
1659         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1660
1661         return HRTIMER_RESTART;
1662 }
1663
1664 static void perf_swcounter_overflow(struct perf_counter *counter,
1665                                     int nmi, struct pt_regs *regs)
1666 {
1667         perf_swcounter_update(counter);
1668         perf_swcounter_set_period(counter);
1669         perf_counter_output(counter, nmi, regs);
1670 }
1671
1672 static int perf_swcounter_match(struct perf_counter *counter,
1673                                 enum perf_event_types type,
1674                                 u32 event, struct pt_regs *regs)
1675 {
1676         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1677                 return 0;
1678
1679         if (perf_event_raw(&counter->hw_event))
1680                 return 0;
1681
1682         if (perf_event_type(&counter->hw_event) != type)
1683                 return 0;
1684
1685         if (perf_event_id(&counter->hw_event) != event)
1686                 return 0;
1687
1688         if (counter->hw_event.exclude_user && user_mode(regs))
1689                 return 0;
1690
1691         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1692                 return 0;
1693
1694         return 1;
1695 }
1696
1697 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1698                                int nmi, struct pt_regs *regs)
1699 {
1700         int neg = atomic64_add_negative(nr, &counter->hw.count);
1701         if (counter->hw.irq_period && !neg)
1702                 perf_swcounter_overflow(counter, nmi, regs);
1703 }
1704
1705 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1706                                      enum perf_event_types type, u32 event,
1707                                      u64 nr, int nmi, struct pt_regs *regs)
1708 {
1709         struct perf_counter *counter;
1710
1711         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1712                 return;
1713
1714         rcu_read_lock();
1715         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1716                 if (perf_swcounter_match(counter, type, event, regs))
1717                         perf_swcounter_add(counter, nr, nmi, regs);
1718         }
1719         rcu_read_unlock();
1720 }
1721
1722 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1723 {
1724         if (in_nmi())
1725                 return &cpuctx->recursion[3];
1726
1727         if (in_irq())
1728                 return &cpuctx->recursion[2];
1729
1730         if (in_softirq())
1731                 return &cpuctx->recursion[1];
1732
1733         return &cpuctx->recursion[0];
1734 }
1735
1736 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1737                                    u64 nr, int nmi, struct pt_regs *regs)
1738 {
1739         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1740         int *recursion = perf_swcounter_recursion_context(cpuctx);
1741
1742         if (*recursion)
1743                 goto out;
1744
1745         (*recursion)++;
1746         barrier();
1747
1748         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1749         if (cpuctx->task_ctx) {
1750                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1751                                 nr, nmi, regs);
1752         }
1753
1754         barrier();
1755         (*recursion)--;
1756
1757 out:
1758         put_cpu_var(perf_cpu_context);
1759 }
1760
1761 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1762 {
1763         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1764 }
1765
1766 static void perf_swcounter_read(struct perf_counter *counter)
1767 {
1768         perf_swcounter_update(counter);
1769 }
1770
1771 static int perf_swcounter_enable(struct perf_counter *counter)
1772 {
1773         perf_swcounter_set_period(counter);
1774         return 0;
1775 }
1776
1777 static void perf_swcounter_disable(struct perf_counter *counter)
1778 {
1779         perf_swcounter_update(counter);
1780 }
1781
1782 static const struct hw_perf_counter_ops perf_ops_generic = {
1783         .enable         = perf_swcounter_enable,
1784         .disable        = perf_swcounter_disable,
1785         .read           = perf_swcounter_read,
1786 };
1787
1788 /*
1789  * Software counter: cpu wall time clock
1790  */
1791
1792 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1793 {
1794         int cpu = raw_smp_processor_id();
1795         s64 prev;
1796         u64 now;
1797
1798         now = cpu_clock(cpu);
1799         prev = atomic64_read(&counter->hw.prev_count);
1800         atomic64_set(&counter->hw.prev_count, now);
1801         atomic64_add(now - prev, &counter->count);
1802 }
1803
1804 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1805 {
1806         struct hw_perf_counter *hwc = &counter->hw;
1807         int cpu = raw_smp_processor_id();
1808
1809         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1810         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1811         hwc->hrtimer.function = perf_swcounter_hrtimer;
1812         if (hwc->irq_period) {
1813                 __hrtimer_start_range_ns(&hwc->hrtimer,
1814                                 ns_to_ktime(hwc->irq_period), 0,
1815                                 HRTIMER_MODE_REL, 0);
1816         }
1817
1818         return 0;
1819 }
1820
1821 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1822 {
1823         hrtimer_cancel(&counter->hw.hrtimer);
1824         cpu_clock_perf_counter_update(counter);
1825 }
1826
1827 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1828 {
1829         cpu_clock_perf_counter_update(counter);
1830 }
1831
1832 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1833         .enable         = cpu_clock_perf_counter_enable,
1834         .disable        = cpu_clock_perf_counter_disable,
1835         .read           = cpu_clock_perf_counter_read,
1836 };
1837
1838 /*
1839  * Software counter: task time clock
1840  */
1841
1842 /*
1843  * Called from within the scheduler:
1844  */
1845 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1846 {
1847         struct task_struct *curr = counter->task;
1848         u64 delta;
1849
1850         delta = __task_delta_exec(curr, update);
1851
1852         return curr->se.sum_exec_runtime + delta;
1853 }
1854
1855 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1856 {
1857         u64 prev;
1858         s64 delta;
1859
1860         prev = atomic64_read(&counter->hw.prev_count);
1861
1862         atomic64_set(&counter->hw.prev_count, now);
1863
1864         delta = now - prev;
1865
1866         atomic64_add(delta, &counter->count);
1867 }
1868
1869 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1870 {
1871         struct hw_perf_counter *hwc = &counter->hw;
1872
1873         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1874         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1875         hwc->hrtimer.function = perf_swcounter_hrtimer;
1876         if (hwc->irq_period) {
1877                 __hrtimer_start_range_ns(&hwc->hrtimer,
1878                                 ns_to_ktime(hwc->irq_period), 0,
1879                                 HRTIMER_MODE_REL, 0);
1880         }
1881
1882         return 0;
1883 }
1884
1885 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1886 {
1887         hrtimer_cancel(&counter->hw.hrtimer);
1888         task_clock_perf_counter_update(counter,
1889                         task_clock_perf_counter_val(counter, 0));
1890 }
1891
1892 static void task_clock_perf_counter_read(struct perf_counter *counter)
1893 {
1894         task_clock_perf_counter_update(counter,
1895                         task_clock_perf_counter_val(counter, 1));
1896 }
1897
1898 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1899         .enable         = task_clock_perf_counter_enable,
1900         .disable        = task_clock_perf_counter_disable,
1901         .read           = task_clock_perf_counter_read,
1902 };
1903
1904 /*
1905  * Software counter: cpu migrations
1906  */
1907
1908 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1909 {
1910         struct task_struct *curr = counter->ctx->task;
1911
1912         if (curr)
1913                 return curr->se.nr_migrations;
1914         return cpu_nr_migrations(smp_processor_id());
1915 }
1916
1917 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1918 {
1919         u64 prev, now;
1920         s64 delta;
1921
1922         prev = atomic64_read(&counter->hw.prev_count);
1923         now = get_cpu_migrations(counter);
1924
1925         atomic64_set(&counter->hw.prev_count, now);
1926
1927         delta = now - prev;
1928
1929         atomic64_add(delta, &counter->count);
1930 }
1931
1932 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1933 {
1934         cpu_migrations_perf_counter_update(counter);
1935 }
1936
1937 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1938 {
1939         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1940                 atomic64_set(&counter->hw.prev_count,
1941                              get_cpu_migrations(counter));
1942         return 0;
1943 }
1944
1945 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1946 {
1947         cpu_migrations_perf_counter_update(counter);
1948 }
1949
1950 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1951         .enable         = cpu_migrations_perf_counter_enable,
1952         .disable        = cpu_migrations_perf_counter_disable,
1953         .read           = cpu_migrations_perf_counter_read,
1954 };
1955
1956 #ifdef CONFIG_EVENT_PROFILE
1957 void perf_tpcounter_event(int event_id)
1958 {
1959         struct pt_regs *regs = get_irq_regs();
1960
1961         if (!regs)
1962                 regs = task_pt_regs(current);
1963
1964         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1965 }
1966
1967 extern int ftrace_profile_enable(int);
1968 extern void ftrace_profile_disable(int);
1969
1970 static void tp_perf_counter_destroy(struct perf_counter *counter)
1971 {
1972         ftrace_profile_disable(perf_event_id(&counter->hw_event));
1973 }
1974
1975 static const struct hw_perf_counter_ops *
1976 tp_perf_counter_init(struct perf_counter *counter)
1977 {
1978         int event_id = perf_event_id(&counter->hw_event);
1979         int ret;
1980
1981         ret = ftrace_profile_enable(event_id);
1982         if (ret)
1983                 return NULL;
1984
1985         counter->destroy = tp_perf_counter_destroy;
1986         counter->hw.irq_period = counter->hw_event.irq_period;
1987
1988         return &perf_ops_generic;
1989 }
1990 #else
1991 static const struct hw_perf_counter_ops *
1992 tp_perf_counter_init(struct perf_counter *counter)
1993 {
1994         return NULL;
1995 }
1996 #endif
1997
1998 static const struct hw_perf_counter_ops *
1999 sw_perf_counter_init(struct perf_counter *counter)
2000 {
2001         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2002         const struct hw_perf_counter_ops *hw_ops = NULL;
2003         struct hw_perf_counter *hwc = &counter->hw;
2004
2005         /*
2006          * Software counters (currently) can't in general distinguish
2007          * between user, kernel and hypervisor events.
2008          * However, context switches and cpu migrations are considered
2009          * to be kernel events, and page faults are never hypervisor
2010          * events.
2011          */
2012         switch (perf_event_id(&counter->hw_event)) {
2013         case PERF_COUNT_CPU_CLOCK:
2014                 hw_ops = &perf_ops_cpu_clock;
2015
2016                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2017                         hw_event->irq_period = 10000;
2018                 break;
2019         case PERF_COUNT_TASK_CLOCK:
2020                 /*
2021                  * If the user instantiates this as a per-cpu counter,
2022                  * use the cpu_clock counter instead.
2023                  */
2024                 if (counter->ctx->task)
2025                         hw_ops = &perf_ops_task_clock;
2026                 else
2027                         hw_ops = &perf_ops_cpu_clock;
2028
2029                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2030                         hw_event->irq_period = 10000;
2031                 break;
2032         case PERF_COUNT_PAGE_FAULTS:
2033         case PERF_COUNT_PAGE_FAULTS_MIN:
2034         case PERF_COUNT_PAGE_FAULTS_MAJ:
2035         case PERF_COUNT_CONTEXT_SWITCHES:
2036                 hw_ops = &perf_ops_generic;
2037                 break;
2038         case PERF_COUNT_CPU_MIGRATIONS:
2039                 if (!counter->hw_event.exclude_kernel)
2040                         hw_ops = &perf_ops_cpu_migrations;
2041                 break;
2042         }
2043
2044         if (hw_ops)
2045                 hwc->irq_period = hw_event->irq_period;
2046
2047         return hw_ops;
2048 }
2049
2050 /*
2051  * Allocate and initialize a counter structure
2052  */
2053 static struct perf_counter *
2054 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2055                    int cpu,
2056                    struct perf_counter_context *ctx,
2057                    struct perf_counter *group_leader,
2058                    gfp_t gfpflags)
2059 {
2060         const struct hw_perf_counter_ops *hw_ops;
2061         struct perf_counter *counter;
2062
2063         counter = kzalloc(sizeof(*counter), gfpflags);
2064         if (!counter)
2065                 return NULL;
2066
2067         /*
2068          * Single counters are their own group leaders, with an
2069          * empty sibling list:
2070          */
2071         if (!group_leader)
2072                 group_leader = counter;
2073
2074         mutex_init(&counter->mutex);
2075         INIT_LIST_HEAD(&counter->list_entry);
2076         INIT_LIST_HEAD(&counter->event_entry);
2077         INIT_LIST_HEAD(&counter->sibling_list);
2078         init_waitqueue_head(&counter->waitq);
2079
2080         mutex_init(&counter->mmap_mutex);
2081
2082         INIT_LIST_HEAD(&counter->child_list);
2083
2084         counter->cpu                    = cpu;
2085         counter->hw_event               = *hw_event;
2086         counter->wakeup_pending         = 0;
2087         counter->group_leader           = group_leader;
2088         counter->hw_ops                 = NULL;
2089         counter->ctx                    = ctx;
2090
2091         counter->state = PERF_COUNTER_STATE_INACTIVE;
2092         if (hw_event->disabled)
2093                 counter->state = PERF_COUNTER_STATE_OFF;
2094
2095         hw_ops = NULL;
2096
2097         if (perf_event_raw(hw_event)) {
2098                 hw_ops = hw_perf_counter_init(counter);
2099                 goto done;
2100         }
2101
2102         switch (perf_event_type(hw_event)) {
2103         case PERF_TYPE_HARDWARE:
2104                 hw_ops = hw_perf_counter_init(counter);
2105                 break;
2106
2107         case PERF_TYPE_SOFTWARE:
2108                 hw_ops = sw_perf_counter_init(counter);
2109                 break;
2110
2111         case PERF_TYPE_TRACEPOINT:
2112                 hw_ops = tp_perf_counter_init(counter);
2113                 break;
2114         }
2115
2116         if (!hw_ops) {
2117                 kfree(counter);
2118                 return NULL;
2119         }
2120 done:
2121         counter->hw_ops = hw_ops;
2122
2123         return counter;
2124 }
2125
2126 /**
2127  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2128  *
2129  * @hw_event_uptr:      event type attributes for monitoring/sampling
2130  * @pid:                target pid
2131  * @cpu:                target cpu
2132  * @group_fd:           group leader counter fd
2133  */
2134 SYSCALL_DEFINE5(perf_counter_open,
2135                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2136                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2137 {
2138         struct perf_counter *counter, *group_leader;
2139         struct perf_counter_hw_event hw_event;
2140         struct perf_counter_context *ctx;
2141         struct file *counter_file = NULL;
2142         struct file *group_file = NULL;
2143         int fput_needed = 0;
2144         int fput_needed2 = 0;
2145         int ret;
2146
2147         /* for future expandability... */
2148         if (flags)
2149                 return -EINVAL;
2150
2151         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2152                 return -EFAULT;
2153
2154         /*
2155          * Get the target context (task or percpu):
2156          */
2157         ctx = find_get_context(pid, cpu);
2158         if (IS_ERR(ctx))
2159                 return PTR_ERR(ctx);
2160
2161         /*
2162          * Look up the group leader (we will attach this counter to it):
2163          */
2164         group_leader = NULL;
2165         if (group_fd != -1) {
2166                 ret = -EINVAL;
2167                 group_file = fget_light(group_fd, &fput_needed);
2168                 if (!group_file)
2169                         goto err_put_context;
2170                 if (group_file->f_op != &perf_fops)
2171                         goto err_put_context;
2172
2173                 group_leader = group_file->private_data;
2174                 /*
2175                  * Do not allow a recursive hierarchy (this new sibling
2176                  * becoming part of another group-sibling):
2177                  */
2178                 if (group_leader->group_leader != group_leader)
2179                         goto err_put_context;
2180                 /*
2181                  * Do not allow to attach to a group in a different
2182                  * task or CPU context:
2183                  */
2184                 if (group_leader->ctx != ctx)
2185                         goto err_put_context;
2186                 /*
2187                  * Only a group leader can be exclusive or pinned
2188                  */
2189                 if (hw_event.exclusive || hw_event.pinned)
2190                         goto err_put_context;
2191         }
2192
2193         ret = -EINVAL;
2194         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2195                                      GFP_KERNEL);
2196         if (!counter)
2197                 goto err_put_context;
2198
2199         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2200         if (ret < 0)
2201                 goto err_free_put_context;
2202
2203         counter_file = fget_light(ret, &fput_needed2);
2204         if (!counter_file)
2205                 goto err_free_put_context;
2206
2207         counter->filp = counter_file;
2208         mutex_lock(&ctx->mutex);
2209         perf_install_in_context(ctx, counter, cpu);
2210         mutex_unlock(&ctx->mutex);
2211
2212         fput_light(counter_file, fput_needed2);
2213
2214 out_fput:
2215         fput_light(group_file, fput_needed);
2216
2217         return ret;
2218
2219 err_free_put_context:
2220         kfree(counter);
2221
2222 err_put_context:
2223         put_context(ctx);
2224
2225         goto out_fput;
2226 }
2227
2228 /*
2229  * Initialize the perf_counter context in a task_struct:
2230  */
2231 static void
2232 __perf_counter_init_context(struct perf_counter_context *ctx,
2233                             struct task_struct *task)
2234 {
2235         memset(ctx, 0, sizeof(*ctx));
2236         spin_lock_init(&ctx->lock);
2237         mutex_init(&ctx->mutex);
2238         INIT_LIST_HEAD(&ctx->counter_list);
2239         INIT_LIST_HEAD(&ctx->event_list);
2240         ctx->task = task;
2241 }
2242
2243 /*
2244  * inherit a counter from parent task to child task:
2245  */
2246 static struct perf_counter *
2247 inherit_counter(struct perf_counter *parent_counter,
2248               struct task_struct *parent,
2249               struct perf_counter_context *parent_ctx,
2250               struct task_struct *child,
2251               struct perf_counter *group_leader,
2252               struct perf_counter_context *child_ctx)
2253 {
2254         struct perf_counter *child_counter;
2255
2256         /*
2257          * Instead of creating recursive hierarchies of counters,
2258          * we link inherited counters back to the original parent,
2259          * which has a filp for sure, which we use as the reference
2260          * count:
2261          */
2262         if (parent_counter->parent)
2263                 parent_counter = parent_counter->parent;
2264
2265         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2266                                            parent_counter->cpu, child_ctx,
2267                                            group_leader, GFP_KERNEL);
2268         if (!child_counter)
2269                 return NULL;
2270
2271         /*
2272          * Link it up in the child's context:
2273          */
2274         child_counter->task = child;
2275         list_add_counter(child_counter, child_ctx);
2276         child_ctx->nr_counters++;
2277
2278         child_counter->parent = parent_counter;
2279         /*
2280          * inherit into child's child as well:
2281          */
2282         child_counter->hw_event.inherit = 1;
2283
2284         /*
2285          * Get a reference to the parent filp - we will fput it
2286          * when the child counter exits. This is safe to do because
2287          * we are in the parent and we know that the filp still
2288          * exists and has a nonzero count:
2289          */
2290         atomic_long_inc(&parent_counter->filp->f_count);
2291
2292         /*
2293          * Link this into the parent counter's child list
2294          */
2295         mutex_lock(&parent_counter->mutex);
2296         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2297
2298         /*
2299          * Make the child state follow the state of the parent counter,
2300          * not its hw_event.disabled bit.  We hold the parent's mutex,
2301          * so we won't race with perf_counter_{en,dis}able_family.
2302          */
2303         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2304                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2305         else
2306                 child_counter->state = PERF_COUNTER_STATE_OFF;
2307
2308         mutex_unlock(&parent_counter->mutex);
2309
2310         return child_counter;
2311 }
2312
2313 static int inherit_group(struct perf_counter *parent_counter,
2314               struct task_struct *parent,
2315               struct perf_counter_context *parent_ctx,
2316               struct task_struct *child,
2317               struct perf_counter_context *child_ctx)
2318 {
2319         struct perf_counter *leader;
2320         struct perf_counter *sub;
2321
2322         leader = inherit_counter(parent_counter, parent, parent_ctx,
2323                                  child, NULL, child_ctx);
2324         if (!leader)
2325                 return -ENOMEM;
2326         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2327                 if (!inherit_counter(sub, parent, parent_ctx,
2328                                      child, leader, child_ctx))
2329                         return -ENOMEM;
2330         }
2331         return 0;
2332 }
2333
2334 static void sync_child_counter(struct perf_counter *child_counter,
2335                                struct perf_counter *parent_counter)
2336 {
2337         u64 parent_val, child_val;
2338
2339         parent_val = atomic64_read(&parent_counter->count);
2340         child_val = atomic64_read(&child_counter->count);
2341
2342         /*
2343          * Add back the child's count to the parent's count:
2344          */
2345         atomic64_add(child_val, &parent_counter->count);
2346
2347         /*
2348          * Remove this counter from the parent's list
2349          */
2350         mutex_lock(&parent_counter->mutex);
2351         list_del_init(&child_counter->child_list);
2352         mutex_unlock(&parent_counter->mutex);
2353
2354         /*
2355          * Release the parent counter, if this was the last
2356          * reference to it.
2357          */
2358         fput(parent_counter->filp);
2359 }
2360
2361 static void
2362 __perf_counter_exit_task(struct task_struct *child,
2363                          struct perf_counter *child_counter,
2364                          struct perf_counter_context *child_ctx)
2365 {
2366         struct perf_counter *parent_counter;
2367         struct perf_counter *sub, *tmp;
2368
2369         /*
2370          * If we do not self-reap then we have to wait for the
2371          * child task to unschedule (it will happen for sure),
2372          * so that its counter is at its final count. (This
2373          * condition triggers rarely - child tasks usually get
2374          * off their CPU before the parent has a chance to
2375          * get this far into the reaping action)
2376          */
2377         if (child != current) {
2378                 wait_task_inactive(child, 0);
2379                 list_del_init(&child_counter->list_entry);
2380         } else {
2381                 struct perf_cpu_context *cpuctx;
2382                 unsigned long flags;
2383                 u64 perf_flags;
2384
2385                 /*
2386                  * Disable and unlink this counter.
2387                  *
2388                  * Be careful about zapping the list - IRQ/NMI context
2389                  * could still be processing it:
2390                  */
2391                 curr_rq_lock_irq_save(&flags);
2392                 perf_flags = hw_perf_save_disable();
2393
2394                 cpuctx = &__get_cpu_var(perf_cpu_context);
2395
2396                 group_sched_out(child_counter, cpuctx, child_ctx);
2397
2398                 list_del_init(&child_counter->list_entry);
2399
2400                 child_ctx->nr_counters--;
2401
2402                 hw_perf_restore(perf_flags);
2403                 curr_rq_unlock_irq_restore(&flags);
2404         }
2405
2406         parent_counter = child_counter->parent;
2407         /*
2408          * It can happen that parent exits first, and has counters
2409          * that are still around due to the child reference. These
2410          * counters need to be zapped - but otherwise linger.
2411          */
2412         if (parent_counter) {
2413                 sync_child_counter(child_counter, parent_counter);
2414                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2415                                          list_entry) {
2416                         if (sub->parent) {
2417                                 sync_child_counter(sub, sub->parent);
2418                                 free_counter(sub);
2419                         }
2420                 }
2421                 free_counter(child_counter);
2422         }
2423 }
2424
2425 /*
2426  * When a child task exits, feed back counter values to parent counters.
2427  *
2428  * Note: we may be running in child context, but the PID is not hashed
2429  * anymore so new counters will not be added.
2430  */
2431 void perf_counter_exit_task(struct task_struct *child)
2432 {
2433         struct perf_counter *child_counter, *tmp;
2434         struct perf_counter_context *child_ctx;
2435
2436         child_ctx = &child->perf_counter_ctx;
2437
2438         if (likely(!child_ctx->nr_counters))
2439                 return;
2440
2441         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2442                                  list_entry)
2443                 __perf_counter_exit_task(child, child_counter, child_ctx);
2444 }
2445
2446 /*
2447  * Initialize the perf_counter context in task_struct
2448  */
2449 void perf_counter_init_task(struct task_struct *child)
2450 {
2451         struct perf_counter_context *child_ctx, *parent_ctx;
2452         struct perf_counter *counter;
2453         struct task_struct *parent = current;
2454
2455         child_ctx  =  &child->perf_counter_ctx;
2456         parent_ctx = &parent->perf_counter_ctx;
2457
2458         __perf_counter_init_context(child_ctx, child);
2459
2460         /*
2461          * This is executed from the parent task context, so inherit
2462          * counters that have been marked for cloning:
2463          */
2464
2465         if (likely(!parent_ctx->nr_counters))
2466                 return;
2467
2468         /*
2469          * Lock the parent list. No need to lock the child - not PID
2470          * hashed yet and not running, so nobody can access it.
2471          */
2472         mutex_lock(&parent_ctx->mutex);
2473
2474         /*
2475          * We dont have to disable NMIs - we are only looking at
2476          * the list, not manipulating it:
2477          */
2478         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2479                 if (!counter->hw_event.inherit)
2480                         continue;
2481
2482                 if (inherit_group(counter, parent,
2483                                   parent_ctx, child, child_ctx))
2484                         break;
2485         }
2486
2487         mutex_unlock(&parent_ctx->mutex);
2488 }
2489
2490 static void __cpuinit perf_counter_init_cpu(int cpu)
2491 {
2492         struct perf_cpu_context *cpuctx;
2493
2494         cpuctx = &per_cpu(perf_cpu_context, cpu);
2495         __perf_counter_init_context(&cpuctx->ctx, NULL);
2496
2497         mutex_lock(&perf_resource_mutex);
2498         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2499         mutex_unlock(&perf_resource_mutex);
2500
2501         hw_perf_counter_setup(cpu);
2502 }
2503
2504 #ifdef CONFIG_HOTPLUG_CPU
2505 static void __perf_counter_exit_cpu(void *info)
2506 {
2507         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2508         struct perf_counter_context *ctx = &cpuctx->ctx;
2509         struct perf_counter *counter, *tmp;
2510
2511         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2512                 __perf_counter_remove_from_context(counter);
2513 }
2514 static void perf_counter_exit_cpu(int cpu)
2515 {
2516         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2517         struct perf_counter_context *ctx = &cpuctx->ctx;
2518
2519         mutex_lock(&ctx->mutex);
2520         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2521         mutex_unlock(&ctx->mutex);
2522 }
2523 #else
2524 static inline void perf_counter_exit_cpu(int cpu) { }
2525 #endif
2526
2527 static int __cpuinit
2528 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2529 {
2530         unsigned int cpu = (long)hcpu;
2531
2532         switch (action) {
2533
2534         case CPU_UP_PREPARE:
2535         case CPU_UP_PREPARE_FROZEN:
2536                 perf_counter_init_cpu(cpu);
2537                 break;
2538
2539         case CPU_DOWN_PREPARE:
2540         case CPU_DOWN_PREPARE_FROZEN:
2541                 perf_counter_exit_cpu(cpu);
2542                 break;
2543
2544         default:
2545                 break;
2546         }
2547
2548         return NOTIFY_OK;
2549 }
2550
2551 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2552         .notifier_call          = perf_cpu_notify,
2553 };
2554
2555 static int __init perf_counter_init(void)
2556 {
2557         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2558                         (void *)(long)smp_processor_id());
2559         register_cpu_notifier(&perf_cpu_nb);
2560
2561         return 0;
2562 }
2563 early_initcall(perf_counter_init);
2564
2565 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2566 {
2567         return sprintf(buf, "%d\n", perf_reserved_percpu);
2568 }
2569
2570 static ssize_t
2571 perf_set_reserve_percpu(struct sysdev_class *class,
2572                         const char *buf,
2573                         size_t count)
2574 {
2575         struct perf_cpu_context *cpuctx;
2576         unsigned long val;
2577         int err, cpu, mpt;
2578
2579         err = strict_strtoul(buf, 10, &val);
2580         if (err)
2581                 return err;
2582         if (val > perf_max_counters)
2583                 return -EINVAL;
2584
2585         mutex_lock(&perf_resource_mutex);
2586         perf_reserved_percpu = val;
2587         for_each_online_cpu(cpu) {
2588                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2589                 spin_lock_irq(&cpuctx->ctx.lock);
2590                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2591                           perf_max_counters - perf_reserved_percpu);
2592                 cpuctx->max_pertask = mpt;
2593                 spin_unlock_irq(&cpuctx->ctx.lock);
2594         }
2595         mutex_unlock(&perf_resource_mutex);
2596
2597         return count;
2598 }
2599
2600 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2601 {
2602         return sprintf(buf, "%d\n", perf_overcommit);
2603 }
2604
2605 static ssize_t
2606 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2607 {
2608         unsigned long val;
2609         int err;
2610
2611         err = strict_strtoul(buf, 10, &val);
2612         if (err)
2613                 return err;
2614         if (val > 1)
2615                 return -EINVAL;
2616
2617         mutex_lock(&perf_resource_mutex);
2618         perf_overcommit = val;
2619         mutex_unlock(&perf_resource_mutex);
2620
2621         return count;
2622 }
2623
2624 static SYSDEV_CLASS_ATTR(
2625                                 reserve_percpu,
2626                                 0644,
2627                                 perf_show_reserve_percpu,
2628                                 perf_set_reserve_percpu
2629                         );
2630
2631 static SYSDEV_CLASS_ATTR(
2632                                 overcommit,
2633                                 0644,
2634                                 perf_show_overcommit,
2635                                 perf_set_overcommit
2636                         );
2637
2638 static struct attribute *perfclass_attrs[] = {
2639         &attr_reserve_percpu.attr,
2640         &attr_overcommit.attr,
2641         NULL
2642 };
2643
2644 static struct attribute_group perfclass_attr_group = {
2645         .attrs                  = perfclass_attrs,
2646         .name                   = "perf_counters",
2647 };
2648
2649 static int __init perf_counter_sysfs_init(void)
2650 {
2651         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2652                                   &perfclass_attr_group);
2653 }
2654 device_initcall(perf_counter_sysfs_init);