Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47  * perf counter paranoia level:
48  *  0 - not paranoid
49  *  1 - disallow cpu counters to unpriv
50  *  2 - disallow kernel profiling to unpriv
51  */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56         return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61         return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67  * max perf counter sample rate
68  */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74  * Lock for (sysadmin-configurable) counter reservations:
75  */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79  * Architecture provided APIs - weak aliases:
80  */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83         return NULL;
84 }
85
86 void __weak hw_perf_disable(void)               { barrier(); }
87 void __weak hw_perf_enable(void)                { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93                struct perf_cpu_context *cpuctx,
94                struct perf_counter_context *ctx, int cpu)
95 {
96         return 0;
97 }
98
99 void __weak perf_counter_print_debug(void)      { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105         __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110         return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115         __perf_disable();
116         hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121         if (__perf_enable())
122                 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132         struct perf_counter_context *ctx;
133
134         ctx = container_of(head, struct perf_counter_context, rcu_head);
135         kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140         if (atomic_dec_and_test(&ctx->refcount)) {
141                 if (ctx->parent_ctx)
142                         put_ctx(ctx->parent_ctx);
143                 if (ctx->task)
144                         put_task_struct(ctx->task);
145                 call_rcu(&ctx->rcu_head, free_ctx);
146         }
147 }
148
149 static void unclone_ctx(struct perf_counter_context *ctx)
150 {
151         if (ctx->parent_ctx) {
152                 put_ctx(ctx->parent_ctx);
153                 ctx->parent_ctx = NULL;
154         }
155 }
156
157 /*
158  * If we inherit counters we want to return the parent counter id
159  * to userspace.
160  */
161 static u64 primary_counter_id(struct perf_counter *counter)
162 {
163         u64 id = counter->id;
164
165         if (counter->parent)
166                 id = counter->parent->id;
167
168         return id;
169 }
170
171 /*
172  * Get the perf_counter_context for a task and lock it.
173  * This has to cope with with the fact that until it is locked,
174  * the context could get moved to another task.
175  */
176 static struct perf_counter_context *
177 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
178 {
179         struct perf_counter_context *ctx;
180
181         rcu_read_lock();
182  retry:
183         ctx = rcu_dereference(task->perf_counter_ctxp);
184         if (ctx) {
185                 /*
186                  * If this context is a clone of another, it might
187                  * get swapped for another underneath us by
188                  * perf_counter_task_sched_out, though the
189                  * rcu_read_lock() protects us from any context
190                  * getting freed.  Lock the context and check if it
191                  * got swapped before we could get the lock, and retry
192                  * if so.  If we locked the right context, then it
193                  * can't get swapped on us any more.
194                  */
195                 spin_lock_irqsave(&ctx->lock, *flags);
196                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
197                         spin_unlock_irqrestore(&ctx->lock, *flags);
198                         goto retry;
199                 }
200
201                 if (!atomic_inc_not_zero(&ctx->refcount)) {
202                         spin_unlock_irqrestore(&ctx->lock, *flags);
203                         ctx = NULL;
204                 }
205         }
206         rcu_read_unlock();
207         return ctx;
208 }
209
210 /*
211  * Get the context for a task and increment its pin_count so it
212  * can't get swapped to another task.  This also increments its
213  * reference count so that the context can't get freed.
214  */
215 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
216 {
217         struct perf_counter_context *ctx;
218         unsigned long flags;
219
220         ctx = perf_lock_task_context(task, &flags);
221         if (ctx) {
222                 ++ctx->pin_count;
223                 spin_unlock_irqrestore(&ctx->lock, flags);
224         }
225         return ctx;
226 }
227
228 static void perf_unpin_context(struct perf_counter_context *ctx)
229 {
230         unsigned long flags;
231
232         spin_lock_irqsave(&ctx->lock, flags);
233         --ctx->pin_count;
234         spin_unlock_irqrestore(&ctx->lock, flags);
235         put_ctx(ctx);
236 }
237
238 /*
239  * Add a counter from the lists for its context.
240  * Must be called with ctx->mutex and ctx->lock held.
241  */
242 static void
243 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
244 {
245         struct perf_counter *group_leader = counter->group_leader;
246
247         /*
248          * Depending on whether it is a standalone or sibling counter,
249          * add it straight to the context's counter list, or to the group
250          * leader's sibling list:
251          */
252         if (group_leader == counter)
253                 list_add_tail(&counter->list_entry, &ctx->counter_list);
254         else {
255                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
256                 group_leader->nr_siblings++;
257         }
258
259         list_add_rcu(&counter->event_entry, &ctx->event_list);
260         ctx->nr_counters++;
261         if (counter->attr.inherit_stat)
262                 ctx->nr_stat++;
263 }
264
265 /*
266  * Remove a counter from the lists for its context.
267  * Must be called with ctx->mutex and ctx->lock held.
268  */
269 static void
270 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
271 {
272         struct perf_counter *sibling, *tmp;
273
274         if (list_empty(&counter->list_entry))
275                 return;
276         ctx->nr_counters--;
277         if (counter->attr.inherit_stat)
278                 ctx->nr_stat--;
279
280         list_del_init(&counter->list_entry);
281         list_del_rcu(&counter->event_entry);
282
283         if (counter->group_leader != counter)
284                 counter->group_leader->nr_siblings--;
285
286         /*
287          * If this was a group counter with sibling counters then
288          * upgrade the siblings to singleton counters by adding them
289          * to the context list directly:
290          */
291         list_for_each_entry_safe(sibling, tmp,
292                                  &counter->sibling_list, list_entry) {
293
294                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
295                 sibling->group_leader = sibling;
296         }
297 }
298
299 static void
300 counter_sched_out(struct perf_counter *counter,
301                   struct perf_cpu_context *cpuctx,
302                   struct perf_counter_context *ctx)
303 {
304         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
305                 return;
306
307         counter->state = PERF_COUNTER_STATE_INACTIVE;
308         counter->tstamp_stopped = ctx->time;
309         counter->pmu->disable(counter);
310         counter->oncpu = -1;
311
312         if (!is_software_counter(counter))
313                 cpuctx->active_oncpu--;
314         ctx->nr_active--;
315         if (counter->attr.exclusive || !cpuctx->active_oncpu)
316                 cpuctx->exclusive = 0;
317 }
318
319 static void
320 group_sched_out(struct perf_counter *group_counter,
321                 struct perf_cpu_context *cpuctx,
322                 struct perf_counter_context *ctx)
323 {
324         struct perf_counter *counter;
325
326         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
327                 return;
328
329         counter_sched_out(group_counter, cpuctx, ctx);
330
331         /*
332          * Schedule out siblings (if any):
333          */
334         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
335                 counter_sched_out(counter, cpuctx, ctx);
336
337         if (group_counter->attr.exclusive)
338                 cpuctx->exclusive = 0;
339 }
340
341 /*
342  * Cross CPU call to remove a performance counter
343  *
344  * We disable the counter on the hardware level first. After that we
345  * remove it from the context list.
346  */
347 static void __perf_counter_remove_from_context(void *info)
348 {
349         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
350         struct perf_counter *counter = info;
351         struct perf_counter_context *ctx = counter->ctx;
352
353         /*
354          * If this is a task context, we need to check whether it is
355          * the current task context of this cpu. If not it has been
356          * scheduled out before the smp call arrived.
357          */
358         if (ctx->task && cpuctx->task_ctx != ctx)
359                 return;
360
361         spin_lock(&ctx->lock);
362         /*
363          * Protect the list operation against NMI by disabling the
364          * counters on a global level.
365          */
366         perf_disable();
367
368         counter_sched_out(counter, cpuctx, ctx);
369
370         list_del_counter(counter, ctx);
371
372         if (!ctx->task) {
373                 /*
374                  * Allow more per task counters with respect to the
375                  * reservation:
376                  */
377                 cpuctx->max_pertask =
378                         min(perf_max_counters - ctx->nr_counters,
379                             perf_max_counters - perf_reserved_percpu);
380         }
381
382         perf_enable();
383         spin_unlock(&ctx->lock);
384 }
385
386
387 /*
388  * Remove the counter from a task's (or a CPU's) list of counters.
389  *
390  * Must be called with ctx->mutex held.
391  *
392  * CPU counters are removed with a smp call. For task counters we only
393  * call when the task is on a CPU.
394  *
395  * If counter->ctx is a cloned context, callers must make sure that
396  * every task struct that counter->ctx->task could possibly point to
397  * remains valid.  This is OK when called from perf_release since
398  * that only calls us on the top-level context, which can't be a clone.
399  * When called from perf_counter_exit_task, it's OK because the
400  * context has been detached from its task.
401  */
402 static void perf_counter_remove_from_context(struct perf_counter *counter)
403 {
404         struct perf_counter_context *ctx = counter->ctx;
405         struct task_struct *task = ctx->task;
406
407         if (!task) {
408                 /*
409                  * Per cpu counters are removed via an smp call and
410                  * the removal is always sucessful.
411                  */
412                 smp_call_function_single(counter->cpu,
413                                          __perf_counter_remove_from_context,
414                                          counter, 1);
415                 return;
416         }
417
418 retry:
419         task_oncpu_function_call(task, __perf_counter_remove_from_context,
420                                  counter);
421
422         spin_lock_irq(&ctx->lock);
423         /*
424          * If the context is active we need to retry the smp call.
425          */
426         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
427                 spin_unlock_irq(&ctx->lock);
428                 goto retry;
429         }
430
431         /*
432          * The lock prevents that this context is scheduled in so we
433          * can remove the counter safely, if the call above did not
434          * succeed.
435          */
436         if (!list_empty(&counter->list_entry)) {
437                 list_del_counter(counter, ctx);
438         }
439         spin_unlock_irq(&ctx->lock);
440 }
441
442 static inline u64 perf_clock(void)
443 {
444         return cpu_clock(smp_processor_id());
445 }
446
447 /*
448  * Update the record of the current time in a context.
449  */
450 static void update_context_time(struct perf_counter_context *ctx)
451 {
452         u64 now = perf_clock();
453
454         ctx->time += now - ctx->timestamp;
455         ctx->timestamp = now;
456 }
457
458 /*
459  * Update the total_time_enabled and total_time_running fields for a counter.
460  */
461 static void update_counter_times(struct perf_counter *counter)
462 {
463         struct perf_counter_context *ctx = counter->ctx;
464         u64 run_end;
465
466         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
467                 return;
468
469         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
470
471         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
472                 run_end = counter->tstamp_stopped;
473         else
474                 run_end = ctx->time;
475
476         counter->total_time_running = run_end - counter->tstamp_running;
477 }
478
479 /*
480  * Update total_time_enabled and total_time_running for all counters in a group.
481  */
482 static void update_group_times(struct perf_counter *leader)
483 {
484         struct perf_counter *counter;
485
486         update_counter_times(leader);
487         list_for_each_entry(counter, &leader->sibling_list, list_entry)
488                 update_counter_times(counter);
489 }
490
491 /*
492  * Cross CPU call to disable a performance counter
493  */
494 static void __perf_counter_disable(void *info)
495 {
496         struct perf_counter *counter = info;
497         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
498         struct perf_counter_context *ctx = counter->ctx;
499
500         /*
501          * If this is a per-task counter, need to check whether this
502          * counter's task is the current task on this cpu.
503          */
504         if (ctx->task && cpuctx->task_ctx != ctx)
505                 return;
506
507         spin_lock(&ctx->lock);
508
509         /*
510          * If the counter is on, turn it off.
511          * If it is in error state, leave it in error state.
512          */
513         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
514                 update_context_time(ctx);
515                 update_counter_times(counter);
516                 if (counter == counter->group_leader)
517                         group_sched_out(counter, cpuctx, ctx);
518                 else
519                         counter_sched_out(counter, cpuctx, ctx);
520                 counter->state = PERF_COUNTER_STATE_OFF;
521         }
522
523         spin_unlock(&ctx->lock);
524 }
525
526 /*
527  * Disable a counter.
528  *
529  * If counter->ctx is a cloned context, callers must make sure that
530  * every task struct that counter->ctx->task could possibly point to
531  * remains valid.  This condition is satisifed when called through
532  * perf_counter_for_each_child or perf_counter_for_each because they
533  * hold the top-level counter's child_mutex, so any descendant that
534  * goes to exit will block in sync_child_counter.
535  * When called from perf_pending_counter it's OK because counter->ctx
536  * is the current context on this CPU and preemption is disabled,
537  * hence we can't get into perf_counter_task_sched_out for this context.
538  */
539 static void perf_counter_disable(struct perf_counter *counter)
540 {
541         struct perf_counter_context *ctx = counter->ctx;
542         struct task_struct *task = ctx->task;
543
544         if (!task) {
545                 /*
546                  * Disable the counter on the cpu that it's on
547                  */
548                 smp_call_function_single(counter->cpu, __perf_counter_disable,
549                                          counter, 1);
550                 return;
551         }
552
553  retry:
554         task_oncpu_function_call(task, __perf_counter_disable, counter);
555
556         spin_lock_irq(&ctx->lock);
557         /*
558          * If the counter is still active, we need to retry the cross-call.
559          */
560         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
561                 spin_unlock_irq(&ctx->lock);
562                 goto retry;
563         }
564
565         /*
566          * Since we have the lock this context can't be scheduled
567          * in, so we can change the state safely.
568          */
569         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
570                 update_counter_times(counter);
571                 counter->state = PERF_COUNTER_STATE_OFF;
572         }
573
574         spin_unlock_irq(&ctx->lock);
575 }
576
577 static int
578 counter_sched_in(struct perf_counter *counter,
579                  struct perf_cpu_context *cpuctx,
580                  struct perf_counter_context *ctx,
581                  int cpu)
582 {
583         if (counter->state <= PERF_COUNTER_STATE_OFF)
584                 return 0;
585
586         counter->state = PERF_COUNTER_STATE_ACTIVE;
587         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
588         /*
589          * The new state must be visible before we turn it on in the hardware:
590          */
591         smp_wmb();
592
593         if (counter->pmu->enable(counter)) {
594                 counter->state = PERF_COUNTER_STATE_INACTIVE;
595                 counter->oncpu = -1;
596                 return -EAGAIN;
597         }
598
599         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
600
601         if (!is_software_counter(counter))
602                 cpuctx->active_oncpu++;
603         ctx->nr_active++;
604
605         if (counter->attr.exclusive)
606                 cpuctx->exclusive = 1;
607
608         return 0;
609 }
610
611 static int
612 group_sched_in(struct perf_counter *group_counter,
613                struct perf_cpu_context *cpuctx,
614                struct perf_counter_context *ctx,
615                int cpu)
616 {
617         struct perf_counter *counter, *partial_group;
618         int ret;
619
620         if (group_counter->state == PERF_COUNTER_STATE_OFF)
621                 return 0;
622
623         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
624         if (ret)
625                 return ret < 0 ? ret : 0;
626
627         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
628                 return -EAGAIN;
629
630         /*
631          * Schedule in siblings as one group (if any):
632          */
633         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
634                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
635                         partial_group = counter;
636                         goto group_error;
637                 }
638         }
639
640         return 0;
641
642 group_error:
643         /*
644          * Groups can be scheduled in as one unit only, so undo any
645          * partial group before returning:
646          */
647         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
648                 if (counter == partial_group)
649                         break;
650                 counter_sched_out(counter, cpuctx, ctx);
651         }
652         counter_sched_out(group_counter, cpuctx, ctx);
653
654         return -EAGAIN;
655 }
656
657 /*
658  * Return 1 for a group consisting entirely of software counters,
659  * 0 if the group contains any hardware counters.
660  */
661 static int is_software_only_group(struct perf_counter *leader)
662 {
663         struct perf_counter *counter;
664
665         if (!is_software_counter(leader))
666                 return 0;
667
668         list_for_each_entry(counter, &leader->sibling_list, list_entry)
669                 if (!is_software_counter(counter))
670                         return 0;
671
672         return 1;
673 }
674
675 /*
676  * Work out whether we can put this counter group on the CPU now.
677  */
678 static int group_can_go_on(struct perf_counter *counter,
679                            struct perf_cpu_context *cpuctx,
680                            int can_add_hw)
681 {
682         /*
683          * Groups consisting entirely of software counters can always go on.
684          */
685         if (is_software_only_group(counter))
686                 return 1;
687         /*
688          * If an exclusive group is already on, no other hardware
689          * counters can go on.
690          */
691         if (cpuctx->exclusive)
692                 return 0;
693         /*
694          * If this group is exclusive and there are already
695          * counters on the CPU, it can't go on.
696          */
697         if (counter->attr.exclusive && cpuctx->active_oncpu)
698                 return 0;
699         /*
700          * Otherwise, try to add it if all previous groups were able
701          * to go on.
702          */
703         return can_add_hw;
704 }
705
706 static void add_counter_to_ctx(struct perf_counter *counter,
707                                struct perf_counter_context *ctx)
708 {
709         list_add_counter(counter, ctx);
710         counter->tstamp_enabled = ctx->time;
711         counter->tstamp_running = ctx->time;
712         counter->tstamp_stopped = ctx->time;
713 }
714
715 /*
716  * Cross CPU call to install and enable a performance counter
717  *
718  * Must be called with ctx->mutex held
719  */
720 static void __perf_install_in_context(void *info)
721 {
722         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
723         struct perf_counter *counter = info;
724         struct perf_counter_context *ctx = counter->ctx;
725         struct perf_counter *leader = counter->group_leader;
726         int cpu = smp_processor_id();
727         int err;
728
729         /*
730          * If this is a task context, we need to check whether it is
731          * the current task context of this cpu. If not it has been
732          * scheduled out before the smp call arrived.
733          * Or possibly this is the right context but it isn't
734          * on this cpu because it had no counters.
735          */
736         if (ctx->task && cpuctx->task_ctx != ctx) {
737                 if (cpuctx->task_ctx || ctx->task != current)
738                         return;
739                 cpuctx->task_ctx = ctx;
740         }
741
742         spin_lock(&ctx->lock);
743         ctx->is_active = 1;
744         update_context_time(ctx);
745
746         /*
747          * Protect the list operation against NMI by disabling the
748          * counters on a global level. NOP for non NMI based counters.
749          */
750         perf_disable();
751
752         add_counter_to_ctx(counter, ctx);
753
754         /*
755          * Don't put the counter on if it is disabled or if
756          * it is in a group and the group isn't on.
757          */
758         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
759             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
760                 goto unlock;
761
762         /*
763          * An exclusive counter can't go on if there are already active
764          * hardware counters, and no hardware counter can go on if there
765          * is already an exclusive counter on.
766          */
767         if (!group_can_go_on(counter, cpuctx, 1))
768                 err = -EEXIST;
769         else
770                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
771
772         if (err) {
773                 /*
774                  * This counter couldn't go on.  If it is in a group
775                  * then we have to pull the whole group off.
776                  * If the counter group is pinned then put it in error state.
777                  */
778                 if (leader != counter)
779                         group_sched_out(leader, cpuctx, ctx);
780                 if (leader->attr.pinned) {
781                         update_group_times(leader);
782                         leader->state = PERF_COUNTER_STATE_ERROR;
783                 }
784         }
785
786         if (!err && !ctx->task && cpuctx->max_pertask)
787                 cpuctx->max_pertask--;
788
789  unlock:
790         perf_enable();
791
792         spin_unlock(&ctx->lock);
793 }
794
795 /*
796  * Attach a performance counter to a context
797  *
798  * First we add the counter to the list with the hardware enable bit
799  * in counter->hw_config cleared.
800  *
801  * If the counter is attached to a task which is on a CPU we use a smp
802  * call to enable it in the task context. The task might have been
803  * scheduled away, but we check this in the smp call again.
804  *
805  * Must be called with ctx->mutex held.
806  */
807 static void
808 perf_install_in_context(struct perf_counter_context *ctx,
809                         struct perf_counter *counter,
810                         int cpu)
811 {
812         struct task_struct *task = ctx->task;
813
814         if (!task) {
815                 /*
816                  * Per cpu counters are installed via an smp call and
817                  * the install is always sucessful.
818                  */
819                 smp_call_function_single(cpu, __perf_install_in_context,
820                                          counter, 1);
821                 return;
822         }
823
824 retry:
825         task_oncpu_function_call(task, __perf_install_in_context,
826                                  counter);
827
828         spin_lock_irq(&ctx->lock);
829         /*
830          * we need to retry the smp call.
831          */
832         if (ctx->is_active && list_empty(&counter->list_entry)) {
833                 spin_unlock_irq(&ctx->lock);
834                 goto retry;
835         }
836
837         /*
838          * The lock prevents that this context is scheduled in so we
839          * can add the counter safely, if it the call above did not
840          * succeed.
841          */
842         if (list_empty(&counter->list_entry))
843                 add_counter_to_ctx(counter, ctx);
844         spin_unlock_irq(&ctx->lock);
845 }
846
847 /*
848  * Cross CPU call to enable a performance counter
849  */
850 static void __perf_counter_enable(void *info)
851 {
852         struct perf_counter *counter = info;
853         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
854         struct perf_counter_context *ctx = counter->ctx;
855         struct perf_counter *leader = counter->group_leader;
856         int err;
857
858         /*
859          * If this is a per-task counter, need to check whether this
860          * counter's task is the current task on this cpu.
861          */
862         if (ctx->task && cpuctx->task_ctx != ctx) {
863                 if (cpuctx->task_ctx || ctx->task != current)
864                         return;
865                 cpuctx->task_ctx = ctx;
866         }
867
868         spin_lock(&ctx->lock);
869         ctx->is_active = 1;
870         update_context_time(ctx);
871
872         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
873                 goto unlock;
874         counter->state = PERF_COUNTER_STATE_INACTIVE;
875         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
876
877         /*
878          * If the counter is in a group and isn't the group leader,
879          * then don't put it on unless the group is on.
880          */
881         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
882                 goto unlock;
883
884         if (!group_can_go_on(counter, cpuctx, 1)) {
885                 err = -EEXIST;
886         } else {
887                 perf_disable();
888                 if (counter == leader)
889                         err = group_sched_in(counter, cpuctx, ctx,
890                                              smp_processor_id());
891                 else
892                         err = counter_sched_in(counter, cpuctx, ctx,
893                                                smp_processor_id());
894                 perf_enable();
895         }
896
897         if (err) {
898                 /*
899                  * If this counter can't go on and it's part of a
900                  * group, then the whole group has to come off.
901                  */
902                 if (leader != counter)
903                         group_sched_out(leader, cpuctx, ctx);
904                 if (leader->attr.pinned) {
905                         update_group_times(leader);
906                         leader->state = PERF_COUNTER_STATE_ERROR;
907                 }
908         }
909
910  unlock:
911         spin_unlock(&ctx->lock);
912 }
913
914 /*
915  * Enable a counter.
916  *
917  * If counter->ctx is a cloned context, callers must make sure that
918  * every task struct that counter->ctx->task could possibly point to
919  * remains valid.  This condition is satisfied when called through
920  * perf_counter_for_each_child or perf_counter_for_each as described
921  * for perf_counter_disable.
922  */
923 static void perf_counter_enable(struct perf_counter *counter)
924 {
925         struct perf_counter_context *ctx = counter->ctx;
926         struct task_struct *task = ctx->task;
927
928         if (!task) {
929                 /*
930                  * Enable the counter on the cpu that it's on
931                  */
932                 smp_call_function_single(counter->cpu, __perf_counter_enable,
933                                          counter, 1);
934                 return;
935         }
936
937         spin_lock_irq(&ctx->lock);
938         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
939                 goto out;
940
941         /*
942          * If the counter is in error state, clear that first.
943          * That way, if we see the counter in error state below, we
944          * know that it has gone back into error state, as distinct
945          * from the task having been scheduled away before the
946          * cross-call arrived.
947          */
948         if (counter->state == PERF_COUNTER_STATE_ERROR)
949                 counter->state = PERF_COUNTER_STATE_OFF;
950
951  retry:
952         spin_unlock_irq(&ctx->lock);
953         task_oncpu_function_call(task, __perf_counter_enable, counter);
954
955         spin_lock_irq(&ctx->lock);
956
957         /*
958          * If the context is active and the counter is still off,
959          * we need to retry the cross-call.
960          */
961         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
962                 goto retry;
963
964         /*
965          * Since we have the lock this context can't be scheduled
966          * in, so we can change the state safely.
967          */
968         if (counter->state == PERF_COUNTER_STATE_OFF) {
969                 counter->state = PERF_COUNTER_STATE_INACTIVE;
970                 counter->tstamp_enabled =
971                         ctx->time - counter->total_time_enabled;
972         }
973  out:
974         spin_unlock_irq(&ctx->lock);
975 }
976
977 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
978 {
979         /*
980          * not supported on inherited counters
981          */
982         if (counter->attr.inherit)
983                 return -EINVAL;
984
985         atomic_add(refresh, &counter->event_limit);
986         perf_counter_enable(counter);
987
988         return 0;
989 }
990
991 void __perf_counter_sched_out(struct perf_counter_context *ctx,
992                               struct perf_cpu_context *cpuctx)
993 {
994         struct perf_counter *counter;
995
996         spin_lock(&ctx->lock);
997         ctx->is_active = 0;
998         if (likely(!ctx->nr_counters))
999                 goto out;
1000         update_context_time(ctx);
1001
1002         perf_disable();
1003         if (ctx->nr_active) {
1004                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1005                         if (counter != counter->group_leader)
1006                                 counter_sched_out(counter, cpuctx, ctx);
1007                         else
1008                                 group_sched_out(counter, cpuctx, ctx);
1009                 }
1010         }
1011         perf_enable();
1012  out:
1013         spin_unlock(&ctx->lock);
1014 }
1015
1016 /*
1017  * Test whether two contexts are equivalent, i.e. whether they
1018  * have both been cloned from the same version of the same context
1019  * and they both have the same number of enabled counters.
1020  * If the number of enabled counters is the same, then the set
1021  * of enabled counters should be the same, because these are both
1022  * inherited contexts, therefore we can't access individual counters
1023  * in them directly with an fd; we can only enable/disable all
1024  * counters via prctl, or enable/disable all counters in a family
1025  * via ioctl, which will have the same effect on both contexts.
1026  */
1027 static int context_equiv(struct perf_counter_context *ctx1,
1028                          struct perf_counter_context *ctx2)
1029 {
1030         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1031                 && ctx1->parent_gen == ctx2->parent_gen
1032                 && !ctx1->pin_count && !ctx2->pin_count;
1033 }
1034
1035 static void __perf_counter_read(void *counter);
1036
1037 static void __perf_counter_sync_stat(struct perf_counter *counter,
1038                                      struct perf_counter *next_counter)
1039 {
1040         u64 value;
1041
1042         if (!counter->attr.inherit_stat)
1043                 return;
1044
1045         /*
1046          * Update the counter value, we cannot use perf_counter_read()
1047          * because we're in the middle of a context switch and have IRQs
1048          * disabled, which upsets smp_call_function_single(), however
1049          * we know the counter must be on the current CPU, therefore we
1050          * don't need to use it.
1051          */
1052         switch (counter->state) {
1053         case PERF_COUNTER_STATE_ACTIVE:
1054                 __perf_counter_read(counter);
1055                 break;
1056
1057         case PERF_COUNTER_STATE_INACTIVE:
1058                 update_counter_times(counter);
1059                 break;
1060
1061         default:
1062                 break;
1063         }
1064
1065         /*
1066          * In order to keep per-task stats reliable we need to flip the counter
1067          * values when we flip the contexts.
1068          */
1069         value = atomic64_read(&next_counter->count);
1070         value = atomic64_xchg(&counter->count, value);
1071         atomic64_set(&next_counter->count, value);
1072
1073         swap(counter->total_time_enabled, next_counter->total_time_enabled);
1074         swap(counter->total_time_running, next_counter->total_time_running);
1075
1076         /*
1077          * Since we swizzled the values, update the user visible data too.
1078          */
1079         perf_counter_update_userpage(counter);
1080         perf_counter_update_userpage(next_counter);
1081 }
1082
1083 #define list_next_entry(pos, member) \
1084         list_entry(pos->member.next, typeof(*pos), member)
1085
1086 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1087                                    struct perf_counter_context *next_ctx)
1088 {
1089         struct perf_counter *counter, *next_counter;
1090
1091         if (!ctx->nr_stat)
1092                 return;
1093
1094         counter = list_first_entry(&ctx->event_list,
1095                                    struct perf_counter, event_entry);
1096
1097         next_counter = list_first_entry(&next_ctx->event_list,
1098                                         struct perf_counter, event_entry);
1099
1100         while (&counter->event_entry != &ctx->event_list &&
1101                &next_counter->event_entry != &next_ctx->event_list) {
1102
1103                 __perf_counter_sync_stat(counter, next_counter);
1104
1105                 counter = list_next_entry(counter, event_entry);
1106                 next_counter = list_next_entry(counter, event_entry);
1107         }
1108 }
1109
1110 /*
1111  * Called from scheduler to remove the counters of the current task,
1112  * with interrupts disabled.
1113  *
1114  * We stop each counter and update the counter value in counter->count.
1115  *
1116  * This does not protect us against NMI, but disable()
1117  * sets the disabled bit in the control field of counter _before_
1118  * accessing the counter control register. If a NMI hits, then it will
1119  * not restart the counter.
1120  */
1121 void perf_counter_task_sched_out(struct task_struct *task,
1122                                  struct task_struct *next, int cpu)
1123 {
1124         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1125         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1126         struct perf_counter_context *next_ctx;
1127         struct perf_counter_context *parent;
1128         struct pt_regs *regs;
1129         int do_switch = 1;
1130
1131         regs = task_pt_regs(task);
1132         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1133
1134         if (likely(!ctx || !cpuctx->task_ctx))
1135                 return;
1136
1137         update_context_time(ctx);
1138
1139         rcu_read_lock();
1140         parent = rcu_dereference(ctx->parent_ctx);
1141         next_ctx = next->perf_counter_ctxp;
1142         if (parent && next_ctx &&
1143             rcu_dereference(next_ctx->parent_ctx) == parent) {
1144                 /*
1145                  * Looks like the two contexts are clones, so we might be
1146                  * able to optimize the context switch.  We lock both
1147                  * contexts and check that they are clones under the
1148                  * lock (including re-checking that neither has been
1149                  * uncloned in the meantime).  It doesn't matter which
1150                  * order we take the locks because no other cpu could
1151                  * be trying to lock both of these tasks.
1152                  */
1153                 spin_lock(&ctx->lock);
1154                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1155                 if (context_equiv(ctx, next_ctx)) {
1156                         /*
1157                          * XXX do we need a memory barrier of sorts
1158                          * wrt to rcu_dereference() of perf_counter_ctxp
1159                          */
1160                         task->perf_counter_ctxp = next_ctx;
1161                         next->perf_counter_ctxp = ctx;
1162                         ctx->task = next;
1163                         next_ctx->task = task;
1164                         do_switch = 0;
1165
1166                         perf_counter_sync_stat(ctx, next_ctx);
1167                 }
1168                 spin_unlock(&next_ctx->lock);
1169                 spin_unlock(&ctx->lock);
1170         }
1171         rcu_read_unlock();
1172
1173         if (do_switch) {
1174                 __perf_counter_sched_out(ctx, cpuctx);
1175                 cpuctx->task_ctx = NULL;
1176         }
1177 }
1178
1179 /*
1180  * Called with IRQs disabled
1181  */
1182 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1183 {
1184         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1185
1186         if (!cpuctx->task_ctx)
1187                 return;
1188
1189         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1190                 return;
1191
1192         __perf_counter_sched_out(ctx, cpuctx);
1193         cpuctx->task_ctx = NULL;
1194 }
1195
1196 /*
1197  * Called with IRQs disabled
1198  */
1199 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1200 {
1201         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1202 }
1203
1204 static void
1205 __perf_counter_sched_in(struct perf_counter_context *ctx,
1206                         struct perf_cpu_context *cpuctx, int cpu)
1207 {
1208         struct perf_counter *counter;
1209         int can_add_hw = 1;
1210
1211         spin_lock(&ctx->lock);
1212         ctx->is_active = 1;
1213         if (likely(!ctx->nr_counters))
1214                 goto out;
1215
1216         ctx->timestamp = perf_clock();
1217
1218         perf_disable();
1219
1220         /*
1221          * First go through the list and put on any pinned groups
1222          * in order to give them the best chance of going on.
1223          */
1224         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1225                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1226                     !counter->attr.pinned)
1227                         continue;
1228                 if (counter->cpu != -1 && counter->cpu != cpu)
1229                         continue;
1230
1231                 if (counter != counter->group_leader)
1232                         counter_sched_in(counter, cpuctx, ctx, cpu);
1233                 else {
1234                         if (group_can_go_on(counter, cpuctx, 1))
1235                                 group_sched_in(counter, cpuctx, ctx, cpu);
1236                 }
1237
1238                 /*
1239                  * If this pinned group hasn't been scheduled,
1240                  * put it in error state.
1241                  */
1242                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1243                         update_group_times(counter);
1244                         counter->state = PERF_COUNTER_STATE_ERROR;
1245                 }
1246         }
1247
1248         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1249                 /*
1250                  * Ignore counters in OFF or ERROR state, and
1251                  * ignore pinned counters since we did them already.
1252                  */
1253                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1254                     counter->attr.pinned)
1255                         continue;
1256
1257                 /*
1258                  * Listen to the 'cpu' scheduling filter constraint
1259                  * of counters:
1260                  */
1261                 if (counter->cpu != -1 && counter->cpu != cpu)
1262                         continue;
1263
1264                 if (counter != counter->group_leader) {
1265                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1266                                 can_add_hw = 0;
1267                 } else {
1268                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1269                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1270                                         can_add_hw = 0;
1271                         }
1272                 }
1273         }
1274         perf_enable();
1275  out:
1276         spin_unlock(&ctx->lock);
1277 }
1278
1279 /*
1280  * Called from scheduler to add the counters of the current task
1281  * with interrupts disabled.
1282  *
1283  * We restore the counter value and then enable it.
1284  *
1285  * This does not protect us against NMI, but enable()
1286  * sets the enabled bit in the control field of counter _before_
1287  * accessing the counter control register. If a NMI hits, then it will
1288  * keep the counter running.
1289  */
1290 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1291 {
1292         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1293         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1294
1295         if (likely(!ctx))
1296                 return;
1297         if (cpuctx->task_ctx == ctx)
1298                 return;
1299         __perf_counter_sched_in(ctx, cpuctx, cpu);
1300         cpuctx->task_ctx = ctx;
1301 }
1302
1303 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1304 {
1305         struct perf_counter_context *ctx = &cpuctx->ctx;
1306
1307         __perf_counter_sched_in(ctx, cpuctx, cpu);
1308 }
1309
1310 #define MAX_INTERRUPTS (~0ULL)
1311
1312 static void perf_log_throttle(struct perf_counter *counter, int enable);
1313
1314 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1315 {
1316         struct hw_perf_counter *hwc = &counter->hw;
1317         u64 period, sample_period;
1318         s64 delta;
1319
1320         events *= hwc->sample_period;
1321         period = div64_u64(events, counter->attr.sample_freq);
1322
1323         delta = (s64)(period - hwc->sample_period);
1324         delta = (delta + 7) / 8; /* low pass filter */
1325
1326         sample_period = hwc->sample_period + delta;
1327
1328         if (!sample_period)
1329                 sample_period = 1;
1330
1331         hwc->sample_period = sample_period;
1332 }
1333
1334 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1335 {
1336         struct perf_counter *counter;
1337         struct hw_perf_counter *hwc;
1338         u64 interrupts, freq;
1339
1340         spin_lock(&ctx->lock);
1341         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1342                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1343                         continue;
1344
1345                 hwc = &counter->hw;
1346
1347                 interrupts = hwc->interrupts;
1348                 hwc->interrupts = 0;
1349
1350                 /*
1351                  * unthrottle counters on the tick
1352                  */
1353                 if (interrupts == MAX_INTERRUPTS) {
1354                         perf_log_throttle(counter, 1);
1355                         counter->pmu->unthrottle(counter);
1356                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1357                 }
1358
1359                 if (!counter->attr.freq || !counter->attr.sample_freq)
1360                         continue;
1361
1362                 /*
1363                  * if the specified freq < HZ then we need to skip ticks
1364                  */
1365                 if (counter->attr.sample_freq < HZ) {
1366                         freq = counter->attr.sample_freq;
1367
1368                         hwc->freq_count += freq;
1369                         hwc->freq_interrupts += interrupts;
1370
1371                         if (hwc->freq_count < HZ)
1372                                 continue;
1373
1374                         interrupts = hwc->freq_interrupts;
1375                         hwc->freq_interrupts = 0;
1376                         hwc->freq_count -= HZ;
1377                 } else
1378                         freq = HZ;
1379
1380                 perf_adjust_period(counter, freq * interrupts);
1381
1382                 /*
1383                  * In order to avoid being stalled by an (accidental) huge
1384                  * sample period, force reset the sample period if we didn't
1385                  * get any events in this freq period.
1386                  */
1387                 if (!interrupts) {
1388                         perf_disable();
1389                         counter->pmu->disable(counter);
1390                         atomic64_set(&hwc->period_left, 0);
1391                         counter->pmu->enable(counter);
1392                         perf_enable();
1393                 }
1394         }
1395         spin_unlock(&ctx->lock);
1396 }
1397
1398 /*
1399  * Round-robin a context's counters:
1400  */
1401 static void rotate_ctx(struct perf_counter_context *ctx)
1402 {
1403         struct perf_counter *counter;
1404
1405         if (!ctx->nr_counters)
1406                 return;
1407
1408         spin_lock(&ctx->lock);
1409         /*
1410          * Rotate the first entry last (works just fine for group counters too):
1411          */
1412         perf_disable();
1413         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1414                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1415                 break;
1416         }
1417         perf_enable();
1418
1419         spin_unlock(&ctx->lock);
1420 }
1421
1422 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1423 {
1424         struct perf_cpu_context *cpuctx;
1425         struct perf_counter_context *ctx;
1426
1427         if (!atomic_read(&nr_counters))
1428                 return;
1429
1430         cpuctx = &per_cpu(perf_cpu_context, cpu);
1431         ctx = curr->perf_counter_ctxp;
1432
1433         perf_ctx_adjust_freq(&cpuctx->ctx);
1434         if (ctx)
1435                 perf_ctx_adjust_freq(ctx);
1436
1437         perf_counter_cpu_sched_out(cpuctx);
1438         if (ctx)
1439                 __perf_counter_task_sched_out(ctx);
1440
1441         rotate_ctx(&cpuctx->ctx);
1442         if (ctx)
1443                 rotate_ctx(ctx);
1444
1445         perf_counter_cpu_sched_in(cpuctx, cpu);
1446         if (ctx)
1447                 perf_counter_task_sched_in(curr, cpu);
1448 }
1449
1450 /*
1451  * Enable all of a task's counters that have been marked enable-on-exec.
1452  * This expects task == current.
1453  */
1454 static void perf_counter_enable_on_exec(struct task_struct *task)
1455 {
1456         struct perf_counter_context *ctx;
1457         struct perf_counter *counter;
1458         unsigned long flags;
1459         int enabled = 0;
1460
1461         local_irq_save(flags);
1462         ctx = task->perf_counter_ctxp;
1463         if (!ctx || !ctx->nr_counters)
1464                 goto out;
1465
1466         __perf_counter_task_sched_out(ctx);
1467
1468         spin_lock(&ctx->lock);
1469
1470         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1471                 if (!counter->attr.enable_on_exec)
1472                         continue;
1473                 counter->attr.enable_on_exec = 0;
1474                 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1475                         continue;
1476                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1477                 counter->tstamp_enabled =
1478                         ctx->time - counter->total_time_enabled;
1479                 enabled = 1;
1480         }
1481
1482         /*
1483          * Unclone this context if we enabled any counter.
1484          */
1485         if (enabled)
1486                 unclone_ctx(ctx);
1487
1488         spin_unlock(&ctx->lock);
1489
1490         perf_counter_task_sched_in(task, smp_processor_id());
1491  out:
1492         local_irq_restore(flags);
1493 }
1494
1495 /*
1496  * Cross CPU call to read the hardware counter
1497  */
1498 static void __perf_counter_read(void *info)
1499 {
1500         struct perf_counter *counter = info;
1501         struct perf_counter_context *ctx = counter->ctx;
1502         unsigned long flags;
1503
1504         local_irq_save(flags);
1505         if (ctx->is_active)
1506                 update_context_time(ctx);
1507         counter->pmu->read(counter);
1508         update_counter_times(counter);
1509         local_irq_restore(flags);
1510 }
1511
1512 static u64 perf_counter_read(struct perf_counter *counter)
1513 {
1514         /*
1515          * If counter is enabled and currently active on a CPU, update the
1516          * value in the counter structure:
1517          */
1518         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1519                 smp_call_function_single(counter->oncpu,
1520                                          __perf_counter_read, counter, 1);
1521         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1522                 update_counter_times(counter);
1523         }
1524
1525         return atomic64_read(&counter->count);
1526 }
1527
1528 /*
1529  * Initialize the perf_counter context in a task_struct:
1530  */
1531 static void
1532 __perf_counter_init_context(struct perf_counter_context *ctx,
1533                             struct task_struct *task)
1534 {
1535         memset(ctx, 0, sizeof(*ctx));
1536         spin_lock_init(&ctx->lock);
1537         mutex_init(&ctx->mutex);
1538         INIT_LIST_HEAD(&ctx->counter_list);
1539         INIT_LIST_HEAD(&ctx->event_list);
1540         atomic_set(&ctx->refcount, 1);
1541         ctx->task = task;
1542 }
1543
1544 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1545 {
1546         struct perf_counter_context *ctx;
1547         struct perf_cpu_context *cpuctx;
1548         struct task_struct *task;
1549         unsigned long flags;
1550         int err;
1551
1552         /*
1553          * If cpu is not a wildcard then this is a percpu counter:
1554          */
1555         if (cpu != -1) {
1556                 /* Must be root to operate on a CPU counter: */
1557                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1558                         return ERR_PTR(-EACCES);
1559
1560                 if (cpu < 0 || cpu > num_possible_cpus())
1561                         return ERR_PTR(-EINVAL);
1562
1563                 /*
1564                  * We could be clever and allow to attach a counter to an
1565                  * offline CPU and activate it when the CPU comes up, but
1566                  * that's for later.
1567                  */
1568                 if (!cpu_isset(cpu, cpu_online_map))
1569                         return ERR_PTR(-ENODEV);
1570
1571                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1572                 ctx = &cpuctx->ctx;
1573                 get_ctx(ctx);
1574
1575                 return ctx;
1576         }
1577
1578         rcu_read_lock();
1579         if (!pid)
1580                 task = current;
1581         else
1582                 task = find_task_by_vpid(pid);
1583         if (task)
1584                 get_task_struct(task);
1585         rcu_read_unlock();
1586
1587         if (!task)
1588                 return ERR_PTR(-ESRCH);
1589
1590         /*
1591          * Can't attach counters to a dying task.
1592          */
1593         err = -ESRCH;
1594         if (task->flags & PF_EXITING)
1595                 goto errout;
1596
1597         /* Reuse ptrace permission checks for now. */
1598         err = -EACCES;
1599         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1600                 goto errout;
1601
1602  retry:
1603         ctx = perf_lock_task_context(task, &flags);
1604         if (ctx) {
1605                 unclone_ctx(ctx);
1606                 spin_unlock_irqrestore(&ctx->lock, flags);
1607         }
1608
1609         if (!ctx) {
1610                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1611                 err = -ENOMEM;
1612                 if (!ctx)
1613                         goto errout;
1614                 __perf_counter_init_context(ctx, task);
1615                 get_ctx(ctx);
1616                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1617                         /*
1618                          * We raced with some other task; use
1619                          * the context they set.
1620                          */
1621                         kfree(ctx);
1622                         goto retry;
1623                 }
1624                 get_task_struct(task);
1625         }
1626
1627         put_task_struct(task);
1628         return ctx;
1629
1630  errout:
1631         put_task_struct(task);
1632         return ERR_PTR(err);
1633 }
1634
1635 static void free_counter_rcu(struct rcu_head *head)
1636 {
1637         struct perf_counter *counter;
1638
1639         counter = container_of(head, struct perf_counter, rcu_head);
1640         if (counter->ns)
1641                 put_pid_ns(counter->ns);
1642         kfree(counter);
1643 }
1644
1645 static void perf_pending_sync(struct perf_counter *counter);
1646
1647 static void free_counter(struct perf_counter *counter)
1648 {
1649         perf_pending_sync(counter);
1650
1651         if (!counter->parent) {
1652                 atomic_dec(&nr_counters);
1653                 if (counter->attr.mmap)
1654                         atomic_dec(&nr_mmap_counters);
1655                 if (counter->attr.comm)
1656                         atomic_dec(&nr_comm_counters);
1657         }
1658
1659         if (counter->destroy)
1660                 counter->destroy(counter);
1661
1662         put_ctx(counter->ctx);
1663         call_rcu(&counter->rcu_head, free_counter_rcu);
1664 }
1665
1666 /*
1667  * Called when the last reference to the file is gone.
1668  */
1669 static int perf_release(struct inode *inode, struct file *file)
1670 {
1671         struct perf_counter *counter = file->private_data;
1672         struct perf_counter_context *ctx = counter->ctx;
1673
1674         file->private_data = NULL;
1675
1676         WARN_ON_ONCE(ctx->parent_ctx);
1677         mutex_lock(&ctx->mutex);
1678         perf_counter_remove_from_context(counter);
1679         mutex_unlock(&ctx->mutex);
1680
1681         mutex_lock(&counter->owner->perf_counter_mutex);
1682         list_del_init(&counter->owner_entry);
1683         mutex_unlock(&counter->owner->perf_counter_mutex);
1684         put_task_struct(counter->owner);
1685
1686         free_counter(counter);
1687
1688         return 0;
1689 }
1690
1691 /*
1692  * Read the performance counter - simple non blocking version for now
1693  */
1694 static ssize_t
1695 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1696 {
1697         u64 values[4];
1698         int n;
1699
1700         /*
1701          * Return end-of-file for a read on a counter that is in
1702          * error state (i.e. because it was pinned but it couldn't be
1703          * scheduled on to the CPU at some point).
1704          */
1705         if (counter->state == PERF_COUNTER_STATE_ERROR)
1706                 return 0;
1707
1708         WARN_ON_ONCE(counter->ctx->parent_ctx);
1709         mutex_lock(&counter->child_mutex);
1710         values[0] = perf_counter_read(counter);
1711         n = 1;
1712         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1713                 values[n++] = counter->total_time_enabled +
1714                         atomic64_read(&counter->child_total_time_enabled);
1715         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1716                 values[n++] = counter->total_time_running +
1717                         atomic64_read(&counter->child_total_time_running);
1718         if (counter->attr.read_format & PERF_FORMAT_ID)
1719                 values[n++] = primary_counter_id(counter);
1720         mutex_unlock(&counter->child_mutex);
1721
1722         if (count < n * sizeof(u64))
1723                 return -EINVAL;
1724         count = n * sizeof(u64);
1725
1726         if (copy_to_user(buf, values, count))
1727                 return -EFAULT;
1728
1729         return count;
1730 }
1731
1732 static ssize_t
1733 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1734 {
1735         struct perf_counter *counter = file->private_data;
1736
1737         return perf_read_hw(counter, buf, count);
1738 }
1739
1740 static unsigned int perf_poll(struct file *file, poll_table *wait)
1741 {
1742         struct perf_counter *counter = file->private_data;
1743         struct perf_mmap_data *data;
1744         unsigned int events = POLL_HUP;
1745
1746         rcu_read_lock();
1747         data = rcu_dereference(counter->data);
1748         if (data)
1749                 events = atomic_xchg(&data->poll, 0);
1750         rcu_read_unlock();
1751
1752         poll_wait(file, &counter->waitq, wait);
1753
1754         return events;
1755 }
1756
1757 static void perf_counter_reset(struct perf_counter *counter)
1758 {
1759         (void)perf_counter_read(counter);
1760         atomic64_set(&counter->count, 0);
1761         perf_counter_update_userpage(counter);
1762 }
1763
1764 /*
1765  * Holding the top-level counter's child_mutex means that any
1766  * descendant process that has inherited this counter will block
1767  * in sync_child_counter if it goes to exit, thus satisfying the
1768  * task existence requirements of perf_counter_enable/disable.
1769  */
1770 static void perf_counter_for_each_child(struct perf_counter *counter,
1771                                         void (*func)(struct perf_counter *))
1772 {
1773         struct perf_counter *child;
1774
1775         WARN_ON_ONCE(counter->ctx->parent_ctx);
1776         mutex_lock(&counter->child_mutex);
1777         func(counter);
1778         list_for_each_entry(child, &counter->child_list, child_list)
1779                 func(child);
1780         mutex_unlock(&counter->child_mutex);
1781 }
1782
1783 static void perf_counter_for_each(struct perf_counter *counter,
1784                                   void (*func)(struct perf_counter *))
1785 {
1786         struct perf_counter_context *ctx = counter->ctx;
1787         struct perf_counter *sibling;
1788
1789         WARN_ON_ONCE(ctx->parent_ctx);
1790         mutex_lock(&ctx->mutex);
1791         counter = counter->group_leader;
1792
1793         perf_counter_for_each_child(counter, func);
1794         func(counter);
1795         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1796                 perf_counter_for_each_child(counter, func);
1797         mutex_unlock(&ctx->mutex);
1798 }
1799
1800 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1801 {
1802         struct perf_counter_context *ctx = counter->ctx;
1803         unsigned long size;
1804         int ret = 0;
1805         u64 value;
1806
1807         if (!counter->attr.sample_period)
1808                 return -EINVAL;
1809
1810         size = copy_from_user(&value, arg, sizeof(value));
1811         if (size != sizeof(value))
1812                 return -EFAULT;
1813
1814         if (!value)
1815                 return -EINVAL;
1816
1817         spin_lock_irq(&ctx->lock);
1818         if (counter->attr.freq) {
1819                 if (value > sysctl_perf_counter_sample_rate) {
1820                         ret = -EINVAL;
1821                         goto unlock;
1822                 }
1823
1824                 counter->attr.sample_freq = value;
1825         } else {
1826                 counter->attr.sample_period = value;
1827                 counter->hw.sample_period = value;
1828         }
1829 unlock:
1830         spin_unlock_irq(&ctx->lock);
1831
1832         return ret;
1833 }
1834
1835 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1836 {
1837         struct perf_counter *counter = file->private_data;
1838         void (*func)(struct perf_counter *);
1839         u32 flags = arg;
1840
1841         switch (cmd) {
1842         case PERF_COUNTER_IOC_ENABLE:
1843                 func = perf_counter_enable;
1844                 break;
1845         case PERF_COUNTER_IOC_DISABLE:
1846                 func = perf_counter_disable;
1847                 break;
1848         case PERF_COUNTER_IOC_RESET:
1849                 func = perf_counter_reset;
1850                 break;
1851
1852         case PERF_COUNTER_IOC_REFRESH:
1853                 return perf_counter_refresh(counter, arg);
1854
1855         case PERF_COUNTER_IOC_PERIOD:
1856                 return perf_counter_period(counter, (u64 __user *)arg);
1857
1858         default:
1859                 return -ENOTTY;
1860         }
1861
1862         if (flags & PERF_IOC_FLAG_GROUP)
1863                 perf_counter_for_each(counter, func);
1864         else
1865                 perf_counter_for_each_child(counter, func);
1866
1867         return 0;
1868 }
1869
1870 int perf_counter_task_enable(void)
1871 {
1872         struct perf_counter *counter;
1873
1874         mutex_lock(&current->perf_counter_mutex);
1875         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1876                 perf_counter_for_each_child(counter, perf_counter_enable);
1877         mutex_unlock(&current->perf_counter_mutex);
1878
1879         return 0;
1880 }
1881
1882 int perf_counter_task_disable(void)
1883 {
1884         struct perf_counter *counter;
1885
1886         mutex_lock(&current->perf_counter_mutex);
1887         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1888                 perf_counter_for_each_child(counter, perf_counter_disable);
1889         mutex_unlock(&current->perf_counter_mutex);
1890
1891         return 0;
1892 }
1893
1894 static int perf_counter_index(struct perf_counter *counter)
1895 {
1896         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1897                 return 0;
1898
1899         return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1900 }
1901
1902 /*
1903  * Callers need to ensure there can be no nesting of this function, otherwise
1904  * the seqlock logic goes bad. We can not serialize this because the arch
1905  * code calls this from NMI context.
1906  */
1907 void perf_counter_update_userpage(struct perf_counter *counter)
1908 {
1909         struct perf_counter_mmap_page *userpg;
1910         struct perf_mmap_data *data;
1911
1912         rcu_read_lock();
1913         data = rcu_dereference(counter->data);
1914         if (!data)
1915                 goto unlock;
1916
1917         userpg = data->user_page;
1918
1919         /*
1920          * Disable preemption so as to not let the corresponding user-space
1921          * spin too long if we get preempted.
1922          */
1923         preempt_disable();
1924         ++userpg->lock;
1925         barrier();
1926         userpg->index = perf_counter_index(counter);
1927         userpg->offset = atomic64_read(&counter->count);
1928         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1929                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1930
1931         userpg->time_enabled = counter->total_time_enabled +
1932                         atomic64_read(&counter->child_total_time_enabled);
1933
1934         userpg->time_running = counter->total_time_running +
1935                         atomic64_read(&counter->child_total_time_running);
1936
1937         barrier();
1938         ++userpg->lock;
1939         preempt_enable();
1940 unlock:
1941         rcu_read_unlock();
1942 }
1943
1944 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1945 {
1946         struct perf_counter *counter = vma->vm_file->private_data;
1947         struct perf_mmap_data *data;
1948         int ret = VM_FAULT_SIGBUS;
1949
1950         if (vmf->flags & FAULT_FLAG_MKWRITE) {
1951                 if (vmf->pgoff == 0)
1952                         ret = 0;
1953                 return ret;
1954         }
1955
1956         rcu_read_lock();
1957         data = rcu_dereference(counter->data);
1958         if (!data)
1959                 goto unlock;
1960
1961         if (vmf->pgoff == 0) {
1962                 vmf->page = virt_to_page(data->user_page);
1963         } else {
1964                 int nr = vmf->pgoff - 1;
1965
1966                 if ((unsigned)nr > data->nr_pages)
1967                         goto unlock;
1968
1969                 if (vmf->flags & FAULT_FLAG_WRITE)
1970                         goto unlock;
1971
1972                 vmf->page = virt_to_page(data->data_pages[nr]);
1973         }
1974
1975         get_page(vmf->page);
1976         vmf->page->mapping = vma->vm_file->f_mapping;
1977         vmf->page->index   = vmf->pgoff;
1978
1979         ret = 0;
1980 unlock:
1981         rcu_read_unlock();
1982
1983         return ret;
1984 }
1985
1986 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1987 {
1988         struct perf_mmap_data *data;
1989         unsigned long size;
1990         int i;
1991
1992         WARN_ON(atomic_read(&counter->mmap_count));
1993
1994         size = sizeof(struct perf_mmap_data);
1995         size += nr_pages * sizeof(void *);
1996
1997         data = kzalloc(size, GFP_KERNEL);
1998         if (!data)
1999                 goto fail;
2000
2001         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2002         if (!data->user_page)
2003                 goto fail_user_page;
2004
2005         for (i = 0; i < nr_pages; i++) {
2006                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2007                 if (!data->data_pages[i])
2008                         goto fail_data_pages;
2009         }
2010
2011         data->nr_pages = nr_pages;
2012         atomic_set(&data->lock, -1);
2013
2014         rcu_assign_pointer(counter->data, data);
2015
2016         return 0;
2017
2018 fail_data_pages:
2019         for (i--; i >= 0; i--)
2020                 free_page((unsigned long)data->data_pages[i]);
2021
2022         free_page((unsigned long)data->user_page);
2023
2024 fail_user_page:
2025         kfree(data);
2026
2027 fail:
2028         return -ENOMEM;
2029 }
2030
2031 static void perf_mmap_free_page(unsigned long addr)
2032 {
2033         struct page *page = virt_to_page((void *)addr);
2034
2035         page->mapping = NULL;
2036         __free_page(page);
2037 }
2038
2039 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2040 {
2041         struct perf_mmap_data *data;
2042         int i;
2043
2044         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2045
2046         perf_mmap_free_page((unsigned long)data->user_page);
2047         for (i = 0; i < data->nr_pages; i++)
2048                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2049
2050         kfree(data);
2051 }
2052
2053 static void perf_mmap_data_free(struct perf_counter *counter)
2054 {
2055         struct perf_mmap_data *data = counter->data;
2056
2057         WARN_ON(atomic_read(&counter->mmap_count));
2058
2059         rcu_assign_pointer(counter->data, NULL);
2060         call_rcu(&data->rcu_head, __perf_mmap_data_free);
2061 }
2062
2063 static void perf_mmap_open(struct vm_area_struct *vma)
2064 {
2065         struct perf_counter *counter = vma->vm_file->private_data;
2066
2067         atomic_inc(&counter->mmap_count);
2068 }
2069
2070 static void perf_mmap_close(struct vm_area_struct *vma)
2071 {
2072         struct perf_counter *counter = vma->vm_file->private_data;
2073
2074         WARN_ON_ONCE(counter->ctx->parent_ctx);
2075         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2076                 struct user_struct *user = current_user();
2077
2078                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2079                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2080                 perf_mmap_data_free(counter);
2081                 mutex_unlock(&counter->mmap_mutex);
2082         }
2083 }
2084
2085 static struct vm_operations_struct perf_mmap_vmops = {
2086         .open           = perf_mmap_open,
2087         .close          = perf_mmap_close,
2088         .fault          = perf_mmap_fault,
2089         .page_mkwrite   = perf_mmap_fault,
2090 };
2091
2092 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2093 {
2094         struct perf_counter *counter = file->private_data;
2095         unsigned long user_locked, user_lock_limit;
2096         struct user_struct *user = current_user();
2097         unsigned long locked, lock_limit;
2098         unsigned long vma_size;
2099         unsigned long nr_pages;
2100         long user_extra, extra;
2101         int ret = 0;
2102
2103         if (!(vma->vm_flags & VM_SHARED))
2104                 return -EINVAL;
2105
2106         vma_size = vma->vm_end - vma->vm_start;
2107         nr_pages = (vma_size / PAGE_SIZE) - 1;
2108
2109         /*
2110          * If we have data pages ensure they're a power-of-two number, so we
2111          * can do bitmasks instead of modulo.
2112          */
2113         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2114                 return -EINVAL;
2115
2116         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2117                 return -EINVAL;
2118
2119         if (vma->vm_pgoff != 0)
2120                 return -EINVAL;
2121
2122         WARN_ON_ONCE(counter->ctx->parent_ctx);
2123         mutex_lock(&counter->mmap_mutex);
2124         if (atomic_inc_not_zero(&counter->mmap_count)) {
2125                 if (nr_pages != counter->data->nr_pages)
2126                         ret = -EINVAL;
2127                 goto unlock;
2128         }
2129
2130         user_extra = nr_pages + 1;
2131         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2132
2133         /*
2134          * Increase the limit linearly with more CPUs:
2135          */
2136         user_lock_limit *= num_online_cpus();
2137
2138         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2139
2140         extra = 0;
2141         if (user_locked > user_lock_limit)
2142                 extra = user_locked - user_lock_limit;
2143
2144         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2145         lock_limit >>= PAGE_SHIFT;
2146         locked = vma->vm_mm->locked_vm + extra;
2147
2148         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2149                 ret = -EPERM;
2150                 goto unlock;
2151         }
2152
2153         WARN_ON(counter->data);
2154         ret = perf_mmap_data_alloc(counter, nr_pages);
2155         if (ret)
2156                 goto unlock;
2157
2158         atomic_set(&counter->mmap_count, 1);
2159         atomic_long_add(user_extra, &user->locked_vm);
2160         vma->vm_mm->locked_vm += extra;
2161         counter->data->nr_locked = extra;
2162         if (vma->vm_flags & VM_WRITE)
2163                 counter->data->writable = 1;
2164
2165 unlock:
2166         mutex_unlock(&counter->mmap_mutex);
2167
2168         vma->vm_flags |= VM_RESERVED;
2169         vma->vm_ops = &perf_mmap_vmops;
2170
2171         return ret;
2172 }
2173
2174 static int perf_fasync(int fd, struct file *filp, int on)
2175 {
2176         struct inode *inode = filp->f_path.dentry->d_inode;
2177         struct perf_counter *counter = filp->private_data;
2178         int retval;
2179
2180         mutex_lock(&inode->i_mutex);
2181         retval = fasync_helper(fd, filp, on, &counter->fasync);
2182         mutex_unlock(&inode->i_mutex);
2183
2184         if (retval < 0)
2185                 return retval;
2186
2187         return 0;
2188 }
2189
2190 static const struct file_operations perf_fops = {
2191         .release                = perf_release,
2192         .read                   = perf_read,
2193         .poll                   = perf_poll,
2194         .unlocked_ioctl         = perf_ioctl,
2195         .compat_ioctl           = perf_ioctl,
2196         .mmap                   = perf_mmap,
2197         .fasync                 = perf_fasync,
2198 };
2199
2200 /*
2201  * Perf counter wakeup
2202  *
2203  * If there's data, ensure we set the poll() state and publish everything
2204  * to user-space before waking everybody up.
2205  */
2206
2207 void perf_counter_wakeup(struct perf_counter *counter)
2208 {
2209         wake_up_all(&counter->waitq);
2210
2211         if (counter->pending_kill) {
2212                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2213                 counter->pending_kill = 0;
2214         }
2215 }
2216
2217 /*
2218  * Pending wakeups
2219  *
2220  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2221  *
2222  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2223  * single linked list and use cmpxchg() to add entries lockless.
2224  */
2225
2226 static void perf_pending_counter(struct perf_pending_entry *entry)
2227 {
2228         struct perf_counter *counter = container_of(entry,
2229                         struct perf_counter, pending);
2230
2231         if (counter->pending_disable) {
2232                 counter->pending_disable = 0;
2233                 perf_counter_disable(counter);
2234         }
2235
2236         if (counter->pending_wakeup) {
2237                 counter->pending_wakeup = 0;
2238                 perf_counter_wakeup(counter);
2239         }
2240 }
2241
2242 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2243
2244 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2245         PENDING_TAIL,
2246 };
2247
2248 static void perf_pending_queue(struct perf_pending_entry *entry,
2249                                void (*func)(struct perf_pending_entry *))
2250 {
2251         struct perf_pending_entry **head;
2252
2253         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2254                 return;
2255
2256         entry->func = func;
2257
2258         head = &get_cpu_var(perf_pending_head);
2259
2260         do {
2261                 entry->next = *head;
2262         } while (cmpxchg(head, entry->next, entry) != entry->next);
2263
2264         set_perf_counter_pending();
2265
2266         put_cpu_var(perf_pending_head);
2267 }
2268
2269 static int __perf_pending_run(void)
2270 {
2271         struct perf_pending_entry *list;
2272         int nr = 0;
2273
2274         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2275         while (list != PENDING_TAIL) {
2276                 void (*func)(struct perf_pending_entry *);
2277                 struct perf_pending_entry *entry = list;
2278
2279                 list = list->next;
2280
2281                 func = entry->func;
2282                 entry->next = NULL;
2283                 /*
2284                  * Ensure we observe the unqueue before we issue the wakeup,
2285                  * so that we won't be waiting forever.
2286                  * -- see perf_not_pending().
2287                  */
2288                 smp_wmb();
2289
2290                 func(entry);
2291                 nr++;
2292         }
2293
2294         return nr;
2295 }
2296
2297 static inline int perf_not_pending(struct perf_counter *counter)
2298 {
2299         /*
2300          * If we flush on whatever cpu we run, there is a chance we don't
2301          * need to wait.
2302          */
2303         get_cpu();
2304         __perf_pending_run();
2305         put_cpu();
2306
2307         /*
2308          * Ensure we see the proper queue state before going to sleep
2309          * so that we do not miss the wakeup. -- see perf_pending_handle()
2310          */
2311         smp_rmb();
2312         return counter->pending.next == NULL;
2313 }
2314
2315 static void perf_pending_sync(struct perf_counter *counter)
2316 {
2317         wait_event(counter->waitq, perf_not_pending(counter));
2318 }
2319
2320 void perf_counter_do_pending(void)
2321 {
2322         __perf_pending_run();
2323 }
2324
2325 /*
2326  * Callchain support -- arch specific
2327  */
2328
2329 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2330 {
2331         return NULL;
2332 }
2333
2334 /*
2335  * Output
2336  */
2337
2338 struct perf_output_handle {
2339         struct perf_counter     *counter;
2340         struct perf_mmap_data   *data;
2341         unsigned long           head;
2342         unsigned long           offset;
2343         int                     nmi;
2344         int                     sample;
2345         int                     locked;
2346         unsigned long           flags;
2347 };
2348
2349 static bool perf_output_space(struct perf_mmap_data *data,
2350                               unsigned int offset, unsigned int head)
2351 {
2352         unsigned long tail;
2353         unsigned long mask;
2354
2355         if (!data->writable)
2356                 return true;
2357
2358         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2359         /*
2360          * Userspace could choose to issue a mb() before updating the tail
2361          * pointer. So that all reads will be completed before the write is
2362          * issued.
2363          */
2364         tail = ACCESS_ONCE(data->user_page->data_tail);
2365         smp_rmb();
2366
2367         offset = (offset - tail) & mask;
2368         head   = (head   - tail) & mask;
2369
2370         if ((int)(head - offset) < 0)
2371                 return false;
2372
2373         return true;
2374 }
2375
2376 static void perf_output_wakeup(struct perf_output_handle *handle)
2377 {
2378         atomic_set(&handle->data->poll, POLL_IN);
2379
2380         if (handle->nmi) {
2381                 handle->counter->pending_wakeup = 1;
2382                 perf_pending_queue(&handle->counter->pending,
2383                                    perf_pending_counter);
2384         } else
2385                 perf_counter_wakeup(handle->counter);
2386 }
2387
2388 /*
2389  * Curious locking construct.
2390  *
2391  * We need to ensure a later event doesn't publish a head when a former
2392  * event isn't done writing. However since we need to deal with NMIs we
2393  * cannot fully serialize things.
2394  *
2395  * What we do is serialize between CPUs so we only have to deal with NMI
2396  * nesting on a single CPU.
2397  *
2398  * We only publish the head (and generate a wakeup) when the outer-most
2399  * event completes.
2400  */
2401 static void perf_output_lock(struct perf_output_handle *handle)
2402 {
2403         struct perf_mmap_data *data = handle->data;
2404         int cpu;
2405
2406         handle->locked = 0;
2407
2408         local_irq_save(handle->flags);
2409         cpu = smp_processor_id();
2410
2411         if (in_nmi() && atomic_read(&data->lock) == cpu)
2412                 return;
2413
2414         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2415                 cpu_relax();
2416
2417         handle->locked = 1;
2418 }
2419
2420 static void perf_output_unlock(struct perf_output_handle *handle)
2421 {
2422         struct perf_mmap_data *data = handle->data;
2423         unsigned long head;
2424         int cpu;
2425
2426         data->done_head = data->head;
2427
2428         if (!handle->locked)
2429                 goto out;
2430
2431 again:
2432         /*
2433          * The xchg implies a full barrier that ensures all writes are done
2434          * before we publish the new head, matched by a rmb() in userspace when
2435          * reading this position.
2436          */
2437         while ((head = atomic_long_xchg(&data->done_head, 0)))
2438                 data->user_page->data_head = head;
2439
2440         /*
2441          * NMI can happen here, which means we can miss a done_head update.
2442          */
2443
2444         cpu = atomic_xchg(&data->lock, -1);
2445         WARN_ON_ONCE(cpu != smp_processor_id());
2446
2447         /*
2448          * Therefore we have to validate we did not indeed do so.
2449          */
2450         if (unlikely(atomic_long_read(&data->done_head))) {
2451                 /*
2452                  * Since we had it locked, we can lock it again.
2453                  */
2454                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2455                         cpu_relax();
2456
2457                 goto again;
2458         }
2459
2460         if (atomic_xchg(&data->wakeup, 0))
2461                 perf_output_wakeup(handle);
2462 out:
2463         local_irq_restore(handle->flags);
2464 }
2465
2466 static void perf_output_copy(struct perf_output_handle *handle,
2467                              const void *buf, unsigned int len)
2468 {
2469         unsigned int pages_mask;
2470         unsigned int offset;
2471         unsigned int size;
2472         void **pages;
2473
2474         offset          = handle->offset;
2475         pages_mask      = handle->data->nr_pages - 1;
2476         pages           = handle->data->data_pages;
2477
2478         do {
2479                 unsigned int page_offset;
2480                 int nr;
2481
2482                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2483                 page_offset = offset & (PAGE_SIZE - 1);
2484                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2485
2486                 memcpy(pages[nr] + page_offset, buf, size);
2487
2488                 len         -= size;
2489                 buf         += size;
2490                 offset      += size;
2491         } while (len);
2492
2493         handle->offset = offset;
2494
2495         /*
2496          * Check we didn't copy past our reservation window, taking the
2497          * possible unsigned int wrap into account.
2498          */
2499         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2500 }
2501
2502 #define perf_output_put(handle, x) \
2503         perf_output_copy((handle), &(x), sizeof(x))
2504
2505 static int perf_output_begin(struct perf_output_handle *handle,
2506                              struct perf_counter *counter, unsigned int size,
2507                              int nmi, int sample)
2508 {
2509         struct perf_mmap_data *data;
2510         unsigned int offset, head;
2511         int have_lost;
2512         struct {
2513                 struct perf_event_header header;
2514                 u64                      id;
2515                 u64                      lost;
2516         } lost_event;
2517
2518         /*
2519          * For inherited counters we send all the output towards the parent.
2520          */
2521         if (counter->parent)
2522                 counter = counter->parent;
2523
2524         rcu_read_lock();
2525         data = rcu_dereference(counter->data);
2526         if (!data)
2527                 goto out;
2528
2529         handle->data    = data;
2530         handle->counter = counter;
2531         handle->nmi     = nmi;
2532         handle->sample  = sample;
2533
2534         if (!data->nr_pages)
2535                 goto fail;
2536
2537         have_lost = atomic_read(&data->lost);
2538         if (have_lost)
2539                 size += sizeof(lost_event);
2540
2541         perf_output_lock(handle);
2542
2543         do {
2544                 offset = head = atomic_long_read(&data->head);
2545                 head += size;
2546                 if (unlikely(!perf_output_space(data, offset, head)))
2547                         goto fail;
2548         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2549
2550         handle->offset  = offset;
2551         handle->head    = head;
2552
2553         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2554                 atomic_set(&data->wakeup, 1);
2555
2556         if (have_lost) {
2557                 lost_event.header.type = PERF_EVENT_LOST;
2558                 lost_event.header.misc = 0;
2559                 lost_event.header.size = sizeof(lost_event);
2560                 lost_event.id          = counter->id;
2561                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2562
2563                 perf_output_put(handle, lost_event);
2564         }
2565
2566         return 0;
2567
2568 fail:
2569         atomic_inc(&data->lost);
2570         perf_output_unlock(handle);
2571 out:
2572         rcu_read_unlock();
2573
2574         return -ENOSPC;
2575 }
2576
2577 static void perf_output_end(struct perf_output_handle *handle)
2578 {
2579         struct perf_counter *counter = handle->counter;
2580         struct perf_mmap_data *data = handle->data;
2581
2582         int wakeup_events = counter->attr.wakeup_events;
2583
2584         if (handle->sample && wakeup_events) {
2585                 int events = atomic_inc_return(&data->events);
2586                 if (events >= wakeup_events) {
2587                         atomic_sub(wakeup_events, &data->events);
2588                         atomic_set(&data->wakeup, 1);
2589                 }
2590         }
2591
2592         perf_output_unlock(handle);
2593         rcu_read_unlock();
2594 }
2595
2596 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2597 {
2598         /*
2599          * only top level counters have the pid namespace they were created in
2600          */
2601         if (counter->parent)
2602                 counter = counter->parent;
2603
2604         return task_tgid_nr_ns(p, counter->ns);
2605 }
2606
2607 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2608 {
2609         /*
2610          * only top level counters have the pid namespace they were created in
2611          */
2612         if (counter->parent)
2613                 counter = counter->parent;
2614
2615         return task_pid_nr_ns(p, counter->ns);
2616 }
2617
2618 static void perf_counter_output(struct perf_counter *counter, int nmi,
2619                                 struct perf_sample_data *data)
2620 {
2621         int ret;
2622         u64 sample_type = counter->attr.sample_type;
2623         struct perf_output_handle handle;
2624         struct perf_event_header header;
2625         u64 ip;
2626         struct {
2627                 u32 pid, tid;
2628         } tid_entry;
2629         struct {
2630                 u64 id;
2631                 u64 counter;
2632         } group_entry;
2633         struct perf_callchain_entry *callchain = NULL;
2634         int callchain_size = 0;
2635         u64 time;
2636         struct {
2637                 u32 cpu, reserved;
2638         } cpu_entry;
2639
2640         header.type = PERF_EVENT_SAMPLE;
2641         header.size = sizeof(header);
2642
2643         header.misc = 0;
2644         header.misc |= perf_misc_flags(data->regs);
2645
2646         if (sample_type & PERF_SAMPLE_IP) {
2647                 ip = perf_instruction_pointer(data->regs);
2648                 header.size += sizeof(ip);
2649         }
2650
2651         if (sample_type & PERF_SAMPLE_TID) {
2652                 /* namespace issues */
2653                 tid_entry.pid = perf_counter_pid(counter, current);
2654                 tid_entry.tid = perf_counter_tid(counter, current);
2655
2656                 header.size += sizeof(tid_entry);
2657         }
2658
2659         if (sample_type & PERF_SAMPLE_TIME) {
2660                 /*
2661                  * Maybe do better on x86 and provide cpu_clock_nmi()
2662                  */
2663                 time = sched_clock();
2664
2665                 header.size += sizeof(u64);
2666         }
2667
2668         if (sample_type & PERF_SAMPLE_ADDR)
2669                 header.size += sizeof(u64);
2670
2671         if (sample_type & PERF_SAMPLE_ID)
2672                 header.size += sizeof(u64);
2673
2674         if (sample_type & PERF_SAMPLE_STREAM_ID)
2675                 header.size += sizeof(u64);
2676
2677         if (sample_type & PERF_SAMPLE_CPU) {
2678                 header.size += sizeof(cpu_entry);
2679
2680                 cpu_entry.cpu = raw_smp_processor_id();
2681                 cpu_entry.reserved = 0;
2682         }
2683
2684         if (sample_type & PERF_SAMPLE_PERIOD)
2685                 header.size += sizeof(u64);
2686
2687         if (sample_type & PERF_SAMPLE_GROUP) {
2688                 header.size += sizeof(u64) +
2689                         counter->nr_siblings * sizeof(group_entry);
2690         }
2691
2692         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2693                 callchain = perf_callchain(data->regs);
2694
2695                 if (callchain) {
2696                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2697                         header.size += callchain_size;
2698                 } else
2699                         header.size += sizeof(u64);
2700         }
2701
2702         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2703         if (ret)
2704                 return;
2705
2706         perf_output_put(&handle, header);
2707
2708         if (sample_type & PERF_SAMPLE_IP)
2709                 perf_output_put(&handle, ip);
2710
2711         if (sample_type & PERF_SAMPLE_TID)
2712                 perf_output_put(&handle, tid_entry);
2713
2714         if (sample_type & PERF_SAMPLE_TIME)
2715                 perf_output_put(&handle, time);
2716
2717         if (sample_type & PERF_SAMPLE_ADDR)
2718                 perf_output_put(&handle, data->addr);
2719
2720         if (sample_type & PERF_SAMPLE_ID) {
2721                 u64 id = primary_counter_id(counter);
2722
2723                 perf_output_put(&handle, id);
2724         }
2725
2726         if (sample_type & PERF_SAMPLE_STREAM_ID)
2727                 perf_output_put(&handle, counter->id);
2728
2729         if (sample_type & PERF_SAMPLE_CPU)
2730                 perf_output_put(&handle, cpu_entry);
2731
2732         if (sample_type & PERF_SAMPLE_PERIOD)
2733                 perf_output_put(&handle, data->period);
2734
2735         /*
2736          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2737          */
2738         if (sample_type & PERF_SAMPLE_GROUP) {
2739                 struct perf_counter *leader, *sub;
2740                 u64 nr = counter->nr_siblings;
2741
2742                 perf_output_put(&handle, nr);
2743
2744                 leader = counter->group_leader;
2745                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2746                         if (sub != counter)
2747                                 sub->pmu->read(sub);
2748
2749                         group_entry.id = primary_counter_id(sub);
2750                         group_entry.counter = atomic64_read(&sub->count);
2751
2752                         perf_output_put(&handle, group_entry);
2753                 }
2754         }
2755
2756         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2757                 if (callchain)
2758                         perf_output_copy(&handle, callchain, callchain_size);
2759                 else {
2760                         u64 nr = 0;
2761                         perf_output_put(&handle, nr);
2762                 }
2763         }
2764
2765         perf_output_end(&handle);
2766 }
2767
2768 /*
2769  * read event
2770  */
2771
2772 struct perf_read_event {
2773         struct perf_event_header        header;
2774
2775         u32                             pid;
2776         u32                             tid;
2777         u64                             value;
2778         u64                             format[3];
2779 };
2780
2781 static void
2782 perf_counter_read_event(struct perf_counter *counter,
2783                         struct task_struct *task)
2784 {
2785         struct perf_output_handle handle;
2786         struct perf_read_event event = {
2787                 .header = {
2788                         .type = PERF_EVENT_READ,
2789                         .misc = 0,
2790                         .size = sizeof(event) - sizeof(event.format),
2791                 },
2792                 .pid = perf_counter_pid(counter, task),
2793                 .tid = perf_counter_tid(counter, task),
2794                 .value = atomic64_read(&counter->count),
2795         };
2796         int ret, i = 0;
2797
2798         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2799                 event.header.size += sizeof(u64);
2800                 event.format[i++] = counter->total_time_enabled;
2801         }
2802
2803         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2804                 event.header.size += sizeof(u64);
2805                 event.format[i++] = counter->total_time_running;
2806         }
2807
2808         if (counter->attr.read_format & PERF_FORMAT_ID) {
2809                 event.header.size += sizeof(u64);
2810                 event.format[i++] = primary_counter_id(counter);
2811         }
2812
2813         ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2814         if (ret)
2815                 return;
2816
2817         perf_output_copy(&handle, &event, event.header.size);
2818         perf_output_end(&handle);
2819 }
2820
2821 /*
2822  * fork tracking
2823  */
2824
2825 struct perf_fork_event {
2826         struct task_struct      *task;
2827
2828         struct {
2829                 struct perf_event_header        header;
2830
2831                 u32                             pid;
2832                 u32                             ppid;
2833         } event;
2834 };
2835
2836 static void perf_counter_fork_output(struct perf_counter *counter,
2837                                      struct perf_fork_event *fork_event)
2838 {
2839         struct perf_output_handle handle;
2840         int size = fork_event->event.header.size;
2841         struct task_struct *task = fork_event->task;
2842         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2843
2844         if (ret)
2845                 return;
2846
2847         fork_event->event.pid = perf_counter_pid(counter, task);
2848         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2849
2850         perf_output_put(&handle, fork_event->event);
2851         perf_output_end(&handle);
2852 }
2853
2854 static int perf_counter_fork_match(struct perf_counter *counter)
2855 {
2856         if (counter->attr.comm || counter->attr.mmap)
2857                 return 1;
2858
2859         return 0;
2860 }
2861
2862 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2863                                   struct perf_fork_event *fork_event)
2864 {
2865         struct perf_counter *counter;
2866
2867         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2868                 return;
2869
2870         rcu_read_lock();
2871         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2872                 if (perf_counter_fork_match(counter))
2873                         perf_counter_fork_output(counter, fork_event);
2874         }
2875         rcu_read_unlock();
2876 }
2877
2878 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2879 {
2880         struct perf_cpu_context *cpuctx;
2881         struct perf_counter_context *ctx;
2882
2883         cpuctx = &get_cpu_var(perf_cpu_context);
2884         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2885         put_cpu_var(perf_cpu_context);
2886
2887         rcu_read_lock();
2888         /*
2889          * doesn't really matter which of the child contexts the
2890          * events ends up in.
2891          */
2892         ctx = rcu_dereference(current->perf_counter_ctxp);
2893         if (ctx)
2894                 perf_counter_fork_ctx(ctx, fork_event);
2895         rcu_read_unlock();
2896 }
2897
2898 void perf_counter_fork(struct task_struct *task)
2899 {
2900         struct perf_fork_event fork_event;
2901
2902         if (!atomic_read(&nr_comm_counters) &&
2903             !atomic_read(&nr_mmap_counters))
2904                 return;
2905
2906         fork_event = (struct perf_fork_event){
2907                 .task   = task,
2908                 .event  = {
2909                         .header = {
2910                                 .type = PERF_EVENT_FORK,
2911                                 .misc = 0,
2912                                 .size = sizeof(fork_event.event),
2913                         },
2914                         /* .pid  */
2915                         /* .ppid */
2916                 },
2917         };
2918
2919         perf_counter_fork_event(&fork_event);
2920 }
2921
2922 /*
2923  * comm tracking
2924  */
2925
2926 struct perf_comm_event {
2927         struct task_struct      *task;
2928         char                    *comm;
2929         int                     comm_size;
2930
2931         struct {
2932                 struct perf_event_header        header;
2933
2934                 u32                             pid;
2935                 u32                             tid;
2936         } event;
2937 };
2938
2939 static void perf_counter_comm_output(struct perf_counter *counter,
2940                                      struct perf_comm_event *comm_event)
2941 {
2942         struct perf_output_handle handle;
2943         int size = comm_event->event.header.size;
2944         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2945
2946         if (ret)
2947                 return;
2948
2949         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2950         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2951
2952         perf_output_put(&handle, comm_event->event);
2953         perf_output_copy(&handle, comm_event->comm,
2954                                    comm_event->comm_size);
2955         perf_output_end(&handle);
2956 }
2957
2958 static int perf_counter_comm_match(struct perf_counter *counter)
2959 {
2960         if (counter->attr.comm)
2961                 return 1;
2962
2963         return 0;
2964 }
2965
2966 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2967                                   struct perf_comm_event *comm_event)
2968 {
2969         struct perf_counter *counter;
2970
2971         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2972                 return;
2973
2974         rcu_read_lock();
2975         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2976                 if (perf_counter_comm_match(counter))
2977                         perf_counter_comm_output(counter, comm_event);
2978         }
2979         rcu_read_unlock();
2980 }
2981
2982 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2983 {
2984         struct perf_cpu_context *cpuctx;
2985         struct perf_counter_context *ctx;
2986         unsigned int size;
2987         char comm[TASK_COMM_LEN];
2988
2989         memset(comm, 0, sizeof(comm));
2990         strncpy(comm, comm_event->task->comm, sizeof(comm));
2991         size = ALIGN(strlen(comm)+1, sizeof(u64));
2992
2993         comm_event->comm = comm;
2994         comm_event->comm_size = size;
2995
2996         comm_event->event.header.size = sizeof(comm_event->event) + size;
2997
2998         cpuctx = &get_cpu_var(perf_cpu_context);
2999         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3000         put_cpu_var(perf_cpu_context);
3001
3002         rcu_read_lock();
3003         /*
3004          * doesn't really matter which of the child contexts the
3005          * events ends up in.
3006          */
3007         ctx = rcu_dereference(current->perf_counter_ctxp);
3008         if (ctx)
3009                 perf_counter_comm_ctx(ctx, comm_event);
3010         rcu_read_unlock();
3011 }
3012
3013 void perf_counter_comm(struct task_struct *task)
3014 {
3015         struct perf_comm_event comm_event;
3016
3017         if (task->perf_counter_ctxp)
3018                 perf_counter_enable_on_exec(task);
3019
3020         if (!atomic_read(&nr_comm_counters))
3021                 return;
3022
3023         comm_event = (struct perf_comm_event){
3024                 .task   = task,
3025                 /* .comm      */
3026                 /* .comm_size */
3027                 .event  = {
3028                         .header = {
3029                                 .type = PERF_EVENT_COMM,
3030                                 .misc = 0,
3031                                 /* .size */
3032                         },
3033                         /* .pid */
3034                         /* .tid */
3035                 },
3036         };
3037
3038         perf_counter_comm_event(&comm_event);
3039 }
3040
3041 /*
3042  * mmap tracking
3043  */
3044
3045 struct perf_mmap_event {
3046         struct vm_area_struct   *vma;
3047
3048         const char              *file_name;
3049         int                     file_size;
3050
3051         struct {
3052                 struct perf_event_header        header;
3053
3054                 u32                             pid;
3055                 u32                             tid;
3056                 u64                             start;
3057                 u64                             len;
3058                 u64                             pgoff;
3059         } event;
3060 };
3061
3062 static void perf_counter_mmap_output(struct perf_counter *counter,
3063                                      struct perf_mmap_event *mmap_event)
3064 {
3065         struct perf_output_handle handle;
3066         int size = mmap_event->event.header.size;
3067         int ret = perf_output_begin(&handle, counter, size, 0, 0);
3068
3069         if (ret)
3070                 return;
3071
3072         mmap_event->event.pid = perf_counter_pid(counter, current);
3073         mmap_event->event.tid = perf_counter_tid(counter, current);
3074
3075         perf_output_put(&handle, mmap_event->event);
3076         perf_output_copy(&handle, mmap_event->file_name,
3077                                    mmap_event->file_size);
3078         perf_output_end(&handle);
3079 }
3080
3081 static int perf_counter_mmap_match(struct perf_counter *counter,
3082                                    struct perf_mmap_event *mmap_event)
3083 {
3084         if (counter->attr.mmap)
3085                 return 1;
3086
3087         return 0;
3088 }
3089
3090 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3091                                   struct perf_mmap_event *mmap_event)
3092 {
3093         struct perf_counter *counter;
3094
3095         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3096                 return;
3097
3098         rcu_read_lock();
3099         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3100                 if (perf_counter_mmap_match(counter, mmap_event))
3101                         perf_counter_mmap_output(counter, mmap_event);
3102         }
3103         rcu_read_unlock();
3104 }
3105
3106 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3107 {
3108         struct perf_cpu_context *cpuctx;
3109         struct perf_counter_context *ctx;
3110         struct vm_area_struct *vma = mmap_event->vma;
3111         struct file *file = vma->vm_file;
3112         unsigned int size;
3113         char tmp[16];
3114         char *buf = NULL;
3115         const char *name;
3116
3117         memset(tmp, 0, sizeof(tmp));
3118
3119         if (file) {
3120                 /*
3121                  * d_path works from the end of the buffer backwards, so we
3122                  * need to add enough zero bytes after the string to handle
3123                  * the 64bit alignment we do later.
3124                  */
3125                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3126                 if (!buf) {
3127                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3128                         goto got_name;
3129                 }
3130                 name = d_path(&file->f_path, buf, PATH_MAX);
3131                 if (IS_ERR(name)) {
3132                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3133                         goto got_name;
3134                 }
3135         } else {
3136                 if (arch_vma_name(mmap_event->vma)) {
3137                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3138                                        sizeof(tmp));
3139                         goto got_name;
3140                 }
3141
3142                 if (!vma->vm_mm) {
3143                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3144                         goto got_name;
3145                 }
3146
3147                 name = strncpy(tmp, "//anon", sizeof(tmp));
3148                 goto got_name;
3149         }
3150
3151 got_name:
3152         size = ALIGN(strlen(name)+1, sizeof(u64));
3153
3154         mmap_event->file_name = name;
3155         mmap_event->file_size = size;
3156
3157         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3158
3159         cpuctx = &get_cpu_var(perf_cpu_context);
3160         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3161         put_cpu_var(perf_cpu_context);
3162
3163         rcu_read_lock();
3164         /*
3165          * doesn't really matter which of the child contexts the
3166          * events ends up in.
3167          */
3168         ctx = rcu_dereference(current->perf_counter_ctxp);
3169         if (ctx)
3170                 perf_counter_mmap_ctx(ctx, mmap_event);
3171         rcu_read_unlock();
3172
3173         kfree(buf);
3174 }
3175
3176 void __perf_counter_mmap(struct vm_area_struct *vma)
3177 {
3178         struct perf_mmap_event mmap_event;
3179
3180         if (!atomic_read(&nr_mmap_counters))
3181                 return;
3182
3183         mmap_event = (struct perf_mmap_event){
3184                 .vma    = vma,
3185                 /* .file_name */
3186                 /* .file_size */
3187                 .event  = {
3188                         .header = {
3189                                 .type = PERF_EVENT_MMAP,
3190                                 .misc = 0,
3191                                 /* .size */
3192                         },
3193                         /* .pid */
3194                         /* .tid */
3195                         .start  = vma->vm_start,
3196                         .len    = vma->vm_end - vma->vm_start,
3197                         .pgoff  = vma->vm_pgoff,
3198                 },
3199         };
3200
3201         perf_counter_mmap_event(&mmap_event);
3202 }
3203
3204 /*
3205  * IRQ throttle logging
3206  */
3207
3208 static void perf_log_throttle(struct perf_counter *counter, int enable)
3209 {
3210         struct perf_output_handle handle;
3211         int ret;
3212
3213         struct {
3214                 struct perf_event_header        header;
3215                 u64                             time;
3216                 u64                             id;
3217                 u64                             stream_id;
3218         } throttle_event = {
3219                 .header = {
3220                         .type = PERF_EVENT_THROTTLE,
3221                         .misc = 0,
3222                         .size = sizeof(throttle_event),
3223                 },
3224                 .time           = sched_clock(),
3225                 .id             = primary_counter_id(counter),
3226                 .stream_id      = counter->id,
3227         };
3228
3229         if (enable)
3230                 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3231
3232         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3233         if (ret)
3234                 return;
3235
3236         perf_output_put(&handle, throttle_event);
3237         perf_output_end(&handle);
3238 }
3239
3240 /*
3241  * Generic counter overflow handling, sampling.
3242  */
3243
3244 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3245                           struct perf_sample_data *data)
3246 {
3247         int events = atomic_read(&counter->event_limit);
3248         int throttle = counter->pmu->unthrottle != NULL;
3249         struct hw_perf_counter *hwc = &counter->hw;
3250         int ret = 0;
3251
3252         if (!throttle) {
3253                 hwc->interrupts++;
3254         } else {
3255                 if (hwc->interrupts != MAX_INTERRUPTS) {
3256                         hwc->interrupts++;
3257                         if (HZ * hwc->interrupts >
3258                                         (u64)sysctl_perf_counter_sample_rate) {
3259                                 hwc->interrupts = MAX_INTERRUPTS;
3260                                 perf_log_throttle(counter, 0);
3261                                 ret = 1;
3262                         }
3263                 } else {
3264                         /*
3265                          * Keep re-disabling counters even though on the previous
3266                          * pass we disabled it - just in case we raced with a
3267                          * sched-in and the counter got enabled again:
3268                          */
3269                         ret = 1;
3270                 }
3271         }
3272
3273         if (counter->attr.freq) {
3274                 u64 now = sched_clock();
3275                 s64 delta = now - hwc->freq_stamp;
3276
3277                 hwc->freq_stamp = now;
3278
3279                 if (delta > 0 && delta < TICK_NSEC)
3280                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3281         }
3282
3283         /*
3284          * XXX event_limit might not quite work as expected on inherited
3285          * counters
3286          */
3287
3288         counter->pending_kill = POLL_IN;
3289         if (events && atomic_dec_and_test(&counter->event_limit)) {
3290                 ret = 1;
3291                 counter->pending_kill = POLL_HUP;
3292                 if (nmi) {
3293                         counter->pending_disable = 1;
3294                         perf_pending_queue(&counter->pending,
3295                                            perf_pending_counter);
3296                 } else
3297                         perf_counter_disable(counter);
3298         }
3299
3300         perf_counter_output(counter, nmi, data);
3301         return ret;
3302 }
3303
3304 /*
3305  * Generic software counter infrastructure
3306  */
3307
3308 static void perf_swcounter_update(struct perf_counter *counter)
3309 {
3310         struct hw_perf_counter *hwc = &counter->hw;
3311         u64 prev, now;
3312         s64 delta;
3313
3314 again:
3315         prev = atomic64_read(&hwc->prev_count);
3316         now = atomic64_read(&hwc->count);
3317         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3318                 goto again;
3319
3320         delta = now - prev;
3321
3322         atomic64_add(delta, &counter->count);
3323         atomic64_sub(delta, &hwc->period_left);
3324 }
3325
3326 static void perf_swcounter_set_period(struct perf_counter *counter)
3327 {
3328         struct hw_perf_counter *hwc = &counter->hw;
3329         s64 left = atomic64_read(&hwc->period_left);
3330         s64 period = hwc->sample_period;
3331
3332         if (unlikely(left <= -period)) {
3333                 left = period;
3334                 atomic64_set(&hwc->period_left, left);
3335                 hwc->last_period = period;
3336         }
3337
3338         if (unlikely(left <= 0)) {
3339                 left += period;
3340                 atomic64_add(period, &hwc->period_left);
3341                 hwc->last_period = period;
3342         }
3343
3344         atomic64_set(&hwc->prev_count, -left);
3345         atomic64_set(&hwc->count, -left);
3346 }
3347
3348 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3349 {
3350         enum hrtimer_restart ret = HRTIMER_RESTART;
3351         struct perf_sample_data data;
3352         struct perf_counter *counter;
3353         u64 period;
3354
3355         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3356         counter->pmu->read(counter);
3357
3358         data.addr = 0;
3359         data.regs = get_irq_regs();
3360         /*
3361          * In case we exclude kernel IPs or are somehow not in interrupt
3362          * context, provide the next best thing, the user IP.
3363          */
3364         if ((counter->attr.exclude_kernel || !data.regs) &&
3365                         !counter->attr.exclude_user)
3366                 data.regs = task_pt_regs(current);
3367
3368         if (data.regs) {
3369                 if (perf_counter_overflow(counter, 0, &data))
3370                         ret = HRTIMER_NORESTART;
3371         }
3372
3373         period = max_t(u64, 10000, counter->hw.sample_period);
3374         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3375
3376         return ret;
3377 }
3378
3379 static void perf_swcounter_overflow(struct perf_counter *counter,
3380                                     int nmi, struct perf_sample_data *data)
3381 {
3382         data->period = counter->hw.last_period;
3383
3384         perf_swcounter_update(counter);
3385         perf_swcounter_set_period(counter);
3386         if (perf_counter_overflow(counter, nmi, data))
3387                 /* soft-disable the counter */
3388                 ;
3389 }
3390
3391 static int perf_swcounter_is_counting(struct perf_counter *counter)
3392 {
3393         struct perf_counter_context *ctx;
3394         unsigned long flags;
3395         int count;
3396
3397         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3398                 return 1;
3399
3400         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3401                 return 0;
3402
3403         /*
3404          * If the counter is inactive, it could be just because
3405          * its task is scheduled out, or because it's in a group
3406          * which could not go on the PMU.  We want to count in
3407          * the first case but not the second.  If the context is
3408          * currently active then an inactive software counter must
3409          * be the second case.  If it's not currently active then
3410          * we need to know whether the counter was active when the
3411          * context was last active, which we can determine by
3412          * comparing counter->tstamp_stopped with ctx->time.
3413          *
3414          * We are within an RCU read-side critical section,
3415          * which protects the existence of *ctx.
3416          */
3417         ctx = counter->ctx;
3418         spin_lock_irqsave(&ctx->lock, flags);
3419         count = 1;
3420         /* Re-check state now we have the lock */
3421         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3422             counter->ctx->is_active ||
3423             counter->tstamp_stopped < ctx->time)
3424                 count = 0;
3425         spin_unlock_irqrestore(&ctx->lock, flags);
3426         return count;
3427 }
3428
3429 static int perf_swcounter_match(struct perf_counter *counter,
3430                                 enum perf_type_id type,
3431                                 u32 event, struct pt_regs *regs)
3432 {
3433         if (!perf_swcounter_is_counting(counter))
3434                 return 0;
3435
3436         if (counter->attr.type != type)
3437                 return 0;
3438         if (counter->attr.config != event)
3439                 return 0;
3440
3441         if (regs) {
3442                 if (counter->attr.exclude_user && user_mode(regs))
3443                         return 0;
3444
3445                 if (counter->attr.exclude_kernel && !user_mode(regs))
3446                         return 0;
3447         }
3448
3449         return 1;
3450 }
3451
3452 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3453                                int nmi, struct perf_sample_data *data)
3454 {
3455         int neg = atomic64_add_negative(nr, &counter->hw.count);
3456
3457         if (counter->hw.sample_period && !neg && data->regs)
3458                 perf_swcounter_overflow(counter, nmi, data);
3459 }
3460
3461 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3462                                      enum perf_type_id type,
3463                                      u32 event, u64 nr, int nmi,
3464                                      struct perf_sample_data *data)
3465 {
3466         struct perf_counter *counter;
3467
3468         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3469                 return;
3470
3471         rcu_read_lock();
3472         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3473                 if (perf_swcounter_match(counter, type, event, data->regs))
3474                         perf_swcounter_add(counter, nr, nmi, data);
3475         }
3476         rcu_read_unlock();
3477 }
3478
3479 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3480 {
3481         if (in_nmi())
3482                 return &cpuctx->recursion[3];
3483
3484         if (in_irq())
3485                 return &cpuctx->recursion[2];
3486
3487         if (in_softirq())
3488                 return &cpuctx->recursion[1];
3489
3490         return &cpuctx->recursion[0];
3491 }
3492
3493 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3494                                     u64 nr, int nmi,
3495                                     struct perf_sample_data *data)
3496 {
3497         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3498         int *recursion = perf_swcounter_recursion_context(cpuctx);
3499         struct perf_counter_context *ctx;
3500
3501         if (*recursion)
3502                 goto out;
3503
3504         (*recursion)++;
3505         barrier();
3506
3507         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3508                                  nr, nmi, data);
3509         rcu_read_lock();
3510         /*
3511          * doesn't really matter which of the child contexts the
3512          * events ends up in.
3513          */
3514         ctx = rcu_dereference(current->perf_counter_ctxp);
3515         if (ctx)
3516                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3517         rcu_read_unlock();
3518
3519         barrier();
3520         (*recursion)--;
3521
3522 out:
3523         put_cpu_var(perf_cpu_context);
3524 }
3525
3526 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3527                             struct pt_regs *regs, u64 addr)
3528 {
3529         struct perf_sample_data data = {
3530                 .regs = regs,
3531                 .addr = addr,
3532         };
3533
3534         do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3535 }
3536
3537 static void perf_swcounter_read(struct perf_counter *counter)
3538 {
3539         perf_swcounter_update(counter);
3540 }
3541
3542 static int perf_swcounter_enable(struct perf_counter *counter)
3543 {
3544         perf_swcounter_set_period(counter);
3545         return 0;
3546 }
3547
3548 static void perf_swcounter_disable(struct perf_counter *counter)
3549 {
3550         perf_swcounter_update(counter);
3551 }
3552
3553 static const struct pmu perf_ops_generic = {
3554         .enable         = perf_swcounter_enable,
3555         .disable        = perf_swcounter_disable,
3556         .read           = perf_swcounter_read,
3557 };
3558
3559 /*
3560  * Software counter: cpu wall time clock
3561  */
3562
3563 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3564 {
3565         int cpu = raw_smp_processor_id();
3566         s64 prev;
3567         u64 now;
3568
3569         now = cpu_clock(cpu);
3570         prev = atomic64_read(&counter->hw.prev_count);
3571         atomic64_set(&counter->hw.prev_count, now);
3572         atomic64_add(now - prev, &counter->count);
3573 }
3574
3575 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3576 {
3577         struct hw_perf_counter *hwc = &counter->hw;
3578         int cpu = raw_smp_processor_id();
3579
3580         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3581         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3582         hwc->hrtimer.function = perf_swcounter_hrtimer;
3583         if (hwc->sample_period) {
3584                 u64 period = max_t(u64, 10000, hwc->sample_period);
3585                 __hrtimer_start_range_ns(&hwc->hrtimer,
3586                                 ns_to_ktime(period), 0,
3587                                 HRTIMER_MODE_REL, 0);
3588         }
3589
3590         return 0;
3591 }
3592
3593 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3594 {
3595         if (counter->hw.sample_period)
3596                 hrtimer_cancel(&counter->hw.hrtimer);
3597         cpu_clock_perf_counter_update(counter);
3598 }
3599
3600 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3601 {
3602         cpu_clock_perf_counter_update(counter);
3603 }
3604
3605 static const struct pmu perf_ops_cpu_clock = {
3606         .enable         = cpu_clock_perf_counter_enable,
3607         .disable        = cpu_clock_perf_counter_disable,
3608         .read           = cpu_clock_perf_counter_read,
3609 };
3610
3611 /*
3612  * Software counter: task time clock
3613  */
3614
3615 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3616 {
3617         u64 prev;
3618         s64 delta;
3619
3620         prev = atomic64_xchg(&counter->hw.prev_count, now);
3621         delta = now - prev;
3622         atomic64_add(delta, &counter->count);
3623 }
3624
3625 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3626 {
3627         struct hw_perf_counter *hwc = &counter->hw;
3628         u64 now;
3629
3630         now = counter->ctx->time;
3631
3632         atomic64_set(&hwc->prev_count, now);
3633         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3634         hwc->hrtimer.function = perf_swcounter_hrtimer;
3635         if (hwc->sample_period) {
3636                 u64 period = max_t(u64, 10000, hwc->sample_period);
3637                 __hrtimer_start_range_ns(&hwc->hrtimer,
3638                                 ns_to_ktime(period), 0,
3639                                 HRTIMER_MODE_REL, 0);
3640         }
3641
3642         return 0;
3643 }
3644
3645 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3646 {
3647         if (counter->hw.sample_period)
3648                 hrtimer_cancel(&counter->hw.hrtimer);
3649         task_clock_perf_counter_update(counter, counter->ctx->time);
3650
3651 }
3652
3653 static void task_clock_perf_counter_read(struct perf_counter *counter)
3654 {
3655         u64 time;
3656
3657         if (!in_nmi()) {
3658                 update_context_time(counter->ctx);
3659                 time = counter->ctx->time;
3660         } else {
3661                 u64 now = perf_clock();
3662                 u64 delta = now - counter->ctx->timestamp;
3663                 time = counter->ctx->time + delta;
3664         }
3665
3666         task_clock_perf_counter_update(counter, time);
3667 }
3668
3669 static const struct pmu perf_ops_task_clock = {
3670         .enable         = task_clock_perf_counter_enable,
3671         .disable        = task_clock_perf_counter_disable,
3672         .read           = task_clock_perf_counter_read,
3673 };
3674
3675 #ifdef CONFIG_EVENT_PROFILE
3676 void perf_tpcounter_event(int event_id)
3677 {
3678         struct perf_sample_data data = {
3679                 .regs = get_irq_regs(),
3680                 .addr = 0,
3681         };
3682
3683         if (!data.regs)
3684                 data.regs = task_pt_regs(current);
3685
3686         do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3687 }
3688 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3689
3690 extern int ftrace_profile_enable(int);
3691 extern void ftrace_profile_disable(int);
3692
3693 static void tp_perf_counter_destroy(struct perf_counter *counter)
3694 {
3695         ftrace_profile_disable(counter->attr.config);
3696 }
3697
3698 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3699 {
3700         if (ftrace_profile_enable(counter->attr.config))
3701                 return NULL;
3702
3703         counter->destroy = tp_perf_counter_destroy;
3704
3705         return &perf_ops_generic;
3706 }
3707 #else
3708 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3709 {
3710         return NULL;
3711 }
3712 #endif
3713
3714 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3715
3716 static void sw_perf_counter_destroy(struct perf_counter *counter)
3717 {
3718         u64 event = counter->attr.config;
3719
3720         WARN_ON(counter->parent);
3721
3722         atomic_dec(&perf_swcounter_enabled[event]);
3723 }
3724
3725 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3726 {
3727         const struct pmu *pmu = NULL;
3728         u64 event = counter->attr.config;
3729
3730         /*
3731          * Software counters (currently) can't in general distinguish
3732          * between user, kernel and hypervisor events.
3733          * However, context switches and cpu migrations are considered
3734          * to be kernel events, and page faults are never hypervisor
3735          * events.
3736          */
3737         switch (event) {
3738         case PERF_COUNT_SW_CPU_CLOCK:
3739                 pmu = &perf_ops_cpu_clock;
3740
3741                 break;
3742         case PERF_COUNT_SW_TASK_CLOCK:
3743                 /*
3744                  * If the user instantiates this as a per-cpu counter,
3745                  * use the cpu_clock counter instead.
3746                  */
3747                 if (counter->ctx->task)
3748                         pmu = &perf_ops_task_clock;
3749                 else
3750                         pmu = &perf_ops_cpu_clock;
3751
3752                 break;
3753         case PERF_COUNT_SW_PAGE_FAULTS:
3754         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3755         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3756         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3757         case PERF_COUNT_SW_CPU_MIGRATIONS:
3758                 if (!counter->parent) {
3759                         atomic_inc(&perf_swcounter_enabled[event]);
3760                         counter->destroy = sw_perf_counter_destroy;
3761                 }
3762                 pmu = &perf_ops_generic;
3763                 break;
3764         }
3765
3766         return pmu;
3767 }
3768
3769 /*
3770  * Allocate and initialize a counter structure
3771  */
3772 static struct perf_counter *
3773 perf_counter_alloc(struct perf_counter_attr *attr,
3774                    int cpu,
3775                    struct perf_counter_context *ctx,
3776                    struct perf_counter *group_leader,
3777                    struct perf_counter *parent_counter,
3778                    gfp_t gfpflags)
3779 {
3780         const struct pmu *pmu;
3781         struct perf_counter *counter;
3782         struct hw_perf_counter *hwc;
3783         long err;
3784
3785         counter = kzalloc(sizeof(*counter), gfpflags);
3786         if (!counter)
3787                 return ERR_PTR(-ENOMEM);
3788
3789         /*
3790          * Single counters are their own group leaders, with an
3791          * empty sibling list:
3792          */
3793         if (!group_leader)
3794                 group_leader = counter;
3795
3796         mutex_init(&counter->child_mutex);
3797         INIT_LIST_HEAD(&counter->child_list);
3798
3799         INIT_LIST_HEAD(&counter->list_entry);
3800         INIT_LIST_HEAD(&counter->event_entry);
3801         INIT_LIST_HEAD(&counter->sibling_list);
3802         init_waitqueue_head(&counter->waitq);
3803
3804         mutex_init(&counter->mmap_mutex);
3805
3806         counter->cpu            = cpu;
3807         counter->attr           = *attr;
3808         counter->group_leader   = group_leader;
3809         counter->pmu            = NULL;
3810         counter->ctx            = ctx;
3811         counter->oncpu          = -1;
3812
3813         counter->parent         = parent_counter;
3814
3815         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3816         counter->id             = atomic64_inc_return(&perf_counter_id);
3817
3818         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3819
3820         if (attr->disabled)
3821                 counter->state = PERF_COUNTER_STATE_OFF;
3822
3823         pmu = NULL;
3824
3825         hwc = &counter->hw;
3826         hwc->sample_period = attr->sample_period;
3827         if (attr->freq && attr->sample_freq)
3828                 hwc->sample_period = 1;
3829
3830         atomic64_set(&hwc->period_left, hwc->sample_period);
3831
3832         /*
3833          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3834          */
3835         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3836                 goto done;
3837
3838         switch (attr->type) {
3839         case PERF_TYPE_RAW:
3840         case PERF_TYPE_HARDWARE:
3841         case PERF_TYPE_HW_CACHE:
3842                 pmu = hw_perf_counter_init(counter);
3843                 break;
3844
3845         case PERF_TYPE_SOFTWARE:
3846                 pmu = sw_perf_counter_init(counter);
3847                 break;
3848
3849         case PERF_TYPE_TRACEPOINT:
3850                 pmu = tp_perf_counter_init(counter);
3851                 break;
3852
3853         default:
3854                 break;
3855         }
3856 done:
3857         err = 0;
3858         if (!pmu)
3859                 err = -EINVAL;
3860         else if (IS_ERR(pmu))
3861                 err = PTR_ERR(pmu);
3862
3863         if (err) {
3864                 if (counter->ns)
3865                         put_pid_ns(counter->ns);
3866                 kfree(counter);
3867                 return ERR_PTR(err);
3868         }
3869
3870         counter->pmu = pmu;
3871
3872         if (!counter->parent) {
3873                 atomic_inc(&nr_counters);
3874                 if (counter->attr.mmap)
3875                         atomic_inc(&nr_mmap_counters);
3876                 if (counter->attr.comm)
3877                         atomic_inc(&nr_comm_counters);
3878         }
3879
3880         return counter;
3881 }
3882
3883 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3884                           struct perf_counter_attr *attr)
3885 {
3886         int ret;
3887         u32 size;
3888
3889         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3890                 return -EFAULT;
3891
3892         /*
3893          * zero the full structure, so that a short copy will be nice.
3894          */
3895         memset(attr, 0, sizeof(*attr));
3896
3897         ret = get_user(size, &uattr->size);
3898         if (ret)
3899                 return ret;
3900
3901         if (size > PAGE_SIZE)   /* silly large */
3902                 goto err_size;
3903
3904         if (!size)              /* abi compat */
3905                 size = PERF_ATTR_SIZE_VER0;
3906
3907         if (size < PERF_ATTR_SIZE_VER0)
3908                 goto err_size;
3909
3910         /*
3911          * If we're handed a bigger struct than we know of,
3912          * ensure all the unknown bits are 0.
3913          */
3914         if (size > sizeof(*attr)) {
3915                 unsigned long val;
3916                 unsigned long __user *addr;
3917                 unsigned long __user *end;
3918
3919                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3920                                 sizeof(unsigned long));
3921                 end  = PTR_ALIGN((void __user *)uattr + size,
3922                                 sizeof(unsigned long));
3923
3924                 for (; addr < end; addr += sizeof(unsigned long)) {
3925                         ret = get_user(val, addr);
3926                         if (ret)
3927                                 return ret;
3928                         if (val)
3929                                 goto err_size;
3930                 }
3931         }
3932
3933         ret = copy_from_user(attr, uattr, size);
3934         if (ret)
3935                 return -EFAULT;
3936
3937         /*
3938          * If the type exists, the corresponding creation will verify
3939          * the attr->config.
3940          */
3941         if (attr->type >= PERF_TYPE_MAX)
3942                 return -EINVAL;
3943
3944         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3945                 return -EINVAL;
3946
3947         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3948                 return -EINVAL;
3949
3950         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3951                 return -EINVAL;
3952
3953 out:
3954         return ret;
3955
3956 err_size:
3957         put_user(sizeof(*attr), &uattr->size);
3958         ret = -E2BIG;
3959         goto out;
3960 }
3961
3962 /**
3963  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3964  *
3965  * @attr_uptr:  event type attributes for monitoring/sampling
3966  * @pid:                target pid
3967  * @cpu:                target cpu
3968  * @group_fd:           group leader counter fd
3969  */
3970 SYSCALL_DEFINE5(perf_counter_open,
3971                 struct perf_counter_attr __user *, attr_uptr,
3972                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3973 {
3974         struct perf_counter *counter, *group_leader;
3975         struct perf_counter_attr attr;
3976         struct perf_counter_context *ctx;
3977         struct file *counter_file = NULL;
3978         struct file *group_file = NULL;
3979         int fput_needed = 0;
3980         int fput_needed2 = 0;
3981         int ret;
3982
3983         /* for future expandability... */
3984         if (flags)
3985                 return -EINVAL;
3986
3987         ret = perf_copy_attr(attr_uptr, &attr);
3988         if (ret)
3989                 return ret;
3990
3991         if (!attr.exclude_kernel) {
3992                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3993                         return -EACCES;
3994         }
3995
3996         if (attr.freq) {
3997                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3998                         return -EINVAL;
3999         }
4000
4001         /*
4002          * Get the target context (task or percpu):
4003          */
4004         ctx = find_get_context(pid, cpu);
4005         if (IS_ERR(ctx))
4006                 return PTR_ERR(ctx);
4007
4008         /*
4009          * Look up the group leader (we will attach this counter to it):
4010          */
4011         group_leader = NULL;
4012         if (group_fd != -1) {
4013                 ret = -EINVAL;
4014                 group_file = fget_light(group_fd, &fput_needed);
4015                 if (!group_file)
4016                         goto err_put_context;
4017                 if (group_file->f_op != &perf_fops)
4018                         goto err_put_context;
4019
4020                 group_leader = group_file->private_data;
4021                 /*
4022                  * Do not allow a recursive hierarchy (this new sibling
4023                  * becoming part of another group-sibling):
4024                  */
4025                 if (group_leader->group_leader != group_leader)
4026                         goto err_put_context;
4027                 /*
4028                  * Do not allow to attach to a group in a different
4029                  * task or CPU context:
4030                  */
4031                 if (group_leader->ctx != ctx)
4032                         goto err_put_context;
4033                 /*
4034                  * Only a group leader can be exclusive or pinned
4035                  */
4036                 if (attr.exclusive || attr.pinned)
4037                         goto err_put_context;
4038         }
4039
4040         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4041                                      NULL, GFP_KERNEL);
4042         ret = PTR_ERR(counter);
4043         if (IS_ERR(counter))
4044                 goto err_put_context;
4045
4046         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4047         if (ret < 0)
4048                 goto err_free_put_context;
4049
4050         counter_file = fget_light(ret, &fput_needed2);
4051         if (!counter_file)
4052                 goto err_free_put_context;
4053
4054         counter->filp = counter_file;
4055         WARN_ON_ONCE(ctx->parent_ctx);
4056         mutex_lock(&ctx->mutex);
4057         perf_install_in_context(ctx, counter, cpu);
4058         ++ctx->generation;
4059         mutex_unlock(&ctx->mutex);
4060
4061         counter->owner = current;
4062         get_task_struct(current);
4063         mutex_lock(&current->perf_counter_mutex);
4064         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4065         mutex_unlock(&current->perf_counter_mutex);
4066
4067         fput_light(counter_file, fput_needed2);
4068
4069 out_fput:
4070         fput_light(group_file, fput_needed);
4071
4072         return ret;
4073
4074 err_free_put_context:
4075         kfree(counter);
4076
4077 err_put_context:
4078         put_ctx(ctx);
4079
4080         goto out_fput;
4081 }
4082
4083 /*
4084  * inherit a counter from parent task to child task:
4085  */
4086 static struct perf_counter *
4087 inherit_counter(struct perf_counter *parent_counter,
4088               struct task_struct *parent,
4089               struct perf_counter_context *parent_ctx,
4090               struct task_struct *child,
4091               struct perf_counter *group_leader,
4092               struct perf_counter_context *child_ctx)
4093 {
4094         struct perf_counter *child_counter;
4095
4096         /*
4097          * Instead of creating recursive hierarchies of counters,
4098          * we link inherited counters back to the original parent,
4099          * which has a filp for sure, which we use as the reference
4100          * count:
4101          */
4102         if (parent_counter->parent)
4103                 parent_counter = parent_counter->parent;
4104
4105         child_counter = perf_counter_alloc(&parent_counter->attr,
4106                                            parent_counter->cpu, child_ctx,
4107                                            group_leader, parent_counter,
4108                                            GFP_KERNEL);
4109         if (IS_ERR(child_counter))
4110                 return child_counter;
4111         get_ctx(child_ctx);
4112
4113         /*
4114          * Make the child state follow the state of the parent counter,
4115          * not its attr.disabled bit.  We hold the parent's mutex,
4116          * so we won't race with perf_counter_{en, dis}able_family.
4117          */
4118         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4119                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4120         else
4121                 child_counter->state = PERF_COUNTER_STATE_OFF;
4122
4123         if (parent_counter->attr.freq)
4124                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4125
4126         /*
4127          * Link it up in the child's context:
4128          */
4129         add_counter_to_ctx(child_counter, child_ctx);
4130
4131         /*
4132          * Get a reference to the parent filp - we will fput it
4133          * when the child counter exits. This is safe to do because
4134          * we are in the parent and we know that the filp still
4135          * exists and has a nonzero count:
4136          */
4137         atomic_long_inc(&parent_counter->filp->f_count);
4138
4139         /*
4140          * Link this into the parent counter's child list
4141          */
4142         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4143         mutex_lock(&parent_counter->child_mutex);
4144         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4145         mutex_unlock(&parent_counter->child_mutex);
4146
4147         return child_counter;
4148 }
4149
4150 static int inherit_group(struct perf_counter *parent_counter,
4151               struct task_struct *parent,
4152               struct perf_counter_context *parent_ctx,
4153               struct task_struct *child,
4154               struct perf_counter_context *child_ctx)
4155 {
4156         struct perf_counter *leader;
4157         struct perf_counter *sub;
4158         struct perf_counter *child_ctr;
4159
4160         leader = inherit_counter(parent_counter, parent, parent_ctx,
4161                                  child, NULL, child_ctx);
4162         if (IS_ERR(leader))
4163                 return PTR_ERR(leader);
4164         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4165                 child_ctr = inherit_counter(sub, parent, parent_ctx,
4166                                             child, leader, child_ctx);
4167                 if (IS_ERR(child_ctr))
4168                         return PTR_ERR(child_ctr);
4169         }
4170         return 0;
4171 }
4172
4173 static void sync_child_counter(struct perf_counter *child_counter,
4174                                struct task_struct *child)
4175 {
4176         struct perf_counter *parent_counter = child_counter->parent;
4177         u64 child_val;
4178
4179         if (child_counter->attr.inherit_stat)
4180                 perf_counter_read_event(child_counter, child);
4181
4182         child_val = atomic64_read(&child_counter->count);
4183
4184         /*
4185          * Add back the child's count to the parent's count:
4186          */
4187         atomic64_add(child_val, &parent_counter->count);
4188         atomic64_add(child_counter->total_time_enabled,
4189                      &parent_counter->child_total_time_enabled);
4190         atomic64_add(child_counter->total_time_running,
4191                      &parent_counter->child_total_time_running);
4192
4193         /*
4194          * Remove this counter from the parent's list
4195          */
4196         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4197         mutex_lock(&parent_counter->child_mutex);
4198         list_del_init(&child_counter->child_list);
4199         mutex_unlock(&parent_counter->child_mutex);
4200
4201         /*
4202          * Release the parent counter, if this was the last
4203          * reference to it.
4204          */
4205         fput(parent_counter->filp);
4206 }
4207
4208 static void
4209 __perf_counter_exit_task(struct perf_counter *child_counter,
4210                          struct perf_counter_context *child_ctx,
4211                          struct task_struct *child)
4212 {
4213         struct perf_counter *parent_counter;
4214
4215         update_counter_times(child_counter);
4216         perf_counter_remove_from_context(child_counter);
4217
4218         parent_counter = child_counter->parent;
4219         /*
4220          * It can happen that parent exits first, and has counters
4221          * that are still around due to the child reference. These
4222          * counters need to be zapped - but otherwise linger.
4223          */
4224         if (parent_counter) {
4225                 sync_child_counter(child_counter, child);
4226                 free_counter(child_counter);
4227         }
4228 }
4229
4230 /*
4231  * When a child task exits, feed back counter values to parent counters.
4232  */
4233 void perf_counter_exit_task(struct task_struct *child)
4234 {
4235         struct perf_counter *child_counter, *tmp;
4236         struct perf_counter_context *child_ctx;
4237         unsigned long flags;
4238
4239         if (likely(!child->perf_counter_ctxp))
4240                 return;
4241
4242         local_irq_save(flags);
4243         /*
4244          * We can't reschedule here because interrupts are disabled,
4245          * and either child is current or it is a task that can't be
4246          * scheduled, so we are now safe from rescheduling changing
4247          * our context.
4248          */
4249         child_ctx = child->perf_counter_ctxp;
4250         __perf_counter_task_sched_out(child_ctx);
4251
4252         /*
4253          * Take the context lock here so that if find_get_context is
4254          * reading child->perf_counter_ctxp, we wait until it has
4255          * incremented the context's refcount before we do put_ctx below.
4256          */
4257         spin_lock(&child_ctx->lock);
4258         child->perf_counter_ctxp = NULL;
4259         /*
4260          * If this context is a clone; unclone it so it can't get
4261          * swapped to another process while we're removing all
4262          * the counters from it.
4263          */
4264         unclone_ctx(child_ctx);
4265         spin_unlock(&child_ctx->lock);
4266         local_irq_restore(flags);
4267
4268         /*
4269          * We can recurse on the same lock type through:
4270          *
4271          *   __perf_counter_exit_task()
4272          *     sync_child_counter()
4273          *       fput(parent_counter->filp)
4274          *         perf_release()
4275          *           mutex_lock(&ctx->mutex)
4276          *
4277          * But since its the parent context it won't be the same instance.
4278          */
4279         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4280
4281 again:
4282         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4283                                  list_entry)
4284                 __perf_counter_exit_task(child_counter, child_ctx, child);
4285
4286         /*
4287          * If the last counter was a group counter, it will have appended all
4288          * its siblings to the list, but we obtained 'tmp' before that which
4289          * will still point to the list head terminating the iteration.
4290          */
4291         if (!list_empty(&child_ctx->counter_list))
4292                 goto again;
4293
4294         mutex_unlock(&child_ctx->mutex);
4295
4296         put_ctx(child_ctx);
4297 }
4298
4299 /*
4300  * free an unexposed, unused context as created by inheritance by
4301  * init_task below, used by fork() in case of fail.
4302  */
4303 void perf_counter_free_task(struct task_struct *task)
4304 {
4305         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4306         struct perf_counter *counter, *tmp;
4307
4308         if (!ctx)
4309                 return;
4310
4311         mutex_lock(&ctx->mutex);
4312 again:
4313         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4314                 struct perf_counter *parent = counter->parent;
4315
4316                 if (WARN_ON_ONCE(!parent))
4317                         continue;
4318
4319                 mutex_lock(&parent->child_mutex);
4320                 list_del_init(&counter->child_list);
4321                 mutex_unlock(&parent->child_mutex);
4322
4323                 fput(parent->filp);
4324
4325                 list_del_counter(counter, ctx);
4326                 free_counter(counter);
4327         }
4328
4329         if (!list_empty(&ctx->counter_list))
4330                 goto again;
4331
4332         mutex_unlock(&ctx->mutex);
4333
4334         put_ctx(ctx);
4335 }
4336
4337 /*
4338  * Initialize the perf_counter context in task_struct
4339  */
4340 int perf_counter_init_task(struct task_struct *child)
4341 {
4342         struct perf_counter_context *child_ctx, *parent_ctx;
4343         struct perf_counter_context *cloned_ctx;
4344         struct perf_counter *counter;
4345         struct task_struct *parent = current;
4346         int inherited_all = 1;
4347         int ret = 0;
4348
4349         child->perf_counter_ctxp = NULL;
4350
4351         mutex_init(&child->perf_counter_mutex);
4352         INIT_LIST_HEAD(&child->perf_counter_list);
4353
4354         if (likely(!parent->perf_counter_ctxp))
4355                 return 0;
4356
4357         /*
4358          * This is executed from the parent task context, so inherit
4359          * counters that have been marked for cloning.
4360          * First allocate and initialize a context for the child.
4361          */
4362
4363         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4364         if (!child_ctx)
4365                 return -ENOMEM;
4366
4367         __perf_counter_init_context(child_ctx, child);
4368         child->perf_counter_ctxp = child_ctx;
4369         get_task_struct(child);
4370
4371         /*
4372          * If the parent's context is a clone, pin it so it won't get
4373          * swapped under us.
4374          */
4375         parent_ctx = perf_pin_task_context(parent);
4376
4377         /*
4378          * No need to check if parent_ctx != NULL here; since we saw
4379          * it non-NULL earlier, the only reason for it to become NULL
4380          * is if we exit, and since we're currently in the middle of
4381          * a fork we can't be exiting at the same time.
4382          */
4383
4384         /*
4385          * Lock the parent list. No need to lock the child - not PID
4386          * hashed yet and not running, so nobody can access it.
4387          */
4388         mutex_lock(&parent_ctx->mutex);
4389
4390         /*
4391          * We dont have to disable NMIs - we are only looking at
4392          * the list, not manipulating it:
4393          */
4394         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4395                 if (counter != counter->group_leader)
4396                         continue;
4397
4398                 if (!counter->attr.inherit) {
4399                         inherited_all = 0;
4400                         continue;
4401                 }
4402
4403                 ret = inherit_group(counter, parent, parent_ctx,
4404                                              child, child_ctx);
4405                 if (ret) {
4406                         inherited_all = 0;
4407                         break;
4408                 }
4409         }
4410
4411         if (inherited_all) {
4412                 /*
4413                  * Mark the child context as a clone of the parent
4414                  * context, or of whatever the parent is a clone of.
4415                  * Note that if the parent is a clone, it could get
4416                  * uncloned at any point, but that doesn't matter
4417                  * because the list of counters and the generation
4418                  * count can't have changed since we took the mutex.
4419                  */
4420                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4421                 if (cloned_ctx) {
4422                         child_ctx->parent_ctx = cloned_ctx;
4423                         child_ctx->parent_gen = parent_ctx->parent_gen;
4424                 } else {
4425                         child_ctx->parent_ctx = parent_ctx;
4426                         child_ctx->parent_gen = parent_ctx->generation;
4427                 }
4428                 get_ctx(child_ctx->parent_ctx);
4429         }
4430
4431         mutex_unlock(&parent_ctx->mutex);
4432
4433         perf_unpin_context(parent_ctx);
4434
4435         return ret;
4436 }
4437
4438 static void __cpuinit perf_counter_init_cpu(int cpu)
4439 {
4440         struct perf_cpu_context *cpuctx;
4441
4442         cpuctx = &per_cpu(perf_cpu_context, cpu);
4443         __perf_counter_init_context(&cpuctx->ctx, NULL);
4444
4445         spin_lock(&perf_resource_lock);
4446         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4447         spin_unlock(&perf_resource_lock);
4448
4449         hw_perf_counter_setup(cpu);
4450 }
4451
4452 #ifdef CONFIG_HOTPLUG_CPU
4453 static void __perf_counter_exit_cpu(void *info)
4454 {
4455         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4456         struct perf_counter_context *ctx = &cpuctx->ctx;
4457         struct perf_counter *counter, *tmp;
4458
4459         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4460                 __perf_counter_remove_from_context(counter);
4461 }
4462 static void perf_counter_exit_cpu(int cpu)
4463 {
4464         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4465         struct perf_counter_context *ctx = &cpuctx->ctx;
4466
4467         mutex_lock(&ctx->mutex);
4468         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4469         mutex_unlock(&ctx->mutex);
4470 }
4471 #else
4472 static inline void perf_counter_exit_cpu(int cpu) { }
4473 #endif
4474
4475 static int __cpuinit
4476 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4477 {
4478         unsigned int cpu = (long)hcpu;
4479
4480         switch (action) {
4481
4482         case CPU_UP_PREPARE:
4483         case CPU_UP_PREPARE_FROZEN:
4484                 perf_counter_init_cpu(cpu);
4485                 break;
4486
4487         case CPU_DOWN_PREPARE:
4488         case CPU_DOWN_PREPARE_FROZEN:
4489                 perf_counter_exit_cpu(cpu);
4490                 break;
4491
4492         default:
4493                 break;
4494         }
4495
4496         return NOTIFY_OK;
4497 }
4498
4499 /*
4500  * This has to have a higher priority than migration_notifier in sched.c.
4501  */
4502 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4503         .notifier_call          = perf_cpu_notify,
4504         .priority               = 20,
4505 };
4506
4507 void __init perf_counter_init(void)
4508 {
4509         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4510                         (void *)(long)smp_processor_id());
4511         register_cpu_notifier(&perf_cpu_nb);
4512 }
4513
4514 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4515 {
4516         return sprintf(buf, "%d\n", perf_reserved_percpu);
4517 }
4518
4519 static ssize_t
4520 perf_set_reserve_percpu(struct sysdev_class *class,
4521                         const char *buf,
4522                         size_t count)
4523 {
4524         struct perf_cpu_context *cpuctx;
4525         unsigned long val;
4526         int err, cpu, mpt;
4527
4528         err = strict_strtoul(buf, 10, &val);
4529         if (err)
4530                 return err;
4531         if (val > perf_max_counters)
4532                 return -EINVAL;
4533
4534         spin_lock(&perf_resource_lock);
4535         perf_reserved_percpu = val;
4536         for_each_online_cpu(cpu) {
4537                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4538                 spin_lock_irq(&cpuctx->ctx.lock);
4539                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4540                           perf_max_counters - perf_reserved_percpu);
4541                 cpuctx->max_pertask = mpt;
4542                 spin_unlock_irq(&cpuctx->ctx.lock);
4543         }
4544         spin_unlock(&perf_resource_lock);
4545
4546         return count;
4547 }
4548
4549 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4550 {
4551         return sprintf(buf, "%d\n", perf_overcommit);
4552 }
4553
4554 static ssize_t
4555 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4556 {
4557         unsigned long val;
4558         int err;
4559
4560         err = strict_strtoul(buf, 10, &val);
4561         if (err)
4562                 return err;
4563         if (val > 1)
4564                 return -EINVAL;
4565
4566         spin_lock(&perf_resource_lock);
4567         perf_overcommit = val;
4568         spin_unlock(&perf_resource_lock);
4569
4570         return count;
4571 }
4572
4573 static SYSDEV_CLASS_ATTR(
4574                                 reserve_percpu,
4575                                 0644,
4576                                 perf_show_reserve_percpu,
4577                                 perf_set_reserve_percpu
4578                         );
4579
4580 static SYSDEV_CLASS_ATTR(
4581                                 overcommit,
4582                                 0644,
4583                                 perf_show_overcommit,
4584                                 perf_set_overcommit
4585                         );
4586
4587 static struct attribute *perfclass_attrs[] = {
4588         &attr_reserve_percpu.attr,
4589         &attr_overcommit.attr,
4590         NULL
4591 };
4592
4593 static struct attribute_group perfclass_attr_group = {
4594         .attrs                  = perfclass_attrs,
4595         .name                   = "perf_counters",
4596 };
4597
4598 static int __init perf_counter_sysfs_init(void)
4599 {
4600         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4601                                   &perfclass_attr_group);
4602 }
4603 device_initcall(perf_counter_sysfs_init);