Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING
220                         && event->time_delta == 0;
221 }
222
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230         event->type_len = RINGBUF_TYPE_PADDING;
231         event->time_delta = 0;
232 }
233
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237         unsigned length;
238
239         if (event->type_len)
240                 length = event->type_len * RB_ALIGNMENT;
241         else
242                 length = event->array[0];
243         return length + RB_EVNT_HDR_SIZE;
244 }
245
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250         switch (event->type_len) {
251         case RINGBUF_TYPE_PADDING:
252                 if (rb_null_event(event))
253                         /* undefined */
254                         return -1;
255                 return  event->array[0] + RB_EVNT_HDR_SIZE;
256
257         case RINGBUF_TYPE_TIME_EXTEND:
258                 return RB_LEN_TIME_EXTEND;
259
260         case RINGBUF_TYPE_TIME_STAMP:
261                 return RB_LEN_TIME_STAMP;
262
263         case RINGBUF_TYPE_DATA:
264                 return rb_event_data_length(event);
265         default:
266                 BUG();
267         }
268         /* not hit */
269         return 0;
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278         unsigned length = rb_event_length(event);
279         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280                 return length;
281         length -= RB_EVNT_HDR_SIZE;
282         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284         return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293         /* If length is in len field, then array[0] has the data */
294         if (event->type_len)
295                 return (void *)&event->array[0];
296         /* Otherwise length is in array[0] and array[1] has the data */
297         return (void *)&event->array[1];
298 }
299
300 /**
301  * ring_buffer_event_data - return the data of the event
302  * @event: the event to get the data from
303  */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306         return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309
310 #define for_each_buffer_cpu(buffer, cpu)                \
311         for_each_cpu(cpu, buffer->cpumask)
312
313 #define TS_SHIFT        27
314 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST   (~TS_MASK)
316
317 struct buffer_data_page {
318         u64              time_stamp;    /* page time stamp */
319         local_t          commit;        /* write committed index */
320         unsigned char    data[];        /* data of buffer page */
321 };
322
323 struct buffer_page {
324         struct list_head list;          /* list of buffer pages */
325         local_t          write;         /* index for next write */
326         unsigned         read;          /* index for next read */
327         local_t          entries;       /* entries on this page */
328         struct buffer_data_page *page;  /* Actual data page */
329 };
330
331 static void rb_init_page(struct buffer_data_page *bpage)
332 {
333         local_set(&bpage->commit, 0);
334 }
335
336 /**
337  * ring_buffer_page_len - the size of data on the page.
338  * @page: The page to read
339  *
340  * Returns the amount of data on the page, including buffer page header.
341  */
342 size_t ring_buffer_page_len(void *page)
343 {
344         return local_read(&((struct buffer_data_page *)page)->commit)
345                 + BUF_PAGE_HDR_SIZE;
346 }
347
348 /*
349  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350  * this issue out.
351  */
352 static void free_buffer_page(struct buffer_page *bpage)
353 {
354         free_page((unsigned long)bpage->page);
355         kfree(bpage);
356 }
357
358 /*
359  * We need to fit the time_stamp delta into 27 bits.
360  */
361 static inline int test_time_stamp(u64 delta)
362 {
363         if (delta & TS_DELTA_TEST)
364                 return 1;
365         return 0;
366 }
367
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
369
370 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
371 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
372
373 /* Max number of timestamps that can fit on a page */
374 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
375
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378         struct buffer_data_page field;
379         int ret;
380
381         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
382                                "offset:0;\tsize:%u;\n",
383                                (unsigned int)sizeof(field.time_stamp));
384
385         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
386                                "offset:%u;\tsize:%u;\n",
387                                (unsigned int)offsetof(typeof(field), commit),
388                                (unsigned int)sizeof(field.commit));
389
390         ret = trace_seq_printf(s, "\tfield: char data;\t"
391                                "offset:%u;\tsize:%u;\n",
392                                (unsigned int)offsetof(typeof(field), data),
393                                (unsigned int)BUF_PAGE_SIZE);
394
395         return ret;
396 }
397
398 /*
399  * head_page == tail_page && head == tail then buffer is empty.
400  */
401 struct ring_buffer_per_cpu {
402         int                             cpu;
403         struct ring_buffer              *buffer;
404         spinlock_t                      reader_lock; /* serialize readers */
405         raw_spinlock_t                  lock;
406         struct lock_class_key           lock_key;
407         struct list_head                pages;
408         struct buffer_page              *head_page;     /* read from head */
409         struct buffer_page              *tail_page;     /* write to tail */
410         struct buffer_page              *commit_page;   /* committed pages */
411         struct buffer_page              *reader_page;
412         unsigned long                   nmi_dropped;
413         unsigned long                   commit_overrun;
414         unsigned long                   overrun;
415         unsigned long                   read;
416         local_t                         entries;
417         u64                             write_stamp;
418         u64                             read_stamp;
419         atomic_t                        record_disabled;
420 };
421
422 struct ring_buffer {
423         unsigned                        pages;
424         unsigned                        flags;
425         int                             cpus;
426         atomic_t                        record_disabled;
427         cpumask_var_t                   cpumask;
428
429         struct lock_class_key           *reader_lock_key;
430
431         struct mutex                    mutex;
432
433         struct ring_buffer_per_cpu      **buffers;
434
435 #ifdef CONFIG_HOTPLUG_CPU
436         struct notifier_block           cpu_notify;
437 #endif
438         u64                             (*clock)(void);
439 };
440
441 struct ring_buffer_iter {
442         struct ring_buffer_per_cpu      *cpu_buffer;
443         unsigned long                   head;
444         struct buffer_page              *head_page;
445         u64                             read_stamp;
446 };
447
448 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
449 #define RB_WARN_ON(buffer, cond)                                \
450         ({                                                      \
451                 int _____ret = unlikely(cond);                  \
452                 if (_____ret) {                                 \
453                         atomic_inc(&buffer->record_disabled);   \
454                         WARN_ON(1);                             \
455                 }                                               \
456                 _____ret;                                       \
457         })
458
459 /* Up this if you want to test the TIME_EXTENTS and normalization */
460 #define DEBUG_SHIFT 0
461
462 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
463 {
464         /* shift to debug/test normalization and TIME_EXTENTS */
465         return buffer->clock() << DEBUG_SHIFT;
466 }
467
468 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
469 {
470         u64 time;
471
472         preempt_disable_notrace();
473         time = rb_time_stamp(buffer, cpu);
474         preempt_enable_no_resched_notrace();
475
476         return time;
477 }
478 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
479
480 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
481                                       int cpu, u64 *ts)
482 {
483         /* Just stupid testing the normalize function and deltas */
484         *ts >>= DEBUG_SHIFT;
485 }
486 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
487
488 /**
489  * check_pages - integrity check of buffer pages
490  * @cpu_buffer: CPU buffer with pages to test
491  *
492  * As a safety measure we check to make sure the data pages have not
493  * been corrupted.
494  */
495 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
496 {
497         struct list_head *head = &cpu_buffer->pages;
498         struct buffer_page *bpage, *tmp;
499
500         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
501                 return -1;
502         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
503                 return -1;
504
505         list_for_each_entry_safe(bpage, tmp, head, list) {
506                 if (RB_WARN_ON(cpu_buffer,
507                                bpage->list.next->prev != &bpage->list))
508                         return -1;
509                 if (RB_WARN_ON(cpu_buffer,
510                                bpage->list.prev->next != &bpage->list))
511                         return -1;
512         }
513
514         return 0;
515 }
516
517 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
518                              unsigned nr_pages)
519 {
520         struct list_head *head = &cpu_buffer->pages;
521         struct buffer_page *bpage, *tmp;
522         unsigned long addr;
523         LIST_HEAD(pages);
524         unsigned i;
525
526         for (i = 0; i < nr_pages; i++) {
527                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
528                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
529                 if (!bpage)
530                         goto free_pages;
531                 list_add(&bpage->list, &pages);
532
533                 addr = __get_free_page(GFP_KERNEL);
534                 if (!addr)
535                         goto free_pages;
536                 bpage->page = (void *)addr;
537                 rb_init_page(bpage->page);
538         }
539
540         list_splice(&pages, head);
541
542         rb_check_pages(cpu_buffer);
543
544         return 0;
545
546  free_pages:
547         list_for_each_entry_safe(bpage, tmp, &pages, list) {
548                 list_del_init(&bpage->list);
549                 free_buffer_page(bpage);
550         }
551         return -ENOMEM;
552 }
553
554 static struct ring_buffer_per_cpu *
555 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
556 {
557         struct ring_buffer_per_cpu *cpu_buffer;
558         struct buffer_page *bpage;
559         unsigned long addr;
560         int ret;
561
562         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
563                                   GFP_KERNEL, cpu_to_node(cpu));
564         if (!cpu_buffer)
565                 return NULL;
566
567         cpu_buffer->cpu = cpu;
568         cpu_buffer->buffer = buffer;
569         spin_lock_init(&cpu_buffer->reader_lock);
570         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
571         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
572         INIT_LIST_HEAD(&cpu_buffer->pages);
573
574         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
575                             GFP_KERNEL, cpu_to_node(cpu));
576         if (!bpage)
577                 goto fail_free_buffer;
578
579         cpu_buffer->reader_page = bpage;
580         addr = __get_free_page(GFP_KERNEL);
581         if (!addr)
582                 goto fail_free_reader;
583         bpage->page = (void *)addr;
584         rb_init_page(bpage->page);
585
586         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
587
588         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
589         if (ret < 0)
590                 goto fail_free_reader;
591
592         cpu_buffer->head_page
593                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
594         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
595
596         return cpu_buffer;
597
598  fail_free_reader:
599         free_buffer_page(cpu_buffer->reader_page);
600
601  fail_free_buffer:
602         kfree(cpu_buffer);
603         return NULL;
604 }
605
606 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
607 {
608         struct list_head *head = &cpu_buffer->pages;
609         struct buffer_page *bpage, *tmp;
610
611         free_buffer_page(cpu_buffer->reader_page);
612
613         list_for_each_entry_safe(bpage, tmp, head, list) {
614                 list_del_init(&bpage->list);
615                 free_buffer_page(bpage);
616         }
617         kfree(cpu_buffer);
618 }
619
620 /*
621  * Causes compile errors if the struct buffer_page gets bigger
622  * than the struct page.
623  */
624 extern int ring_buffer_page_too_big(void);
625
626 #ifdef CONFIG_HOTPLUG_CPU
627 static int rb_cpu_notify(struct notifier_block *self,
628                          unsigned long action, void *hcpu);
629 #endif
630
631 /**
632  * ring_buffer_alloc - allocate a new ring_buffer
633  * @size: the size in bytes per cpu that is needed.
634  * @flags: attributes to set for the ring buffer.
635  *
636  * Currently the only flag that is available is the RB_FL_OVERWRITE
637  * flag. This flag means that the buffer will overwrite old data
638  * when the buffer wraps. If this flag is not set, the buffer will
639  * drop data when the tail hits the head.
640  */
641 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
642                                         struct lock_class_key *key)
643 {
644         struct ring_buffer *buffer;
645         int bsize;
646         int cpu;
647
648         /* Paranoid! Optimizes out when all is well */
649         if (sizeof(struct buffer_page) > sizeof(struct page))
650                 ring_buffer_page_too_big();
651
652
653         /* keep it in its own cache line */
654         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
655                          GFP_KERNEL);
656         if (!buffer)
657                 return NULL;
658
659         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
660                 goto fail_free_buffer;
661
662         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
663         buffer->flags = flags;
664         buffer->clock = trace_clock_local;
665         buffer->reader_lock_key = key;
666
667         /* need at least two pages */
668         if (buffer->pages == 1)
669                 buffer->pages++;
670
671         /*
672          * In case of non-hotplug cpu, if the ring-buffer is allocated
673          * in early initcall, it will not be notified of secondary cpus.
674          * In that off case, we need to allocate for all possible cpus.
675          */
676 #ifdef CONFIG_HOTPLUG_CPU
677         get_online_cpus();
678         cpumask_copy(buffer->cpumask, cpu_online_mask);
679 #else
680         cpumask_copy(buffer->cpumask, cpu_possible_mask);
681 #endif
682         buffer->cpus = nr_cpu_ids;
683
684         bsize = sizeof(void *) * nr_cpu_ids;
685         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
686                                   GFP_KERNEL);
687         if (!buffer->buffers)
688                 goto fail_free_cpumask;
689
690         for_each_buffer_cpu(buffer, cpu) {
691                 buffer->buffers[cpu] =
692                         rb_allocate_cpu_buffer(buffer, cpu);
693                 if (!buffer->buffers[cpu])
694                         goto fail_free_buffers;
695         }
696
697 #ifdef CONFIG_HOTPLUG_CPU
698         buffer->cpu_notify.notifier_call = rb_cpu_notify;
699         buffer->cpu_notify.priority = 0;
700         register_cpu_notifier(&buffer->cpu_notify);
701 #endif
702
703         put_online_cpus();
704         mutex_init(&buffer->mutex);
705
706         return buffer;
707
708  fail_free_buffers:
709         for_each_buffer_cpu(buffer, cpu) {
710                 if (buffer->buffers[cpu])
711                         rb_free_cpu_buffer(buffer->buffers[cpu]);
712         }
713         kfree(buffer->buffers);
714
715  fail_free_cpumask:
716         free_cpumask_var(buffer->cpumask);
717         put_online_cpus();
718
719  fail_free_buffer:
720         kfree(buffer);
721         return NULL;
722 }
723 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
724
725 /**
726  * ring_buffer_free - free a ring buffer.
727  * @buffer: the buffer to free.
728  */
729 void
730 ring_buffer_free(struct ring_buffer *buffer)
731 {
732         int cpu;
733
734         get_online_cpus();
735
736 #ifdef CONFIG_HOTPLUG_CPU
737         unregister_cpu_notifier(&buffer->cpu_notify);
738 #endif
739
740         for_each_buffer_cpu(buffer, cpu)
741                 rb_free_cpu_buffer(buffer->buffers[cpu]);
742
743         put_online_cpus();
744
745         free_cpumask_var(buffer->cpumask);
746
747         kfree(buffer);
748 }
749 EXPORT_SYMBOL_GPL(ring_buffer_free);
750
751 void ring_buffer_set_clock(struct ring_buffer *buffer,
752                            u64 (*clock)(void))
753 {
754         buffer->clock = clock;
755 }
756
757 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
758
759 static void
760 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
761 {
762         struct buffer_page *bpage;
763         struct list_head *p;
764         unsigned i;
765
766         atomic_inc(&cpu_buffer->record_disabled);
767         synchronize_sched();
768
769         for (i = 0; i < nr_pages; i++) {
770                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
771                         return;
772                 p = cpu_buffer->pages.next;
773                 bpage = list_entry(p, struct buffer_page, list);
774                 list_del_init(&bpage->list);
775                 free_buffer_page(bpage);
776         }
777         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
778                 return;
779
780         rb_reset_cpu(cpu_buffer);
781
782         rb_check_pages(cpu_buffer);
783
784         atomic_dec(&cpu_buffer->record_disabled);
785
786 }
787
788 static void
789 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
790                 struct list_head *pages, unsigned nr_pages)
791 {
792         struct buffer_page *bpage;
793         struct list_head *p;
794         unsigned i;
795
796         atomic_inc(&cpu_buffer->record_disabled);
797         synchronize_sched();
798
799         for (i = 0; i < nr_pages; i++) {
800                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
801                         return;
802                 p = pages->next;
803                 bpage = list_entry(p, struct buffer_page, list);
804                 list_del_init(&bpage->list);
805                 list_add_tail(&bpage->list, &cpu_buffer->pages);
806         }
807         rb_reset_cpu(cpu_buffer);
808
809         rb_check_pages(cpu_buffer);
810
811         atomic_dec(&cpu_buffer->record_disabled);
812 }
813
814 /**
815  * ring_buffer_resize - resize the ring buffer
816  * @buffer: the buffer to resize.
817  * @size: the new size.
818  *
819  * The tracer is responsible for making sure that the buffer is
820  * not being used while changing the size.
821  * Note: We may be able to change the above requirement by using
822  *  RCU synchronizations.
823  *
824  * Minimum size is 2 * BUF_PAGE_SIZE.
825  *
826  * Returns -1 on failure.
827  */
828 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
829 {
830         struct ring_buffer_per_cpu *cpu_buffer;
831         unsigned nr_pages, rm_pages, new_pages;
832         struct buffer_page *bpage, *tmp;
833         unsigned long buffer_size;
834         unsigned long addr;
835         LIST_HEAD(pages);
836         int i, cpu;
837
838         /*
839          * Always succeed at resizing a non-existent buffer:
840          */
841         if (!buffer)
842                 return size;
843
844         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
845         size *= BUF_PAGE_SIZE;
846         buffer_size = buffer->pages * BUF_PAGE_SIZE;
847
848         /* we need a minimum of two pages */
849         if (size < BUF_PAGE_SIZE * 2)
850                 size = BUF_PAGE_SIZE * 2;
851
852         if (size == buffer_size)
853                 return size;
854
855         mutex_lock(&buffer->mutex);
856         get_online_cpus();
857
858         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
859
860         if (size < buffer_size) {
861
862                 /* easy case, just free pages */
863                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
864                         goto out_fail;
865
866                 rm_pages = buffer->pages - nr_pages;
867
868                 for_each_buffer_cpu(buffer, cpu) {
869                         cpu_buffer = buffer->buffers[cpu];
870                         rb_remove_pages(cpu_buffer, rm_pages);
871                 }
872                 goto out;
873         }
874
875         /*
876          * This is a bit more difficult. We only want to add pages
877          * when we can allocate enough for all CPUs. We do this
878          * by allocating all the pages and storing them on a local
879          * link list. If we succeed in our allocation, then we
880          * add these pages to the cpu_buffers. Otherwise we just free
881          * them all and return -ENOMEM;
882          */
883         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
884                 goto out_fail;
885
886         new_pages = nr_pages - buffer->pages;
887
888         for_each_buffer_cpu(buffer, cpu) {
889                 for (i = 0; i < new_pages; i++) {
890                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
891                                                   cache_line_size()),
892                                             GFP_KERNEL, cpu_to_node(cpu));
893                         if (!bpage)
894                                 goto free_pages;
895                         list_add(&bpage->list, &pages);
896                         addr = __get_free_page(GFP_KERNEL);
897                         if (!addr)
898                                 goto free_pages;
899                         bpage->page = (void *)addr;
900                         rb_init_page(bpage->page);
901                 }
902         }
903
904         for_each_buffer_cpu(buffer, cpu) {
905                 cpu_buffer = buffer->buffers[cpu];
906                 rb_insert_pages(cpu_buffer, &pages, new_pages);
907         }
908
909         if (RB_WARN_ON(buffer, !list_empty(&pages)))
910                 goto out_fail;
911
912  out:
913         buffer->pages = nr_pages;
914         put_online_cpus();
915         mutex_unlock(&buffer->mutex);
916
917         return size;
918
919  free_pages:
920         list_for_each_entry_safe(bpage, tmp, &pages, list) {
921                 list_del_init(&bpage->list);
922                 free_buffer_page(bpage);
923         }
924         put_online_cpus();
925         mutex_unlock(&buffer->mutex);
926         return -ENOMEM;
927
928         /*
929          * Something went totally wrong, and we are too paranoid
930          * to even clean up the mess.
931          */
932  out_fail:
933         put_online_cpus();
934         mutex_unlock(&buffer->mutex);
935         return -1;
936 }
937 EXPORT_SYMBOL_GPL(ring_buffer_resize);
938
939 static inline void *
940 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
941 {
942         return bpage->data + index;
943 }
944
945 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
946 {
947         return bpage->page->data + index;
948 }
949
950 static inline struct ring_buffer_event *
951 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
952 {
953         return __rb_page_index(cpu_buffer->reader_page,
954                                cpu_buffer->reader_page->read);
955 }
956
957 static inline struct ring_buffer_event *
958 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
959 {
960         return __rb_page_index(cpu_buffer->head_page,
961                                cpu_buffer->head_page->read);
962 }
963
964 static inline struct ring_buffer_event *
965 rb_iter_head_event(struct ring_buffer_iter *iter)
966 {
967         return __rb_page_index(iter->head_page, iter->head);
968 }
969
970 static inline unsigned rb_page_write(struct buffer_page *bpage)
971 {
972         return local_read(&bpage->write);
973 }
974
975 static inline unsigned rb_page_commit(struct buffer_page *bpage)
976 {
977         return local_read(&bpage->page->commit);
978 }
979
980 /* Size is determined by what has been commited */
981 static inline unsigned rb_page_size(struct buffer_page *bpage)
982 {
983         return rb_page_commit(bpage);
984 }
985
986 static inline unsigned
987 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
988 {
989         return rb_page_commit(cpu_buffer->commit_page);
990 }
991
992 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
993 {
994         return rb_page_commit(cpu_buffer->head_page);
995 }
996
997 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
998                                struct buffer_page **bpage)
999 {
1000         struct list_head *p = (*bpage)->list.next;
1001
1002         if (p == &cpu_buffer->pages)
1003                 p = p->next;
1004
1005         *bpage = list_entry(p, struct buffer_page, list);
1006 }
1007
1008 static inline unsigned
1009 rb_event_index(struct ring_buffer_event *event)
1010 {
1011         unsigned long addr = (unsigned long)event;
1012
1013         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1014 }
1015
1016 static inline int
1017 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1018              struct ring_buffer_event *event)
1019 {
1020         unsigned long addr = (unsigned long)event;
1021         unsigned long index;
1022
1023         index = rb_event_index(event);
1024         addr &= PAGE_MASK;
1025
1026         return cpu_buffer->commit_page->page == (void *)addr &&
1027                 rb_commit_index(cpu_buffer) == index;
1028 }
1029
1030 static void
1031 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1032                     struct ring_buffer_event *event)
1033 {
1034         unsigned long addr = (unsigned long)event;
1035         unsigned long index;
1036
1037         index = rb_event_index(event);
1038         addr &= PAGE_MASK;
1039
1040         while (cpu_buffer->commit_page->page != (void *)addr) {
1041                 if (RB_WARN_ON(cpu_buffer,
1042                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1043                         return;
1044                 cpu_buffer->commit_page->page->commit =
1045                         cpu_buffer->commit_page->write;
1046                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1047                 cpu_buffer->write_stamp =
1048                         cpu_buffer->commit_page->page->time_stamp;
1049         }
1050
1051         /* Now set the commit to the event's index */
1052         local_set(&cpu_buffer->commit_page->page->commit, index);
1053 }
1054
1055 static void
1056 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1057 {
1058         /*
1059          * We only race with interrupts and NMIs on this CPU.
1060          * If we own the commit event, then we can commit
1061          * all others that interrupted us, since the interruptions
1062          * are in stack format (they finish before they come
1063          * back to us). This allows us to do a simple loop to
1064          * assign the commit to the tail.
1065          */
1066  again:
1067         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1068                 cpu_buffer->commit_page->page->commit =
1069                         cpu_buffer->commit_page->write;
1070                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1071                 cpu_buffer->write_stamp =
1072                         cpu_buffer->commit_page->page->time_stamp;
1073                 /* add barrier to keep gcc from optimizing too much */
1074                 barrier();
1075         }
1076         while (rb_commit_index(cpu_buffer) !=
1077                rb_page_write(cpu_buffer->commit_page)) {
1078                 cpu_buffer->commit_page->page->commit =
1079                         cpu_buffer->commit_page->write;
1080                 barrier();
1081         }
1082
1083         /* again, keep gcc from optimizing */
1084         barrier();
1085
1086         /*
1087          * If an interrupt came in just after the first while loop
1088          * and pushed the tail page forward, we will be left with
1089          * a dangling commit that will never go forward.
1090          */
1091         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1092                 goto again;
1093 }
1094
1095 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1096 {
1097         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1098         cpu_buffer->reader_page->read = 0;
1099 }
1100
1101 static void rb_inc_iter(struct ring_buffer_iter *iter)
1102 {
1103         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1104
1105         /*
1106          * The iterator could be on the reader page (it starts there).
1107          * But the head could have moved, since the reader was
1108          * found. Check for this case and assign the iterator
1109          * to the head page instead of next.
1110          */
1111         if (iter->head_page == cpu_buffer->reader_page)
1112                 iter->head_page = cpu_buffer->head_page;
1113         else
1114                 rb_inc_page(cpu_buffer, &iter->head_page);
1115
1116         iter->read_stamp = iter->head_page->page->time_stamp;
1117         iter->head = 0;
1118 }
1119
1120 /**
1121  * ring_buffer_update_event - update event type and data
1122  * @event: the even to update
1123  * @type: the type of event
1124  * @length: the size of the event field in the ring buffer
1125  *
1126  * Update the type and data fields of the event. The length
1127  * is the actual size that is written to the ring buffer,
1128  * and with this, we can determine what to place into the
1129  * data field.
1130  */
1131 static void
1132 rb_update_event(struct ring_buffer_event *event,
1133                          unsigned type, unsigned length)
1134 {
1135         event->type_len = type;
1136
1137         switch (type) {
1138
1139         case RINGBUF_TYPE_PADDING:
1140         case RINGBUF_TYPE_TIME_EXTEND:
1141         case RINGBUF_TYPE_TIME_STAMP:
1142                 break;
1143
1144         case 0:
1145                 length -= RB_EVNT_HDR_SIZE;
1146                 if (length > RB_MAX_SMALL_DATA)
1147                         event->array[0] = length;
1148                 else
1149                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1150                 break;
1151         default:
1152                 BUG();
1153         }
1154 }
1155
1156 static unsigned rb_calculate_event_length(unsigned length)
1157 {
1158         struct ring_buffer_event event; /* Used only for sizeof array */
1159
1160         /* zero length can cause confusions */
1161         if (!length)
1162                 length = 1;
1163
1164         if (length > RB_MAX_SMALL_DATA)
1165                 length += sizeof(event.array[0]);
1166
1167         length += RB_EVNT_HDR_SIZE;
1168         length = ALIGN(length, RB_ALIGNMENT);
1169
1170         return length;
1171 }
1172
1173
1174 static struct ring_buffer_event *
1175 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1176              unsigned long length, unsigned long tail,
1177              struct buffer_page *commit_page,
1178              struct buffer_page *tail_page, u64 *ts)
1179 {
1180         struct buffer_page *next_page, *head_page, *reader_page;
1181         struct ring_buffer *buffer = cpu_buffer->buffer;
1182         struct ring_buffer_event *event;
1183         bool lock_taken = false;
1184         unsigned long flags;
1185
1186         next_page = tail_page;
1187
1188         local_irq_save(flags);
1189         /*
1190          * Since the write to the buffer is still not
1191          * fully lockless, we must be careful with NMIs.
1192          * The locks in the writers are taken when a write
1193          * crosses to a new page. The locks protect against
1194          * races with the readers (this will soon be fixed
1195          * with a lockless solution).
1196          *
1197          * Because we can not protect against NMIs, and we
1198          * want to keep traces reentrant, we need to manage
1199          * what happens when we are in an NMI.
1200          *
1201          * NMIs can happen after we take the lock.
1202          * If we are in an NMI, only take the lock
1203          * if it is not already taken. Otherwise
1204          * simply fail.
1205          */
1206         if (unlikely(in_nmi())) {
1207                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1208                         cpu_buffer->nmi_dropped++;
1209                         goto out_reset;
1210                 }
1211         } else
1212                 __raw_spin_lock(&cpu_buffer->lock);
1213
1214         lock_taken = true;
1215
1216         rb_inc_page(cpu_buffer, &next_page);
1217
1218         head_page = cpu_buffer->head_page;
1219         reader_page = cpu_buffer->reader_page;
1220
1221         /* we grabbed the lock before incrementing */
1222         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1223                 goto out_reset;
1224
1225         /*
1226          * If for some reason, we had an interrupt storm that made
1227          * it all the way around the buffer, bail, and warn
1228          * about it.
1229          */
1230         if (unlikely(next_page == commit_page)) {
1231                 cpu_buffer->commit_overrun++;
1232                 goto out_reset;
1233         }
1234
1235         if (next_page == head_page) {
1236                 if (!(buffer->flags & RB_FL_OVERWRITE))
1237                         goto out_reset;
1238
1239                 /* tail_page has not moved yet? */
1240                 if (tail_page == cpu_buffer->tail_page) {
1241                         /* count overflows */
1242                         cpu_buffer->overrun +=
1243                                 local_read(&head_page->entries);
1244
1245                         rb_inc_page(cpu_buffer, &head_page);
1246                         cpu_buffer->head_page = head_page;
1247                         cpu_buffer->head_page->read = 0;
1248                 }
1249         }
1250
1251         /*
1252          * If the tail page is still the same as what we think
1253          * it is, then it is up to us to update the tail
1254          * pointer.
1255          */
1256         if (tail_page == cpu_buffer->tail_page) {
1257                 local_set(&next_page->write, 0);
1258                 local_set(&next_page->entries, 0);
1259                 local_set(&next_page->page->commit, 0);
1260                 cpu_buffer->tail_page = next_page;
1261
1262                 /* reread the time stamp */
1263                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1264                 cpu_buffer->tail_page->page->time_stamp = *ts;
1265         }
1266
1267         /*
1268          * The actual tail page has moved forward.
1269          */
1270         if (tail < BUF_PAGE_SIZE) {
1271                 /* Mark the rest of the page with padding */
1272                 event = __rb_page_index(tail_page, tail);
1273                 rb_event_set_padding(event);
1274         }
1275
1276         /* Set the write back to the previous setting */
1277         local_sub(length, &tail_page->write);
1278
1279         /*
1280          * If this was a commit entry that failed,
1281          * increment that too
1282          */
1283         if (tail_page == cpu_buffer->commit_page &&
1284             tail == rb_commit_index(cpu_buffer)) {
1285                 rb_set_commit_to_write(cpu_buffer);
1286         }
1287
1288         __raw_spin_unlock(&cpu_buffer->lock);
1289         local_irq_restore(flags);
1290
1291         /* fail and let the caller try again */
1292         return ERR_PTR(-EAGAIN);
1293
1294  out_reset:
1295         /* reset write */
1296         local_sub(length, &tail_page->write);
1297
1298         if (likely(lock_taken))
1299                 __raw_spin_unlock(&cpu_buffer->lock);
1300         local_irq_restore(flags);
1301         return NULL;
1302 }
1303
1304 static struct ring_buffer_event *
1305 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1306                   unsigned type, unsigned long length, u64 *ts)
1307 {
1308         struct buffer_page *tail_page, *commit_page;
1309         struct ring_buffer_event *event;
1310         unsigned long tail, write;
1311
1312         commit_page = cpu_buffer->commit_page;
1313         /* we just need to protect against interrupts */
1314         barrier();
1315         tail_page = cpu_buffer->tail_page;
1316         write = local_add_return(length, &tail_page->write);
1317         tail = write - length;
1318
1319         /* See if we shot pass the end of this buffer page */
1320         if (write > BUF_PAGE_SIZE)
1321                 return rb_move_tail(cpu_buffer, length, tail,
1322                                     commit_page, tail_page, ts);
1323
1324         /* We reserved something on the buffer */
1325
1326         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1327                 return NULL;
1328
1329         event = __rb_page_index(tail_page, tail);
1330         rb_update_event(event, type, length);
1331
1332         /* The passed in type is zero for DATA */
1333         if (likely(!type))
1334                 local_inc(&tail_page->entries);
1335
1336         /*
1337          * If this is a commit and the tail is zero, then update
1338          * this page's time stamp.
1339          */
1340         if (!tail && rb_is_commit(cpu_buffer, event))
1341                 cpu_buffer->commit_page->page->time_stamp = *ts;
1342
1343         return event;
1344 }
1345
1346 static inline int
1347 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1348                   struct ring_buffer_event *event)
1349 {
1350         unsigned long new_index, old_index;
1351         struct buffer_page *bpage;
1352         unsigned long index;
1353         unsigned long addr;
1354
1355         new_index = rb_event_index(event);
1356         old_index = new_index + rb_event_length(event);
1357         addr = (unsigned long)event;
1358         addr &= PAGE_MASK;
1359
1360         bpage = cpu_buffer->tail_page;
1361
1362         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1363                 /*
1364                  * This is on the tail page. It is possible that
1365                  * a write could come in and move the tail page
1366                  * and write to the next page. That is fine
1367                  * because we just shorten what is on this page.
1368                  */
1369                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1370                 if (index == old_index)
1371                         return 1;
1372         }
1373
1374         /* could not discard */
1375         return 0;
1376 }
1377
1378 static int
1379 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1380                   u64 *ts, u64 *delta)
1381 {
1382         struct ring_buffer_event *event;
1383         static int once;
1384         int ret;
1385
1386         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1387                 printk(KERN_WARNING "Delta way too big! %llu"
1388                        " ts=%llu write stamp = %llu\n",
1389                        (unsigned long long)*delta,
1390                        (unsigned long long)*ts,
1391                        (unsigned long long)cpu_buffer->write_stamp);
1392                 WARN_ON(1);
1393         }
1394
1395         /*
1396          * The delta is too big, we to add a
1397          * new timestamp.
1398          */
1399         event = __rb_reserve_next(cpu_buffer,
1400                                   RINGBUF_TYPE_TIME_EXTEND,
1401                                   RB_LEN_TIME_EXTEND,
1402                                   ts);
1403         if (!event)
1404                 return -EBUSY;
1405
1406         if (PTR_ERR(event) == -EAGAIN)
1407                 return -EAGAIN;
1408
1409         /* Only a commited time event can update the write stamp */
1410         if (rb_is_commit(cpu_buffer, event)) {
1411                 /*
1412                  * If this is the first on the page, then we need to
1413                  * update the page itself, and just put in a zero.
1414                  */
1415                 if (rb_event_index(event)) {
1416                         event->time_delta = *delta & TS_MASK;
1417                         event->array[0] = *delta >> TS_SHIFT;
1418                 } else {
1419                         cpu_buffer->commit_page->page->time_stamp = *ts;
1420                         /* try to discard, since we do not need this */
1421                         if (!rb_try_to_discard(cpu_buffer, event)) {
1422                                 /* nope, just zero it */
1423                                 event->time_delta = 0;
1424                                 event->array[0] = 0;
1425                         }
1426                 }
1427                 cpu_buffer->write_stamp = *ts;
1428                 /* let the caller know this was the commit */
1429                 ret = 1;
1430         } else {
1431                 /* Try to discard the event */
1432                 if (!rb_try_to_discard(cpu_buffer, event)) {
1433                         /* Darn, this is just wasted space */
1434                         event->time_delta = 0;
1435                         event->array[0] = 0;
1436                 }
1437                 ret = 0;
1438         }
1439
1440         *delta = 0;
1441
1442         return ret;
1443 }
1444
1445 static struct ring_buffer_event *
1446 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1447                       unsigned long length)
1448 {
1449         struct ring_buffer_event *event;
1450         u64 ts, delta = 0;
1451         int commit = 0;
1452         int nr_loops = 0;
1453
1454         length = rb_calculate_event_length(length);
1455  again:
1456         /*
1457          * We allow for interrupts to reenter here and do a trace.
1458          * If one does, it will cause this original code to loop
1459          * back here. Even with heavy interrupts happening, this
1460          * should only happen a few times in a row. If this happens
1461          * 1000 times in a row, there must be either an interrupt
1462          * storm or we have something buggy.
1463          * Bail!
1464          */
1465         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1466                 return NULL;
1467
1468         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1469
1470         /*
1471          * Only the first commit can update the timestamp.
1472          * Yes there is a race here. If an interrupt comes in
1473          * just after the conditional and it traces too, then it
1474          * will also check the deltas. More than one timestamp may
1475          * also be made. But only the entry that did the actual
1476          * commit will be something other than zero.
1477          */
1478         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1479                    rb_page_write(cpu_buffer->tail_page) ==
1480                    rb_commit_index(cpu_buffer))) {
1481                 u64 diff;
1482
1483                 diff = ts - cpu_buffer->write_stamp;
1484
1485                 /* make sure this diff is calculated here */
1486                 barrier();
1487
1488                 /* Did the write stamp get updated already? */
1489                 if (unlikely(ts < cpu_buffer->write_stamp))
1490                         goto get_event;
1491
1492                 delta = diff;
1493                 if (unlikely(test_time_stamp(delta))) {
1494
1495                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1496                         if (commit == -EBUSY)
1497                                 return NULL;
1498
1499                         if (commit == -EAGAIN)
1500                                 goto again;
1501
1502                         RB_WARN_ON(cpu_buffer, commit < 0);
1503                 }
1504         }
1505
1506  get_event:
1507         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1508         if (unlikely(PTR_ERR(event) == -EAGAIN))
1509                 goto again;
1510
1511         if (!event) {
1512                 if (unlikely(commit))
1513                         /*
1514                          * Ouch! We needed a timestamp and it was commited. But
1515                          * we didn't get our event reserved.
1516                          */
1517                         rb_set_commit_to_write(cpu_buffer);
1518                 return NULL;
1519         }
1520
1521         /*
1522          * If the timestamp was commited, make the commit our entry
1523          * now so that we will update it when needed.
1524          */
1525         if (unlikely(commit))
1526                 rb_set_commit_event(cpu_buffer, event);
1527         else if (!rb_is_commit(cpu_buffer, event))
1528                 delta = 0;
1529
1530         event->time_delta = delta;
1531
1532         return event;
1533 }
1534
1535 #define TRACE_RECURSIVE_DEPTH 16
1536
1537 static int trace_recursive_lock(void)
1538 {
1539         current->trace_recursion++;
1540
1541         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1542                 return 0;
1543
1544         /* Disable all tracing before we do anything else */
1545         tracing_off_permanent();
1546
1547         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1548                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1549                     current->trace_recursion,
1550                     hardirq_count() >> HARDIRQ_SHIFT,
1551                     softirq_count() >> SOFTIRQ_SHIFT,
1552                     in_nmi());
1553
1554         WARN_ON_ONCE(1);
1555         return -1;
1556 }
1557
1558 static void trace_recursive_unlock(void)
1559 {
1560         WARN_ON_ONCE(!current->trace_recursion);
1561
1562         current->trace_recursion--;
1563 }
1564
1565 static DEFINE_PER_CPU(int, rb_need_resched);
1566
1567 /**
1568  * ring_buffer_lock_reserve - reserve a part of the buffer
1569  * @buffer: the ring buffer to reserve from
1570  * @length: the length of the data to reserve (excluding event header)
1571  *
1572  * Returns a reseverd event on the ring buffer to copy directly to.
1573  * The user of this interface will need to get the body to write into
1574  * and can use the ring_buffer_event_data() interface.
1575  *
1576  * The length is the length of the data needed, not the event length
1577  * which also includes the event header.
1578  *
1579  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1580  * If NULL is returned, then nothing has been allocated or locked.
1581  */
1582 struct ring_buffer_event *
1583 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1584 {
1585         struct ring_buffer_per_cpu *cpu_buffer;
1586         struct ring_buffer_event *event;
1587         int cpu, resched;
1588
1589         if (ring_buffer_flags != RB_BUFFERS_ON)
1590                 return NULL;
1591
1592         if (atomic_read(&buffer->record_disabled))
1593                 return NULL;
1594
1595         /* If we are tracing schedule, we don't want to recurse */
1596         resched = ftrace_preempt_disable();
1597
1598         if (trace_recursive_lock())
1599                 goto out_nocheck;
1600
1601         cpu = raw_smp_processor_id();
1602
1603         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1604                 goto out;
1605
1606         cpu_buffer = buffer->buffers[cpu];
1607
1608         if (atomic_read(&cpu_buffer->record_disabled))
1609                 goto out;
1610
1611         if (length > BUF_MAX_DATA_SIZE)
1612                 goto out;
1613
1614         event = rb_reserve_next_event(cpu_buffer, length);
1615         if (!event)
1616                 goto out;
1617
1618         /*
1619          * Need to store resched state on this cpu.
1620          * Only the first needs to.
1621          */
1622
1623         if (preempt_count() == 1)
1624                 per_cpu(rb_need_resched, cpu) = resched;
1625
1626         return event;
1627
1628  out:
1629         trace_recursive_unlock();
1630
1631  out_nocheck:
1632         ftrace_preempt_enable(resched);
1633         return NULL;
1634 }
1635 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1636
1637 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1638                       struct ring_buffer_event *event)
1639 {
1640         local_inc(&cpu_buffer->entries);
1641
1642         /* Only process further if we own the commit */
1643         if (!rb_is_commit(cpu_buffer, event))
1644                 return;
1645
1646         cpu_buffer->write_stamp += event->time_delta;
1647
1648         rb_set_commit_to_write(cpu_buffer);
1649 }
1650
1651 /**
1652  * ring_buffer_unlock_commit - commit a reserved
1653  * @buffer: The buffer to commit to
1654  * @event: The event pointer to commit.
1655  *
1656  * This commits the data to the ring buffer, and releases any locks held.
1657  *
1658  * Must be paired with ring_buffer_lock_reserve.
1659  */
1660 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1661                               struct ring_buffer_event *event)
1662 {
1663         struct ring_buffer_per_cpu *cpu_buffer;
1664         int cpu = raw_smp_processor_id();
1665
1666         cpu_buffer = buffer->buffers[cpu];
1667
1668         rb_commit(cpu_buffer, event);
1669
1670         trace_recursive_unlock();
1671
1672         /*
1673          * Only the last preempt count needs to restore preemption.
1674          */
1675         if (preempt_count() == 1)
1676                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1677         else
1678                 preempt_enable_no_resched_notrace();
1679
1680         return 0;
1681 }
1682 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1683
1684 static inline void rb_event_discard(struct ring_buffer_event *event)
1685 {
1686         /* array[0] holds the actual length for the discarded event */
1687         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1688         event->type_len = RINGBUF_TYPE_PADDING;
1689         /* time delta must be non zero */
1690         if (!event->time_delta)
1691                 event->time_delta = 1;
1692 }
1693
1694 /**
1695  * ring_buffer_event_discard - discard any event in the ring buffer
1696  * @event: the event to discard
1697  *
1698  * Sometimes a event that is in the ring buffer needs to be ignored.
1699  * This function lets the user discard an event in the ring buffer
1700  * and then that event will not be read later.
1701  *
1702  * Note, it is up to the user to be careful with this, and protect
1703  * against races. If the user discards an event that has been consumed
1704  * it is possible that it could corrupt the ring buffer.
1705  */
1706 void ring_buffer_event_discard(struct ring_buffer_event *event)
1707 {
1708         rb_event_discard(event);
1709 }
1710 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1711
1712 /**
1713  * ring_buffer_commit_discard - discard an event that has not been committed
1714  * @buffer: the ring buffer
1715  * @event: non committed event to discard
1716  *
1717  * This is similar to ring_buffer_event_discard but must only be
1718  * performed on an event that has not been committed yet. The difference
1719  * is that this will also try to free the event from the ring buffer
1720  * if another event has not been added behind it.
1721  *
1722  * If another event has been added behind it, it will set the event
1723  * up as discarded, and perform the commit.
1724  *
1725  * If this function is called, do not call ring_buffer_unlock_commit on
1726  * the event.
1727  */
1728 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1729                                 struct ring_buffer_event *event)
1730 {
1731         struct ring_buffer_per_cpu *cpu_buffer;
1732         int cpu;
1733
1734         /* The event is discarded regardless */
1735         rb_event_discard(event);
1736
1737         /*
1738          * This must only be called if the event has not been
1739          * committed yet. Thus we can assume that preemption
1740          * is still disabled.
1741          */
1742         RB_WARN_ON(buffer, preemptible());
1743
1744         cpu = smp_processor_id();
1745         cpu_buffer = buffer->buffers[cpu];
1746
1747         if (!rb_try_to_discard(cpu_buffer, event))
1748                 goto out;
1749
1750         /*
1751          * The commit is still visible by the reader, so we
1752          * must increment entries.
1753          */
1754         local_inc(&cpu_buffer->entries);
1755  out:
1756         /*
1757          * If a write came in and pushed the tail page
1758          * we still need to update the commit pointer
1759          * if we were the commit.
1760          */
1761         if (rb_is_commit(cpu_buffer, event))
1762                 rb_set_commit_to_write(cpu_buffer);
1763
1764         trace_recursive_unlock();
1765
1766         /*
1767          * Only the last preempt count needs to restore preemption.
1768          */
1769         if (preempt_count() == 1)
1770                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1771         else
1772                 preempt_enable_no_resched_notrace();
1773
1774 }
1775 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1776
1777 /**
1778  * ring_buffer_write - write data to the buffer without reserving
1779  * @buffer: The ring buffer to write to.
1780  * @length: The length of the data being written (excluding the event header)
1781  * @data: The data to write to the buffer.
1782  *
1783  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1784  * one function. If you already have the data to write to the buffer, it
1785  * may be easier to simply call this function.
1786  *
1787  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1788  * and not the length of the event which would hold the header.
1789  */
1790 int ring_buffer_write(struct ring_buffer *buffer,
1791                         unsigned long length,
1792                         void *data)
1793 {
1794         struct ring_buffer_per_cpu *cpu_buffer;
1795         struct ring_buffer_event *event;
1796         void *body;
1797         int ret = -EBUSY;
1798         int cpu, resched;
1799
1800         if (ring_buffer_flags != RB_BUFFERS_ON)
1801                 return -EBUSY;
1802
1803         if (atomic_read(&buffer->record_disabled))
1804                 return -EBUSY;
1805
1806         resched = ftrace_preempt_disable();
1807
1808         cpu = raw_smp_processor_id();
1809
1810         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1811                 goto out;
1812
1813         cpu_buffer = buffer->buffers[cpu];
1814
1815         if (atomic_read(&cpu_buffer->record_disabled))
1816                 goto out;
1817
1818         if (length > BUF_MAX_DATA_SIZE)
1819                 goto out;
1820
1821         event = rb_reserve_next_event(cpu_buffer, length);
1822         if (!event)
1823                 goto out;
1824
1825         body = rb_event_data(event);
1826
1827         memcpy(body, data, length);
1828
1829         rb_commit(cpu_buffer, event);
1830
1831         ret = 0;
1832  out:
1833         ftrace_preempt_enable(resched);
1834
1835         return ret;
1836 }
1837 EXPORT_SYMBOL_GPL(ring_buffer_write);
1838
1839 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1840 {
1841         struct buffer_page *reader = cpu_buffer->reader_page;
1842         struct buffer_page *head = cpu_buffer->head_page;
1843         struct buffer_page *commit = cpu_buffer->commit_page;
1844
1845         return reader->read == rb_page_commit(reader) &&
1846                 (commit == reader ||
1847                  (commit == head &&
1848                   head->read == rb_page_commit(commit)));
1849 }
1850
1851 /**
1852  * ring_buffer_record_disable - stop all writes into the buffer
1853  * @buffer: The ring buffer to stop writes to.
1854  *
1855  * This prevents all writes to the buffer. Any attempt to write
1856  * to the buffer after this will fail and return NULL.
1857  *
1858  * The caller should call synchronize_sched() after this.
1859  */
1860 void ring_buffer_record_disable(struct ring_buffer *buffer)
1861 {
1862         atomic_inc(&buffer->record_disabled);
1863 }
1864 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1865
1866 /**
1867  * ring_buffer_record_enable - enable writes to the buffer
1868  * @buffer: The ring buffer to enable writes
1869  *
1870  * Note, multiple disables will need the same number of enables
1871  * to truely enable the writing (much like preempt_disable).
1872  */
1873 void ring_buffer_record_enable(struct ring_buffer *buffer)
1874 {
1875         atomic_dec(&buffer->record_disabled);
1876 }
1877 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1878
1879 /**
1880  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1881  * @buffer: The ring buffer to stop writes to.
1882  * @cpu: The CPU buffer to stop
1883  *
1884  * This prevents all writes to the buffer. Any attempt to write
1885  * to the buffer after this will fail and return NULL.
1886  *
1887  * The caller should call synchronize_sched() after this.
1888  */
1889 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1890 {
1891         struct ring_buffer_per_cpu *cpu_buffer;
1892
1893         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1894                 return;
1895
1896         cpu_buffer = buffer->buffers[cpu];
1897         atomic_inc(&cpu_buffer->record_disabled);
1898 }
1899 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1900
1901 /**
1902  * ring_buffer_record_enable_cpu - enable writes to the buffer
1903  * @buffer: The ring buffer to enable writes
1904  * @cpu: The CPU to enable.
1905  *
1906  * Note, multiple disables will need the same number of enables
1907  * to truely enable the writing (much like preempt_disable).
1908  */
1909 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1910 {
1911         struct ring_buffer_per_cpu *cpu_buffer;
1912
1913         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1914                 return;
1915
1916         cpu_buffer = buffer->buffers[cpu];
1917         atomic_dec(&cpu_buffer->record_disabled);
1918 }
1919 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1920
1921 /**
1922  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1923  * @buffer: The ring buffer
1924  * @cpu: The per CPU buffer to get the entries from.
1925  */
1926 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1927 {
1928         struct ring_buffer_per_cpu *cpu_buffer;
1929         unsigned long ret;
1930
1931         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1932                 return 0;
1933
1934         cpu_buffer = buffer->buffers[cpu];
1935         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1936                 - cpu_buffer->read;
1937
1938         return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1941
1942 /**
1943  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1944  * @buffer: The ring buffer
1945  * @cpu: The per CPU buffer to get the number of overruns from
1946  */
1947 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1948 {
1949         struct ring_buffer_per_cpu *cpu_buffer;
1950         unsigned long ret;
1951
1952         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1953                 return 0;
1954
1955         cpu_buffer = buffer->buffers[cpu];
1956         ret = cpu_buffer->overrun;
1957
1958         return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1961
1962 /**
1963  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1964  * @buffer: The ring buffer
1965  * @cpu: The per CPU buffer to get the number of overruns from
1966  */
1967 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1968 {
1969         struct ring_buffer_per_cpu *cpu_buffer;
1970         unsigned long ret;
1971
1972         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1973                 return 0;
1974
1975         cpu_buffer = buffer->buffers[cpu];
1976         ret = cpu_buffer->nmi_dropped;
1977
1978         return ret;
1979 }
1980 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1981
1982 /**
1983  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1984  * @buffer: The ring buffer
1985  * @cpu: The per CPU buffer to get the number of overruns from
1986  */
1987 unsigned long
1988 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1989 {
1990         struct ring_buffer_per_cpu *cpu_buffer;
1991         unsigned long ret;
1992
1993         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1994                 return 0;
1995
1996         cpu_buffer = buffer->buffers[cpu];
1997         ret = cpu_buffer->commit_overrun;
1998
1999         return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2002
2003 /**
2004  * ring_buffer_entries - get the number of entries in a buffer
2005  * @buffer: The ring buffer
2006  *
2007  * Returns the total number of entries in the ring buffer
2008  * (all CPU entries)
2009  */
2010 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2011 {
2012         struct ring_buffer_per_cpu *cpu_buffer;
2013         unsigned long entries = 0;
2014         int cpu;
2015
2016         /* if you care about this being correct, lock the buffer */
2017         for_each_buffer_cpu(buffer, cpu) {
2018                 cpu_buffer = buffer->buffers[cpu];
2019                 entries += (local_read(&cpu_buffer->entries) -
2020                             cpu_buffer->overrun) - cpu_buffer->read;
2021         }
2022
2023         return entries;
2024 }
2025 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2026
2027 /**
2028  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2029  * @buffer: The ring buffer
2030  *
2031  * Returns the total number of overruns in the ring buffer
2032  * (all CPU entries)
2033  */
2034 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2035 {
2036         struct ring_buffer_per_cpu *cpu_buffer;
2037         unsigned long overruns = 0;
2038         int cpu;
2039
2040         /* if you care about this being correct, lock the buffer */
2041         for_each_buffer_cpu(buffer, cpu) {
2042                 cpu_buffer = buffer->buffers[cpu];
2043                 overruns += cpu_buffer->overrun;
2044         }
2045
2046         return overruns;
2047 }
2048 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2049
2050 static void rb_iter_reset(struct ring_buffer_iter *iter)
2051 {
2052         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2053
2054         /* Iterator usage is expected to have record disabled */
2055         if (list_empty(&cpu_buffer->reader_page->list)) {
2056                 iter->head_page = cpu_buffer->head_page;
2057                 iter->head = cpu_buffer->head_page->read;
2058         } else {
2059                 iter->head_page = cpu_buffer->reader_page;
2060                 iter->head = cpu_buffer->reader_page->read;
2061         }
2062         if (iter->head)
2063                 iter->read_stamp = cpu_buffer->read_stamp;
2064         else
2065                 iter->read_stamp = iter->head_page->page->time_stamp;
2066 }
2067
2068 /**
2069  * ring_buffer_iter_reset - reset an iterator
2070  * @iter: The iterator to reset
2071  *
2072  * Resets the iterator, so that it will start from the beginning
2073  * again.
2074  */
2075 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2076 {
2077         struct ring_buffer_per_cpu *cpu_buffer;
2078         unsigned long flags;
2079
2080         if (!iter)
2081                 return;
2082
2083         cpu_buffer = iter->cpu_buffer;
2084
2085         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2086         rb_iter_reset(iter);
2087         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2088 }
2089 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2090
2091 /**
2092  * ring_buffer_iter_empty - check if an iterator has no more to read
2093  * @iter: The iterator to check
2094  */
2095 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2096 {
2097         struct ring_buffer_per_cpu *cpu_buffer;
2098
2099         cpu_buffer = iter->cpu_buffer;
2100
2101         return iter->head_page == cpu_buffer->commit_page &&
2102                 iter->head == rb_commit_index(cpu_buffer);
2103 }
2104 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2105
2106 static void
2107 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2108                      struct ring_buffer_event *event)
2109 {
2110         u64 delta;
2111
2112         switch (event->type_len) {
2113         case RINGBUF_TYPE_PADDING:
2114                 return;
2115
2116         case RINGBUF_TYPE_TIME_EXTEND:
2117                 delta = event->array[0];
2118                 delta <<= TS_SHIFT;
2119                 delta += event->time_delta;
2120                 cpu_buffer->read_stamp += delta;
2121                 return;
2122
2123         case RINGBUF_TYPE_TIME_STAMP:
2124                 /* FIXME: not implemented */
2125                 return;
2126
2127         case RINGBUF_TYPE_DATA:
2128                 cpu_buffer->read_stamp += event->time_delta;
2129                 return;
2130
2131         default:
2132                 BUG();
2133         }
2134         return;
2135 }
2136
2137 static void
2138 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2139                           struct ring_buffer_event *event)
2140 {
2141         u64 delta;
2142
2143         switch (event->type_len) {
2144         case RINGBUF_TYPE_PADDING:
2145                 return;
2146
2147         case RINGBUF_TYPE_TIME_EXTEND:
2148                 delta = event->array[0];
2149                 delta <<= TS_SHIFT;
2150                 delta += event->time_delta;
2151                 iter->read_stamp += delta;
2152                 return;
2153
2154         case RINGBUF_TYPE_TIME_STAMP:
2155                 /* FIXME: not implemented */
2156                 return;
2157
2158         case RINGBUF_TYPE_DATA:
2159                 iter->read_stamp += event->time_delta;
2160                 return;
2161
2162         default:
2163                 BUG();
2164         }
2165         return;
2166 }
2167
2168 static struct buffer_page *
2169 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2170 {
2171         struct buffer_page *reader = NULL;
2172         unsigned long flags;
2173         int nr_loops = 0;
2174
2175         local_irq_save(flags);
2176         __raw_spin_lock(&cpu_buffer->lock);
2177
2178  again:
2179         /*
2180          * This should normally only loop twice. But because the
2181          * start of the reader inserts an empty page, it causes
2182          * a case where we will loop three times. There should be no
2183          * reason to loop four times (that I know of).
2184          */
2185         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2186                 reader = NULL;
2187                 goto out;
2188         }
2189
2190         reader = cpu_buffer->reader_page;
2191
2192         /* If there's more to read, return this page */
2193         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2194                 goto out;
2195
2196         /* Never should we have an index greater than the size */
2197         if (RB_WARN_ON(cpu_buffer,
2198                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2199                 goto out;
2200
2201         /* check if we caught up to the tail */
2202         reader = NULL;
2203         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2204                 goto out;
2205
2206         /*
2207          * Splice the empty reader page into the list around the head.
2208          * Reset the reader page to size zero.
2209          */
2210
2211         reader = cpu_buffer->head_page;
2212         cpu_buffer->reader_page->list.next = reader->list.next;
2213         cpu_buffer->reader_page->list.prev = reader->list.prev;
2214
2215         local_set(&cpu_buffer->reader_page->write, 0);
2216         local_set(&cpu_buffer->reader_page->entries, 0);
2217         local_set(&cpu_buffer->reader_page->page->commit, 0);
2218
2219         /* Make the reader page now replace the head */
2220         reader->list.prev->next = &cpu_buffer->reader_page->list;
2221         reader->list.next->prev = &cpu_buffer->reader_page->list;
2222
2223         /*
2224          * If the tail is on the reader, then we must set the head
2225          * to the inserted page, otherwise we set it one before.
2226          */
2227         cpu_buffer->head_page = cpu_buffer->reader_page;
2228
2229         if (cpu_buffer->commit_page != reader)
2230                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2231
2232         /* Finally update the reader page to the new head */
2233         cpu_buffer->reader_page = reader;
2234         rb_reset_reader_page(cpu_buffer);
2235
2236         goto again;
2237
2238  out:
2239         __raw_spin_unlock(&cpu_buffer->lock);
2240         local_irq_restore(flags);
2241
2242         return reader;
2243 }
2244
2245 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2246 {
2247         struct ring_buffer_event *event;
2248         struct buffer_page *reader;
2249         unsigned length;
2250
2251         reader = rb_get_reader_page(cpu_buffer);
2252
2253         /* This function should not be called when buffer is empty */
2254         if (RB_WARN_ON(cpu_buffer, !reader))
2255                 return;
2256
2257         event = rb_reader_event(cpu_buffer);
2258
2259         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2260                         || rb_discarded_event(event))
2261                 cpu_buffer->read++;
2262
2263         rb_update_read_stamp(cpu_buffer, event);
2264
2265         length = rb_event_length(event);
2266         cpu_buffer->reader_page->read += length;
2267 }
2268
2269 static void rb_advance_iter(struct ring_buffer_iter *iter)
2270 {
2271         struct ring_buffer *buffer;
2272         struct ring_buffer_per_cpu *cpu_buffer;
2273         struct ring_buffer_event *event;
2274         unsigned length;
2275
2276         cpu_buffer = iter->cpu_buffer;
2277         buffer = cpu_buffer->buffer;
2278
2279         /*
2280          * Check if we are at the end of the buffer.
2281          */
2282         if (iter->head >= rb_page_size(iter->head_page)) {
2283                 /* discarded commits can make the page empty */
2284                 if (iter->head_page == cpu_buffer->commit_page)
2285                         return;
2286                 rb_inc_iter(iter);
2287                 return;
2288         }
2289
2290         event = rb_iter_head_event(iter);
2291
2292         length = rb_event_length(event);
2293
2294         /*
2295          * This should not be called to advance the header if we are
2296          * at the tail of the buffer.
2297          */
2298         if (RB_WARN_ON(cpu_buffer,
2299                        (iter->head_page == cpu_buffer->commit_page) &&
2300                        (iter->head + length > rb_commit_index(cpu_buffer))))
2301                 return;
2302
2303         rb_update_iter_read_stamp(iter, event);
2304
2305         iter->head += length;
2306
2307         /* check for end of page padding */
2308         if ((iter->head >= rb_page_size(iter->head_page)) &&
2309             (iter->head_page != cpu_buffer->commit_page))
2310                 rb_advance_iter(iter);
2311 }
2312
2313 static struct ring_buffer_event *
2314 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2315 {
2316         struct ring_buffer_per_cpu *cpu_buffer;
2317         struct ring_buffer_event *event;
2318         struct buffer_page *reader;
2319         int nr_loops = 0;
2320
2321         cpu_buffer = buffer->buffers[cpu];
2322
2323  again:
2324         /*
2325          * We repeat when a timestamp is encountered. It is possible
2326          * to get multiple timestamps from an interrupt entering just
2327          * as one timestamp is about to be written, or from discarded
2328          * commits. The most that we can have is the number on a single page.
2329          */
2330         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2331                 return NULL;
2332
2333         reader = rb_get_reader_page(cpu_buffer);
2334         if (!reader)
2335                 return NULL;
2336
2337         event = rb_reader_event(cpu_buffer);
2338
2339         switch (event->type_len) {
2340         case RINGBUF_TYPE_PADDING:
2341                 if (rb_null_event(event))
2342                         RB_WARN_ON(cpu_buffer, 1);
2343                 /*
2344                  * Because the writer could be discarding every
2345                  * event it creates (which would probably be bad)
2346                  * if we were to go back to "again" then we may never
2347                  * catch up, and will trigger the warn on, or lock
2348                  * the box. Return the padding, and we will release
2349                  * the current locks, and try again.
2350                  */
2351                 rb_advance_reader(cpu_buffer);
2352                 return event;
2353
2354         case RINGBUF_TYPE_TIME_EXTEND:
2355                 /* Internal data, OK to advance */
2356                 rb_advance_reader(cpu_buffer);
2357                 goto again;
2358
2359         case RINGBUF_TYPE_TIME_STAMP:
2360                 /* FIXME: not implemented */
2361                 rb_advance_reader(cpu_buffer);
2362                 goto again;
2363
2364         case RINGBUF_TYPE_DATA:
2365                 if (ts) {
2366                         *ts = cpu_buffer->read_stamp + event->time_delta;
2367                         ring_buffer_normalize_time_stamp(buffer,
2368                                                          cpu_buffer->cpu, ts);
2369                 }
2370                 return event;
2371
2372         default:
2373                 BUG();
2374         }
2375
2376         return NULL;
2377 }
2378 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2379
2380 static struct ring_buffer_event *
2381 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2382 {
2383         struct ring_buffer *buffer;
2384         struct ring_buffer_per_cpu *cpu_buffer;
2385         struct ring_buffer_event *event;
2386         int nr_loops = 0;
2387
2388         if (ring_buffer_iter_empty(iter))
2389                 return NULL;
2390
2391         cpu_buffer = iter->cpu_buffer;
2392         buffer = cpu_buffer->buffer;
2393
2394  again:
2395         /*
2396          * We repeat when a timestamp is encountered.
2397          * We can get multiple timestamps by nested interrupts or also
2398          * if filtering is on (discarding commits). Since discarding
2399          * commits can be frequent we can get a lot of timestamps.
2400          * But we limit them by not adding timestamps if they begin
2401          * at the start of a page.
2402          */
2403         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2404                 return NULL;
2405
2406         if (rb_per_cpu_empty(cpu_buffer))
2407                 return NULL;
2408
2409         event = rb_iter_head_event(iter);
2410
2411         switch (event->type_len) {
2412         case RINGBUF_TYPE_PADDING:
2413                 if (rb_null_event(event)) {
2414                         rb_inc_iter(iter);
2415                         goto again;
2416                 }
2417                 rb_advance_iter(iter);
2418                 return event;
2419
2420         case RINGBUF_TYPE_TIME_EXTEND:
2421                 /* Internal data, OK to advance */
2422                 rb_advance_iter(iter);
2423                 goto again;
2424
2425         case RINGBUF_TYPE_TIME_STAMP:
2426                 /* FIXME: not implemented */
2427                 rb_advance_iter(iter);
2428                 goto again;
2429
2430         case RINGBUF_TYPE_DATA:
2431                 if (ts) {
2432                         *ts = iter->read_stamp + event->time_delta;
2433                         ring_buffer_normalize_time_stamp(buffer,
2434                                                          cpu_buffer->cpu, ts);
2435                 }
2436                 return event;
2437
2438         default:
2439                 BUG();
2440         }
2441
2442         return NULL;
2443 }
2444 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2445
2446 /**
2447  * ring_buffer_peek - peek at the next event to be read
2448  * @buffer: The ring buffer to read
2449  * @cpu: The cpu to peak at
2450  * @ts: The timestamp counter of this event.
2451  *
2452  * This will return the event that will be read next, but does
2453  * not consume the data.
2454  */
2455 struct ring_buffer_event *
2456 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2457 {
2458         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2459         struct ring_buffer_event *event;
2460         unsigned long flags;
2461
2462         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2463                 return NULL;
2464
2465  again:
2466         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2467         event = rb_buffer_peek(buffer, cpu, ts);
2468         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2469
2470         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2471                 cpu_relax();
2472                 goto again;
2473         }
2474
2475         return event;
2476 }
2477
2478 /**
2479  * ring_buffer_iter_peek - peek at the next event to be read
2480  * @iter: The ring buffer iterator
2481  * @ts: The timestamp counter of this event.
2482  *
2483  * This will return the event that will be read next, but does
2484  * not increment the iterator.
2485  */
2486 struct ring_buffer_event *
2487 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2488 {
2489         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2490         struct ring_buffer_event *event;
2491         unsigned long flags;
2492
2493  again:
2494         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2495         event = rb_iter_peek(iter, ts);
2496         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2497
2498         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2499                 cpu_relax();
2500                 goto again;
2501         }
2502
2503         return event;
2504 }
2505
2506 /**
2507  * ring_buffer_consume - return an event and consume it
2508  * @buffer: The ring buffer to get the next event from
2509  *
2510  * Returns the next event in the ring buffer, and that event is consumed.
2511  * Meaning, that sequential reads will keep returning a different event,
2512  * and eventually empty the ring buffer if the producer is slower.
2513  */
2514 struct ring_buffer_event *
2515 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2516 {
2517         struct ring_buffer_per_cpu *cpu_buffer;
2518         struct ring_buffer_event *event = NULL;
2519         unsigned long flags;
2520
2521  again:
2522         /* might be called in atomic */
2523         preempt_disable();
2524
2525         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2526                 goto out;
2527
2528         cpu_buffer = buffer->buffers[cpu];
2529         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2530
2531         event = rb_buffer_peek(buffer, cpu, ts);
2532         if (!event)
2533                 goto out_unlock;
2534
2535         rb_advance_reader(cpu_buffer);
2536
2537  out_unlock:
2538         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2539
2540  out:
2541         preempt_enable();
2542
2543         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2544                 cpu_relax();
2545                 goto again;
2546         }
2547
2548         return event;
2549 }
2550 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2551
2552 /**
2553  * ring_buffer_read_start - start a non consuming read of the buffer
2554  * @buffer: The ring buffer to read from
2555  * @cpu: The cpu buffer to iterate over
2556  *
2557  * This starts up an iteration through the buffer. It also disables
2558  * the recording to the buffer until the reading is finished.
2559  * This prevents the reading from being corrupted. This is not
2560  * a consuming read, so a producer is not expected.
2561  *
2562  * Must be paired with ring_buffer_finish.
2563  */
2564 struct ring_buffer_iter *
2565 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2566 {
2567         struct ring_buffer_per_cpu *cpu_buffer;
2568         struct ring_buffer_iter *iter;
2569         unsigned long flags;
2570
2571         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2572                 return NULL;
2573
2574         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2575         if (!iter)
2576                 return NULL;
2577
2578         cpu_buffer = buffer->buffers[cpu];
2579
2580         iter->cpu_buffer = cpu_buffer;
2581
2582         atomic_inc(&cpu_buffer->record_disabled);
2583         synchronize_sched();
2584
2585         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2586         __raw_spin_lock(&cpu_buffer->lock);
2587         rb_iter_reset(iter);
2588         __raw_spin_unlock(&cpu_buffer->lock);
2589         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2590
2591         return iter;
2592 }
2593 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2594
2595 /**
2596  * ring_buffer_finish - finish reading the iterator of the buffer
2597  * @iter: The iterator retrieved by ring_buffer_start
2598  *
2599  * This re-enables the recording to the buffer, and frees the
2600  * iterator.
2601  */
2602 void
2603 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2604 {
2605         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2606
2607         atomic_dec(&cpu_buffer->record_disabled);
2608         kfree(iter);
2609 }
2610 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2611
2612 /**
2613  * ring_buffer_read - read the next item in the ring buffer by the iterator
2614  * @iter: The ring buffer iterator
2615  * @ts: The time stamp of the event read.
2616  *
2617  * This reads the next event in the ring buffer and increments the iterator.
2618  */
2619 struct ring_buffer_event *
2620 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2621 {
2622         struct ring_buffer_event *event;
2623         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2624         unsigned long flags;
2625
2626  again:
2627         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2628         event = rb_iter_peek(iter, ts);
2629         if (!event)
2630                 goto out;
2631
2632         rb_advance_iter(iter);
2633  out:
2634         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2635
2636         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2637                 cpu_relax();
2638                 goto again;
2639         }
2640
2641         return event;
2642 }
2643 EXPORT_SYMBOL_GPL(ring_buffer_read);
2644
2645 /**
2646  * ring_buffer_size - return the size of the ring buffer (in bytes)
2647  * @buffer: The ring buffer.
2648  */
2649 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2650 {
2651         return BUF_PAGE_SIZE * buffer->pages;
2652 }
2653 EXPORT_SYMBOL_GPL(ring_buffer_size);
2654
2655 static void
2656 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2657 {
2658         cpu_buffer->head_page
2659                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2660         local_set(&cpu_buffer->head_page->write, 0);
2661         local_set(&cpu_buffer->head_page->entries, 0);
2662         local_set(&cpu_buffer->head_page->page->commit, 0);
2663
2664         cpu_buffer->head_page->read = 0;
2665
2666         cpu_buffer->tail_page = cpu_buffer->head_page;
2667         cpu_buffer->commit_page = cpu_buffer->head_page;
2668
2669         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2670         local_set(&cpu_buffer->reader_page->write, 0);
2671         local_set(&cpu_buffer->reader_page->entries, 0);
2672         local_set(&cpu_buffer->reader_page->page->commit, 0);
2673         cpu_buffer->reader_page->read = 0;
2674
2675         cpu_buffer->nmi_dropped = 0;
2676         cpu_buffer->commit_overrun = 0;
2677         cpu_buffer->overrun = 0;
2678         cpu_buffer->read = 0;
2679         local_set(&cpu_buffer->entries, 0);
2680
2681         cpu_buffer->write_stamp = 0;
2682         cpu_buffer->read_stamp = 0;
2683 }
2684
2685 /**
2686  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2687  * @buffer: The ring buffer to reset a per cpu buffer of
2688  * @cpu: The CPU buffer to be reset
2689  */
2690 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2691 {
2692         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2693         unsigned long flags;
2694
2695         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2696                 return;
2697
2698         atomic_inc(&cpu_buffer->record_disabled);
2699
2700         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2701
2702         __raw_spin_lock(&cpu_buffer->lock);
2703
2704         rb_reset_cpu(cpu_buffer);
2705
2706         __raw_spin_unlock(&cpu_buffer->lock);
2707
2708         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2709
2710         atomic_dec(&cpu_buffer->record_disabled);
2711 }
2712 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2713
2714 /**
2715  * ring_buffer_reset - reset a ring buffer
2716  * @buffer: The ring buffer to reset all cpu buffers
2717  */
2718 void ring_buffer_reset(struct ring_buffer *buffer)
2719 {
2720         int cpu;
2721
2722         for_each_buffer_cpu(buffer, cpu)
2723                 ring_buffer_reset_cpu(buffer, cpu);
2724 }
2725 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2726
2727 /**
2728  * rind_buffer_empty - is the ring buffer empty?
2729  * @buffer: The ring buffer to test
2730  */
2731 int ring_buffer_empty(struct ring_buffer *buffer)
2732 {
2733         struct ring_buffer_per_cpu *cpu_buffer;
2734         int cpu;
2735
2736         /* yes this is racy, but if you don't like the race, lock the buffer */
2737         for_each_buffer_cpu(buffer, cpu) {
2738                 cpu_buffer = buffer->buffers[cpu];
2739                 if (!rb_per_cpu_empty(cpu_buffer))
2740                         return 0;
2741         }
2742
2743         return 1;
2744 }
2745 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2746
2747 /**
2748  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2749  * @buffer: The ring buffer
2750  * @cpu: The CPU buffer to test
2751  */
2752 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2753 {
2754         struct ring_buffer_per_cpu *cpu_buffer;
2755         int ret;
2756
2757         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2758                 return 1;
2759
2760         cpu_buffer = buffer->buffers[cpu];
2761         ret = rb_per_cpu_empty(cpu_buffer);
2762
2763
2764         return ret;
2765 }
2766 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2767
2768 /**
2769  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2770  * @buffer_a: One buffer to swap with
2771  * @buffer_b: The other buffer to swap with
2772  *
2773  * This function is useful for tracers that want to take a "snapshot"
2774  * of a CPU buffer and has another back up buffer lying around.
2775  * it is expected that the tracer handles the cpu buffer not being
2776  * used at the moment.
2777  */
2778 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2779                          struct ring_buffer *buffer_b, int cpu)
2780 {
2781         struct ring_buffer_per_cpu *cpu_buffer_a;
2782         struct ring_buffer_per_cpu *cpu_buffer_b;
2783         int ret = -EINVAL;
2784
2785         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2786             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2787                 goto out;
2788
2789         /* At least make sure the two buffers are somewhat the same */
2790         if (buffer_a->pages != buffer_b->pages)
2791                 goto out;
2792
2793         ret = -EAGAIN;
2794
2795         if (ring_buffer_flags != RB_BUFFERS_ON)
2796                 goto out;
2797
2798         if (atomic_read(&buffer_a->record_disabled))
2799                 goto out;
2800
2801         if (atomic_read(&buffer_b->record_disabled))
2802                 goto out;
2803
2804         cpu_buffer_a = buffer_a->buffers[cpu];
2805         cpu_buffer_b = buffer_b->buffers[cpu];
2806
2807         if (atomic_read(&cpu_buffer_a->record_disabled))
2808                 goto out;
2809
2810         if (atomic_read(&cpu_buffer_b->record_disabled))
2811                 goto out;
2812
2813         /*
2814          * We can't do a synchronize_sched here because this
2815          * function can be called in atomic context.
2816          * Normally this will be called from the same CPU as cpu.
2817          * If not it's up to the caller to protect this.
2818          */
2819         atomic_inc(&cpu_buffer_a->record_disabled);
2820         atomic_inc(&cpu_buffer_b->record_disabled);
2821
2822         buffer_a->buffers[cpu] = cpu_buffer_b;
2823         buffer_b->buffers[cpu] = cpu_buffer_a;
2824
2825         cpu_buffer_b->buffer = buffer_a;
2826         cpu_buffer_a->buffer = buffer_b;
2827
2828         atomic_dec(&cpu_buffer_a->record_disabled);
2829         atomic_dec(&cpu_buffer_b->record_disabled);
2830
2831         ret = 0;
2832 out:
2833         return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2836
2837 /**
2838  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2839  * @buffer: the buffer to allocate for.
2840  *
2841  * This function is used in conjunction with ring_buffer_read_page.
2842  * When reading a full page from the ring buffer, these functions
2843  * can be used to speed up the process. The calling function should
2844  * allocate a few pages first with this function. Then when it
2845  * needs to get pages from the ring buffer, it passes the result
2846  * of this function into ring_buffer_read_page, which will swap
2847  * the page that was allocated, with the read page of the buffer.
2848  *
2849  * Returns:
2850  *  The page allocated, or NULL on error.
2851  */
2852 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2853 {
2854         struct buffer_data_page *bpage;
2855         unsigned long addr;
2856
2857         addr = __get_free_page(GFP_KERNEL);
2858         if (!addr)
2859                 return NULL;
2860
2861         bpage = (void *)addr;
2862
2863         rb_init_page(bpage);
2864
2865         return bpage;
2866 }
2867 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2868
2869 /**
2870  * ring_buffer_free_read_page - free an allocated read page
2871  * @buffer: the buffer the page was allocate for
2872  * @data: the page to free
2873  *
2874  * Free a page allocated from ring_buffer_alloc_read_page.
2875  */
2876 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2877 {
2878         free_page((unsigned long)data);
2879 }
2880 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2881
2882 /**
2883  * ring_buffer_read_page - extract a page from the ring buffer
2884  * @buffer: buffer to extract from
2885  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2886  * @len: amount to extract
2887  * @cpu: the cpu of the buffer to extract
2888  * @full: should the extraction only happen when the page is full.
2889  *
2890  * This function will pull out a page from the ring buffer and consume it.
2891  * @data_page must be the address of the variable that was returned
2892  * from ring_buffer_alloc_read_page. This is because the page might be used
2893  * to swap with a page in the ring buffer.
2894  *
2895  * for example:
2896  *      rpage = ring_buffer_alloc_read_page(buffer);
2897  *      if (!rpage)
2898  *              return error;
2899  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2900  *      if (ret >= 0)
2901  *              process_page(rpage, ret);
2902  *
2903  * When @full is set, the function will not return true unless
2904  * the writer is off the reader page.
2905  *
2906  * Note: it is up to the calling functions to handle sleeps and wakeups.
2907  *  The ring buffer can be used anywhere in the kernel and can not
2908  *  blindly call wake_up. The layer that uses the ring buffer must be
2909  *  responsible for that.
2910  *
2911  * Returns:
2912  *  >=0 if data has been transferred, returns the offset of consumed data.
2913  *  <0 if no data has been transferred.
2914  */
2915 int ring_buffer_read_page(struct ring_buffer *buffer,
2916                           void **data_page, size_t len, int cpu, int full)
2917 {
2918         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2919         struct ring_buffer_event *event;
2920         struct buffer_data_page *bpage;
2921         struct buffer_page *reader;
2922         unsigned long flags;
2923         unsigned int commit;
2924         unsigned int read;
2925         u64 save_timestamp;
2926         int ret = -1;
2927
2928         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2929                 goto out;
2930
2931         /*
2932          * If len is not big enough to hold the page header, then
2933          * we can not copy anything.
2934          */
2935         if (len <= BUF_PAGE_HDR_SIZE)
2936                 goto out;
2937
2938         len -= BUF_PAGE_HDR_SIZE;
2939
2940         if (!data_page)
2941                 goto out;
2942
2943         bpage = *data_page;
2944         if (!bpage)
2945                 goto out;
2946
2947         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2948
2949         reader = rb_get_reader_page(cpu_buffer);
2950         if (!reader)
2951                 goto out_unlock;
2952
2953         event = rb_reader_event(cpu_buffer);
2954
2955         read = reader->read;
2956         commit = rb_page_commit(reader);
2957
2958         /*
2959          * If this page has been partially read or
2960          * if len is not big enough to read the rest of the page or
2961          * a writer is still on the page, then
2962          * we must copy the data from the page to the buffer.
2963          * Otherwise, we can simply swap the page with the one passed in.
2964          */
2965         if (read || (len < (commit - read)) ||
2966             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2967                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2968                 unsigned int rpos = read;
2969                 unsigned int pos = 0;
2970                 unsigned int size;
2971
2972                 if (full)
2973                         goto out_unlock;
2974
2975                 if (len > (commit - read))
2976                         len = (commit - read);
2977
2978                 size = rb_event_length(event);
2979
2980                 if (len < size)
2981                         goto out_unlock;
2982
2983                 /* save the current timestamp, since the user will need it */
2984                 save_timestamp = cpu_buffer->read_stamp;
2985
2986                 /* Need to copy one event at a time */
2987                 do {
2988                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2989
2990                         len -= size;
2991
2992                         rb_advance_reader(cpu_buffer);
2993                         rpos = reader->read;
2994                         pos += size;
2995
2996                         event = rb_reader_event(cpu_buffer);
2997                         size = rb_event_length(event);
2998                 } while (len > size);
2999
3000                 /* update bpage */
3001                 local_set(&bpage->commit, pos);
3002                 bpage->time_stamp = save_timestamp;
3003
3004                 /* we copied everything to the beginning */
3005                 read = 0;
3006         } else {
3007                 /* update the entry counter */
3008                 cpu_buffer->read += local_read(&reader->entries);
3009
3010                 /* swap the pages */
3011                 rb_init_page(bpage);
3012                 bpage = reader->page;
3013                 reader->page = *data_page;
3014                 local_set(&reader->write, 0);
3015                 local_set(&reader->entries, 0);
3016                 reader->read = 0;
3017                 *data_page = bpage;
3018         }
3019         ret = read;
3020
3021  out_unlock:
3022         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3023
3024  out:
3025         return ret;
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3028
3029 static ssize_t
3030 rb_simple_read(struct file *filp, char __user *ubuf,
3031                size_t cnt, loff_t *ppos)
3032 {
3033         unsigned long *p = filp->private_data;
3034         char buf[64];
3035         int r;
3036
3037         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3038                 r = sprintf(buf, "permanently disabled\n");
3039         else
3040                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3041
3042         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3043 }
3044
3045 static ssize_t
3046 rb_simple_write(struct file *filp, const char __user *ubuf,
3047                 size_t cnt, loff_t *ppos)
3048 {
3049         unsigned long *p = filp->private_data;
3050         char buf[64];
3051         unsigned long val;
3052         int ret;
3053
3054         if (cnt >= sizeof(buf))
3055                 return -EINVAL;
3056
3057         if (copy_from_user(&buf, ubuf, cnt))
3058                 return -EFAULT;
3059
3060         buf[cnt] = 0;
3061
3062         ret = strict_strtoul(buf, 10, &val);
3063         if (ret < 0)
3064                 return ret;
3065
3066         if (val)
3067                 set_bit(RB_BUFFERS_ON_BIT, p);
3068         else
3069                 clear_bit(RB_BUFFERS_ON_BIT, p);
3070
3071         (*ppos)++;
3072
3073         return cnt;
3074 }
3075
3076 static const struct file_operations rb_simple_fops = {
3077         .open           = tracing_open_generic,
3078         .read           = rb_simple_read,
3079         .write          = rb_simple_write,
3080 };
3081
3082
3083 static __init int rb_init_debugfs(void)
3084 {
3085         struct dentry *d_tracer;
3086
3087         d_tracer = tracing_init_dentry();
3088
3089         trace_create_file("tracing_on", 0644, d_tracer,
3090                             &ring_buffer_flags, &rb_simple_fops);
3091
3092         return 0;
3093 }
3094
3095 fs_initcall(rb_init_debugfs);
3096
3097 #ifdef CONFIG_HOTPLUG_CPU
3098 static int rb_cpu_notify(struct notifier_block *self,
3099                          unsigned long action, void *hcpu)
3100 {
3101         struct ring_buffer *buffer =
3102                 container_of(self, struct ring_buffer, cpu_notify);
3103         long cpu = (long)hcpu;
3104
3105         switch (action) {
3106         case CPU_UP_PREPARE:
3107         case CPU_UP_PREPARE_FROZEN:
3108                 if (cpu_isset(cpu, *buffer->cpumask))
3109                         return NOTIFY_OK;
3110
3111                 buffer->buffers[cpu] =
3112                         rb_allocate_cpu_buffer(buffer, cpu);
3113                 if (!buffer->buffers[cpu]) {
3114                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3115                              cpu);
3116                         return NOTIFY_OK;
3117                 }
3118                 smp_wmb();
3119                 cpu_set(cpu, *buffer->cpumask);
3120                 break;
3121         case CPU_DOWN_PREPARE:
3122         case CPU_DOWN_PREPARE_FROZEN:
3123                 /*
3124                  * Do nothing.
3125                  *  If we were to free the buffer, then the user would
3126                  *  lose any trace that was in the buffer.
3127                  */
3128                 break;
3129         default:
3130                 break;
3131         }
3132         return NOTIFY_OK;
3133 }
3134 #endif