4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
25 * A fast way to enable or disable all ring buffers is to
26 * call tracing_on or tracing_off. Turning off the ring buffers
27 * prevents all ring buffers from being recorded to.
28 * Turning this switch on, makes it OK to write to the
29 * ring buffer, if the ring buffer is enabled itself.
31 * There's three layers that must be on in order to write
34 * 1) This global flag must be set.
35 * 2) The ring buffer must be enabled for recording.
36 * 3) The per cpu buffer must be enabled for recording.
38 * In case of an anomaly, this global flag has a bit set that
39 * will permantly disable all ring buffers.
43 * Global flag to disable all recording to ring buffers
44 * This has two bits: ON, DISABLED
48 * 0 0 : ring buffers are off
49 * 1 0 : ring buffers are on
50 * X 1 : ring buffers are permanently disabled
54 RB_BUFFERS_ON_BIT = 0,
55 RB_BUFFERS_DISABLED_BIT = 1,
59 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
60 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
63 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
65 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
68 * tracing_on - enable all tracing buffers
70 * This function enables all tracing buffers that may have been
71 * disabled with tracing_off.
75 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
77 EXPORT_SYMBOL_GPL(tracing_on);
80 * tracing_off - turn off all tracing buffers
82 * This function stops all tracing buffers from recording data.
83 * It does not disable any overhead the tracers themselves may
84 * be causing. This function simply causes all recording to
85 * the ring buffers to fail.
87 void tracing_off(void)
89 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
91 EXPORT_SYMBOL_GPL(tracing_off);
94 * tracing_off_permanent - permanently disable ring buffers
96 * This function, once called, will disable all ring buffers
99 void tracing_off_permanent(void)
101 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
105 * tracing_is_on - show state of ring buffers enabled
107 int tracing_is_on(void)
109 return ring_buffer_flags == RB_BUFFERS_ON;
111 EXPORT_SYMBOL_GPL(tracing_is_on);
115 /* Up this if you want to test the TIME_EXTENTS and normalization */
116 #define DEBUG_SHIFT 0
118 u64 ring_buffer_time_stamp(int cpu)
122 preempt_disable_notrace();
123 /* shift to debug/test normalization and TIME_EXTENTS */
124 time = trace_clock_local() << DEBUG_SHIFT;
125 preempt_enable_no_resched_notrace();
129 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
131 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
133 /* Just stupid testing the normalize function and deltas */
136 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139 #define RB_ALIGNMENT 4U
140 #define RB_MAX_SMALL_DATA 28
143 RB_LEN_TIME_EXTEND = 8,
144 RB_LEN_TIME_STAMP = 16,
147 /* inline for ring buffer fast paths */
149 rb_event_length(struct ring_buffer_event *event)
153 switch (event->type) {
154 case RINGBUF_TYPE_PADDING:
158 case RINGBUF_TYPE_TIME_EXTEND:
159 return RB_LEN_TIME_EXTEND;
161 case RINGBUF_TYPE_TIME_STAMP:
162 return RB_LEN_TIME_STAMP;
164 case RINGBUF_TYPE_DATA:
166 length = event->len * RB_ALIGNMENT;
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
178 * ring_buffer_event_length - return the length of the event
179 * @event: the event to get the length of
181 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
183 unsigned length = rb_event_length(event);
184 if (event->type != RINGBUF_TYPE_DATA)
186 length -= RB_EVNT_HDR_SIZE;
187 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
188 length -= sizeof(event->array[0]);
191 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
193 /* inline for ring buffer fast paths */
195 rb_event_data(struct ring_buffer_event *event)
197 BUG_ON(event->type != RINGBUF_TYPE_DATA);
198 /* If length is in len field, then array[0] has the data */
200 return (void *)&event->array[0];
201 /* Otherwise length is in array[0] and array[1] has the data */
202 return (void *)&event->array[1];
206 * ring_buffer_event_data - return the data of the event
207 * @event: the event to get the data from
209 void *ring_buffer_event_data(struct ring_buffer_event *event)
211 return rb_event_data(event);
213 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
215 #define for_each_buffer_cpu(buffer, cpu) \
216 for_each_cpu(cpu, buffer->cpumask)
219 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
220 #define TS_DELTA_TEST (~TS_MASK)
222 struct buffer_data_page {
223 u64 time_stamp; /* page time stamp */
224 local_t commit; /* write committed index */
225 unsigned char data[]; /* data of buffer page */
229 local_t write; /* index for next write */
230 unsigned read; /* index for next read */
231 struct list_head list; /* list of free pages */
232 struct buffer_data_page *page; /* Actual data page */
235 static void rb_init_page(struct buffer_data_page *bpage)
237 local_set(&bpage->commit, 0);
241 * ring_buffer_page_len - the size of data on the page.
242 * @page: The page to read
244 * Returns the amount of data on the page, including buffer page header.
246 size_t ring_buffer_page_len(void *page)
248 return local_read(&((struct buffer_data_page *)page)->commit)
253 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
256 static void free_buffer_page(struct buffer_page *bpage)
258 free_page((unsigned long)bpage->page);
263 * We need to fit the time_stamp delta into 27 bits.
265 static inline int test_time_stamp(u64 delta)
267 if (delta & TS_DELTA_TEST)
272 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
275 * head_page == tail_page && head == tail then buffer is empty.
277 struct ring_buffer_per_cpu {
279 struct ring_buffer *buffer;
280 spinlock_t reader_lock; /* serialize readers */
282 struct lock_class_key lock_key;
283 struct list_head pages;
284 struct buffer_page *head_page; /* read from head */
285 struct buffer_page *tail_page; /* write to tail */
286 struct buffer_page *commit_page; /* committed pages */
287 struct buffer_page *reader_page;
288 unsigned long overrun;
289 unsigned long entries;
292 atomic_t record_disabled;
299 atomic_t record_disabled;
300 cpumask_var_t cpumask;
304 struct ring_buffer_per_cpu **buffers;
306 #ifdef CONFIG_HOTPLUG_CPU
307 struct notifier_block cpu_notify;
311 struct ring_buffer_iter {
312 struct ring_buffer_per_cpu *cpu_buffer;
314 struct buffer_page *head_page;
318 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
319 #define RB_WARN_ON(buffer, cond) \
321 int _____ret = unlikely(cond); \
323 atomic_inc(&buffer->record_disabled); \
330 * check_pages - integrity check of buffer pages
331 * @cpu_buffer: CPU buffer with pages to test
333 * As a safety measure we check to make sure the data pages have not
336 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
338 struct list_head *head = &cpu_buffer->pages;
339 struct buffer_page *bpage, *tmp;
341 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
343 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
346 list_for_each_entry_safe(bpage, tmp, head, list) {
347 if (RB_WARN_ON(cpu_buffer,
348 bpage->list.next->prev != &bpage->list))
350 if (RB_WARN_ON(cpu_buffer,
351 bpage->list.prev->next != &bpage->list))
358 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
361 struct list_head *head = &cpu_buffer->pages;
362 struct buffer_page *bpage, *tmp;
367 for (i = 0; i < nr_pages; i++) {
368 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
369 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
372 list_add(&bpage->list, &pages);
374 addr = __get_free_page(GFP_KERNEL);
377 bpage->page = (void *)addr;
378 rb_init_page(bpage->page);
381 list_splice(&pages, head);
383 rb_check_pages(cpu_buffer);
388 list_for_each_entry_safe(bpage, tmp, &pages, list) {
389 list_del_init(&bpage->list);
390 free_buffer_page(bpage);
395 static struct ring_buffer_per_cpu *
396 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
398 struct ring_buffer_per_cpu *cpu_buffer;
399 struct buffer_page *bpage;
403 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
404 GFP_KERNEL, cpu_to_node(cpu));
408 cpu_buffer->cpu = cpu;
409 cpu_buffer->buffer = buffer;
410 spin_lock_init(&cpu_buffer->reader_lock);
411 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
412 INIT_LIST_HEAD(&cpu_buffer->pages);
414 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
415 GFP_KERNEL, cpu_to_node(cpu));
417 goto fail_free_buffer;
419 cpu_buffer->reader_page = bpage;
420 addr = __get_free_page(GFP_KERNEL);
422 goto fail_free_reader;
423 bpage->page = (void *)addr;
424 rb_init_page(bpage->page);
426 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
428 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
430 goto fail_free_reader;
432 cpu_buffer->head_page
433 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
434 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
439 free_buffer_page(cpu_buffer->reader_page);
446 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
448 struct list_head *head = &cpu_buffer->pages;
449 struct buffer_page *bpage, *tmp;
451 list_del_init(&cpu_buffer->reader_page->list);
452 free_buffer_page(cpu_buffer->reader_page);
454 list_for_each_entry_safe(bpage, tmp, head, list) {
455 list_del_init(&bpage->list);
456 free_buffer_page(bpage);
462 * Causes compile errors if the struct buffer_page gets bigger
463 * than the struct page.
465 extern int ring_buffer_page_too_big(void);
467 #ifdef CONFIG_HOTPLUG_CPU
468 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
469 unsigned long action, void *hcpu);
473 * ring_buffer_alloc - allocate a new ring_buffer
474 * @size: the size in bytes per cpu that is needed.
475 * @flags: attributes to set for the ring buffer.
477 * Currently the only flag that is available is the RB_FL_OVERWRITE
478 * flag. This flag means that the buffer will overwrite old data
479 * when the buffer wraps. If this flag is not set, the buffer will
480 * drop data when the tail hits the head.
482 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
484 struct ring_buffer *buffer;
488 /* Paranoid! Optimizes out when all is well */
489 if (sizeof(struct buffer_page) > sizeof(struct page))
490 ring_buffer_page_too_big();
493 /* keep it in its own cache line */
494 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
499 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
500 goto fail_free_buffer;
502 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
503 buffer->flags = flags;
505 /* need at least two pages */
506 if (buffer->pages == 1)
510 cpumask_copy(buffer->cpumask, cpu_online_mask);
511 buffer->cpus = nr_cpu_ids;
513 bsize = sizeof(void *) * nr_cpu_ids;
514 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
516 if (!buffer->buffers)
517 goto fail_free_cpumask;
519 for_each_buffer_cpu(buffer, cpu) {
520 buffer->buffers[cpu] =
521 rb_allocate_cpu_buffer(buffer, cpu);
522 if (!buffer->buffers[cpu])
523 goto fail_free_buffers;
526 #ifdef CONFIG_HOTPLUG_CPU
527 buffer->cpu_notify.notifier_call = rb_cpu_notify;
528 buffer->cpu_notify.priority = 0;
529 register_cpu_notifier(&buffer->cpu_notify);
533 mutex_init(&buffer->mutex);
538 for_each_buffer_cpu(buffer, cpu) {
539 if (buffer->buffers[cpu])
540 rb_free_cpu_buffer(buffer->buffers[cpu]);
542 kfree(buffer->buffers);
545 free_cpumask_var(buffer->cpumask);
552 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
555 * ring_buffer_free - free a ring buffer.
556 * @buffer: the buffer to free.
559 ring_buffer_free(struct ring_buffer *buffer)
565 #ifdef CONFIG_HOTPLUG_CPU
566 unregister_cpu_notifier(&buffer->cpu_notify);
569 for_each_buffer_cpu(buffer, cpu)
570 rb_free_cpu_buffer(buffer->buffers[cpu]);
574 free_cpumask_var(buffer->cpumask);
578 EXPORT_SYMBOL_GPL(ring_buffer_free);
580 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
583 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
585 struct buffer_page *bpage;
589 atomic_inc(&cpu_buffer->record_disabled);
592 for (i = 0; i < nr_pages; i++) {
593 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
595 p = cpu_buffer->pages.next;
596 bpage = list_entry(p, struct buffer_page, list);
597 list_del_init(&bpage->list);
598 free_buffer_page(bpage);
600 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
603 rb_reset_cpu(cpu_buffer);
605 rb_check_pages(cpu_buffer);
607 atomic_dec(&cpu_buffer->record_disabled);
612 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
613 struct list_head *pages, unsigned nr_pages)
615 struct buffer_page *bpage;
619 atomic_inc(&cpu_buffer->record_disabled);
622 for (i = 0; i < nr_pages; i++) {
623 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
626 bpage = list_entry(p, struct buffer_page, list);
627 list_del_init(&bpage->list);
628 list_add_tail(&bpage->list, &cpu_buffer->pages);
630 rb_reset_cpu(cpu_buffer);
632 rb_check_pages(cpu_buffer);
634 atomic_dec(&cpu_buffer->record_disabled);
638 * ring_buffer_resize - resize the ring buffer
639 * @buffer: the buffer to resize.
640 * @size: the new size.
642 * The tracer is responsible for making sure that the buffer is
643 * not being used while changing the size.
644 * Note: We may be able to change the above requirement by using
645 * RCU synchronizations.
647 * Minimum size is 2 * BUF_PAGE_SIZE.
649 * Returns -1 on failure.
651 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
653 struct ring_buffer_per_cpu *cpu_buffer;
654 unsigned nr_pages, rm_pages, new_pages;
655 struct buffer_page *bpage, *tmp;
656 unsigned long buffer_size;
662 * Always succeed at resizing a non-existent buffer:
667 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
668 size *= BUF_PAGE_SIZE;
669 buffer_size = buffer->pages * BUF_PAGE_SIZE;
671 /* we need a minimum of two pages */
672 if (size < BUF_PAGE_SIZE * 2)
673 size = BUF_PAGE_SIZE * 2;
675 if (size == buffer_size)
678 mutex_lock(&buffer->mutex);
681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
683 if (size < buffer_size) {
685 /* easy case, just free pages */
686 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
689 rm_pages = buffer->pages - nr_pages;
691 for_each_buffer_cpu(buffer, cpu) {
692 cpu_buffer = buffer->buffers[cpu];
693 rb_remove_pages(cpu_buffer, rm_pages);
699 * This is a bit more difficult. We only want to add pages
700 * when we can allocate enough for all CPUs. We do this
701 * by allocating all the pages and storing them on a local
702 * link list. If we succeed in our allocation, then we
703 * add these pages to the cpu_buffers. Otherwise we just free
704 * them all and return -ENOMEM;
706 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
709 new_pages = nr_pages - buffer->pages;
711 for_each_buffer_cpu(buffer, cpu) {
712 for (i = 0; i < new_pages; i++) {
713 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
715 GFP_KERNEL, cpu_to_node(cpu));
718 list_add(&bpage->list, &pages);
719 addr = __get_free_page(GFP_KERNEL);
722 bpage->page = (void *)addr;
723 rb_init_page(bpage->page);
727 for_each_buffer_cpu(buffer, cpu) {
728 cpu_buffer = buffer->buffers[cpu];
729 rb_insert_pages(cpu_buffer, &pages, new_pages);
732 if (RB_WARN_ON(buffer, !list_empty(&pages)))
736 buffer->pages = nr_pages;
738 mutex_unlock(&buffer->mutex);
743 list_for_each_entry_safe(bpage, tmp, &pages, list) {
744 list_del_init(&bpage->list);
745 free_buffer_page(bpage);
748 mutex_unlock(&buffer->mutex);
752 * Something went totally wrong, and we are too paranoid
753 * to even clean up the mess.
757 mutex_unlock(&buffer->mutex);
760 EXPORT_SYMBOL_GPL(ring_buffer_resize);
762 static inline int rb_null_event(struct ring_buffer_event *event)
764 return event->type == RINGBUF_TYPE_PADDING;
768 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
770 return bpage->data + index;
773 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
775 return bpage->page->data + index;
778 static inline struct ring_buffer_event *
779 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
781 return __rb_page_index(cpu_buffer->reader_page,
782 cpu_buffer->reader_page->read);
785 static inline struct ring_buffer_event *
786 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
788 return __rb_page_index(cpu_buffer->head_page,
789 cpu_buffer->head_page->read);
792 static inline struct ring_buffer_event *
793 rb_iter_head_event(struct ring_buffer_iter *iter)
795 return __rb_page_index(iter->head_page, iter->head);
798 static inline unsigned rb_page_write(struct buffer_page *bpage)
800 return local_read(&bpage->write);
803 static inline unsigned rb_page_commit(struct buffer_page *bpage)
805 return local_read(&bpage->page->commit);
808 /* Size is determined by what has been commited */
809 static inline unsigned rb_page_size(struct buffer_page *bpage)
811 return rb_page_commit(bpage);
814 static inline unsigned
815 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
817 return rb_page_commit(cpu_buffer->commit_page);
820 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
822 return rb_page_commit(cpu_buffer->head_page);
826 * When the tail hits the head and the buffer is in overwrite mode,
827 * the head jumps to the next page and all content on the previous
828 * page is discarded. But before doing so, we update the overrun
829 * variable of the buffer.
831 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
833 struct ring_buffer_event *event;
836 for (head = 0; head < rb_head_size(cpu_buffer);
837 head += rb_event_length(event)) {
839 event = __rb_page_index(cpu_buffer->head_page, head);
840 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
842 /* Only count data entries */
843 if (event->type != RINGBUF_TYPE_DATA)
845 cpu_buffer->overrun++;
846 cpu_buffer->entries--;
850 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
851 struct buffer_page **bpage)
853 struct list_head *p = (*bpage)->list.next;
855 if (p == &cpu_buffer->pages)
858 *bpage = list_entry(p, struct buffer_page, list);
861 static inline unsigned
862 rb_event_index(struct ring_buffer_event *event)
864 unsigned long addr = (unsigned long)event;
866 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
870 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
871 struct ring_buffer_event *event)
873 unsigned long addr = (unsigned long)event;
876 index = rb_event_index(event);
879 return cpu_buffer->commit_page->page == (void *)addr &&
880 rb_commit_index(cpu_buffer) == index;
884 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
885 struct ring_buffer_event *event)
887 unsigned long addr = (unsigned long)event;
890 index = rb_event_index(event);
893 while (cpu_buffer->commit_page->page != (void *)addr) {
894 if (RB_WARN_ON(cpu_buffer,
895 cpu_buffer->commit_page == cpu_buffer->tail_page))
897 cpu_buffer->commit_page->page->commit =
898 cpu_buffer->commit_page->write;
899 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
900 cpu_buffer->write_stamp =
901 cpu_buffer->commit_page->page->time_stamp;
904 /* Now set the commit to the event's index */
905 local_set(&cpu_buffer->commit_page->page->commit, index);
909 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
912 * We only race with interrupts and NMIs on this CPU.
913 * If we own the commit event, then we can commit
914 * all others that interrupted us, since the interruptions
915 * are in stack format (they finish before they come
916 * back to us). This allows us to do a simple loop to
917 * assign the commit to the tail.
920 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
921 cpu_buffer->commit_page->page->commit =
922 cpu_buffer->commit_page->write;
923 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
924 cpu_buffer->write_stamp =
925 cpu_buffer->commit_page->page->time_stamp;
926 /* add barrier to keep gcc from optimizing too much */
929 while (rb_commit_index(cpu_buffer) !=
930 rb_page_write(cpu_buffer->commit_page)) {
931 cpu_buffer->commit_page->page->commit =
932 cpu_buffer->commit_page->write;
936 /* again, keep gcc from optimizing */
940 * If an interrupt came in just after the first while loop
941 * and pushed the tail page forward, we will be left with
942 * a dangling commit that will never go forward.
944 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
948 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
950 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
951 cpu_buffer->reader_page->read = 0;
954 static void rb_inc_iter(struct ring_buffer_iter *iter)
956 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
959 * The iterator could be on the reader page (it starts there).
960 * But the head could have moved, since the reader was
961 * found. Check for this case and assign the iterator
962 * to the head page instead of next.
964 if (iter->head_page == cpu_buffer->reader_page)
965 iter->head_page = cpu_buffer->head_page;
967 rb_inc_page(cpu_buffer, &iter->head_page);
969 iter->read_stamp = iter->head_page->page->time_stamp;
974 * ring_buffer_update_event - update event type and data
975 * @event: the even to update
976 * @type: the type of event
977 * @length: the size of the event field in the ring buffer
979 * Update the type and data fields of the event. The length
980 * is the actual size that is written to the ring buffer,
981 * and with this, we can determine what to place into the
985 rb_update_event(struct ring_buffer_event *event,
986 unsigned type, unsigned length)
992 case RINGBUF_TYPE_PADDING:
995 case RINGBUF_TYPE_TIME_EXTEND:
996 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
999 case RINGBUF_TYPE_TIME_STAMP:
1000 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1003 case RINGBUF_TYPE_DATA:
1004 length -= RB_EVNT_HDR_SIZE;
1005 if (length > RB_MAX_SMALL_DATA) {
1007 event->array[0] = length;
1009 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1016 static unsigned rb_calculate_event_length(unsigned length)
1018 struct ring_buffer_event event; /* Used only for sizeof array */
1020 /* zero length can cause confusions */
1024 if (length > RB_MAX_SMALL_DATA)
1025 length += sizeof(event.array[0]);
1027 length += RB_EVNT_HDR_SIZE;
1028 length = ALIGN(length, RB_ALIGNMENT);
1033 static struct ring_buffer_event *
1034 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1035 unsigned type, unsigned long length, u64 *ts)
1037 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1038 unsigned long tail, write;
1039 struct ring_buffer *buffer = cpu_buffer->buffer;
1040 struct ring_buffer_event *event;
1041 unsigned long flags;
1042 bool lock_taken = false;
1044 commit_page = cpu_buffer->commit_page;
1045 /* we just need to protect against interrupts */
1047 tail_page = cpu_buffer->tail_page;
1048 write = local_add_return(length, &tail_page->write);
1049 tail = write - length;
1051 /* See if we shot pass the end of this buffer page */
1052 if (write > BUF_PAGE_SIZE) {
1053 struct buffer_page *next_page = tail_page;
1055 local_irq_save(flags);
1057 * Since the write to the buffer is still not
1058 * fully lockless, we must be careful with NMIs.
1059 * The locks in the writers are taken when a write
1060 * crosses to a new page. The locks protect against
1061 * races with the readers (this will soon be fixed
1062 * with a lockless solution).
1064 * Because we can not protect against NMIs, and we
1065 * want to keep traces reentrant, we need to manage
1066 * what happens when we are in an NMI.
1068 * NMIs can happen after we take the lock.
1069 * If we are in an NMI, only take the lock
1070 * if it is not already taken. Otherwise
1073 if (unlikely(in_nmi())) {
1074 if (!__raw_spin_trylock(&cpu_buffer->lock))
1077 __raw_spin_lock(&cpu_buffer->lock);
1081 rb_inc_page(cpu_buffer, &next_page);
1083 head_page = cpu_buffer->head_page;
1084 reader_page = cpu_buffer->reader_page;
1086 /* we grabbed the lock before incrementing */
1087 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1091 * If for some reason, we had an interrupt storm that made
1092 * it all the way around the buffer, bail, and warn
1095 if (unlikely(next_page == commit_page)) {
1100 if (next_page == head_page) {
1101 if (!(buffer->flags & RB_FL_OVERWRITE))
1104 /* tail_page has not moved yet? */
1105 if (tail_page == cpu_buffer->tail_page) {
1106 /* count overflows */
1107 rb_update_overflow(cpu_buffer);
1109 rb_inc_page(cpu_buffer, &head_page);
1110 cpu_buffer->head_page = head_page;
1111 cpu_buffer->head_page->read = 0;
1116 * If the tail page is still the same as what we think
1117 * it is, then it is up to us to update the tail
1120 if (tail_page == cpu_buffer->tail_page) {
1121 local_set(&next_page->write, 0);
1122 local_set(&next_page->page->commit, 0);
1123 cpu_buffer->tail_page = next_page;
1125 /* reread the time stamp */
1126 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1127 cpu_buffer->tail_page->page->time_stamp = *ts;
1131 * The actual tail page has moved forward.
1133 if (tail < BUF_PAGE_SIZE) {
1134 /* Mark the rest of the page with padding */
1135 event = __rb_page_index(tail_page, tail);
1136 event->type = RINGBUF_TYPE_PADDING;
1139 if (tail <= BUF_PAGE_SIZE)
1140 /* Set the write back to the previous setting */
1141 local_set(&tail_page->write, tail);
1144 * If this was a commit entry that failed,
1145 * increment that too
1147 if (tail_page == cpu_buffer->commit_page &&
1148 tail == rb_commit_index(cpu_buffer)) {
1149 rb_set_commit_to_write(cpu_buffer);
1152 __raw_spin_unlock(&cpu_buffer->lock);
1153 local_irq_restore(flags);
1155 /* fail and let the caller try again */
1156 return ERR_PTR(-EAGAIN);
1159 /* We reserved something on the buffer */
1161 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1164 event = __rb_page_index(tail_page, tail);
1165 rb_update_event(event, type, length);
1168 * If this is a commit and the tail is zero, then update
1169 * this page's time stamp.
1171 if (!tail && rb_is_commit(cpu_buffer, event))
1172 cpu_buffer->commit_page->page->time_stamp = *ts;
1178 if (tail <= BUF_PAGE_SIZE)
1179 local_set(&tail_page->write, tail);
1181 if (likely(lock_taken))
1182 __raw_spin_unlock(&cpu_buffer->lock);
1183 local_irq_restore(flags);
1188 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1189 u64 *ts, u64 *delta)
1191 struct ring_buffer_event *event;
1195 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1196 printk(KERN_WARNING "Delta way too big! %llu"
1197 " ts=%llu write stamp = %llu\n",
1198 (unsigned long long)*delta,
1199 (unsigned long long)*ts,
1200 (unsigned long long)cpu_buffer->write_stamp);
1205 * The delta is too big, we to add a
1208 event = __rb_reserve_next(cpu_buffer,
1209 RINGBUF_TYPE_TIME_EXTEND,
1215 if (PTR_ERR(event) == -EAGAIN)
1218 /* Only a commited time event can update the write stamp */
1219 if (rb_is_commit(cpu_buffer, event)) {
1221 * If this is the first on the page, then we need to
1222 * update the page itself, and just put in a zero.
1224 if (rb_event_index(event)) {
1225 event->time_delta = *delta & TS_MASK;
1226 event->array[0] = *delta >> TS_SHIFT;
1228 cpu_buffer->commit_page->page->time_stamp = *ts;
1229 event->time_delta = 0;
1230 event->array[0] = 0;
1232 cpu_buffer->write_stamp = *ts;
1233 /* let the caller know this was the commit */
1236 /* Darn, this is just wasted space */
1237 event->time_delta = 0;
1238 event->array[0] = 0;
1247 static struct ring_buffer_event *
1248 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1249 unsigned type, unsigned long length)
1251 struct ring_buffer_event *event;
1258 * We allow for interrupts to reenter here and do a trace.
1259 * If one does, it will cause this original code to loop
1260 * back here. Even with heavy interrupts happening, this
1261 * should only happen a few times in a row. If this happens
1262 * 1000 times in a row, there must be either an interrupt
1263 * storm or we have something buggy.
1266 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1269 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1272 * Only the first commit can update the timestamp.
1273 * Yes there is a race here. If an interrupt comes in
1274 * just after the conditional and it traces too, then it
1275 * will also check the deltas. More than one timestamp may
1276 * also be made. But only the entry that did the actual
1277 * commit will be something other than zero.
1279 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1280 rb_page_write(cpu_buffer->tail_page) ==
1281 rb_commit_index(cpu_buffer)) {
1283 delta = ts - cpu_buffer->write_stamp;
1285 /* make sure this delta is calculated here */
1288 /* Did the write stamp get updated already? */
1289 if (unlikely(ts < cpu_buffer->write_stamp))
1292 if (test_time_stamp(delta)) {
1294 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1296 if (commit == -EBUSY)
1299 if (commit == -EAGAIN)
1302 RB_WARN_ON(cpu_buffer, commit < 0);
1305 /* Non commits have zero deltas */
1308 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1309 if (PTR_ERR(event) == -EAGAIN)
1313 if (unlikely(commit))
1315 * Ouch! We needed a timestamp and it was commited. But
1316 * we didn't get our event reserved.
1318 rb_set_commit_to_write(cpu_buffer);
1323 * If the timestamp was commited, make the commit our entry
1324 * now so that we will update it when needed.
1327 rb_set_commit_event(cpu_buffer, event);
1328 else if (!rb_is_commit(cpu_buffer, event))
1331 event->time_delta = delta;
1336 static DEFINE_PER_CPU(int, rb_need_resched);
1339 * ring_buffer_lock_reserve - reserve a part of the buffer
1340 * @buffer: the ring buffer to reserve from
1341 * @length: the length of the data to reserve (excluding event header)
1343 * Returns a reseverd event on the ring buffer to copy directly to.
1344 * The user of this interface will need to get the body to write into
1345 * and can use the ring_buffer_event_data() interface.
1347 * The length is the length of the data needed, not the event length
1348 * which also includes the event header.
1350 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1351 * If NULL is returned, then nothing has been allocated or locked.
1353 struct ring_buffer_event *
1354 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1356 struct ring_buffer_per_cpu *cpu_buffer;
1357 struct ring_buffer_event *event;
1360 if (ring_buffer_flags != RB_BUFFERS_ON)
1363 if (atomic_read(&buffer->record_disabled))
1366 /* If we are tracing schedule, we don't want to recurse */
1367 resched = ftrace_preempt_disable();
1369 cpu = raw_smp_processor_id();
1371 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1374 cpu_buffer = buffer->buffers[cpu];
1376 if (atomic_read(&cpu_buffer->record_disabled))
1379 length = rb_calculate_event_length(length);
1380 if (length > BUF_PAGE_SIZE)
1383 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1388 * Need to store resched state on this cpu.
1389 * Only the first needs to.
1392 if (preempt_count() == 1)
1393 per_cpu(rb_need_resched, cpu) = resched;
1398 ftrace_preempt_enable(resched);
1401 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1403 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1404 struct ring_buffer_event *event)
1406 cpu_buffer->entries++;
1408 /* Only process further if we own the commit */
1409 if (!rb_is_commit(cpu_buffer, event))
1412 cpu_buffer->write_stamp += event->time_delta;
1414 rb_set_commit_to_write(cpu_buffer);
1418 * ring_buffer_unlock_commit - commit a reserved
1419 * @buffer: The buffer to commit to
1420 * @event: The event pointer to commit.
1422 * This commits the data to the ring buffer, and releases any locks held.
1424 * Must be paired with ring_buffer_lock_reserve.
1426 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1427 struct ring_buffer_event *event)
1429 struct ring_buffer_per_cpu *cpu_buffer;
1430 int cpu = raw_smp_processor_id();
1432 cpu_buffer = buffer->buffers[cpu];
1434 rb_commit(cpu_buffer, event);
1437 * Only the last preempt count needs to restore preemption.
1439 if (preempt_count() == 1)
1440 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1442 preempt_enable_no_resched_notrace();
1446 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1449 * ring_buffer_write - write data to the buffer without reserving
1450 * @buffer: The ring buffer to write to.
1451 * @length: The length of the data being written (excluding the event header)
1452 * @data: The data to write to the buffer.
1454 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1455 * one function. If you already have the data to write to the buffer, it
1456 * may be easier to simply call this function.
1458 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1459 * and not the length of the event which would hold the header.
1461 int ring_buffer_write(struct ring_buffer *buffer,
1462 unsigned long length,
1465 struct ring_buffer_per_cpu *cpu_buffer;
1466 struct ring_buffer_event *event;
1467 unsigned long event_length;
1472 if (ring_buffer_flags != RB_BUFFERS_ON)
1475 if (atomic_read(&buffer->record_disabled))
1478 resched = ftrace_preempt_disable();
1480 cpu = raw_smp_processor_id();
1482 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1485 cpu_buffer = buffer->buffers[cpu];
1487 if (atomic_read(&cpu_buffer->record_disabled))
1490 event_length = rb_calculate_event_length(length);
1491 event = rb_reserve_next_event(cpu_buffer,
1492 RINGBUF_TYPE_DATA, event_length);
1496 body = rb_event_data(event);
1498 memcpy(body, data, length);
1500 rb_commit(cpu_buffer, event);
1504 ftrace_preempt_enable(resched);
1508 EXPORT_SYMBOL_GPL(ring_buffer_write);
1510 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1512 struct buffer_page *reader = cpu_buffer->reader_page;
1513 struct buffer_page *head = cpu_buffer->head_page;
1514 struct buffer_page *commit = cpu_buffer->commit_page;
1516 return reader->read == rb_page_commit(reader) &&
1517 (commit == reader ||
1519 head->read == rb_page_commit(commit)));
1523 * ring_buffer_record_disable - stop all writes into the buffer
1524 * @buffer: The ring buffer to stop writes to.
1526 * This prevents all writes to the buffer. Any attempt to write
1527 * to the buffer after this will fail and return NULL.
1529 * The caller should call synchronize_sched() after this.
1531 void ring_buffer_record_disable(struct ring_buffer *buffer)
1533 atomic_inc(&buffer->record_disabled);
1535 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1538 * ring_buffer_record_enable - enable writes to the buffer
1539 * @buffer: The ring buffer to enable writes
1541 * Note, multiple disables will need the same number of enables
1542 * to truely enable the writing (much like preempt_disable).
1544 void ring_buffer_record_enable(struct ring_buffer *buffer)
1546 atomic_dec(&buffer->record_disabled);
1548 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1551 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1552 * @buffer: The ring buffer to stop writes to.
1553 * @cpu: The CPU buffer to stop
1555 * This prevents all writes to the buffer. Any attempt to write
1556 * to the buffer after this will fail and return NULL.
1558 * The caller should call synchronize_sched() after this.
1560 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1562 struct ring_buffer_per_cpu *cpu_buffer;
1564 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1567 cpu_buffer = buffer->buffers[cpu];
1568 atomic_inc(&cpu_buffer->record_disabled);
1570 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1573 * ring_buffer_record_enable_cpu - enable writes to the buffer
1574 * @buffer: The ring buffer to enable writes
1575 * @cpu: The CPU to enable.
1577 * Note, multiple disables will need the same number of enables
1578 * to truely enable the writing (much like preempt_disable).
1580 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1582 struct ring_buffer_per_cpu *cpu_buffer;
1584 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1587 cpu_buffer = buffer->buffers[cpu];
1588 atomic_dec(&cpu_buffer->record_disabled);
1590 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1593 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1594 * @buffer: The ring buffer
1595 * @cpu: The per CPU buffer to get the entries from.
1597 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1599 struct ring_buffer_per_cpu *cpu_buffer;
1602 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1605 cpu_buffer = buffer->buffers[cpu];
1606 ret = cpu_buffer->entries;
1610 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1613 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1614 * @buffer: The ring buffer
1615 * @cpu: The per CPU buffer to get the number of overruns from
1617 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1619 struct ring_buffer_per_cpu *cpu_buffer;
1622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1625 cpu_buffer = buffer->buffers[cpu];
1626 ret = cpu_buffer->overrun;
1630 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1633 * ring_buffer_entries - get the number of entries in a buffer
1634 * @buffer: The ring buffer
1636 * Returns the total number of entries in the ring buffer
1639 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1641 struct ring_buffer_per_cpu *cpu_buffer;
1642 unsigned long entries = 0;
1645 /* if you care about this being correct, lock the buffer */
1646 for_each_buffer_cpu(buffer, cpu) {
1647 cpu_buffer = buffer->buffers[cpu];
1648 entries += cpu_buffer->entries;
1653 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1656 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1657 * @buffer: The ring buffer
1659 * Returns the total number of overruns in the ring buffer
1662 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1664 struct ring_buffer_per_cpu *cpu_buffer;
1665 unsigned long overruns = 0;
1668 /* if you care about this being correct, lock the buffer */
1669 for_each_buffer_cpu(buffer, cpu) {
1670 cpu_buffer = buffer->buffers[cpu];
1671 overruns += cpu_buffer->overrun;
1676 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1678 static void rb_iter_reset(struct ring_buffer_iter *iter)
1680 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1682 /* Iterator usage is expected to have record disabled */
1683 if (list_empty(&cpu_buffer->reader_page->list)) {
1684 iter->head_page = cpu_buffer->head_page;
1685 iter->head = cpu_buffer->head_page->read;
1687 iter->head_page = cpu_buffer->reader_page;
1688 iter->head = cpu_buffer->reader_page->read;
1691 iter->read_stamp = cpu_buffer->read_stamp;
1693 iter->read_stamp = iter->head_page->page->time_stamp;
1697 * ring_buffer_iter_reset - reset an iterator
1698 * @iter: The iterator to reset
1700 * Resets the iterator, so that it will start from the beginning
1703 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1705 struct ring_buffer_per_cpu *cpu_buffer;
1706 unsigned long flags;
1711 cpu_buffer = iter->cpu_buffer;
1713 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1714 rb_iter_reset(iter);
1715 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1717 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1720 * ring_buffer_iter_empty - check if an iterator has no more to read
1721 * @iter: The iterator to check
1723 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1725 struct ring_buffer_per_cpu *cpu_buffer;
1727 cpu_buffer = iter->cpu_buffer;
1729 return iter->head_page == cpu_buffer->commit_page &&
1730 iter->head == rb_commit_index(cpu_buffer);
1732 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1735 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1736 struct ring_buffer_event *event)
1740 switch (event->type) {
1741 case RINGBUF_TYPE_PADDING:
1744 case RINGBUF_TYPE_TIME_EXTEND:
1745 delta = event->array[0];
1747 delta += event->time_delta;
1748 cpu_buffer->read_stamp += delta;
1751 case RINGBUF_TYPE_TIME_STAMP:
1752 /* FIXME: not implemented */
1755 case RINGBUF_TYPE_DATA:
1756 cpu_buffer->read_stamp += event->time_delta;
1766 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1767 struct ring_buffer_event *event)
1771 switch (event->type) {
1772 case RINGBUF_TYPE_PADDING:
1775 case RINGBUF_TYPE_TIME_EXTEND:
1776 delta = event->array[0];
1778 delta += event->time_delta;
1779 iter->read_stamp += delta;
1782 case RINGBUF_TYPE_TIME_STAMP:
1783 /* FIXME: not implemented */
1786 case RINGBUF_TYPE_DATA:
1787 iter->read_stamp += event->time_delta;
1796 static struct buffer_page *
1797 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1799 struct buffer_page *reader = NULL;
1800 unsigned long flags;
1803 local_irq_save(flags);
1804 __raw_spin_lock(&cpu_buffer->lock);
1808 * This should normally only loop twice. But because the
1809 * start of the reader inserts an empty page, it causes
1810 * a case where we will loop three times. There should be no
1811 * reason to loop four times (that I know of).
1813 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1818 reader = cpu_buffer->reader_page;
1820 /* If there's more to read, return this page */
1821 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1824 /* Never should we have an index greater than the size */
1825 if (RB_WARN_ON(cpu_buffer,
1826 cpu_buffer->reader_page->read > rb_page_size(reader)))
1829 /* check if we caught up to the tail */
1831 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1835 * Splice the empty reader page into the list around the head.
1836 * Reset the reader page to size zero.
1839 reader = cpu_buffer->head_page;
1840 cpu_buffer->reader_page->list.next = reader->list.next;
1841 cpu_buffer->reader_page->list.prev = reader->list.prev;
1843 local_set(&cpu_buffer->reader_page->write, 0);
1844 local_set(&cpu_buffer->reader_page->page->commit, 0);
1846 /* Make the reader page now replace the head */
1847 reader->list.prev->next = &cpu_buffer->reader_page->list;
1848 reader->list.next->prev = &cpu_buffer->reader_page->list;
1851 * If the tail is on the reader, then we must set the head
1852 * to the inserted page, otherwise we set it one before.
1854 cpu_buffer->head_page = cpu_buffer->reader_page;
1856 if (cpu_buffer->commit_page != reader)
1857 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1859 /* Finally update the reader page to the new head */
1860 cpu_buffer->reader_page = reader;
1861 rb_reset_reader_page(cpu_buffer);
1866 __raw_spin_unlock(&cpu_buffer->lock);
1867 local_irq_restore(flags);
1872 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1874 struct ring_buffer_event *event;
1875 struct buffer_page *reader;
1878 reader = rb_get_reader_page(cpu_buffer);
1880 /* This function should not be called when buffer is empty */
1881 if (RB_WARN_ON(cpu_buffer, !reader))
1884 event = rb_reader_event(cpu_buffer);
1886 if (event->type == RINGBUF_TYPE_DATA)
1887 cpu_buffer->entries--;
1889 rb_update_read_stamp(cpu_buffer, event);
1891 length = rb_event_length(event);
1892 cpu_buffer->reader_page->read += length;
1895 static void rb_advance_iter(struct ring_buffer_iter *iter)
1897 struct ring_buffer *buffer;
1898 struct ring_buffer_per_cpu *cpu_buffer;
1899 struct ring_buffer_event *event;
1902 cpu_buffer = iter->cpu_buffer;
1903 buffer = cpu_buffer->buffer;
1906 * Check if we are at the end of the buffer.
1908 if (iter->head >= rb_page_size(iter->head_page)) {
1909 if (RB_WARN_ON(buffer,
1910 iter->head_page == cpu_buffer->commit_page))
1916 event = rb_iter_head_event(iter);
1918 length = rb_event_length(event);
1921 * This should not be called to advance the header if we are
1922 * at the tail of the buffer.
1924 if (RB_WARN_ON(cpu_buffer,
1925 (iter->head_page == cpu_buffer->commit_page) &&
1926 (iter->head + length > rb_commit_index(cpu_buffer))))
1929 rb_update_iter_read_stamp(iter, event);
1931 iter->head += length;
1933 /* check for end of page padding */
1934 if ((iter->head >= rb_page_size(iter->head_page)) &&
1935 (iter->head_page != cpu_buffer->commit_page))
1936 rb_advance_iter(iter);
1939 static struct ring_buffer_event *
1940 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1942 struct ring_buffer_per_cpu *cpu_buffer;
1943 struct ring_buffer_event *event;
1944 struct buffer_page *reader;
1947 cpu_buffer = buffer->buffers[cpu];
1951 * We repeat when a timestamp is encountered. It is possible
1952 * to get multiple timestamps from an interrupt entering just
1953 * as one timestamp is about to be written. The max times
1954 * that this can happen is the number of nested interrupts we
1955 * can have. Nesting 10 deep of interrupts is clearly
1958 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1961 reader = rb_get_reader_page(cpu_buffer);
1965 event = rb_reader_event(cpu_buffer);
1967 switch (event->type) {
1968 case RINGBUF_TYPE_PADDING:
1969 RB_WARN_ON(cpu_buffer, 1);
1970 rb_advance_reader(cpu_buffer);
1973 case RINGBUF_TYPE_TIME_EXTEND:
1974 /* Internal data, OK to advance */
1975 rb_advance_reader(cpu_buffer);
1978 case RINGBUF_TYPE_TIME_STAMP:
1979 /* FIXME: not implemented */
1980 rb_advance_reader(cpu_buffer);
1983 case RINGBUF_TYPE_DATA:
1985 *ts = cpu_buffer->read_stamp + event->time_delta;
1986 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1996 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1998 static struct ring_buffer_event *
1999 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2001 struct ring_buffer *buffer;
2002 struct ring_buffer_per_cpu *cpu_buffer;
2003 struct ring_buffer_event *event;
2006 if (ring_buffer_iter_empty(iter))
2009 cpu_buffer = iter->cpu_buffer;
2010 buffer = cpu_buffer->buffer;
2014 * We repeat when a timestamp is encountered. It is possible
2015 * to get multiple timestamps from an interrupt entering just
2016 * as one timestamp is about to be written. The max times
2017 * that this can happen is the number of nested interrupts we
2018 * can have. Nesting 10 deep of interrupts is clearly
2021 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2024 if (rb_per_cpu_empty(cpu_buffer))
2027 event = rb_iter_head_event(iter);
2029 switch (event->type) {
2030 case RINGBUF_TYPE_PADDING:
2034 case RINGBUF_TYPE_TIME_EXTEND:
2035 /* Internal data, OK to advance */
2036 rb_advance_iter(iter);
2039 case RINGBUF_TYPE_TIME_STAMP:
2040 /* FIXME: not implemented */
2041 rb_advance_iter(iter);
2044 case RINGBUF_TYPE_DATA:
2046 *ts = iter->read_stamp + event->time_delta;
2047 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2057 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2060 * ring_buffer_peek - peek at the next event to be read
2061 * @buffer: The ring buffer to read
2062 * @cpu: The cpu to peak at
2063 * @ts: The timestamp counter of this event.
2065 * This will return the event that will be read next, but does
2066 * not consume the data.
2068 struct ring_buffer_event *
2069 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2071 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2072 struct ring_buffer_event *event;
2073 unsigned long flags;
2075 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2078 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2079 event = rb_buffer_peek(buffer, cpu, ts);
2080 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2086 * ring_buffer_iter_peek - peek at the next event to be read
2087 * @iter: The ring buffer iterator
2088 * @ts: The timestamp counter of this event.
2090 * This will return the event that will be read next, but does
2091 * not increment the iterator.
2093 struct ring_buffer_event *
2094 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2096 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2097 struct ring_buffer_event *event;
2098 unsigned long flags;
2100 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2101 event = rb_iter_peek(iter, ts);
2102 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2108 * ring_buffer_consume - return an event and consume it
2109 * @buffer: The ring buffer to get the next event from
2111 * Returns the next event in the ring buffer, and that event is consumed.
2112 * Meaning, that sequential reads will keep returning a different event,
2113 * and eventually empty the ring buffer if the producer is slower.
2115 struct ring_buffer_event *
2116 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2118 struct ring_buffer_per_cpu *cpu_buffer;
2119 struct ring_buffer_event *event = NULL;
2120 unsigned long flags;
2122 /* might be called in atomic */
2125 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2128 cpu_buffer = buffer->buffers[cpu];
2129 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2131 event = rb_buffer_peek(buffer, cpu, ts);
2135 rb_advance_reader(cpu_buffer);
2138 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2145 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2148 * ring_buffer_read_start - start a non consuming read of the buffer
2149 * @buffer: The ring buffer to read from
2150 * @cpu: The cpu buffer to iterate over
2152 * This starts up an iteration through the buffer. It also disables
2153 * the recording to the buffer until the reading is finished.
2154 * This prevents the reading from being corrupted. This is not
2155 * a consuming read, so a producer is not expected.
2157 * Must be paired with ring_buffer_finish.
2159 struct ring_buffer_iter *
2160 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2162 struct ring_buffer_per_cpu *cpu_buffer;
2163 struct ring_buffer_iter *iter;
2164 unsigned long flags;
2166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2169 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2173 cpu_buffer = buffer->buffers[cpu];
2175 iter->cpu_buffer = cpu_buffer;
2177 atomic_inc(&cpu_buffer->record_disabled);
2178 synchronize_sched();
2180 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2181 __raw_spin_lock(&cpu_buffer->lock);
2182 rb_iter_reset(iter);
2183 __raw_spin_unlock(&cpu_buffer->lock);
2184 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2188 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2191 * ring_buffer_finish - finish reading the iterator of the buffer
2192 * @iter: The iterator retrieved by ring_buffer_start
2194 * This re-enables the recording to the buffer, and frees the
2198 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2200 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2202 atomic_dec(&cpu_buffer->record_disabled);
2205 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2208 * ring_buffer_read - read the next item in the ring buffer by the iterator
2209 * @iter: The ring buffer iterator
2210 * @ts: The time stamp of the event read.
2212 * This reads the next event in the ring buffer and increments the iterator.
2214 struct ring_buffer_event *
2215 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2217 struct ring_buffer_event *event;
2218 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2219 unsigned long flags;
2221 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2222 event = rb_iter_peek(iter, ts);
2226 rb_advance_iter(iter);
2228 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2232 EXPORT_SYMBOL_GPL(ring_buffer_read);
2235 * ring_buffer_size - return the size of the ring buffer (in bytes)
2236 * @buffer: The ring buffer.
2238 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2240 return BUF_PAGE_SIZE * buffer->pages;
2242 EXPORT_SYMBOL_GPL(ring_buffer_size);
2245 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2247 cpu_buffer->head_page
2248 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2249 local_set(&cpu_buffer->head_page->write, 0);
2250 local_set(&cpu_buffer->head_page->page->commit, 0);
2252 cpu_buffer->head_page->read = 0;
2254 cpu_buffer->tail_page = cpu_buffer->head_page;
2255 cpu_buffer->commit_page = cpu_buffer->head_page;
2257 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2258 local_set(&cpu_buffer->reader_page->write, 0);
2259 local_set(&cpu_buffer->reader_page->page->commit, 0);
2260 cpu_buffer->reader_page->read = 0;
2262 cpu_buffer->overrun = 0;
2263 cpu_buffer->entries = 0;
2265 cpu_buffer->write_stamp = 0;
2266 cpu_buffer->read_stamp = 0;
2270 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2271 * @buffer: The ring buffer to reset a per cpu buffer of
2272 * @cpu: The CPU buffer to be reset
2274 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2276 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2277 unsigned long flags;
2279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2282 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2284 __raw_spin_lock(&cpu_buffer->lock);
2286 rb_reset_cpu(cpu_buffer);
2288 __raw_spin_unlock(&cpu_buffer->lock);
2290 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2292 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2295 * ring_buffer_reset - reset a ring buffer
2296 * @buffer: The ring buffer to reset all cpu buffers
2298 void ring_buffer_reset(struct ring_buffer *buffer)
2302 for_each_buffer_cpu(buffer, cpu)
2303 ring_buffer_reset_cpu(buffer, cpu);
2305 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2308 * rind_buffer_empty - is the ring buffer empty?
2309 * @buffer: The ring buffer to test
2311 int ring_buffer_empty(struct ring_buffer *buffer)
2313 struct ring_buffer_per_cpu *cpu_buffer;
2316 /* yes this is racy, but if you don't like the race, lock the buffer */
2317 for_each_buffer_cpu(buffer, cpu) {
2318 cpu_buffer = buffer->buffers[cpu];
2319 if (!rb_per_cpu_empty(cpu_buffer))
2325 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2328 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2329 * @buffer: The ring buffer
2330 * @cpu: The CPU buffer to test
2332 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2334 struct ring_buffer_per_cpu *cpu_buffer;
2337 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2340 cpu_buffer = buffer->buffers[cpu];
2341 ret = rb_per_cpu_empty(cpu_buffer);
2346 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2349 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2350 * @buffer_a: One buffer to swap with
2351 * @buffer_b: The other buffer to swap with
2353 * This function is useful for tracers that want to take a "snapshot"
2354 * of a CPU buffer and has another back up buffer lying around.
2355 * it is expected that the tracer handles the cpu buffer not being
2356 * used at the moment.
2358 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2359 struct ring_buffer *buffer_b, int cpu)
2361 struct ring_buffer_per_cpu *cpu_buffer_a;
2362 struct ring_buffer_per_cpu *cpu_buffer_b;
2365 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2366 !cpumask_test_cpu(cpu, buffer_b->cpumask))
2369 /* At least make sure the two buffers are somewhat the same */
2370 if (buffer_a->pages != buffer_b->pages)
2375 if (ring_buffer_flags != RB_BUFFERS_ON)
2378 if (atomic_read(&buffer_a->record_disabled))
2381 if (atomic_read(&buffer_b->record_disabled))
2384 cpu_buffer_a = buffer_a->buffers[cpu];
2385 cpu_buffer_b = buffer_b->buffers[cpu];
2387 if (atomic_read(&cpu_buffer_a->record_disabled))
2390 if (atomic_read(&cpu_buffer_b->record_disabled))
2394 * We can't do a synchronize_sched here because this
2395 * function can be called in atomic context.
2396 * Normally this will be called from the same CPU as cpu.
2397 * If not it's up to the caller to protect this.
2399 atomic_inc(&cpu_buffer_a->record_disabled);
2400 atomic_inc(&cpu_buffer_b->record_disabled);
2402 buffer_a->buffers[cpu] = cpu_buffer_b;
2403 buffer_b->buffers[cpu] = cpu_buffer_a;
2405 cpu_buffer_b->buffer = buffer_a;
2406 cpu_buffer_a->buffer = buffer_b;
2408 atomic_dec(&cpu_buffer_a->record_disabled);
2409 atomic_dec(&cpu_buffer_b->record_disabled);
2415 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2417 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2418 struct buffer_data_page *bpage,
2419 unsigned int offset)
2421 struct ring_buffer_event *event;
2424 __raw_spin_lock(&cpu_buffer->lock);
2425 for (head = offset; head < local_read(&bpage->commit);
2426 head += rb_event_length(event)) {
2428 event = __rb_data_page_index(bpage, head);
2429 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2431 /* Only count data entries */
2432 if (event->type != RINGBUF_TYPE_DATA)
2434 cpu_buffer->entries--;
2436 __raw_spin_unlock(&cpu_buffer->lock);
2440 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2441 * @buffer: the buffer to allocate for.
2443 * This function is used in conjunction with ring_buffer_read_page.
2444 * When reading a full page from the ring buffer, these functions
2445 * can be used to speed up the process. The calling function should
2446 * allocate a few pages first with this function. Then when it
2447 * needs to get pages from the ring buffer, it passes the result
2448 * of this function into ring_buffer_read_page, which will swap
2449 * the page that was allocated, with the read page of the buffer.
2452 * The page allocated, or NULL on error.
2454 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2456 struct buffer_data_page *bpage;
2459 addr = __get_free_page(GFP_KERNEL);
2463 bpage = (void *)addr;
2465 rb_init_page(bpage);
2471 * ring_buffer_free_read_page - free an allocated read page
2472 * @buffer: the buffer the page was allocate for
2473 * @data: the page to free
2475 * Free a page allocated from ring_buffer_alloc_read_page.
2477 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2479 free_page((unsigned long)data);
2483 * ring_buffer_read_page - extract a page from the ring buffer
2484 * @buffer: buffer to extract from
2485 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2486 * @len: amount to extract
2487 * @cpu: the cpu of the buffer to extract
2488 * @full: should the extraction only happen when the page is full.
2490 * This function will pull out a page from the ring buffer and consume it.
2491 * @data_page must be the address of the variable that was returned
2492 * from ring_buffer_alloc_read_page. This is because the page might be used
2493 * to swap with a page in the ring buffer.
2496 * rpage = ring_buffer_alloc_read_page(buffer);
2499 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2501 * process_page(rpage, ret);
2503 * When @full is set, the function will not return true unless
2504 * the writer is off the reader page.
2506 * Note: it is up to the calling functions to handle sleeps and wakeups.
2507 * The ring buffer can be used anywhere in the kernel and can not
2508 * blindly call wake_up. The layer that uses the ring buffer must be
2509 * responsible for that.
2512 * >=0 if data has been transferred, returns the offset of consumed data.
2513 * <0 if no data has been transferred.
2515 int ring_buffer_read_page(struct ring_buffer *buffer,
2516 void **data_page, size_t len, int cpu, int full)
2518 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2519 struct ring_buffer_event *event;
2520 struct buffer_data_page *bpage;
2521 struct buffer_page *reader;
2522 unsigned long flags;
2523 unsigned int commit;
2528 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2532 * If len is not big enough to hold the page header, then
2533 * we can not copy anything.
2535 if (len <= BUF_PAGE_HDR_SIZE)
2538 len -= BUF_PAGE_HDR_SIZE;
2547 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2549 reader = rb_get_reader_page(cpu_buffer);
2553 event = rb_reader_event(cpu_buffer);
2555 read = reader->read;
2556 commit = rb_page_commit(reader);
2559 * If this page has been partially read or
2560 * if len is not big enough to read the rest of the page or
2561 * a writer is still on the page, then
2562 * we must copy the data from the page to the buffer.
2563 * Otherwise, we can simply swap the page with the one passed in.
2565 if (read || (len < (commit - read)) ||
2566 cpu_buffer->reader_page == cpu_buffer->commit_page) {
2567 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2568 unsigned int rpos = read;
2569 unsigned int pos = 0;
2575 if (len > (commit - read))
2576 len = (commit - read);
2578 size = rb_event_length(event);
2583 /* save the current timestamp, since the user will need it */
2584 save_timestamp = cpu_buffer->read_stamp;
2586 /* Need to copy one event at a time */
2588 memcpy(bpage->data + pos, rpage->data + rpos, size);
2592 rb_advance_reader(cpu_buffer);
2593 rpos = reader->read;
2596 event = rb_reader_event(cpu_buffer);
2597 size = rb_event_length(event);
2598 } while (len > size);
2601 local_set(&bpage->commit, pos);
2602 bpage->time_stamp = save_timestamp;
2604 /* we copied everything to the beginning */
2607 /* swap the pages */
2608 rb_init_page(bpage);
2609 bpage = reader->page;
2610 reader->page = *data_page;
2611 local_set(&reader->write, 0);
2615 /* update the entry counter */
2616 rb_remove_entries(cpu_buffer, bpage, read);
2621 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2628 rb_simple_read(struct file *filp, char __user *ubuf,
2629 size_t cnt, loff_t *ppos)
2631 unsigned long *p = filp->private_data;
2635 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2636 r = sprintf(buf, "permanently disabled\n");
2638 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2640 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2644 rb_simple_write(struct file *filp, const char __user *ubuf,
2645 size_t cnt, loff_t *ppos)
2647 unsigned long *p = filp->private_data;
2652 if (cnt >= sizeof(buf))
2655 if (copy_from_user(&buf, ubuf, cnt))
2660 ret = strict_strtoul(buf, 10, &val);
2665 set_bit(RB_BUFFERS_ON_BIT, p);
2667 clear_bit(RB_BUFFERS_ON_BIT, p);
2674 static const struct file_operations rb_simple_fops = {
2675 .open = tracing_open_generic,
2676 .read = rb_simple_read,
2677 .write = rb_simple_write,
2681 static __init int rb_init_debugfs(void)
2683 struct dentry *d_tracer;
2684 struct dentry *entry;
2686 d_tracer = tracing_init_dentry();
2688 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2689 &ring_buffer_flags, &rb_simple_fops);
2691 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2696 fs_initcall(rb_init_debugfs);
2698 #ifdef CONFIG_HOTPLUG_CPU
2699 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2700 unsigned long action, void *hcpu)
2702 struct ring_buffer *buffer =
2703 container_of(self, struct ring_buffer, cpu_notify);
2704 long cpu = (long)hcpu;
2707 case CPU_UP_PREPARE:
2708 case CPU_UP_PREPARE_FROZEN:
2709 if (cpu_isset(cpu, *buffer->cpumask))
2712 buffer->buffers[cpu] =
2713 rb_allocate_cpu_buffer(buffer, cpu);
2714 if (!buffer->buffers[cpu]) {
2715 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2720 cpu_set(cpu, *buffer->cpumask);
2722 case CPU_DOWN_PREPARE:
2723 case CPU_DOWN_PREPARE_FROZEN:
2726 * If we were to free the buffer, then the user would
2727 * lose any trace that was in the buffer.