perf_counter: unify and fix delayed counter wakeup
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28
29 #include <asm/irq_regs.h>
30
31 /*
32  * Each CPU has a list of per CPU counters:
33  */
34 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
36 int perf_max_counters __read_mostly = 1;
37 static int perf_reserved_percpu __read_mostly;
38 static int perf_overcommit __read_mostly = 1;
39
40 /*
41  * Mutex for (sysadmin-configurable) counter reservations:
42  */
43 static DEFINE_MUTEX(perf_resource_mutex);
44
45 /*
46  * Architecture provided APIs - weak aliases:
47  */
48 extern __weak const struct hw_perf_counter_ops *
49 hw_perf_counter_init(struct perf_counter *counter)
50 {
51         return NULL;
52 }
53
54 u64 __weak hw_perf_save_disable(void)           { return 0; }
55 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
56 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
57 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58                struct perf_cpu_context *cpuctx,
59                struct perf_counter_context *ctx, int cpu)
60 {
61         return 0;
62 }
63
64 void __weak perf_counter_print_debug(void)      { }
65
66 static void
67 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69         struct perf_counter *group_leader = counter->group_leader;
70
71         /*
72          * Depending on whether it is a standalone or sibling counter,
73          * add it straight to the context's counter list, or to the group
74          * leader's sibling list:
75          */
76         if (counter->group_leader == counter)
77                 list_add_tail(&counter->list_entry, &ctx->counter_list);
78         else {
79                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
80                 group_leader->nr_siblings++;
81         }
82
83         list_add_rcu(&counter->event_entry, &ctx->event_list);
84 }
85
86 static void
87 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
88 {
89         struct perf_counter *sibling, *tmp;
90
91         list_del_init(&counter->list_entry);
92         list_del_rcu(&counter->event_entry);
93
94         if (counter->group_leader != counter)
95                 counter->group_leader->nr_siblings--;
96
97         /*
98          * If this was a group counter with sibling counters then
99          * upgrade the siblings to singleton counters by adding them
100          * to the context list directly:
101          */
102         list_for_each_entry_safe(sibling, tmp,
103                                  &counter->sibling_list, list_entry) {
104
105                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
106                 sibling->group_leader = sibling;
107         }
108 }
109
110 static void
111 counter_sched_out(struct perf_counter *counter,
112                   struct perf_cpu_context *cpuctx,
113                   struct perf_counter_context *ctx)
114 {
115         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116                 return;
117
118         counter->state = PERF_COUNTER_STATE_INACTIVE;
119         counter->tstamp_stopped = ctx->time_now;
120         counter->hw_ops->disable(counter);
121         counter->oncpu = -1;
122
123         if (!is_software_counter(counter))
124                 cpuctx->active_oncpu--;
125         ctx->nr_active--;
126         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
127                 cpuctx->exclusive = 0;
128 }
129
130 static void
131 group_sched_out(struct perf_counter *group_counter,
132                 struct perf_cpu_context *cpuctx,
133                 struct perf_counter_context *ctx)
134 {
135         struct perf_counter *counter;
136
137         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
138                 return;
139
140         counter_sched_out(group_counter, cpuctx, ctx);
141
142         /*
143          * Schedule out siblings (if any):
144          */
145         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
146                 counter_sched_out(counter, cpuctx, ctx);
147
148         if (group_counter->hw_event.exclusive)
149                 cpuctx->exclusive = 0;
150 }
151
152 /*
153  * Cross CPU call to remove a performance counter
154  *
155  * We disable the counter on the hardware level first. After that we
156  * remove it from the context list.
157  */
158 static void __perf_counter_remove_from_context(void *info)
159 {
160         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
161         struct perf_counter *counter = info;
162         struct perf_counter_context *ctx = counter->ctx;
163         unsigned long flags;
164         u64 perf_flags;
165
166         /*
167          * If this is a task context, we need to check whether it is
168          * the current task context of this cpu. If not it has been
169          * scheduled out before the smp call arrived.
170          */
171         if (ctx->task && cpuctx->task_ctx != ctx)
172                 return;
173
174         curr_rq_lock_irq_save(&flags);
175         spin_lock(&ctx->lock);
176
177         counter_sched_out(counter, cpuctx, ctx);
178
179         counter->task = NULL;
180         ctx->nr_counters--;
181
182         /*
183          * Protect the list operation against NMI by disabling the
184          * counters on a global level. NOP for non NMI based counters.
185          */
186         perf_flags = hw_perf_save_disable();
187         list_del_counter(counter, ctx);
188         hw_perf_restore(perf_flags);
189
190         if (!ctx->task) {
191                 /*
192                  * Allow more per task counters with respect to the
193                  * reservation:
194                  */
195                 cpuctx->max_pertask =
196                         min(perf_max_counters - ctx->nr_counters,
197                             perf_max_counters - perf_reserved_percpu);
198         }
199
200         spin_unlock(&ctx->lock);
201         curr_rq_unlock_irq_restore(&flags);
202 }
203
204
205 /*
206  * Remove the counter from a task's (or a CPU's) list of counters.
207  *
208  * Must be called with counter->mutex and ctx->mutex held.
209  *
210  * CPU counters are removed with a smp call. For task counters we only
211  * call when the task is on a CPU.
212  */
213 static void perf_counter_remove_from_context(struct perf_counter *counter)
214 {
215         struct perf_counter_context *ctx = counter->ctx;
216         struct task_struct *task = ctx->task;
217
218         if (!task) {
219                 /*
220                  * Per cpu counters are removed via an smp call and
221                  * the removal is always sucessful.
222                  */
223                 smp_call_function_single(counter->cpu,
224                                          __perf_counter_remove_from_context,
225                                          counter, 1);
226                 return;
227         }
228
229 retry:
230         task_oncpu_function_call(task, __perf_counter_remove_from_context,
231                                  counter);
232
233         spin_lock_irq(&ctx->lock);
234         /*
235          * If the context is active we need to retry the smp call.
236          */
237         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
238                 spin_unlock_irq(&ctx->lock);
239                 goto retry;
240         }
241
242         /*
243          * The lock prevents that this context is scheduled in so we
244          * can remove the counter safely, if the call above did not
245          * succeed.
246          */
247         if (!list_empty(&counter->list_entry)) {
248                 ctx->nr_counters--;
249                 list_del_counter(counter, ctx);
250                 counter->task = NULL;
251         }
252         spin_unlock_irq(&ctx->lock);
253 }
254
255 /*
256  * Get the current time for this context.
257  * If this is a task context, we use the task's task clock,
258  * or for a per-cpu context, we use the cpu clock.
259  */
260 static u64 get_context_time(struct perf_counter_context *ctx, int update)
261 {
262         struct task_struct *curr = ctx->task;
263
264         if (!curr)
265                 return cpu_clock(smp_processor_id());
266
267         return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
268 }
269
270 /*
271  * Update the record of the current time in a context.
272  */
273 static void update_context_time(struct perf_counter_context *ctx, int update)
274 {
275         ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
276 }
277
278 /*
279  * Update the total_time_enabled and total_time_running fields for a counter.
280  */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283         struct perf_counter_context *ctx = counter->ctx;
284         u64 run_end;
285
286         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
287                 counter->total_time_enabled = ctx->time_now -
288                         counter->tstamp_enabled;
289                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290                         run_end = counter->tstamp_stopped;
291                 else
292                         run_end = ctx->time_now;
293                 counter->total_time_running = run_end - counter->tstamp_running;
294         }
295 }
296
297 /*
298  * Update total_time_enabled and total_time_running for all counters in a group.
299  */
300 static void update_group_times(struct perf_counter *leader)
301 {
302         struct perf_counter *counter;
303
304         update_counter_times(leader);
305         list_for_each_entry(counter, &leader->sibling_list, list_entry)
306                 update_counter_times(counter);
307 }
308
309 /*
310  * Cross CPU call to disable a performance counter
311  */
312 static void __perf_counter_disable(void *info)
313 {
314         struct perf_counter *counter = info;
315         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316         struct perf_counter_context *ctx = counter->ctx;
317         unsigned long flags;
318
319         /*
320          * If this is a per-task counter, need to check whether this
321          * counter's task is the current task on this cpu.
322          */
323         if (ctx->task && cpuctx->task_ctx != ctx)
324                 return;
325
326         curr_rq_lock_irq_save(&flags);
327         spin_lock(&ctx->lock);
328
329         /*
330          * If the counter is on, turn it off.
331          * If it is in error state, leave it in error state.
332          */
333         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334                 update_context_time(ctx, 1);
335                 update_counter_times(counter);
336                 if (counter == counter->group_leader)
337                         group_sched_out(counter, cpuctx, ctx);
338                 else
339                         counter_sched_out(counter, cpuctx, ctx);
340                 counter->state = PERF_COUNTER_STATE_OFF;
341         }
342
343         spin_unlock(&ctx->lock);
344         curr_rq_unlock_irq_restore(&flags);
345 }
346
347 /*
348  * Disable a counter.
349  */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Disable the counter on the cpu that it's on
358                  */
359                 smp_call_function_single(counter->cpu, __perf_counter_disable,
360                                          counter, 1);
361                 return;
362         }
363
364  retry:
365         task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367         spin_lock_irq(&ctx->lock);
368         /*
369          * If the counter is still active, we need to retry the cross-call.
370          */
371         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372                 spin_unlock_irq(&ctx->lock);
373                 goto retry;
374         }
375
376         /*
377          * Since we have the lock this context can't be scheduled
378          * in, so we can change the state safely.
379          */
380         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381                 update_counter_times(counter);
382                 counter->state = PERF_COUNTER_STATE_OFF;
383         }
384
385         spin_unlock_irq(&ctx->lock);
386 }
387
388 /*
389  * Disable a counter and all its children.
390  */
391 static void perf_counter_disable_family(struct perf_counter *counter)
392 {
393         struct perf_counter *child;
394
395         perf_counter_disable(counter);
396
397         /*
398          * Lock the mutex to protect the list of children
399          */
400         mutex_lock(&counter->mutex);
401         list_for_each_entry(child, &counter->child_list, child_list)
402                 perf_counter_disable(child);
403         mutex_unlock(&counter->mutex);
404 }
405
406 static int
407 counter_sched_in(struct perf_counter *counter,
408                  struct perf_cpu_context *cpuctx,
409                  struct perf_counter_context *ctx,
410                  int cpu)
411 {
412         if (counter->state <= PERF_COUNTER_STATE_OFF)
413                 return 0;
414
415         counter->state = PERF_COUNTER_STATE_ACTIVE;
416         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
417         /*
418          * The new state must be visible before we turn it on in the hardware:
419          */
420         smp_wmb();
421
422         if (counter->hw_ops->enable(counter)) {
423                 counter->state = PERF_COUNTER_STATE_INACTIVE;
424                 counter->oncpu = -1;
425                 return -EAGAIN;
426         }
427
428         counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
429
430         if (!is_software_counter(counter))
431                 cpuctx->active_oncpu++;
432         ctx->nr_active++;
433
434         if (counter->hw_event.exclusive)
435                 cpuctx->exclusive = 1;
436
437         return 0;
438 }
439
440 /*
441  * Return 1 for a group consisting entirely of software counters,
442  * 0 if the group contains any hardware counters.
443  */
444 static int is_software_only_group(struct perf_counter *leader)
445 {
446         struct perf_counter *counter;
447
448         if (!is_software_counter(leader))
449                 return 0;
450
451         list_for_each_entry(counter, &leader->sibling_list, list_entry)
452                 if (!is_software_counter(counter))
453                         return 0;
454
455         return 1;
456 }
457
458 /*
459  * Work out whether we can put this counter group on the CPU now.
460  */
461 static int group_can_go_on(struct perf_counter *counter,
462                            struct perf_cpu_context *cpuctx,
463                            int can_add_hw)
464 {
465         /*
466          * Groups consisting entirely of software counters can always go on.
467          */
468         if (is_software_only_group(counter))
469                 return 1;
470         /*
471          * If an exclusive group is already on, no other hardware
472          * counters can go on.
473          */
474         if (cpuctx->exclusive)
475                 return 0;
476         /*
477          * If this group is exclusive and there are already
478          * counters on the CPU, it can't go on.
479          */
480         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
481                 return 0;
482         /*
483          * Otherwise, try to add it if all previous groups were able
484          * to go on.
485          */
486         return can_add_hw;
487 }
488
489 static void add_counter_to_ctx(struct perf_counter *counter,
490                                struct perf_counter_context *ctx)
491 {
492         list_add_counter(counter, ctx);
493         ctx->nr_counters++;
494         counter->prev_state = PERF_COUNTER_STATE_OFF;
495         counter->tstamp_enabled = ctx->time_now;
496         counter->tstamp_running = ctx->time_now;
497         counter->tstamp_stopped = ctx->time_now;
498 }
499
500 /*
501  * Cross CPU call to install and enable a performance counter
502  */
503 static void __perf_install_in_context(void *info)
504 {
505         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
506         struct perf_counter *counter = info;
507         struct perf_counter_context *ctx = counter->ctx;
508         struct perf_counter *leader = counter->group_leader;
509         int cpu = smp_processor_id();
510         unsigned long flags;
511         u64 perf_flags;
512         int err;
513
514         /*
515          * If this is a task context, we need to check whether it is
516          * the current task context of this cpu. If not it has been
517          * scheduled out before the smp call arrived.
518          */
519         if (ctx->task && cpuctx->task_ctx != ctx)
520                 return;
521
522         curr_rq_lock_irq_save(&flags);
523         spin_lock(&ctx->lock);
524         update_context_time(ctx, 1);
525
526         /*
527          * Protect the list operation against NMI by disabling the
528          * counters on a global level. NOP for non NMI based counters.
529          */
530         perf_flags = hw_perf_save_disable();
531
532         add_counter_to_ctx(counter, ctx);
533
534         /*
535          * Don't put the counter on if it is disabled or if
536          * it is in a group and the group isn't on.
537          */
538         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
539             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
540                 goto unlock;
541
542         /*
543          * An exclusive counter can't go on if there are already active
544          * hardware counters, and no hardware counter can go on if there
545          * is already an exclusive counter on.
546          */
547         if (!group_can_go_on(counter, cpuctx, 1))
548                 err = -EEXIST;
549         else
550                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
551
552         if (err) {
553                 /*
554                  * This counter couldn't go on.  If it is in a group
555                  * then we have to pull the whole group off.
556                  * If the counter group is pinned then put it in error state.
557                  */
558                 if (leader != counter)
559                         group_sched_out(leader, cpuctx, ctx);
560                 if (leader->hw_event.pinned) {
561                         update_group_times(leader);
562                         leader->state = PERF_COUNTER_STATE_ERROR;
563                 }
564         }
565
566         if (!err && !ctx->task && cpuctx->max_pertask)
567                 cpuctx->max_pertask--;
568
569  unlock:
570         hw_perf_restore(perf_flags);
571
572         spin_unlock(&ctx->lock);
573         curr_rq_unlock_irq_restore(&flags);
574 }
575
576 /*
577  * Attach a performance counter to a context
578  *
579  * First we add the counter to the list with the hardware enable bit
580  * in counter->hw_config cleared.
581  *
582  * If the counter is attached to a task which is on a CPU we use a smp
583  * call to enable it in the task context. The task might have been
584  * scheduled away, but we check this in the smp call again.
585  *
586  * Must be called with ctx->mutex held.
587  */
588 static void
589 perf_install_in_context(struct perf_counter_context *ctx,
590                         struct perf_counter *counter,
591                         int cpu)
592 {
593         struct task_struct *task = ctx->task;
594
595         if (!task) {
596                 /*
597                  * Per cpu counters are installed via an smp call and
598                  * the install is always sucessful.
599                  */
600                 smp_call_function_single(cpu, __perf_install_in_context,
601                                          counter, 1);
602                 return;
603         }
604
605         counter->task = task;
606 retry:
607         task_oncpu_function_call(task, __perf_install_in_context,
608                                  counter);
609
610         spin_lock_irq(&ctx->lock);
611         /*
612          * we need to retry the smp call.
613          */
614         if (ctx->is_active && list_empty(&counter->list_entry)) {
615                 spin_unlock_irq(&ctx->lock);
616                 goto retry;
617         }
618
619         /*
620          * The lock prevents that this context is scheduled in so we
621          * can add the counter safely, if it the call above did not
622          * succeed.
623          */
624         if (list_empty(&counter->list_entry))
625                 add_counter_to_ctx(counter, ctx);
626         spin_unlock_irq(&ctx->lock);
627 }
628
629 /*
630  * Cross CPU call to enable a performance counter
631  */
632 static void __perf_counter_enable(void *info)
633 {
634         struct perf_counter *counter = info;
635         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
636         struct perf_counter_context *ctx = counter->ctx;
637         struct perf_counter *leader = counter->group_leader;
638         unsigned long flags;
639         int err;
640
641         /*
642          * If this is a per-task counter, need to check whether this
643          * counter's task is the current task on this cpu.
644          */
645         if (ctx->task && cpuctx->task_ctx != ctx)
646                 return;
647
648         curr_rq_lock_irq_save(&flags);
649         spin_lock(&ctx->lock);
650         update_context_time(ctx, 1);
651
652         counter->prev_state = counter->state;
653         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
654                 goto unlock;
655         counter->state = PERF_COUNTER_STATE_INACTIVE;
656         counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
657
658         /*
659          * If the counter is in a group and isn't the group leader,
660          * then don't put it on unless the group is on.
661          */
662         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
663                 goto unlock;
664
665         if (!group_can_go_on(counter, cpuctx, 1))
666                 err = -EEXIST;
667         else
668                 err = counter_sched_in(counter, cpuctx, ctx,
669                                        smp_processor_id());
670
671         if (err) {
672                 /*
673                  * If this counter can't go on and it's part of a
674                  * group, then the whole group has to come off.
675                  */
676                 if (leader != counter)
677                         group_sched_out(leader, cpuctx, ctx);
678                 if (leader->hw_event.pinned) {
679                         update_group_times(leader);
680                         leader->state = PERF_COUNTER_STATE_ERROR;
681                 }
682         }
683
684  unlock:
685         spin_unlock(&ctx->lock);
686         curr_rq_unlock_irq_restore(&flags);
687 }
688
689 /*
690  * Enable a counter.
691  */
692 static void perf_counter_enable(struct perf_counter *counter)
693 {
694         struct perf_counter_context *ctx = counter->ctx;
695         struct task_struct *task = ctx->task;
696
697         if (!task) {
698                 /*
699                  * Enable the counter on the cpu that it's on
700                  */
701                 smp_call_function_single(counter->cpu, __perf_counter_enable,
702                                          counter, 1);
703                 return;
704         }
705
706         spin_lock_irq(&ctx->lock);
707         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
708                 goto out;
709
710         /*
711          * If the counter is in error state, clear that first.
712          * That way, if we see the counter in error state below, we
713          * know that it has gone back into error state, as distinct
714          * from the task having been scheduled away before the
715          * cross-call arrived.
716          */
717         if (counter->state == PERF_COUNTER_STATE_ERROR)
718                 counter->state = PERF_COUNTER_STATE_OFF;
719
720  retry:
721         spin_unlock_irq(&ctx->lock);
722         task_oncpu_function_call(task, __perf_counter_enable, counter);
723
724         spin_lock_irq(&ctx->lock);
725
726         /*
727          * If the context is active and the counter is still off,
728          * we need to retry the cross-call.
729          */
730         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
731                 goto retry;
732
733         /*
734          * Since we have the lock this context can't be scheduled
735          * in, so we can change the state safely.
736          */
737         if (counter->state == PERF_COUNTER_STATE_OFF) {
738                 counter->state = PERF_COUNTER_STATE_INACTIVE;
739                 counter->tstamp_enabled = ctx->time_now -
740                         counter->total_time_enabled;
741         }
742  out:
743         spin_unlock_irq(&ctx->lock);
744 }
745
746 /*
747  * Enable a counter and all its children.
748  */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751         struct perf_counter *child;
752
753         perf_counter_enable(counter);
754
755         /*
756          * Lock the mutex to protect the list of children
757          */
758         mutex_lock(&counter->mutex);
759         list_for_each_entry(child, &counter->child_list, child_list)
760                 perf_counter_enable(child);
761         mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765                               struct perf_cpu_context *cpuctx)
766 {
767         struct perf_counter *counter;
768         u64 flags;
769
770         spin_lock(&ctx->lock);
771         ctx->is_active = 0;
772         if (likely(!ctx->nr_counters))
773                 goto out;
774         update_context_time(ctx, 0);
775
776         flags = hw_perf_save_disable();
777         if (ctx->nr_active) {
778                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779                         group_sched_out(counter, cpuctx, ctx);
780         }
781         hw_perf_restore(flags);
782  out:
783         spin_unlock(&ctx->lock);
784 }
785
786 /*
787  * Called from scheduler to remove the counters of the current task,
788  * with interrupts disabled.
789  *
790  * We stop each counter and update the counter value in counter->count.
791  *
792  * This does not protect us against NMI, but disable()
793  * sets the disabled bit in the control field of counter _before_
794  * accessing the counter control register. If a NMI hits, then it will
795  * not restart the counter.
796  */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800         struct perf_counter_context *ctx = &task->perf_counter_ctx;
801         struct pt_regs *regs;
802
803         if (likely(!cpuctx->task_ctx))
804                 return;
805
806         regs = task_pt_regs(task);
807         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
808         __perf_counter_sched_out(ctx, cpuctx);
809
810         cpuctx->task_ctx = NULL;
811 }
812
813 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
814 {
815         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
816 }
817
818 static int
819 group_sched_in(struct perf_counter *group_counter,
820                struct perf_cpu_context *cpuctx,
821                struct perf_counter_context *ctx,
822                int cpu)
823 {
824         struct perf_counter *counter, *partial_group;
825         int ret;
826
827         if (group_counter->state == PERF_COUNTER_STATE_OFF)
828                 return 0;
829
830         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
831         if (ret)
832                 return ret < 0 ? ret : 0;
833
834         group_counter->prev_state = group_counter->state;
835         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
836                 return -EAGAIN;
837
838         /*
839          * Schedule in siblings as one group (if any):
840          */
841         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
842                 counter->prev_state = counter->state;
843                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
844                         partial_group = counter;
845                         goto group_error;
846                 }
847         }
848
849         return 0;
850
851 group_error:
852         /*
853          * Groups can be scheduled in as one unit only, so undo any
854          * partial group before returning:
855          */
856         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
857                 if (counter == partial_group)
858                         break;
859                 counter_sched_out(counter, cpuctx, ctx);
860         }
861         counter_sched_out(group_counter, cpuctx, ctx);
862
863         return -EAGAIN;
864 }
865
866 static void
867 __perf_counter_sched_in(struct perf_counter_context *ctx,
868                         struct perf_cpu_context *cpuctx, int cpu)
869 {
870         struct perf_counter *counter;
871         u64 flags;
872         int can_add_hw = 1;
873
874         spin_lock(&ctx->lock);
875         ctx->is_active = 1;
876         if (likely(!ctx->nr_counters))
877                 goto out;
878
879         /*
880          * Add any time since the last sched_out to the lost time
881          * so it doesn't get included in the total_time_enabled and
882          * total_time_running measures for counters in the context.
883          */
884         ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
885
886         flags = hw_perf_save_disable();
887
888         /*
889          * First go through the list and put on any pinned groups
890          * in order to give them the best chance of going on.
891          */
892         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
893                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
894                     !counter->hw_event.pinned)
895                         continue;
896                 if (counter->cpu != -1 && counter->cpu != cpu)
897                         continue;
898
899                 if (group_can_go_on(counter, cpuctx, 1))
900                         group_sched_in(counter, cpuctx, ctx, cpu);
901
902                 /*
903                  * If this pinned group hasn't been scheduled,
904                  * put it in error state.
905                  */
906                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
907                         update_group_times(counter);
908                         counter->state = PERF_COUNTER_STATE_ERROR;
909                 }
910         }
911
912         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
913                 /*
914                  * Ignore counters in OFF or ERROR state, and
915                  * ignore pinned counters since we did them already.
916                  */
917                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
918                     counter->hw_event.pinned)
919                         continue;
920
921                 /*
922                  * Listen to the 'cpu' scheduling filter constraint
923                  * of counters:
924                  */
925                 if (counter->cpu != -1 && counter->cpu != cpu)
926                         continue;
927
928                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
929                         if (group_sched_in(counter, cpuctx, ctx, cpu))
930                                 can_add_hw = 0;
931                 }
932         }
933         hw_perf_restore(flags);
934  out:
935         spin_unlock(&ctx->lock);
936 }
937
938 /*
939  * Called from scheduler to add the counters of the current task
940  * with interrupts disabled.
941  *
942  * We restore the counter value and then enable it.
943  *
944  * This does not protect us against NMI, but enable()
945  * sets the enabled bit in the control field of counter _before_
946  * accessing the counter control register. If a NMI hits, then it will
947  * keep the counter running.
948  */
949 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
950 {
951         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
952         struct perf_counter_context *ctx = &task->perf_counter_ctx;
953
954         __perf_counter_sched_in(ctx, cpuctx, cpu);
955         cpuctx->task_ctx = ctx;
956 }
957
958 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
959 {
960         struct perf_counter_context *ctx = &cpuctx->ctx;
961
962         __perf_counter_sched_in(ctx, cpuctx, cpu);
963 }
964
965 int perf_counter_task_disable(void)
966 {
967         struct task_struct *curr = current;
968         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
969         struct perf_counter *counter;
970         unsigned long flags;
971         u64 perf_flags;
972         int cpu;
973
974         if (likely(!ctx->nr_counters))
975                 return 0;
976
977         curr_rq_lock_irq_save(&flags);
978         cpu = smp_processor_id();
979
980         /* force the update of the task clock: */
981         __task_delta_exec(curr, 1);
982
983         perf_counter_task_sched_out(curr, cpu);
984
985         spin_lock(&ctx->lock);
986
987         /*
988          * Disable all the counters:
989          */
990         perf_flags = hw_perf_save_disable();
991
992         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
993                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
994                         update_group_times(counter);
995                         counter->state = PERF_COUNTER_STATE_OFF;
996                 }
997         }
998
999         hw_perf_restore(perf_flags);
1000
1001         spin_unlock(&ctx->lock);
1002
1003         curr_rq_unlock_irq_restore(&flags);
1004
1005         return 0;
1006 }
1007
1008 int perf_counter_task_enable(void)
1009 {
1010         struct task_struct *curr = current;
1011         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1012         struct perf_counter *counter;
1013         unsigned long flags;
1014         u64 perf_flags;
1015         int cpu;
1016
1017         if (likely(!ctx->nr_counters))
1018                 return 0;
1019
1020         curr_rq_lock_irq_save(&flags);
1021         cpu = smp_processor_id();
1022
1023         /* force the update of the task clock: */
1024         __task_delta_exec(curr, 1);
1025
1026         perf_counter_task_sched_out(curr, cpu);
1027
1028         spin_lock(&ctx->lock);
1029
1030         /*
1031          * Disable all the counters:
1032          */
1033         perf_flags = hw_perf_save_disable();
1034
1035         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036                 if (counter->state > PERF_COUNTER_STATE_OFF)
1037                         continue;
1038                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1039                 counter->tstamp_enabled = ctx->time_now -
1040                         counter->total_time_enabled;
1041                 counter->hw_event.disabled = 0;
1042         }
1043         hw_perf_restore(perf_flags);
1044
1045         spin_unlock(&ctx->lock);
1046
1047         perf_counter_task_sched_in(curr, cpu);
1048
1049         curr_rq_unlock_irq_restore(&flags);
1050
1051         return 0;
1052 }
1053
1054 /*
1055  * Round-robin a context's counters:
1056  */
1057 static void rotate_ctx(struct perf_counter_context *ctx)
1058 {
1059         struct perf_counter *counter;
1060         u64 perf_flags;
1061
1062         if (!ctx->nr_counters)
1063                 return;
1064
1065         spin_lock(&ctx->lock);
1066         /*
1067          * Rotate the first entry last (works just fine for group counters too):
1068          */
1069         perf_flags = hw_perf_save_disable();
1070         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1071                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1072                 break;
1073         }
1074         hw_perf_restore(perf_flags);
1075
1076         spin_unlock(&ctx->lock);
1077 }
1078
1079 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1080 {
1081         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1082         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1083         const int rotate_percpu = 0;
1084
1085         if (rotate_percpu)
1086                 perf_counter_cpu_sched_out(cpuctx);
1087         perf_counter_task_sched_out(curr, cpu);
1088
1089         if (rotate_percpu)
1090                 rotate_ctx(&cpuctx->ctx);
1091         rotate_ctx(ctx);
1092
1093         if (rotate_percpu)
1094                 perf_counter_cpu_sched_in(cpuctx, cpu);
1095         perf_counter_task_sched_in(curr, cpu);
1096 }
1097
1098 /*
1099  * Cross CPU call to read the hardware counter
1100  */
1101 static void __read(void *info)
1102 {
1103         struct perf_counter *counter = info;
1104         struct perf_counter_context *ctx = counter->ctx;
1105         unsigned long flags;
1106
1107         curr_rq_lock_irq_save(&flags);
1108         if (ctx->is_active)
1109                 update_context_time(ctx, 1);
1110         counter->hw_ops->read(counter);
1111         update_counter_times(counter);
1112         curr_rq_unlock_irq_restore(&flags);
1113 }
1114
1115 static u64 perf_counter_read(struct perf_counter *counter)
1116 {
1117         /*
1118          * If counter is enabled and currently active on a CPU, update the
1119          * value in the counter structure:
1120          */
1121         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1122                 smp_call_function_single(counter->oncpu,
1123                                          __read, counter, 1);
1124         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1125                 update_counter_times(counter);
1126         }
1127
1128         return atomic64_read(&counter->count);
1129 }
1130
1131 static void put_context(struct perf_counter_context *ctx)
1132 {
1133         if (ctx->task)
1134                 put_task_struct(ctx->task);
1135 }
1136
1137 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1138 {
1139         struct perf_cpu_context *cpuctx;
1140         struct perf_counter_context *ctx;
1141         struct task_struct *task;
1142
1143         /*
1144          * If cpu is not a wildcard then this is a percpu counter:
1145          */
1146         if (cpu != -1) {
1147                 /* Must be root to operate on a CPU counter: */
1148                 if (!capable(CAP_SYS_ADMIN))
1149                         return ERR_PTR(-EACCES);
1150
1151                 if (cpu < 0 || cpu > num_possible_cpus())
1152                         return ERR_PTR(-EINVAL);
1153
1154                 /*
1155                  * We could be clever and allow to attach a counter to an
1156                  * offline CPU and activate it when the CPU comes up, but
1157                  * that's for later.
1158                  */
1159                 if (!cpu_isset(cpu, cpu_online_map))
1160                         return ERR_PTR(-ENODEV);
1161
1162                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1163                 ctx = &cpuctx->ctx;
1164
1165                 return ctx;
1166         }
1167
1168         rcu_read_lock();
1169         if (!pid)
1170                 task = current;
1171         else
1172                 task = find_task_by_vpid(pid);
1173         if (task)
1174                 get_task_struct(task);
1175         rcu_read_unlock();
1176
1177         if (!task)
1178                 return ERR_PTR(-ESRCH);
1179
1180         ctx = &task->perf_counter_ctx;
1181         ctx->task = task;
1182
1183         /* Reuse ptrace permission checks for now. */
1184         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1185                 put_context(ctx);
1186                 return ERR_PTR(-EACCES);
1187         }
1188
1189         return ctx;
1190 }
1191
1192 static void free_counter_rcu(struct rcu_head *head)
1193 {
1194         struct perf_counter *counter;
1195
1196         counter = container_of(head, struct perf_counter, rcu_head);
1197         kfree(counter);
1198 }
1199
1200 static void perf_pending_sync(struct perf_counter *counter);
1201
1202 static void free_counter(struct perf_counter *counter)
1203 {
1204         perf_pending_sync(counter);
1205
1206         if (counter->destroy)
1207                 counter->destroy(counter);
1208
1209         call_rcu(&counter->rcu_head, free_counter_rcu);
1210 }
1211
1212 /*
1213  * Called when the last reference to the file is gone.
1214  */
1215 static int perf_release(struct inode *inode, struct file *file)
1216 {
1217         struct perf_counter *counter = file->private_data;
1218         struct perf_counter_context *ctx = counter->ctx;
1219
1220         file->private_data = NULL;
1221
1222         mutex_lock(&ctx->mutex);
1223         mutex_lock(&counter->mutex);
1224
1225         perf_counter_remove_from_context(counter);
1226
1227         mutex_unlock(&counter->mutex);
1228         mutex_unlock(&ctx->mutex);
1229
1230         free_counter(counter);
1231         put_context(ctx);
1232
1233         return 0;
1234 }
1235
1236 /*
1237  * Read the performance counter - simple non blocking version for now
1238  */
1239 static ssize_t
1240 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1241 {
1242         u64 values[3];
1243         int n;
1244
1245         /*
1246          * Return end-of-file for a read on a counter that is in
1247          * error state (i.e. because it was pinned but it couldn't be
1248          * scheduled on to the CPU at some point).
1249          */
1250         if (counter->state == PERF_COUNTER_STATE_ERROR)
1251                 return 0;
1252
1253         mutex_lock(&counter->mutex);
1254         values[0] = perf_counter_read(counter);
1255         n = 1;
1256         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257                 values[n++] = counter->total_time_enabled +
1258                         atomic64_read(&counter->child_total_time_enabled);
1259         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260                 values[n++] = counter->total_time_running +
1261                         atomic64_read(&counter->child_total_time_running);
1262         mutex_unlock(&counter->mutex);
1263
1264         if (count < n * sizeof(u64))
1265                 return -EINVAL;
1266         count = n * sizeof(u64);
1267
1268         if (copy_to_user(buf, values, count))
1269                 return -EFAULT;
1270
1271         return count;
1272 }
1273
1274 static ssize_t
1275 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1276 {
1277         struct perf_counter *counter = file->private_data;
1278
1279         return perf_read_hw(counter, buf, count);
1280 }
1281
1282 static unsigned int perf_poll(struct file *file, poll_table *wait)
1283 {
1284         struct perf_counter *counter = file->private_data;
1285         struct perf_mmap_data *data;
1286         unsigned int events;
1287
1288         rcu_read_lock();
1289         data = rcu_dereference(counter->data);
1290         if (data)
1291                 events = atomic_xchg(&data->wakeup, 0);
1292         else
1293                 events = POLL_HUP;
1294         rcu_read_unlock();
1295
1296         poll_wait(file, &counter->waitq, wait);
1297
1298         return events;
1299 }
1300
1301 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1302 {
1303         struct perf_counter *counter = file->private_data;
1304         int err = 0;
1305
1306         switch (cmd) {
1307         case PERF_COUNTER_IOC_ENABLE:
1308                 perf_counter_enable_family(counter);
1309                 break;
1310         case PERF_COUNTER_IOC_DISABLE:
1311                 perf_counter_disable_family(counter);
1312                 break;
1313         default:
1314                 err = -ENOTTY;
1315         }
1316         return err;
1317 }
1318
1319 static void __perf_counter_update_userpage(struct perf_counter *counter,
1320                                            struct perf_mmap_data *data)
1321 {
1322         struct perf_counter_mmap_page *userpg = data->user_page;
1323
1324         /*
1325          * Disable preemption so as to not let the corresponding user-space
1326          * spin too long if we get preempted.
1327          */
1328         preempt_disable();
1329         ++userpg->lock;
1330         smp_wmb();
1331         userpg->index = counter->hw.idx;
1332         userpg->offset = atomic64_read(&counter->count);
1333         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1334                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1335
1336         userpg->data_head = atomic_read(&data->head);
1337         smp_wmb();
1338         ++userpg->lock;
1339         preempt_enable();
1340 }
1341
1342 void perf_counter_update_userpage(struct perf_counter *counter)
1343 {
1344         struct perf_mmap_data *data;
1345
1346         rcu_read_lock();
1347         data = rcu_dereference(counter->data);
1348         if (data)
1349                 __perf_counter_update_userpage(counter, data);
1350         rcu_read_unlock();
1351 }
1352
1353 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1354 {
1355         struct perf_counter *counter = vma->vm_file->private_data;
1356         struct perf_mmap_data *data;
1357         int ret = VM_FAULT_SIGBUS;
1358
1359         rcu_read_lock();
1360         data = rcu_dereference(counter->data);
1361         if (!data)
1362                 goto unlock;
1363
1364         if (vmf->pgoff == 0) {
1365                 vmf->page = virt_to_page(data->user_page);
1366         } else {
1367                 int nr = vmf->pgoff - 1;
1368
1369                 if ((unsigned)nr > data->nr_pages)
1370                         goto unlock;
1371
1372                 vmf->page = virt_to_page(data->data_pages[nr]);
1373         }
1374         get_page(vmf->page);
1375         ret = 0;
1376 unlock:
1377         rcu_read_unlock();
1378
1379         return ret;
1380 }
1381
1382 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1383 {
1384         struct perf_mmap_data *data;
1385         unsigned long size;
1386         int i;
1387
1388         WARN_ON(atomic_read(&counter->mmap_count));
1389
1390         size = sizeof(struct perf_mmap_data);
1391         size += nr_pages * sizeof(void *);
1392
1393         data = kzalloc(size, GFP_KERNEL);
1394         if (!data)
1395                 goto fail;
1396
1397         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1398         if (!data->user_page)
1399                 goto fail_user_page;
1400
1401         for (i = 0; i < nr_pages; i++) {
1402                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1403                 if (!data->data_pages[i])
1404                         goto fail_data_pages;
1405         }
1406
1407         data->nr_pages = nr_pages;
1408
1409         rcu_assign_pointer(counter->data, data);
1410
1411         return 0;
1412
1413 fail_data_pages:
1414         for (i--; i >= 0; i--)
1415                 free_page((unsigned long)data->data_pages[i]);
1416
1417         free_page((unsigned long)data->user_page);
1418
1419 fail_user_page:
1420         kfree(data);
1421
1422 fail:
1423         return -ENOMEM;
1424 }
1425
1426 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1427 {
1428         struct perf_mmap_data *data = container_of(rcu_head,
1429                         struct perf_mmap_data, rcu_head);
1430         int i;
1431
1432         free_page((unsigned long)data->user_page);
1433         for (i = 0; i < data->nr_pages; i++)
1434                 free_page((unsigned long)data->data_pages[i]);
1435         kfree(data);
1436 }
1437
1438 static void perf_mmap_data_free(struct perf_counter *counter)
1439 {
1440         struct perf_mmap_data *data = counter->data;
1441
1442         WARN_ON(atomic_read(&counter->mmap_count));
1443
1444         rcu_assign_pointer(counter->data, NULL);
1445         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1446 }
1447
1448 static void perf_mmap_open(struct vm_area_struct *vma)
1449 {
1450         struct perf_counter *counter = vma->vm_file->private_data;
1451
1452         atomic_inc(&counter->mmap_count);
1453 }
1454
1455 static void perf_mmap_close(struct vm_area_struct *vma)
1456 {
1457         struct perf_counter *counter = vma->vm_file->private_data;
1458
1459         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1460                                       &counter->mmap_mutex)) {
1461                 perf_mmap_data_free(counter);
1462                 mutex_unlock(&counter->mmap_mutex);
1463         }
1464 }
1465
1466 static struct vm_operations_struct perf_mmap_vmops = {
1467         .open = perf_mmap_open,
1468         .close = perf_mmap_close,
1469         .fault = perf_mmap_fault,
1470 };
1471
1472 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1473 {
1474         struct perf_counter *counter = file->private_data;
1475         unsigned long vma_size;
1476         unsigned long nr_pages;
1477         unsigned long locked, lock_limit;
1478         int ret = 0;
1479
1480         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1481                 return -EINVAL;
1482
1483         vma_size = vma->vm_end - vma->vm_start;
1484         nr_pages = (vma_size / PAGE_SIZE) - 1;
1485
1486         /*
1487          * If we have data pages ensure they're a power-of-two number, so we
1488          * can do bitmasks instead of modulo.
1489          */
1490         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1491                 return -EINVAL;
1492
1493         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1494                 return -EINVAL;
1495
1496         if (vma->vm_pgoff != 0)
1497                 return -EINVAL;
1498
1499         locked = vma_size >>  PAGE_SHIFT;
1500         locked += vma->vm_mm->locked_vm;
1501
1502         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1503         lock_limit >>= PAGE_SHIFT;
1504
1505         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1506                 return -EPERM;
1507
1508         mutex_lock(&counter->mmap_mutex);
1509         if (atomic_inc_not_zero(&counter->mmap_count))
1510                 goto out;
1511
1512         WARN_ON(counter->data);
1513         ret = perf_mmap_data_alloc(counter, nr_pages);
1514         if (!ret)
1515                 atomic_set(&counter->mmap_count, 1);
1516 out:
1517         mutex_unlock(&counter->mmap_mutex);
1518
1519         vma->vm_flags &= ~VM_MAYWRITE;
1520         vma->vm_flags |= VM_RESERVED;
1521         vma->vm_ops = &perf_mmap_vmops;
1522
1523         return ret;
1524 }
1525
1526 static const struct file_operations perf_fops = {
1527         .release                = perf_release,
1528         .read                   = perf_read,
1529         .poll                   = perf_poll,
1530         .unlocked_ioctl         = perf_ioctl,
1531         .compat_ioctl           = perf_ioctl,
1532         .mmap                   = perf_mmap,
1533 };
1534
1535 /*
1536  * Perf counter wakeup
1537  *
1538  * If there's data, ensure we set the poll() state and publish everything
1539  * to user-space before waking everybody up.
1540  */
1541
1542 void perf_counter_wakeup(struct perf_counter *counter)
1543 {
1544         struct perf_mmap_data *data;
1545
1546         rcu_read_lock();
1547         data = rcu_dereference(counter->data);
1548         if (data) {
1549                 (void)atomic_xchg(&data->wakeup, POLL_IN);
1550                 __perf_counter_update_userpage(counter, data);
1551         }
1552         rcu_read_unlock();
1553
1554         wake_up_all(&counter->waitq);
1555 }
1556
1557 /*
1558  * Pending wakeups
1559  *
1560  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1561  *
1562  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1563  * single linked list and use cmpxchg() to add entries lockless.
1564  */
1565
1566 #define PENDING_TAIL ((struct perf_wakeup_entry *)-1UL)
1567
1568 static DEFINE_PER_CPU(struct perf_wakeup_entry *, perf_wakeup_head) = {
1569         PENDING_TAIL,
1570 };
1571
1572 static void perf_pending_queue(struct perf_counter *counter)
1573 {
1574         struct perf_wakeup_entry **head;
1575         struct perf_wakeup_entry *prev, *next;
1576
1577         if (cmpxchg(&counter->wakeup.next, NULL, PENDING_TAIL) != NULL)
1578                 return;
1579
1580         head = &get_cpu_var(perf_wakeup_head);
1581
1582         do {
1583                 prev = counter->wakeup.next = *head;
1584                 next = &counter->wakeup;
1585         } while (cmpxchg(head, prev, next) != prev);
1586
1587         set_perf_counter_pending();
1588
1589         put_cpu_var(perf_wakeup_head);
1590 }
1591
1592 static int __perf_pending_run(void)
1593 {
1594         struct perf_wakeup_entry *list;
1595         int nr = 0;
1596
1597         list = xchg(&__get_cpu_var(perf_wakeup_head), PENDING_TAIL);
1598         while (list != PENDING_TAIL) {
1599                 struct perf_counter *counter = container_of(list,
1600                                 struct perf_counter, wakeup);
1601
1602                 list = list->next;
1603
1604                 counter->wakeup.next = NULL;
1605                 /*
1606                  * Ensure we observe the unqueue before we issue the wakeup,
1607                  * so that we won't be waiting forever.
1608                  * -- see perf_not_pending().
1609                  */
1610                 smp_wmb();
1611
1612                 perf_counter_wakeup(counter);
1613                 nr++;
1614         }
1615
1616         return nr;
1617 }
1618
1619 static inline int perf_not_pending(struct perf_counter *counter)
1620 {
1621         /*
1622          * If we flush on whatever cpu we run, there is a chance we don't
1623          * need to wait.
1624          */
1625         get_cpu();
1626         __perf_pending_run();
1627         put_cpu();
1628
1629         /*
1630          * Ensure we see the proper queue state before going to sleep
1631          * so that we do not miss the wakeup. -- see perf_pending_handle()
1632          */
1633         smp_rmb();
1634         return counter->wakeup.next == NULL;
1635 }
1636
1637 static void perf_pending_sync(struct perf_counter *counter)
1638 {
1639         wait_event(counter->waitq, perf_not_pending(counter));
1640 }
1641
1642 void perf_counter_do_pending(void)
1643 {
1644         __perf_pending_run();
1645 }
1646
1647 /*
1648  * Output
1649  */
1650
1651 struct perf_output_handle {
1652         struct perf_counter     *counter;
1653         struct perf_mmap_data   *data;
1654         unsigned int            offset;
1655         unsigned int            head;
1656         int                     wakeup;
1657 };
1658
1659 static int perf_output_begin(struct perf_output_handle *handle,
1660                              struct perf_counter *counter, unsigned int size)
1661 {
1662         struct perf_mmap_data *data;
1663         unsigned int offset, head;
1664
1665         rcu_read_lock();
1666         data = rcu_dereference(counter->data);
1667         if (!data)
1668                 goto out;
1669
1670         if (!data->nr_pages)
1671                 goto out;
1672
1673         do {
1674                 offset = head = atomic_read(&data->head);
1675                 head += size;
1676         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1677
1678         handle->counter = counter;
1679         handle->data    = data;
1680         handle->offset  = offset;
1681         handle->head    = head;
1682         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1683
1684         return 0;
1685
1686 out:
1687         rcu_read_unlock();
1688
1689         return -ENOSPC;
1690 }
1691
1692 static void perf_output_copy(struct perf_output_handle *handle,
1693                              void *buf, unsigned int len)
1694 {
1695         unsigned int pages_mask;
1696         unsigned int offset;
1697         unsigned int size;
1698         void **pages;
1699
1700         offset          = handle->offset;
1701         pages_mask      = handle->data->nr_pages - 1;
1702         pages           = handle->data->data_pages;
1703
1704         do {
1705                 unsigned int page_offset;
1706                 int nr;
1707
1708                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1709                 page_offset = offset & (PAGE_SIZE - 1);
1710                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1711
1712                 memcpy(pages[nr] + page_offset, buf, size);
1713
1714                 len         -= size;
1715                 buf         += size;
1716                 offset      += size;
1717         } while (len);
1718
1719         handle->offset = offset;
1720
1721         WARN_ON_ONCE(handle->offset > handle->head);
1722 }
1723
1724 #define perf_output_put(handle, x) \
1725         perf_output_copy((handle), &(x), sizeof(x))
1726
1727 static void perf_output_end(struct perf_output_handle *handle, int nmi)
1728 {
1729         if (handle->wakeup) {
1730                 if (nmi)
1731                         perf_pending_queue(handle->counter);
1732                 else
1733                         perf_counter_wakeup(handle->counter);
1734         }
1735         rcu_read_unlock();
1736 }
1737
1738 static int perf_output_write(struct perf_counter *counter, int nmi,
1739                              void *buf, ssize_t size)
1740 {
1741         struct perf_output_handle handle;
1742         int ret;
1743
1744         ret = perf_output_begin(&handle, counter, size);
1745         if (ret)
1746                 goto out;
1747
1748         perf_output_copy(&handle, buf, size);
1749         perf_output_end(&handle, nmi);
1750
1751 out:
1752         return ret;
1753 }
1754
1755 static void perf_output_simple(struct perf_counter *counter,
1756                                int nmi, struct pt_regs *regs)
1757 {
1758         unsigned int size;
1759         struct {
1760                 struct perf_event_header header;
1761                 u64 ip;
1762                 u32 pid, tid;
1763         } event;
1764
1765         event.header.type = PERF_EVENT_IP;
1766         event.ip = instruction_pointer(regs);
1767
1768         size = sizeof(event);
1769
1770         if (counter->hw_event.include_tid) {
1771                 /* namespace issues */
1772                 event.pid = current->group_leader->pid;
1773                 event.tid = current->pid;
1774
1775                 event.header.type |= __PERF_EVENT_TID;
1776         } else
1777                 size -= sizeof(u64);
1778
1779         event.header.size = size;
1780
1781         perf_output_write(counter, nmi, &event, size);
1782 }
1783
1784 static void perf_output_group(struct perf_counter *counter, int nmi)
1785 {
1786         struct perf_output_handle handle;
1787         struct perf_event_header header;
1788         struct perf_counter *leader, *sub;
1789         unsigned int size;
1790         struct {
1791                 u64 event;
1792                 u64 counter;
1793         } entry;
1794         int ret;
1795
1796         size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1797
1798         ret = perf_output_begin(&handle, counter, size);
1799         if (ret)
1800                 return;
1801
1802         header.type = PERF_EVENT_GROUP;
1803         header.size = size;
1804
1805         perf_output_put(&handle, header);
1806
1807         leader = counter->group_leader;
1808         list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1809                 if (sub != counter)
1810                         sub->hw_ops->read(sub);
1811
1812                 entry.event = sub->hw_event.config;
1813                 entry.counter = atomic64_read(&sub->count);
1814
1815                 perf_output_put(&handle, entry);
1816         }
1817
1818         perf_output_end(&handle, nmi);
1819 }
1820
1821 void perf_counter_output(struct perf_counter *counter,
1822                          int nmi, struct pt_regs *regs)
1823 {
1824         switch (counter->hw_event.record_type) {
1825         case PERF_RECORD_SIMPLE:
1826                 return;
1827
1828         case PERF_RECORD_IRQ:
1829                 perf_output_simple(counter, nmi, regs);
1830                 break;
1831
1832         case PERF_RECORD_GROUP:
1833                 perf_output_group(counter, nmi);
1834                 break;
1835         }
1836 }
1837
1838 /*
1839  * Generic software counter infrastructure
1840  */
1841
1842 static void perf_swcounter_update(struct perf_counter *counter)
1843 {
1844         struct hw_perf_counter *hwc = &counter->hw;
1845         u64 prev, now;
1846         s64 delta;
1847
1848 again:
1849         prev = atomic64_read(&hwc->prev_count);
1850         now = atomic64_read(&hwc->count);
1851         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1852                 goto again;
1853
1854         delta = now - prev;
1855
1856         atomic64_add(delta, &counter->count);
1857         atomic64_sub(delta, &hwc->period_left);
1858 }
1859
1860 static void perf_swcounter_set_period(struct perf_counter *counter)
1861 {
1862         struct hw_perf_counter *hwc = &counter->hw;
1863         s64 left = atomic64_read(&hwc->period_left);
1864         s64 period = hwc->irq_period;
1865
1866         if (unlikely(left <= -period)) {
1867                 left = period;
1868                 atomic64_set(&hwc->period_left, left);
1869         }
1870
1871         if (unlikely(left <= 0)) {
1872                 left += period;
1873                 atomic64_add(period, &hwc->period_left);
1874         }
1875
1876         atomic64_set(&hwc->prev_count, -left);
1877         atomic64_set(&hwc->count, -left);
1878 }
1879
1880 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1881 {
1882         struct perf_counter *counter;
1883         struct pt_regs *regs;
1884
1885         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1886         counter->hw_ops->read(counter);
1887
1888         regs = get_irq_regs();
1889         /*
1890          * In case we exclude kernel IPs or are somehow not in interrupt
1891          * context, provide the next best thing, the user IP.
1892          */
1893         if ((counter->hw_event.exclude_kernel || !regs) &&
1894                         !counter->hw_event.exclude_user)
1895                 regs = task_pt_regs(current);
1896
1897         if (regs)
1898                 perf_counter_output(counter, 0, regs);
1899
1900         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1901
1902         return HRTIMER_RESTART;
1903 }
1904
1905 static void perf_swcounter_overflow(struct perf_counter *counter,
1906                                     int nmi, struct pt_regs *regs)
1907 {
1908         perf_swcounter_update(counter);
1909         perf_swcounter_set_period(counter);
1910         perf_counter_output(counter, nmi, regs);
1911 }
1912
1913 static int perf_swcounter_match(struct perf_counter *counter,
1914                                 enum perf_event_types type,
1915                                 u32 event, struct pt_regs *regs)
1916 {
1917         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1918                 return 0;
1919
1920         if (perf_event_raw(&counter->hw_event))
1921                 return 0;
1922
1923         if (perf_event_type(&counter->hw_event) != type)
1924                 return 0;
1925
1926         if (perf_event_id(&counter->hw_event) != event)
1927                 return 0;
1928
1929         if (counter->hw_event.exclude_user && user_mode(regs))
1930                 return 0;
1931
1932         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1933                 return 0;
1934
1935         return 1;
1936 }
1937
1938 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1939                                int nmi, struct pt_regs *regs)
1940 {
1941         int neg = atomic64_add_negative(nr, &counter->hw.count);
1942         if (counter->hw.irq_period && !neg)
1943                 perf_swcounter_overflow(counter, nmi, regs);
1944 }
1945
1946 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1947                                      enum perf_event_types type, u32 event,
1948                                      u64 nr, int nmi, struct pt_regs *regs)
1949 {
1950         struct perf_counter *counter;
1951
1952         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1953                 return;
1954
1955         rcu_read_lock();
1956         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1957                 if (perf_swcounter_match(counter, type, event, regs))
1958                         perf_swcounter_add(counter, nr, nmi, regs);
1959         }
1960         rcu_read_unlock();
1961 }
1962
1963 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1964 {
1965         if (in_nmi())
1966                 return &cpuctx->recursion[3];
1967
1968         if (in_irq())
1969                 return &cpuctx->recursion[2];
1970
1971         if (in_softirq())
1972                 return &cpuctx->recursion[1];
1973
1974         return &cpuctx->recursion[0];
1975 }
1976
1977 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1978                                    u64 nr, int nmi, struct pt_regs *regs)
1979 {
1980         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1981         int *recursion = perf_swcounter_recursion_context(cpuctx);
1982
1983         if (*recursion)
1984                 goto out;
1985
1986         (*recursion)++;
1987         barrier();
1988
1989         perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1990         if (cpuctx->task_ctx) {
1991                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1992                                 nr, nmi, regs);
1993         }
1994
1995         barrier();
1996         (*recursion)--;
1997
1998 out:
1999         put_cpu_var(perf_cpu_context);
2000 }
2001
2002 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2003 {
2004         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2005 }
2006
2007 static void perf_swcounter_read(struct perf_counter *counter)
2008 {
2009         perf_swcounter_update(counter);
2010 }
2011
2012 static int perf_swcounter_enable(struct perf_counter *counter)
2013 {
2014         perf_swcounter_set_period(counter);
2015         return 0;
2016 }
2017
2018 static void perf_swcounter_disable(struct perf_counter *counter)
2019 {
2020         perf_swcounter_update(counter);
2021 }
2022
2023 static const struct hw_perf_counter_ops perf_ops_generic = {
2024         .enable         = perf_swcounter_enable,
2025         .disable        = perf_swcounter_disable,
2026         .read           = perf_swcounter_read,
2027 };
2028
2029 /*
2030  * Software counter: cpu wall time clock
2031  */
2032
2033 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2034 {
2035         int cpu = raw_smp_processor_id();
2036         s64 prev;
2037         u64 now;
2038
2039         now = cpu_clock(cpu);
2040         prev = atomic64_read(&counter->hw.prev_count);
2041         atomic64_set(&counter->hw.prev_count, now);
2042         atomic64_add(now - prev, &counter->count);
2043 }
2044
2045 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2046 {
2047         struct hw_perf_counter *hwc = &counter->hw;
2048         int cpu = raw_smp_processor_id();
2049
2050         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2051         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2052         hwc->hrtimer.function = perf_swcounter_hrtimer;
2053         if (hwc->irq_period) {
2054                 __hrtimer_start_range_ns(&hwc->hrtimer,
2055                                 ns_to_ktime(hwc->irq_period), 0,
2056                                 HRTIMER_MODE_REL, 0);
2057         }
2058
2059         return 0;
2060 }
2061
2062 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2063 {
2064         hrtimer_cancel(&counter->hw.hrtimer);
2065         cpu_clock_perf_counter_update(counter);
2066 }
2067
2068 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2069 {
2070         cpu_clock_perf_counter_update(counter);
2071 }
2072
2073 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2074         .enable         = cpu_clock_perf_counter_enable,
2075         .disable        = cpu_clock_perf_counter_disable,
2076         .read           = cpu_clock_perf_counter_read,
2077 };
2078
2079 /*
2080  * Software counter: task time clock
2081  */
2082
2083 /*
2084  * Called from within the scheduler:
2085  */
2086 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2087 {
2088         struct task_struct *curr = counter->task;
2089         u64 delta;
2090
2091         delta = __task_delta_exec(curr, update);
2092
2093         return curr->se.sum_exec_runtime + delta;
2094 }
2095
2096 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2097 {
2098         u64 prev;
2099         s64 delta;
2100
2101         prev = atomic64_read(&counter->hw.prev_count);
2102
2103         atomic64_set(&counter->hw.prev_count, now);
2104
2105         delta = now - prev;
2106
2107         atomic64_add(delta, &counter->count);
2108 }
2109
2110 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2111 {
2112         struct hw_perf_counter *hwc = &counter->hw;
2113
2114         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2115         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2116         hwc->hrtimer.function = perf_swcounter_hrtimer;
2117         if (hwc->irq_period) {
2118                 __hrtimer_start_range_ns(&hwc->hrtimer,
2119                                 ns_to_ktime(hwc->irq_period), 0,
2120                                 HRTIMER_MODE_REL, 0);
2121         }
2122
2123         return 0;
2124 }
2125
2126 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2127 {
2128         hrtimer_cancel(&counter->hw.hrtimer);
2129         task_clock_perf_counter_update(counter,
2130                         task_clock_perf_counter_val(counter, 0));
2131 }
2132
2133 static void task_clock_perf_counter_read(struct perf_counter *counter)
2134 {
2135         task_clock_perf_counter_update(counter,
2136                         task_clock_perf_counter_val(counter, 1));
2137 }
2138
2139 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2140         .enable         = task_clock_perf_counter_enable,
2141         .disable        = task_clock_perf_counter_disable,
2142         .read           = task_clock_perf_counter_read,
2143 };
2144
2145 /*
2146  * Software counter: cpu migrations
2147  */
2148
2149 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2150 {
2151         struct task_struct *curr = counter->ctx->task;
2152
2153         if (curr)
2154                 return curr->se.nr_migrations;
2155         return cpu_nr_migrations(smp_processor_id());
2156 }
2157
2158 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2159 {
2160         u64 prev, now;
2161         s64 delta;
2162
2163         prev = atomic64_read(&counter->hw.prev_count);
2164         now = get_cpu_migrations(counter);
2165
2166         atomic64_set(&counter->hw.prev_count, now);
2167
2168         delta = now - prev;
2169
2170         atomic64_add(delta, &counter->count);
2171 }
2172
2173 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2174 {
2175         cpu_migrations_perf_counter_update(counter);
2176 }
2177
2178 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2179 {
2180         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2181                 atomic64_set(&counter->hw.prev_count,
2182                              get_cpu_migrations(counter));
2183         return 0;
2184 }
2185
2186 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2187 {
2188         cpu_migrations_perf_counter_update(counter);
2189 }
2190
2191 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2192         .enable         = cpu_migrations_perf_counter_enable,
2193         .disable        = cpu_migrations_perf_counter_disable,
2194         .read           = cpu_migrations_perf_counter_read,
2195 };
2196
2197 #ifdef CONFIG_EVENT_PROFILE
2198 void perf_tpcounter_event(int event_id)
2199 {
2200         struct pt_regs *regs = get_irq_regs();
2201
2202         if (!regs)
2203                 regs = task_pt_regs(current);
2204
2205         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2206 }
2207
2208 extern int ftrace_profile_enable(int);
2209 extern void ftrace_profile_disable(int);
2210
2211 static void tp_perf_counter_destroy(struct perf_counter *counter)
2212 {
2213         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2214 }
2215
2216 static const struct hw_perf_counter_ops *
2217 tp_perf_counter_init(struct perf_counter *counter)
2218 {
2219         int event_id = perf_event_id(&counter->hw_event);
2220         int ret;
2221
2222         ret = ftrace_profile_enable(event_id);
2223         if (ret)
2224                 return NULL;
2225
2226         counter->destroy = tp_perf_counter_destroy;
2227         counter->hw.irq_period = counter->hw_event.irq_period;
2228
2229         return &perf_ops_generic;
2230 }
2231 #else
2232 static const struct hw_perf_counter_ops *
2233 tp_perf_counter_init(struct perf_counter *counter)
2234 {
2235         return NULL;
2236 }
2237 #endif
2238
2239 static const struct hw_perf_counter_ops *
2240 sw_perf_counter_init(struct perf_counter *counter)
2241 {
2242         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2243         const struct hw_perf_counter_ops *hw_ops = NULL;
2244         struct hw_perf_counter *hwc = &counter->hw;
2245
2246         /*
2247          * Software counters (currently) can't in general distinguish
2248          * between user, kernel and hypervisor events.
2249          * However, context switches and cpu migrations are considered
2250          * to be kernel events, and page faults are never hypervisor
2251          * events.
2252          */
2253         switch (perf_event_id(&counter->hw_event)) {
2254         case PERF_COUNT_CPU_CLOCK:
2255                 hw_ops = &perf_ops_cpu_clock;
2256
2257                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2258                         hw_event->irq_period = 10000;
2259                 break;
2260         case PERF_COUNT_TASK_CLOCK:
2261                 /*
2262                  * If the user instantiates this as a per-cpu counter,
2263                  * use the cpu_clock counter instead.
2264                  */
2265                 if (counter->ctx->task)
2266                         hw_ops = &perf_ops_task_clock;
2267                 else
2268                         hw_ops = &perf_ops_cpu_clock;
2269
2270                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2271                         hw_event->irq_period = 10000;
2272                 break;
2273         case PERF_COUNT_PAGE_FAULTS:
2274         case PERF_COUNT_PAGE_FAULTS_MIN:
2275         case PERF_COUNT_PAGE_FAULTS_MAJ:
2276         case PERF_COUNT_CONTEXT_SWITCHES:
2277                 hw_ops = &perf_ops_generic;
2278                 break;
2279         case PERF_COUNT_CPU_MIGRATIONS:
2280                 if (!counter->hw_event.exclude_kernel)
2281                         hw_ops = &perf_ops_cpu_migrations;
2282                 break;
2283         }
2284
2285         if (hw_ops)
2286                 hwc->irq_period = hw_event->irq_period;
2287
2288         return hw_ops;
2289 }
2290
2291 /*
2292  * Allocate and initialize a counter structure
2293  */
2294 static struct perf_counter *
2295 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2296                    int cpu,
2297                    struct perf_counter_context *ctx,
2298                    struct perf_counter *group_leader,
2299                    gfp_t gfpflags)
2300 {
2301         const struct hw_perf_counter_ops *hw_ops;
2302         struct perf_counter *counter;
2303
2304         counter = kzalloc(sizeof(*counter), gfpflags);
2305         if (!counter)
2306                 return NULL;
2307
2308         /*
2309          * Single counters are their own group leaders, with an
2310          * empty sibling list:
2311          */
2312         if (!group_leader)
2313                 group_leader = counter;
2314
2315         mutex_init(&counter->mutex);
2316         INIT_LIST_HEAD(&counter->list_entry);
2317         INIT_LIST_HEAD(&counter->event_entry);
2318         INIT_LIST_HEAD(&counter->sibling_list);
2319         init_waitqueue_head(&counter->waitq);
2320
2321         mutex_init(&counter->mmap_mutex);
2322
2323         INIT_LIST_HEAD(&counter->child_list);
2324
2325         counter->cpu                    = cpu;
2326         counter->hw_event               = *hw_event;
2327         counter->group_leader           = group_leader;
2328         counter->hw_ops                 = NULL;
2329         counter->ctx                    = ctx;
2330
2331         counter->state = PERF_COUNTER_STATE_INACTIVE;
2332         if (hw_event->disabled)
2333                 counter->state = PERF_COUNTER_STATE_OFF;
2334
2335         hw_ops = NULL;
2336
2337         if (perf_event_raw(hw_event)) {
2338                 hw_ops = hw_perf_counter_init(counter);
2339                 goto done;
2340         }
2341
2342         switch (perf_event_type(hw_event)) {
2343         case PERF_TYPE_HARDWARE:
2344                 hw_ops = hw_perf_counter_init(counter);
2345                 break;
2346
2347         case PERF_TYPE_SOFTWARE:
2348                 hw_ops = sw_perf_counter_init(counter);
2349                 break;
2350
2351         case PERF_TYPE_TRACEPOINT:
2352                 hw_ops = tp_perf_counter_init(counter);
2353                 break;
2354         }
2355
2356         if (!hw_ops) {
2357                 kfree(counter);
2358                 return NULL;
2359         }
2360 done:
2361         counter->hw_ops = hw_ops;
2362
2363         return counter;
2364 }
2365
2366 /**
2367  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2368  *
2369  * @hw_event_uptr:      event type attributes for monitoring/sampling
2370  * @pid:                target pid
2371  * @cpu:                target cpu
2372  * @group_fd:           group leader counter fd
2373  */
2374 SYSCALL_DEFINE5(perf_counter_open,
2375                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2376                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2377 {
2378         struct perf_counter *counter, *group_leader;
2379         struct perf_counter_hw_event hw_event;
2380         struct perf_counter_context *ctx;
2381         struct file *counter_file = NULL;
2382         struct file *group_file = NULL;
2383         int fput_needed = 0;
2384         int fput_needed2 = 0;
2385         int ret;
2386
2387         /* for future expandability... */
2388         if (flags)
2389                 return -EINVAL;
2390
2391         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2392                 return -EFAULT;
2393
2394         /*
2395          * Get the target context (task or percpu):
2396          */
2397         ctx = find_get_context(pid, cpu);
2398         if (IS_ERR(ctx))
2399                 return PTR_ERR(ctx);
2400
2401         /*
2402          * Look up the group leader (we will attach this counter to it):
2403          */
2404         group_leader = NULL;
2405         if (group_fd != -1) {
2406                 ret = -EINVAL;
2407                 group_file = fget_light(group_fd, &fput_needed);
2408                 if (!group_file)
2409                         goto err_put_context;
2410                 if (group_file->f_op != &perf_fops)
2411                         goto err_put_context;
2412
2413                 group_leader = group_file->private_data;
2414                 /*
2415                  * Do not allow a recursive hierarchy (this new sibling
2416                  * becoming part of another group-sibling):
2417                  */
2418                 if (group_leader->group_leader != group_leader)
2419                         goto err_put_context;
2420                 /*
2421                  * Do not allow to attach to a group in a different
2422                  * task or CPU context:
2423                  */
2424                 if (group_leader->ctx != ctx)
2425                         goto err_put_context;
2426                 /*
2427                  * Only a group leader can be exclusive or pinned
2428                  */
2429                 if (hw_event.exclusive || hw_event.pinned)
2430                         goto err_put_context;
2431         }
2432
2433         ret = -EINVAL;
2434         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2435                                      GFP_KERNEL);
2436         if (!counter)
2437                 goto err_put_context;
2438
2439         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2440         if (ret < 0)
2441                 goto err_free_put_context;
2442
2443         counter_file = fget_light(ret, &fput_needed2);
2444         if (!counter_file)
2445                 goto err_free_put_context;
2446
2447         counter->filp = counter_file;
2448         mutex_lock(&ctx->mutex);
2449         perf_install_in_context(ctx, counter, cpu);
2450         mutex_unlock(&ctx->mutex);
2451
2452         fput_light(counter_file, fput_needed2);
2453
2454 out_fput:
2455         fput_light(group_file, fput_needed);
2456
2457         return ret;
2458
2459 err_free_put_context:
2460         kfree(counter);
2461
2462 err_put_context:
2463         put_context(ctx);
2464
2465         goto out_fput;
2466 }
2467
2468 /*
2469  * Initialize the perf_counter context in a task_struct:
2470  */
2471 static void
2472 __perf_counter_init_context(struct perf_counter_context *ctx,
2473                             struct task_struct *task)
2474 {
2475         memset(ctx, 0, sizeof(*ctx));
2476         spin_lock_init(&ctx->lock);
2477         mutex_init(&ctx->mutex);
2478         INIT_LIST_HEAD(&ctx->counter_list);
2479         INIT_LIST_HEAD(&ctx->event_list);
2480         ctx->task = task;
2481 }
2482
2483 /*
2484  * inherit a counter from parent task to child task:
2485  */
2486 static struct perf_counter *
2487 inherit_counter(struct perf_counter *parent_counter,
2488               struct task_struct *parent,
2489               struct perf_counter_context *parent_ctx,
2490               struct task_struct *child,
2491               struct perf_counter *group_leader,
2492               struct perf_counter_context *child_ctx)
2493 {
2494         struct perf_counter *child_counter;
2495
2496         /*
2497          * Instead of creating recursive hierarchies of counters,
2498          * we link inherited counters back to the original parent,
2499          * which has a filp for sure, which we use as the reference
2500          * count:
2501          */
2502         if (parent_counter->parent)
2503                 parent_counter = parent_counter->parent;
2504
2505         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2506                                            parent_counter->cpu, child_ctx,
2507                                            group_leader, GFP_KERNEL);
2508         if (!child_counter)
2509                 return NULL;
2510
2511         /*
2512          * Link it up in the child's context:
2513          */
2514         child_counter->task = child;
2515         add_counter_to_ctx(child_counter, child_ctx);
2516
2517         child_counter->parent = parent_counter;
2518         /*
2519          * inherit into child's child as well:
2520          */
2521         child_counter->hw_event.inherit = 1;
2522
2523         /*
2524          * Get a reference to the parent filp - we will fput it
2525          * when the child counter exits. This is safe to do because
2526          * we are in the parent and we know that the filp still
2527          * exists and has a nonzero count:
2528          */
2529         atomic_long_inc(&parent_counter->filp->f_count);
2530
2531         /*
2532          * Link this into the parent counter's child list
2533          */
2534         mutex_lock(&parent_counter->mutex);
2535         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2536
2537         /*
2538          * Make the child state follow the state of the parent counter,
2539          * not its hw_event.disabled bit.  We hold the parent's mutex,
2540          * so we won't race with perf_counter_{en,dis}able_family.
2541          */
2542         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2543                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2544         else
2545                 child_counter->state = PERF_COUNTER_STATE_OFF;
2546
2547         mutex_unlock(&parent_counter->mutex);
2548
2549         return child_counter;
2550 }
2551
2552 static int inherit_group(struct perf_counter *parent_counter,
2553               struct task_struct *parent,
2554               struct perf_counter_context *parent_ctx,
2555               struct task_struct *child,
2556               struct perf_counter_context *child_ctx)
2557 {
2558         struct perf_counter *leader;
2559         struct perf_counter *sub;
2560
2561         leader = inherit_counter(parent_counter, parent, parent_ctx,
2562                                  child, NULL, child_ctx);
2563         if (!leader)
2564                 return -ENOMEM;
2565         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2566                 if (!inherit_counter(sub, parent, parent_ctx,
2567                                      child, leader, child_ctx))
2568                         return -ENOMEM;
2569         }
2570         return 0;
2571 }
2572
2573 static void sync_child_counter(struct perf_counter *child_counter,
2574                                struct perf_counter *parent_counter)
2575 {
2576         u64 parent_val, child_val;
2577
2578         parent_val = atomic64_read(&parent_counter->count);
2579         child_val = atomic64_read(&child_counter->count);
2580
2581         /*
2582          * Add back the child's count to the parent's count:
2583          */
2584         atomic64_add(child_val, &parent_counter->count);
2585         atomic64_add(child_counter->total_time_enabled,
2586                      &parent_counter->child_total_time_enabled);
2587         atomic64_add(child_counter->total_time_running,
2588                      &parent_counter->child_total_time_running);
2589
2590         /*
2591          * Remove this counter from the parent's list
2592          */
2593         mutex_lock(&parent_counter->mutex);
2594         list_del_init(&child_counter->child_list);
2595         mutex_unlock(&parent_counter->mutex);
2596
2597         /*
2598          * Release the parent counter, if this was the last
2599          * reference to it.
2600          */
2601         fput(parent_counter->filp);
2602 }
2603
2604 static void
2605 __perf_counter_exit_task(struct task_struct *child,
2606                          struct perf_counter *child_counter,
2607                          struct perf_counter_context *child_ctx)
2608 {
2609         struct perf_counter *parent_counter;
2610         struct perf_counter *sub, *tmp;
2611
2612         /*
2613          * If we do not self-reap then we have to wait for the
2614          * child task to unschedule (it will happen for sure),
2615          * so that its counter is at its final count. (This
2616          * condition triggers rarely - child tasks usually get
2617          * off their CPU before the parent has a chance to
2618          * get this far into the reaping action)
2619          */
2620         if (child != current) {
2621                 wait_task_inactive(child, 0);
2622                 list_del_init(&child_counter->list_entry);
2623                 update_counter_times(child_counter);
2624         } else {
2625                 struct perf_cpu_context *cpuctx;
2626                 unsigned long flags;
2627                 u64 perf_flags;
2628
2629                 /*
2630                  * Disable and unlink this counter.
2631                  *
2632                  * Be careful about zapping the list - IRQ/NMI context
2633                  * could still be processing it:
2634                  */
2635                 curr_rq_lock_irq_save(&flags);
2636                 perf_flags = hw_perf_save_disable();
2637
2638                 cpuctx = &__get_cpu_var(perf_cpu_context);
2639
2640                 group_sched_out(child_counter, cpuctx, child_ctx);
2641                 update_counter_times(child_counter);
2642
2643                 list_del_init(&child_counter->list_entry);
2644
2645                 child_ctx->nr_counters--;
2646
2647                 hw_perf_restore(perf_flags);
2648                 curr_rq_unlock_irq_restore(&flags);
2649         }
2650
2651         parent_counter = child_counter->parent;
2652         /*
2653          * It can happen that parent exits first, and has counters
2654          * that are still around due to the child reference. These
2655          * counters need to be zapped - but otherwise linger.
2656          */
2657         if (parent_counter) {
2658                 sync_child_counter(child_counter, parent_counter);
2659                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2660                                          list_entry) {
2661                         if (sub->parent) {
2662                                 sync_child_counter(sub, sub->parent);
2663                                 free_counter(sub);
2664                         }
2665                 }
2666                 free_counter(child_counter);
2667         }
2668 }
2669
2670 /*
2671  * When a child task exits, feed back counter values to parent counters.
2672  *
2673  * Note: we may be running in child context, but the PID is not hashed
2674  * anymore so new counters will not be added.
2675  */
2676 void perf_counter_exit_task(struct task_struct *child)
2677 {
2678         struct perf_counter *child_counter, *tmp;
2679         struct perf_counter_context *child_ctx;
2680
2681         child_ctx = &child->perf_counter_ctx;
2682
2683         if (likely(!child_ctx->nr_counters))
2684                 return;
2685
2686         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2687                                  list_entry)
2688                 __perf_counter_exit_task(child, child_counter, child_ctx);
2689 }
2690
2691 /*
2692  * Initialize the perf_counter context in task_struct
2693  */
2694 void perf_counter_init_task(struct task_struct *child)
2695 {
2696         struct perf_counter_context *child_ctx, *parent_ctx;
2697         struct perf_counter *counter;
2698         struct task_struct *parent = current;
2699
2700         child_ctx  =  &child->perf_counter_ctx;
2701         parent_ctx = &parent->perf_counter_ctx;
2702
2703         __perf_counter_init_context(child_ctx, child);
2704
2705         /*
2706          * This is executed from the parent task context, so inherit
2707          * counters that have been marked for cloning:
2708          */
2709
2710         if (likely(!parent_ctx->nr_counters))
2711                 return;
2712
2713         /*
2714          * Lock the parent list. No need to lock the child - not PID
2715          * hashed yet and not running, so nobody can access it.
2716          */
2717         mutex_lock(&parent_ctx->mutex);
2718
2719         /*
2720          * We dont have to disable NMIs - we are only looking at
2721          * the list, not manipulating it:
2722          */
2723         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2724                 if (!counter->hw_event.inherit)
2725                         continue;
2726
2727                 if (inherit_group(counter, parent,
2728                                   parent_ctx, child, child_ctx))
2729                         break;
2730         }
2731
2732         mutex_unlock(&parent_ctx->mutex);
2733 }
2734
2735 static void __cpuinit perf_counter_init_cpu(int cpu)
2736 {
2737         struct perf_cpu_context *cpuctx;
2738
2739         cpuctx = &per_cpu(perf_cpu_context, cpu);
2740         __perf_counter_init_context(&cpuctx->ctx, NULL);
2741
2742         mutex_lock(&perf_resource_mutex);
2743         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2744         mutex_unlock(&perf_resource_mutex);
2745
2746         hw_perf_counter_setup(cpu);
2747 }
2748
2749 #ifdef CONFIG_HOTPLUG_CPU
2750 static void __perf_counter_exit_cpu(void *info)
2751 {
2752         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2753         struct perf_counter_context *ctx = &cpuctx->ctx;
2754         struct perf_counter *counter, *tmp;
2755
2756         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2757                 __perf_counter_remove_from_context(counter);
2758 }
2759 static void perf_counter_exit_cpu(int cpu)
2760 {
2761         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2762         struct perf_counter_context *ctx = &cpuctx->ctx;
2763
2764         mutex_lock(&ctx->mutex);
2765         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2766         mutex_unlock(&ctx->mutex);
2767 }
2768 #else
2769 static inline void perf_counter_exit_cpu(int cpu) { }
2770 #endif
2771
2772 static int __cpuinit
2773 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2774 {
2775         unsigned int cpu = (long)hcpu;
2776
2777         switch (action) {
2778
2779         case CPU_UP_PREPARE:
2780         case CPU_UP_PREPARE_FROZEN:
2781                 perf_counter_init_cpu(cpu);
2782                 break;
2783
2784         case CPU_DOWN_PREPARE:
2785         case CPU_DOWN_PREPARE_FROZEN:
2786                 perf_counter_exit_cpu(cpu);
2787                 break;
2788
2789         default:
2790                 break;
2791         }
2792
2793         return NOTIFY_OK;
2794 }
2795
2796 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2797         .notifier_call          = perf_cpu_notify,
2798 };
2799
2800 static int __init perf_counter_init(void)
2801 {
2802         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2803                         (void *)(long)smp_processor_id());
2804         register_cpu_notifier(&perf_cpu_nb);
2805
2806         return 0;
2807 }
2808 early_initcall(perf_counter_init);
2809
2810 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2811 {
2812         return sprintf(buf, "%d\n", perf_reserved_percpu);
2813 }
2814
2815 static ssize_t
2816 perf_set_reserve_percpu(struct sysdev_class *class,
2817                         const char *buf,
2818                         size_t count)
2819 {
2820         struct perf_cpu_context *cpuctx;
2821         unsigned long val;
2822         int err, cpu, mpt;
2823
2824         err = strict_strtoul(buf, 10, &val);
2825         if (err)
2826                 return err;
2827         if (val > perf_max_counters)
2828                 return -EINVAL;
2829
2830         mutex_lock(&perf_resource_mutex);
2831         perf_reserved_percpu = val;
2832         for_each_online_cpu(cpu) {
2833                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2834                 spin_lock_irq(&cpuctx->ctx.lock);
2835                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2836                           perf_max_counters - perf_reserved_percpu);
2837                 cpuctx->max_pertask = mpt;
2838                 spin_unlock_irq(&cpuctx->ctx.lock);
2839         }
2840         mutex_unlock(&perf_resource_mutex);
2841
2842         return count;
2843 }
2844
2845 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2846 {
2847         return sprintf(buf, "%d\n", perf_overcommit);
2848 }
2849
2850 static ssize_t
2851 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2852 {
2853         unsigned long val;
2854         int err;
2855
2856         err = strict_strtoul(buf, 10, &val);
2857         if (err)
2858                 return err;
2859         if (val > 1)
2860                 return -EINVAL;
2861
2862         mutex_lock(&perf_resource_mutex);
2863         perf_overcommit = val;
2864         mutex_unlock(&perf_resource_mutex);
2865
2866         return count;
2867 }
2868
2869 static SYSDEV_CLASS_ATTR(
2870                                 reserve_percpu,
2871                                 0644,
2872                                 perf_show_reserve_percpu,
2873                                 perf_set_reserve_percpu
2874                         );
2875
2876 static SYSDEV_CLASS_ATTR(
2877                                 overcommit,
2878                                 0644,
2879                                 perf_show_overcommit,
2880                                 perf_set_overcommit
2881                         );
2882
2883 static struct attribute *perfclass_attrs[] = {
2884         &attr_reserve_percpu.attr,
2885         &attr_overcommit.attr,
2886         NULL
2887 };
2888
2889 static struct attribute_group perfclass_attr_group = {
2890         .attrs                  = perfclass_attrs,
2891         .name                   = "perf_counters",
2892 };
2893
2894 static int __init perf_counter_sysfs_init(void)
2895 {
2896         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2897                                   &perfclass_attr_group);
2898 }
2899 device_initcall(perf_counter_sysfs_init);