2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
47 * perf counter paranoia level:
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
52 int sysctl_perf_counter_paranoid __read_mostly;
54 static inline bool perf_paranoid_cpu(void)
56 return sysctl_perf_counter_paranoid > 0;
59 static inline bool perf_paranoid_kernel(void)
61 return sysctl_perf_counter_paranoid > 1;
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
67 * max perf counter sample rate
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71 static atomic64_t perf_counter_id;
74 * Lock for (sysadmin-configurable) counter reservations:
76 static DEFINE_SPINLOCK(perf_resource_lock);
79 * Architecture provided APIs - weak aliases:
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
86 void __weak hw_perf_disable(void) { barrier(); }
87 void __weak hw_perf_enable(void) { barrier(); }
89 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93 struct perf_cpu_context *cpuctx,
94 struct perf_counter_context *ctx, int cpu)
99 void __weak perf_counter_print_debug(void) { }
101 static DEFINE_PER_CPU(int, disable_count);
103 void __perf_disable(void)
105 __get_cpu_var(disable_count)++;
108 bool __perf_enable(void)
110 return !--__get_cpu_var(disable_count);
113 void perf_disable(void)
119 void perf_enable(void)
125 static void get_ctx(struct perf_counter_context *ctx)
127 atomic_inc(&ctx->refcount);
130 static void free_ctx(struct rcu_head *head)
132 struct perf_counter_context *ctx;
134 ctx = container_of(head, struct perf_counter_context, rcu_head);
138 static void put_ctx(struct perf_counter_context *ctx)
140 if (atomic_dec_and_test(&ctx->refcount)) {
142 put_ctx(ctx->parent_ctx);
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
150 * Get the perf_counter_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
157 struct perf_counter_context *ctx;
161 ctx = rcu_dereference(task->perf_counter_ctxp);
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_counter_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175 spin_unlock_irqrestore(&ctx->lock, *flags);
184 * Get the context for a task and increment its pin_count so it
185 * can't get swapped to another task. This also increments its
186 * reference count so that the context can't get freed.
188 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
190 struct perf_counter_context *ctx;
193 ctx = perf_lock_task_context(task, &flags);
197 spin_unlock_irqrestore(&ctx->lock, flags);
202 static void perf_unpin_context(struct perf_counter_context *ctx)
206 spin_lock_irqsave(&ctx->lock, flags);
208 spin_unlock_irqrestore(&ctx->lock, flags);
213 * Add a counter from the lists for its context.
214 * Must be called with ctx->mutex and ctx->lock held.
217 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
219 struct perf_counter *group_leader = counter->group_leader;
222 * Depending on whether it is a standalone or sibling counter,
223 * add it straight to the context's counter list, or to the group
224 * leader's sibling list:
226 if (group_leader == counter)
227 list_add_tail(&counter->list_entry, &ctx->counter_list);
229 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
230 group_leader->nr_siblings++;
233 list_add_rcu(&counter->event_entry, &ctx->event_list);
238 * Remove a counter from the lists for its context.
239 * Must be called with ctx->mutex and ctx->lock held.
242 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
244 struct perf_counter *sibling, *tmp;
246 if (list_empty(&counter->list_entry))
250 list_del_init(&counter->list_entry);
251 list_del_rcu(&counter->event_entry);
253 if (counter->group_leader != counter)
254 counter->group_leader->nr_siblings--;
257 * If this was a group counter with sibling counters then
258 * upgrade the siblings to singleton counters by adding them
259 * to the context list directly:
261 list_for_each_entry_safe(sibling, tmp,
262 &counter->sibling_list, list_entry) {
264 list_move_tail(&sibling->list_entry, &ctx->counter_list);
265 sibling->group_leader = sibling;
270 counter_sched_out(struct perf_counter *counter,
271 struct perf_cpu_context *cpuctx,
272 struct perf_counter_context *ctx)
274 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
277 counter->state = PERF_COUNTER_STATE_INACTIVE;
278 counter->tstamp_stopped = ctx->time;
279 counter->pmu->disable(counter);
282 if (!is_software_counter(counter))
283 cpuctx->active_oncpu--;
285 if (counter->attr.exclusive || !cpuctx->active_oncpu)
286 cpuctx->exclusive = 0;
290 group_sched_out(struct perf_counter *group_counter,
291 struct perf_cpu_context *cpuctx,
292 struct perf_counter_context *ctx)
294 struct perf_counter *counter;
296 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
299 counter_sched_out(group_counter, cpuctx, ctx);
302 * Schedule out siblings (if any):
304 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
305 counter_sched_out(counter, cpuctx, ctx);
307 if (group_counter->attr.exclusive)
308 cpuctx->exclusive = 0;
312 * Cross CPU call to remove a performance counter
314 * We disable the counter on the hardware level first. After that we
315 * remove it from the context list.
317 static void __perf_counter_remove_from_context(void *info)
319 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
320 struct perf_counter *counter = info;
321 struct perf_counter_context *ctx = counter->ctx;
324 * If this is a task context, we need to check whether it is
325 * the current task context of this cpu. If not it has been
326 * scheduled out before the smp call arrived.
328 if (ctx->task && cpuctx->task_ctx != ctx)
331 spin_lock(&ctx->lock);
333 * Protect the list operation against NMI by disabling the
334 * counters on a global level.
338 counter_sched_out(counter, cpuctx, ctx);
340 list_del_counter(counter, ctx);
344 * Allow more per task counters with respect to the
347 cpuctx->max_pertask =
348 min(perf_max_counters - ctx->nr_counters,
349 perf_max_counters - perf_reserved_percpu);
353 spin_unlock(&ctx->lock);
358 * Remove the counter from a task's (or a CPU's) list of counters.
360 * Must be called with ctx->mutex held.
362 * CPU counters are removed with a smp call. For task counters we only
363 * call when the task is on a CPU.
365 * If counter->ctx is a cloned context, callers must make sure that
366 * every task struct that counter->ctx->task could possibly point to
367 * remains valid. This is OK when called from perf_release since
368 * that only calls us on the top-level context, which can't be a clone.
369 * When called from perf_counter_exit_task, it's OK because the
370 * context has been detached from its task.
372 static void perf_counter_remove_from_context(struct perf_counter *counter)
374 struct perf_counter_context *ctx = counter->ctx;
375 struct task_struct *task = ctx->task;
379 * Per cpu counters are removed via an smp call and
380 * the removal is always sucessful.
382 smp_call_function_single(counter->cpu,
383 __perf_counter_remove_from_context,
389 task_oncpu_function_call(task, __perf_counter_remove_from_context,
392 spin_lock_irq(&ctx->lock);
394 * If the context is active we need to retry the smp call.
396 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
397 spin_unlock_irq(&ctx->lock);
402 * The lock prevents that this context is scheduled in so we
403 * can remove the counter safely, if the call above did not
406 if (!list_empty(&counter->list_entry)) {
407 list_del_counter(counter, ctx);
409 spin_unlock_irq(&ctx->lock);
412 static inline u64 perf_clock(void)
414 return cpu_clock(smp_processor_id());
418 * Update the record of the current time in a context.
420 static void update_context_time(struct perf_counter_context *ctx)
422 u64 now = perf_clock();
424 ctx->time += now - ctx->timestamp;
425 ctx->timestamp = now;
429 * Update the total_time_enabled and total_time_running fields for a counter.
431 static void update_counter_times(struct perf_counter *counter)
433 struct perf_counter_context *ctx = counter->ctx;
436 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
439 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
441 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
442 run_end = counter->tstamp_stopped;
446 counter->total_time_running = run_end - counter->tstamp_running;
450 * Update total_time_enabled and total_time_running for all counters in a group.
452 static void update_group_times(struct perf_counter *leader)
454 struct perf_counter *counter;
456 update_counter_times(leader);
457 list_for_each_entry(counter, &leader->sibling_list, list_entry)
458 update_counter_times(counter);
462 * Cross CPU call to disable a performance counter
464 static void __perf_counter_disable(void *info)
466 struct perf_counter *counter = info;
467 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
468 struct perf_counter_context *ctx = counter->ctx;
471 * If this is a per-task counter, need to check whether this
472 * counter's task is the current task on this cpu.
474 if (ctx->task && cpuctx->task_ctx != ctx)
477 spin_lock(&ctx->lock);
480 * If the counter is on, turn it off.
481 * If it is in error state, leave it in error state.
483 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
484 update_context_time(ctx);
485 update_counter_times(counter);
486 if (counter == counter->group_leader)
487 group_sched_out(counter, cpuctx, ctx);
489 counter_sched_out(counter, cpuctx, ctx);
490 counter->state = PERF_COUNTER_STATE_OFF;
493 spin_unlock(&ctx->lock);
499 * If counter->ctx is a cloned context, callers must make sure that
500 * every task struct that counter->ctx->task could possibly point to
501 * remains valid. This condition is satisifed when called through
502 * perf_counter_for_each_child or perf_counter_for_each because they
503 * hold the top-level counter's child_mutex, so any descendant that
504 * goes to exit will block in sync_child_counter.
505 * When called from perf_pending_counter it's OK because counter->ctx
506 * is the current context on this CPU and preemption is disabled,
507 * hence we can't get into perf_counter_task_sched_out for this context.
509 static void perf_counter_disable(struct perf_counter *counter)
511 struct perf_counter_context *ctx = counter->ctx;
512 struct task_struct *task = ctx->task;
516 * Disable the counter on the cpu that it's on
518 smp_call_function_single(counter->cpu, __perf_counter_disable,
524 task_oncpu_function_call(task, __perf_counter_disable, counter);
526 spin_lock_irq(&ctx->lock);
528 * If the counter is still active, we need to retry the cross-call.
530 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
531 spin_unlock_irq(&ctx->lock);
536 * Since we have the lock this context can't be scheduled
537 * in, so we can change the state safely.
539 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
540 update_counter_times(counter);
541 counter->state = PERF_COUNTER_STATE_OFF;
544 spin_unlock_irq(&ctx->lock);
548 counter_sched_in(struct perf_counter *counter,
549 struct perf_cpu_context *cpuctx,
550 struct perf_counter_context *ctx,
553 if (counter->state <= PERF_COUNTER_STATE_OFF)
556 counter->state = PERF_COUNTER_STATE_ACTIVE;
557 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
559 * The new state must be visible before we turn it on in the hardware:
563 if (counter->pmu->enable(counter)) {
564 counter->state = PERF_COUNTER_STATE_INACTIVE;
569 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
571 if (!is_software_counter(counter))
572 cpuctx->active_oncpu++;
575 if (counter->attr.exclusive)
576 cpuctx->exclusive = 1;
582 group_sched_in(struct perf_counter *group_counter,
583 struct perf_cpu_context *cpuctx,
584 struct perf_counter_context *ctx,
587 struct perf_counter *counter, *partial_group;
590 if (group_counter->state == PERF_COUNTER_STATE_OFF)
593 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
595 return ret < 0 ? ret : 0;
597 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
601 * Schedule in siblings as one group (if any):
603 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
604 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
605 partial_group = counter;
614 * Groups can be scheduled in as one unit only, so undo any
615 * partial group before returning:
617 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
618 if (counter == partial_group)
620 counter_sched_out(counter, cpuctx, ctx);
622 counter_sched_out(group_counter, cpuctx, ctx);
628 * Return 1 for a group consisting entirely of software counters,
629 * 0 if the group contains any hardware counters.
631 static int is_software_only_group(struct perf_counter *leader)
633 struct perf_counter *counter;
635 if (!is_software_counter(leader))
638 list_for_each_entry(counter, &leader->sibling_list, list_entry)
639 if (!is_software_counter(counter))
646 * Work out whether we can put this counter group on the CPU now.
648 static int group_can_go_on(struct perf_counter *counter,
649 struct perf_cpu_context *cpuctx,
653 * Groups consisting entirely of software counters can always go on.
655 if (is_software_only_group(counter))
658 * If an exclusive group is already on, no other hardware
659 * counters can go on.
661 if (cpuctx->exclusive)
664 * If this group is exclusive and there are already
665 * counters on the CPU, it can't go on.
667 if (counter->attr.exclusive && cpuctx->active_oncpu)
670 * Otherwise, try to add it if all previous groups were able
676 static void add_counter_to_ctx(struct perf_counter *counter,
677 struct perf_counter_context *ctx)
679 list_add_counter(counter, ctx);
680 counter->tstamp_enabled = ctx->time;
681 counter->tstamp_running = ctx->time;
682 counter->tstamp_stopped = ctx->time;
686 * Cross CPU call to install and enable a performance counter
688 * Must be called with ctx->mutex held
690 static void __perf_install_in_context(void *info)
692 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
693 struct perf_counter *counter = info;
694 struct perf_counter_context *ctx = counter->ctx;
695 struct perf_counter *leader = counter->group_leader;
696 int cpu = smp_processor_id();
700 * If this is a task context, we need to check whether it is
701 * the current task context of this cpu. If not it has been
702 * scheduled out before the smp call arrived.
703 * Or possibly this is the right context but it isn't
704 * on this cpu because it had no counters.
706 if (ctx->task && cpuctx->task_ctx != ctx) {
707 if (cpuctx->task_ctx || ctx->task != current)
709 cpuctx->task_ctx = ctx;
712 spin_lock(&ctx->lock);
714 update_context_time(ctx);
717 * Protect the list operation against NMI by disabling the
718 * counters on a global level. NOP for non NMI based counters.
722 add_counter_to_ctx(counter, ctx);
725 * Don't put the counter on if it is disabled or if
726 * it is in a group and the group isn't on.
728 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
729 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
733 * An exclusive counter can't go on if there are already active
734 * hardware counters, and no hardware counter can go on if there
735 * is already an exclusive counter on.
737 if (!group_can_go_on(counter, cpuctx, 1))
740 err = counter_sched_in(counter, cpuctx, ctx, cpu);
744 * This counter couldn't go on. If it is in a group
745 * then we have to pull the whole group off.
746 * If the counter group is pinned then put it in error state.
748 if (leader != counter)
749 group_sched_out(leader, cpuctx, ctx);
750 if (leader->attr.pinned) {
751 update_group_times(leader);
752 leader->state = PERF_COUNTER_STATE_ERROR;
756 if (!err && !ctx->task && cpuctx->max_pertask)
757 cpuctx->max_pertask--;
762 spin_unlock(&ctx->lock);
766 * Attach a performance counter to a context
768 * First we add the counter to the list with the hardware enable bit
769 * in counter->hw_config cleared.
771 * If the counter is attached to a task which is on a CPU we use a smp
772 * call to enable it in the task context. The task might have been
773 * scheduled away, but we check this in the smp call again.
775 * Must be called with ctx->mutex held.
778 perf_install_in_context(struct perf_counter_context *ctx,
779 struct perf_counter *counter,
782 struct task_struct *task = ctx->task;
786 * Per cpu counters are installed via an smp call and
787 * the install is always sucessful.
789 smp_call_function_single(cpu, __perf_install_in_context,
795 task_oncpu_function_call(task, __perf_install_in_context,
798 spin_lock_irq(&ctx->lock);
800 * we need to retry the smp call.
802 if (ctx->is_active && list_empty(&counter->list_entry)) {
803 spin_unlock_irq(&ctx->lock);
808 * The lock prevents that this context is scheduled in so we
809 * can add the counter safely, if it the call above did not
812 if (list_empty(&counter->list_entry))
813 add_counter_to_ctx(counter, ctx);
814 spin_unlock_irq(&ctx->lock);
818 * Cross CPU call to enable a performance counter
820 static void __perf_counter_enable(void *info)
822 struct perf_counter *counter = info;
823 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
824 struct perf_counter_context *ctx = counter->ctx;
825 struct perf_counter *leader = counter->group_leader;
829 * If this is a per-task counter, need to check whether this
830 * counter's task is the current task on this cpu.
832 if (ctx->task && cpuctx->task_ctx != ctx) {
833 if (cpuctx->task_ctx || ctx->task != current)
835 cpuctx->task_ctx = ctx;
838 spin_lock(&ctx->lock);
840 update_context_time(ctx);
842 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
844 counter->state = PERF_COUNTER_STATE_INACTIVE;
845 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
848 * If the counter is in a group and isn't the group leader,
849 * then don't put it on unless the group is on.
851 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
854 if (!group_can_go_on(counter, cpuctx, 1)) {
858 if (counter == leader)
859 err = group_sched_in(counter, cpuctx, ctx,
862 err = counter_sched_in(counter, cpuctx, ctx,
869 * If this counter can't go on and it's part of a
870 * group, then the whole group has to come off.
872 if (leader != counter)
873 group_sched_out(leader, cpuctx, ctx);
874 if (leader->attr.pinned) {
875 update_group_times(leader);
876 leader->state = PERF_COUNTER_STATE_ERROR;
881 spin_unlock(&ctx->lock);
887 * If counter->ctx is a cloned context, callers must make sure that
888 * every task struct that counter->ctx->task could possibly point to
889 * remains valid. This condition is satisfied when called through
890 * perf_counter_for_each_child or perf_counter_for_each as described
891 * for perf_counter_disable.
893 static void perf_counter_enable(struct perf_counter *counter)
895 struct perf_counter_context *ctx = counter->ctx;
896 struct task_struct *task = ctx->task;
900 * Enable the counter on the cpu that it's on
902 smp_call_function_single(counter->cpu, __perf_counter_enable,
907 spin_lock_irq(&ctx->lock);
908 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
912 * If the counter is in error state, clear that first.
913 * That way, if we see the counter in error state below, we
914 * know that it has gone back into error state, as distinct
915 * from the task having been scheduled away before the
916 * cross-call arrived.
918 if (counter->state == PERF_COUNTER_STATE_ERROR)
919 counter->state = PERF_COUNTER_STATE_OFF;
922 spin_unlock_irq(&ctx->lock);
923 task_oncpu_function_call(task, __perf_counter_enable, counter);
925 spin_lock_irq(&ctx->lock);
928 * If the context is active and the counter is still off,
929 * we need to retry the cross-call.
931 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
935 * Since we have the lock this context can't be scheduled
936 * in, so we can change the state safely.
938 if (counter->state == PERF_COUNTER_STATE_OFF) {
939 counter->state = PERF_COUNTER_STATE_INACTIVE;
940 counter->tstamp_enabled =
941 ctx->time - counter->total_time_enabled;
944 spin_unlock_irq(&ctx->lock);
947 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
950 * not supported on inherited counters
952 if (counter->attr.inherit)
955 atomic_add(refresh, &counter->event_limit);
956 perf_counter_enable(counter);
961 void __perf_counter_sched_out(struct perf_counter_context *ctx,
962 struct perf_cpu_context *cpuctx)
964 struct perf_counter *counter;
966 spin_lock(&ctx->lock);
968 if (likely(!ctx->nr_counters))
970 update_context_time(ctx);
973 if (ctx->nr_active) {
974 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
975 if (counter != counter->group_leader)
976 counter_sched_out(counter, cpuctx, ctx);
978 group_sched_out(counter, cpuctx, ctx);
983 spin_unlock(&ctx->lock);
987 * Test whether two contexts are equivalent, i.e. whether they
988 * have both been cloned from the same version of the same context
989 * and they both have the same number of enabled counters.
990 * If the number of enabled counters is the same, then the set
991 * of enabled counters should be the same, because these are both
992 * inherited contexts, therefore we can't access individual counters
993 * in them directly with an fd; we can only enable/disable all
994 * counters via prctl, or enable/disable all counters in a family
995 * via ioctl, which will have the same effect on both contexts.
997 static int context_equiv(struct perf_counter_context *ctx1,
998 struct perf_counter_context *ctx2)
1000 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1001 && ctx1->parent_gen == ctx2->parent_gen
1002 && !ctx1->pin_count && !ctx2->pin_count;
1006 * Called from scheduler to remove the counters of the current task,
1007 * with interrupts disabled.
1009 * We stop each counter and update the counter value in counter->count.
1011 * This does not protect us against NMI, but disable()
1012 * sets the disabled bit in the control field of counter _before_
1013 * accessing the counter control register. If a NMI hits, then it will
1014 * not restart the counter.
1016 void perf_counter_task_sched_out(struct task_struct *task,
1017 struct task_struct *next, int cpu)
1019 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1020 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1021 struct perf_counter_context *next_ctx;
1022 struct perf_counter_context *parent;
1023 struct pt_regs *regs;
1026 regs = task_pt_regs(task);
1027 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1029 if (likely(!ctx || !cpuctx->task_ctx))
1032 update_context_time(ctx);
1035 parent = rcu_dereference(ctx->parent_ctx);
1036 next_ctx = next->perf_counter_ctxp;
1037 if (parent && next_ctx &&
1038 rcu_dereference(next_ctx->parent_ctx) == parent) {
1040 * Looks like the two contexts are clones, so we might be
1041 * able to optimize the context switch. We lock both
1042 * contexts and check that they are clones under the
1043 * lock (including re-checking that neither has been
1044 * uncloned in the meantime). It doesn't matter which
1045 * order we take the locks because no other cpu could
1046 * be trying to lock both of these tasks.
1048 spin_lock(&ctx->lock);
1049 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1050 if (context_equiv(ctx, next_ctx)) {
1052 * XXX do we need a memory barrier of sorts
1053 * wrt to rcu_dereference() of perf_counter_ctxp
1055 task->perf_counter_ctxp = next_ctx;
1056 next->perf_counter_ctxp = ctx;
1058 next_ctx->task = task;
1061 spin_unlock(&next_ctx->lock);
1062 spin_unlock(&ctx->lock);
1067 __perf_counter_sched_out(ctx, cpuctx);
1068 cpuctx->task_ctx = NULL;
1073 * Called with IRQs disabled
1075 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1077 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1079 if (!cpuctx->task_ctx)
1082 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1085 __perf_counter_sched_out(ctx, cpuctx);
1086 cpuctx->task_ctx = NULL;
1090 * Called with IRQs disabled
1092 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1094 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1098 __perf_counter_sched_in(struct perf_counter_context *ctx,
1099 struct perf_cpu_context *cpuctx, int cpu)
1101 struct perf_counter *counter;
1104 spin_lock(&ctx->lock);
1106 if (likely(!ctx->nr_counters))
1109 ctx->timestamp = perf_clock();
1114 * First go through the list and put on any pinned groups
1115 * in order to give them the best chance of going on.
1117 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1118 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1119 !counter->attr.pinned)
1121 if (counter->cpu != -1 && counter->cpu != cpu)
1124 if (counter != counter->group_leader)
1125 counter_sched_in(counter, cpuctx, ctx, cpu);
1127 if (group_can_go_on(counter, cpuctx, 1))
1128 group_sched_in(counter, cpuctx, ctx, cpu);
1132 * If this pinned group hasn't been scheduled,
1133 * put it in error state.
1135 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1136 update_group_times(counter);
1137 counter->state = PERF_COUNTER_STATE_ERROR;
1141 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1143 * Ignore counters in OFF or ERROR state, and
1144 * ignore pinned counters since we did them already.
1146 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1147 counter->attr.pinned)
1151 * Listen to the 'cpu' scheduling filter constraint
1154 if (counter->cpu != -1 && counter->cpu != cpu)
1157 if (counter != counter->group_leader) {
1158 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1161 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1162 if (group_sched_in(counter, cpuctx, ctx, cpu))
1169 spin_unlock(&ctx->lock);
1173 * Called from scheduler to add the counters of the current task
1174 * with interrupts disabled.
1176 * We restore the counter value and then enable it.
1178 * This does not protect us against NMI, but enable()
1179 * sets the enabled bit in the control field of counter _before_
1180 * accessing the counter control register. If a NMI hits, then it will
1181 * keep the counter running.
1183 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1185 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1186 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1190 if (cpuctx->task_ctx == ctx)
1192 __perf_counter_sched_in(ctx, cpuctx, cpu);
1193 cpuctx->task_ctx = ctx;
1196 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1198 struct perf_counter_context *ctx = &cpuctx->ctx;
1200 __perf_counter_sched_in(ctx, cpuctx, cpu);
1203 #define MAX_INTERRUPTS (~0ULL)
1205 static void perf_log_throttle(struct perf_counter *counter, int enable);
1206 static void perf_log_period(struct perf_counter *counter, u64 period);
1208 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1210 struct hw_perf_counter *hwc = &counter->hw;
1211 u64 period, sample_period;
1214 events *= hwc->sample_period;
1215 period = div64_u64(events, counter->attr.sample_freq);
1217 delta = (s64)(period - hwc->sample_period);
1218 delta = (delta + 7) / 8; /* low pass filter */
1220 sample_period = hwc->sample_period + delta;
1225 perf_log_period(counter, sample_period);
1227 hwc->sample_period = sample_period;
1230 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1232 struct perf_counter *counter;
1233 struct hw_perf_counter *hwc;
1234 u64 interrupts, freq;
1236 spin_lock(&ctx->lock);
1237 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1238 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1243 interrupts = hwc->interrupts;
1244 hwc->interrupts = 0;
1247 * unthrottle counters on the tick
1249 if (interrupts == MAX_INTERRUPTS) {
1250 perf_log_throttle(counter, 1);
1251 counter->pmu->unthrottle(counter);
1252 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1255 if (!counter->attr.freq || !counter->attr.sample_freq)
1259 * if the specified freq < HZ then we need to skip ticks
1261 if (counter->attr.sample_freq < HZ) {
1262 freq = counter->attr.sample_freq;
1264 hwc->freq_count += freq;
1265 hwc->freq_interrupts += interrupts;
1267 if (hwc->freq_count < HZ)
1270 interrupts = hwc->freq_interrupts;
1271 hwc->freq_interrupts = 0;
1272 hwc->freq_count -= HZ;
1276 perf_adjust_period(counter, freq * interrupts);
1279 * In order to avoid being stalled by an (accidental) huge
1280 * sample period, force reset the sample period if we didn't
1281 * get any events in this freq period.
1285 counter->pmu->disable(counter);
1286 atomic64_set(&hwc->period_left, 0);
1287 counter->pmu->enable(counter);
1291 spin_unlock(&ctx->lock);
1295 * Round-robin a context's counters:
1297 static void rotate_ctx(struct perf_counter_context *ctx)
1299 struct perf_counter *counter;
1301 if (!ctx->nr_counters)
1304 spin_lock(&ctx->lock);
1306 * Rotate the first entry last (works just fine for group counters too):
1309 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1310 list_move_tail(&counter->list_entry, &ctx->counter_list);
1315 spin_unlock(&ctx->lock);
1318 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1320 struct perf_cpu_context *cpuctx;
1321 struct perf_counter_context *ctx;
1323 if (!atomic_read(&nr_counters))
1326 cpuctx = &per_cpu(perf_cpu_context, cpu);
1327 ctx = curr->perf_counter_ctxp;
1329 perf_ctx_adjust_freq(&cpuctx->ctx);
1331 perf_ctx_adjust_freq(ctx);
1333 perf_counter_cpu_sched_out(cpuctx);
1335 __perf_counter_task_sched_out(ctx);
1337 rotate_ctx(&cpuctx->ctx);
1341 perf_counter_cpu_sched_in(cpuctx, cpu);
1343 perf_counter_task_sched_in(curr, cpu);
1347 * Cross CPU call to read the hardware counter
1349 static void __read(void *info)
1351 struct perf_counter *counter = info;
1352 struct perf_counter_context *ctx = counter->ctx;
1353 unsigned long flags;
1355 local_irq_save(flags);
1357 update_context_time(ctx);
1358 counter->pmu->read(counter);
1359 update_counter_times(counter);
1360 local_irq_restore(flags);
1363 static u64 perf_counter_read(struct perf_counter *counter)
1366 * If counter is enabled and currently active on a CPU, update the
1367 * value in the counter structure:
1369 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1370 smp_call_function_single(counter->oncpu,
1371 __read, counter, 1);
1372 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1373 update_counter_times(counter);
1376 return atomic64_read(&counter->count);
1380 * Initialize the perf_counter context in a task_struct:
1383 __perf_counter_init_context(struct perf_counter_context *ctx,
1384 struct task_struct *task)
1386 memset(ctx, 0, sizeof(*ctx));
1387 spin_lock_init(&ctx->lock);
1388 mutex_init(&ctx->mutex);
1389 INIT_LIST_HEAD(&ctx->counter_list);
1390 INIT_LIST_HEAD(&ctx->event_list);
1391 atomic_set(&ctx->refcount, 1);
1395 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1397 struct perf_counter_context *parent_ctx;
1398 struct perf_counter_context *ctx;
1399 struct perf_cpu_context *cpuctx;
1400 struct task_struct *task;
1401 unsigned long flags;
1405 * If cpu is not a wildcard then this is a percpu counter:
1408 /* Must be root to operate on a CPU counter: */
1409 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1410 return ERR_PTR(-EACCES);
1412 if (cpu < 0 || cpu > num_possible_cpus())
1413 return ERR_PTR(-EINVAL);
1416 * We could be clever and allow to attach a counter to an
1417 * offline CPU and activate it when the CPU comes up, but
1420 if (!cpu_isset(cpu, cpu_online_map))
1421 return ERR_PTR(-ENODEV);
1423 cpuctx = &per_cpu(perf_cpu_context, cpu);
1434 task = find_task_by_vpid(pid);
1436 get_task_struct(task);
1440 return ERR_PTR(-ESRCH);
1443 * Can't attach counters to a dying task.
1446 if (task->flags & PF_EXITING)
1449 /* Reuse ptrace permission checks for now. */
1451 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1455 ctx = perf_lock_task_context(task, &flags);
1457 parent_ctx = ctx->parent_ctx;
1459 put_ctx(parent_ctx);
1460 ctx->parent_ctx = NULL; /* no longer a clone */
1463 * Get an extra reference before dropping the lock so that
1464 * this context won't get freed if the task exits.
1467 spin_unlock_irqrestore(&ctx->lock, flags);
1471 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1475 __perf_counter_init_context(ctx, task);
1477 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1479 * We raced with some other task; use
1480 * the context they set.
1485 get_task_struct(task);
1488 put_task_struct(task);
1492 put_task_struct(task);
1493 return ERR_PTR(err);
1496 static void free_counter_rcu(struct rcu_head *head)
1498 struct perf_counter *counter;
1500 counter = container_of(head, struct perf_counter, rcu_head);
1502 put_pid_ns(counter->ns);
1506 static void perf_pending_sync(struct perf_counter *counter);
1508 static void free_counter(struct perf_counter *counter)
1510 perf_pending_sync(counter);
1512 atomic_dec(&nr_counters);
1513 if (counter->attr.mmap)
1514 atomic_dec(&nr_mmap_counters);
1515 if (counter->attr.comm)
1516 atomic_dec(&nr_comm_counters);
1518 if (counter->destroy)
1519 counter->destroy(counter);
1521 put_ctx(counter->ctx);
1522 call_rcu(&counter->rcu_head, free_counter_rcu);
1526 * Called when the last reference to the file is gone.
1528 static int perf_release(struct inode *inode, struct file *file)
1530 struct perf_counter *counter = file->private_data;
1531 struct perf_counter_context *ctx = counter->ctx;
1533 file->private_data = NULL;
1535 WARN_ON_ONCE(ctx->parent_ctx);
1536 mutex_lock(&ctx->mutex);
1537 perf_counter_remove_from_context(counter);
1538 mutex_unlock(&ctx->mutex);
1540 mutex_lock(&counter->owner->perf_counter_mutex);
1541 list_del_init(&counter->owner_entry);
1542 mutex_unlock(&counter->owner->perf_counter_mutex);
1543 put_task_struct(counter->owner);
1545 free_counter(counter);
1551 * Read the performance counter - simple non blocking version for now
1554 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1560 * Return end-of-file for a read on a counter that is in
1561 * error state (i.e. because it was pinned but it couldn't be
1562 * scheduled on to the CPU at some point).
1564 if (counter->state == PERF_COUNTER_STATE_ERROR)
1567 WARN_ON_ONCE(counter->ctx->parent_ctx);
1568 mutex_lock(&counter->child_mutex);
1569 values[0] = perf_counter_read(counter);
1571 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1572 values[n++] = counter->total_time_enabled +
1573 atomic64_read(&counter->child_total_time_enabled);
1574 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1575 values[n++] = counter->total_time_running +
1576 atomic64_read(&counter->child_total_time_running);
1577 if (counter->attr.read_format & PERF_FORMAT_ID)
1578 values[n++] = counter->id;
1579 mutex_unlock(&counter->child_mutex);
1581 if (count < n * sizeof(u64))
1583 count = n * sizeof(u64);
1585 if (copy_to_user(buf, values, count))
1592 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1594 struct perf_counter *counter = file->private_data;
1596 return perf_read_hw(counter, buf, count);
1599 static unsigned int perf_poll(struct file *file, poll_table *wait)
1601 struct perf_counter *counter = file->private_data;
1602 struct perf_mmap_data *data;
1603 unsigned int events = POLL_HUP;
1606 data = rcu_dereference(counter->data);
1608 events = atomic_xchg(&data->poll, 0);
1611 poll_wait(file, &counter->waitq, wait);
1616 static void perf_counter_reset(struct perf_counter *counter)
1618 (void)perf_counter_read(counter);
1619 atomic64_set(&counter->count, 0);
1620 perf_counter_update_userpage(counter);
1624 * Holding the top-level counter's child_mutex means that any
1625 * descendant process that has inherited this counter will block
1626 * in sync_child_counter if it goes to exit, thus satisfying the
1627 * task existence requirements of perf_counter_enable/disable.
1629 static void perf_counter_for_each_child(struct perf_counter *counter,
1630 void (*func)(struct perf_counter *))
1632 struct perf_counter *child;
1634 WARN_ON_ONCE(counter->ctx->parent_ctx);
1635 mutex_lock(&counter->child_mutex);
1637 list_for_each_entry(child, &counter->child_list, child_list)
1639 mutex_unlock(&counter->child_mutex);
1642 static void perf_counter_for_each(struct perf_counter *counter,
1643 void (*func)(struct perf_counter *))
1645 struct perf_counter_context *ctx = counter->ctx;
1646 struct perf_counter *sibling;
1648 WARN_ON_ONCE(ctx->parent_ctx);
1649 mutex_lock(&ctx->mutex);
1650 counter = counter->group_leader;
1652 perf_counter_for_each_child(counter, func);
1654 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1655 perf_counter_for_each_child(counter, func);
1656 mutex_unlock(&ctx->mutex);
1659 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1661 struct perf_counter_context *ctx = counter->ctx;
1666 if (!counter->attr.sample_period)
1669 size = copy_from_user(&value, arg, sizeof(value));
1670 if (size != sizeof(value))
1676 spin_lock_irq(&ctx->lock);
1677 if (counter->attr.freq) {
1678 if (value > sysctl_perf_counter_sample_rate) {
1683 counter->attr.sample_freq = value;
1685 perf_log_period(counter, value);
1687 counter->attr.sample_period = value;
1688 counter->hw.sample_period = value;
1691 spin_unlock_irq(&ctx->lock);
1696 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1698 struct perf_counter *counter = file->private_data;
1699 void (*func)(struct perf_counter *);
1703 case PERF_COUNTER_IOC_ENABLE:
1704 func = perf_counter_enable;
1706 case PERF_COUNTER_IOC_DISABLE:
1707 func = perf_counter_disable;
1709 case PERF_COUNTER_IOC_RESET:
1710 func = perf_counter_reset;
1713 case PERF_COUNTER_IOC_REFRESH:
1714 return perf_counter_refresh(counter, arg);
1716 case PERF_COUNTER_IOC_PERIOD:
1717 return perf_counter_period(counter, (u64 __user *)arg);
1723 if (flags & PERF_IOC_FLAG_GROUP)
1724 perf_counter_for_each(counter, func);
1726 perf_counter_for_each_child(counter, func);
1731 int perf_counter_task_enable(void)
1733 struct perf_counter *counter;
1735 mutex_lock(¤t->perf_counter_mutex);
1736 list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry)
1737 perf_counter_for_each_child(counter, perf_counter_enable);
1738 mutex_unlock(¤t->perf_counter_mutex);
1743 int perf_counter_task_disable(void)
1745 struct perf_counter *counter;
1747 mutex_lock(¤t->perf_counter_mutex);
1748 list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry)
1749 perf_counter_for_each_child(counter, perf_counter_disable);
1750 mutex_unlock(¤t->perf_counter_mutex);
1756 * Callers need to ensure there can be no nesting of this function, otherwise
1757 * the seqlock logic goes bad. We can not serialize this because the arch
1758 * code calls this from NMI context.
1760 void perf_counter_update_userpage(struct perf_counter *counter)
1762 struct perf_counter_mmap_page *userpg;
1763 struct perf_mmap_data *data;
1766 data = rcu_dereference(counter->data);
1770 userpg = data->user_page;
1773 * Disable preemption so as to not let the corresponding user-space
1774 * spin too long if we get preempted.
1779 userpg->index = counter->hw.idx;
1780 userpg->offset = atomic64_read(&counter->count);
1781 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1782 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1791 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1793 struct perf_counter *counter = vma->vm_file->private_data;
1794 struct perf_mmap_data *data;
1795 int ret = VM_FAULT_SIGBUS;
1798 data = rcu_dereference(counter->data);
1802 if (vmf->pgoff == 0) {
1803 vmf->page = virt_to_page(data->user_page);
1805 int nr = vmf->pgoff - 1;
1807 if ((unsigned)nr > data->nr_pages)
1810 vmf->page = virt_to_page(data->data_pages[nr]);
1812 get_page(vmf->page);
1820 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1822 struct perf_mmap_data *data;
1826 WARN_ON(atomic_read(&counter->mmap_count));
1828 size = sizeof(struct perf_mmap_data);
1829 size += nr_pages * sizeof(void *);
1831 data = kzalloc(size, GFP_KERNEL);
1835 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1836 if (!data->user_page)
1837 goto fail_user_page;
1839 for (i = 0; i < nr_pages; i++) {
1840 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1841 if (!data->data_pages[i])
1842 goto fail_data_pages;
1845 data->nr_pages = nr_pages;
1846 atomic_set(&data->lock, -1);
1848 rcu_assign_pointer(counter->data, data);
1853 for (i--; i >= 0; i--)
1854 free_page((unsigned long)data->data_pages[i]);
1856 free_page((unsigned long)data->user_page);
1865 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1867 struct perf_mmap_data *data;
1870 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1872 free_page((unsigned long)data->user_page);
1873 for (i = 0; i < data->nr_pages; i++)
1874 free_page((unsigned long)data->data_pages[i]);
1878 static void perf_mmap_data_free(struct perf_counter *counter)
1880 struct perf_mmap_data *data = counter->data;
1882 WARN_ON(atomic_read(&counter->mmap_count));
1884 rcu_assign_pointer(counter->data, NULL);
1885 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1888 static void perf_mmap_open(struct vm_area_struct *vma)
1890 struct perf_counter *counter = vma->vm_file->private_data;
1892 atomic_inc(&counter->mmap_count);
1895 static void perf_mmap_close(struct vm_area_struct *vma)
1897 struct perf_counter *counter = vma->vm_file->private_data;
1899 WARN_ON_ONCE(counter->ctx->parent_ctx);
1900 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1901 struct user_struct *user = current_user();
1903 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1904 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1905 perf_mmap_data_free(counter);
1906 mutex_unlock(&counter->mmap_mutex);
1910 static struct vm_operations_struct perf_mmap_vmops = {
1911 .open = perf_mmap_open,
1912 .close = perf_mmap_close,
1913 .fault = perf_mmap_fault,
1916 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1918 struct perf_counter *counter = file->private_data;
1919 unsigned long user_locked, user_lock_limit;
1920 struct user_struct *user = current_user();
1921 unsigned long locked, lock_limit;
1922 unsigned long vma_size;
1923 unsigned long nr_pages;
1924 long user_extra, extra;
1927 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1930 vma_size = vma->vm_end - vma->vm_start;
1931 nr_pages = (vma_size / PAGE_SIZE) - 1;
1934 * If we have data pages ensure they're a power-of-two number, so we
1935 * can do bitmasks instead of modulo.
1937 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1940 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1943 if (vma->vm_pgoff != 0)
1946 WARN_ON_ONCE(counter->ctx->parent_ctx);
1947 mutex_lock(&counter->mmap_mutex);
1948 if (atomic_inc_not_zero(&counter->mmap_count)) {
1949 if (nr_pages != counter->data->nr_pages)
1954 user_extra = nr_pages + 1;
1955 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1958 * Increase the limit linearly with more CPUs:
1960 user_lock_limit *= num_online_cpus();
1962 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1965 if (user_locked > user_lock_limit)
1966 extra = user_locked - user_lock_limit;
1968 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1969 lock_limit >>= PAGE_SHIFT;
1970 locked = vma->vm_mm->locked_vm + extra;
1972 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1977 WARN_ON(counter->data);
1978 ret = perf_mmap_data_alloc(counter, nr_pages);
1982 atomic_set(&counter->mmap_count, 1);
1983 atomic_long_add(user_extra, &user->locked_vm);
1984 vma->vm_mm->locked_vm += extra;
1985 counter->data->nr_locked = extra;
1987 mutex_unlock(&counter->mmap_mutex);
1989 vma->vm_flags &= ~VM_MAYWRITE;
1990 vma->vm_flags |= VM_RESERVED;
1991 vma->vm_ops = &perf_mmap_vmops;
1996 static int perf_fasync(int fd, struct file *filp, int on)
1998 struct inode *inode = filp->f_path.dentry->d_inode;
1999 struct perf_counter *counter = filp->private_data;
2002 mutex_lock(&inode->i_mutex);
2003 retval = fasync_helper(fd, filp, on, &counter->fasync);
2004 mutex_unlock(&inode->i_mutex);
2012 static const struct file_operations perf_fops = {
2013 .release = perf_release,
2016 .unlocked_ioctl = perf_ioctl,
2017 .compat_ioctl = perf_ioctl,
2019 .fasync = perf_fasync,
2023 * Perf counter wakeup
2025 * If there's data, ensure we set the poll() state and publish everything
2026 * to user-space before waking everybody up.
2029 void perf_counter_wakeup(struct perf_counter *counter)
2031 wake_up_all(&counter->waitq);
2033 if (counter->pending_kill) {
2034 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2035 counter->pending_kill = 0;
2042 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2044 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2045 * single linked list and use cmpxchg() to add entries lockless.
2048 static void perf_pending_counter(struct perf_pending_entry *entry)
2050 struct perf_counter *counter = container_of(entry,
2051 struct perf_counter, pending);
2053 if (counter->pending_disable) {
2054 counter->pending_disable = 0;
2055 perf_counter_disable(counter);
2058 if (counter->pending_wakeup) {
2059 counter->pending_wakeup = 0;
2060 perf_counter_wakeup(counter);
2064 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2066 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2070 static void perf_pending_queue(struct perf_pending_entry *entry,
2071 void (*func)(struct perf_pending_entry *))
2073 struct perf_pending_entry **head;
2075 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2080 head = &get_cpu_var(perf_pending_head);
2083 entry->next = *head;
2084 } while (cmpxchg(head, entry->next, entry) != entry->next);
2086 set_perf_counter_pending();
2088 put_cpu_var(perf_pending_head);
2091 static int __perf_pending_run(void)
2093 struct perf_pending_entry *list;
2096 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2097 while (list != PENDING_TAIL) {
2098 void (*func)(struct perf_pending_entry *);
2099 struct perf_pending_entry *entry = list;
2106 * Ensure we observe the unqueue before we issue the wakeup,
2107 * so that we won't be waiting forever.
2108 * -- see perf_not_pending().
2119 static inline int perf_not_pending(struct perf_counter *counter)
2122 * If we flush on whatever cpu we run, there is a chance we don't
2126 __perf_pending_run();
2130 * Ensure we see the proper queue state before going to sleep
2131 * so that we do not miss the wakeup. -- see perf_pending_handle()
2134 return counter->pending.next == NULL;
2137 static void perf_pending_sync(struct perf_counter *counter)
2139 wait_event(counter->waitq, perf_not_pending(counter));
2142 void perf_counter_do_pending(void)
2144 __perf_pending_run();
2148 * Callchain support -- arch specific
2151 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2160 struct perf_output_handle {
2161 struct perf_counter *counter;
2162 struct perf_mmap_data *data;
2164 unsigned long offset;
2168 unsigned long flags;
2171 static void perf_output_wakeup(struct perf_output_handle *handle)
2173 atomic_set(&handle->data->poll, POLL_IN);
2176 handle->counter->pending_wakeup = 1;
2177 perf_pending_queue(&handle->counter->pending,
2178 perf_pending_counter);
2180 perf_counter_wakeup(handle->counter);
2184 * Curious locking construct.
2186 * We need to ensure a later event doesn't publish a head when a former
2187 * event isn't done writing. However since we need to deal with NMIs we
2188 * cannot fully serialize things.
2190 * What we do is serialize between CPUs so we only have to deal with NMI
2191 * nesting on a single CPU.
2193 * We only publish the head (and generate a wakeup) when the outer-most
2196 static void perf_output_lock(struct perf_output_handle *handle)
2198 struct perf_mmap_data *data = handle->data;
2203 local_irq_save(handle->flags);
2204 cpu = smp_processor_id();
2206 if (in_nmi() && atomic_read(&data->lock) == cpu)
2209 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2215 static void perf_output_unlock(struct perf_output_handle *handle)
2217 struct perf_mmap_data *data = handle->data;
2221 data->done_head = data->head;
2223 if (!handle->locked)
2228 * The xchg implies a full barrier that ensures all writes are done
2229 * before we publish the new head, matched by a rmb() in userspace when
2230 * reading this position.
2232 while ((head = atomic_long_xchg(&data->done_head, 0)))
2233 data->user_page->data_head = head;
2236 * NMI can happen here, which means we can miss a done_head update.
2239 cpu = atomic_xchg(&data->lock, -1);
2240 WARN_ON_ONCE(cpu != smp_processor_id());
2243 * Therefore we have to validate we did not indeed do so.
2245 if (unlikely(atomic_long_read(&data->done_head))) {
2247 * Since we had it locked, we can lock it again.
2249 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2255 if (atomic_xchg(&data->wakeup, 0))
2256 perf_output_wakeup(handle);
2258 local_irq_restore(handle->flags);
2261 static int perf_output_begin(struct perf_output_handle *handle,
2262 struct perf_counter *counter, unsigned int size,
2263 int nmi, int overflow)
2265 struct perf_mmap_data *data;
2266 unsigned int offset, head;
2269 * For inherited counters we send all the output towards the parent.
2271 if (counter->parent)
2272 counter = counter->parent;
2275 data = rcu_dereference(counter->data);
2279 handle->data = data;
2280 handle->counter = counter;
2282 handle->overflow = overflow;
2284 if (!data->nr_pages)
2287 perf_output_lock(handle);
2290 offset = head = atomic_long_read(&data->head);
2292 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2294 handle->offset = offset;
2295 handle->head = head;
2297 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2298 atomic_set(&data->wakeup, 1);
2303 perf_output_wakeup(handle);
2310 static void perf_output_copy(struct perf_output_handle *handle,
2311 const void *buf, unsigned int len)
2313 unsigned int pages_mask;
2314 unsigned int offset;
2318 offset = handle->offset;
2319 pages_mask = handle->data->nr_pages - 1;
2320 pages = handle->data->data_pages;
2323 unsigned int page_offset;
2326 nr = (offset >> PAGE_SHIFT) & pages_mask;
2327 page_offset = offset & (PAGE_SIZE - 1);
2328 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2330 memcpy(pages[nr] + page_offset, buf, size);
2337 handle->offset = offset;
2340 * Check we didn't copy past our reservation window, taking the
2341 * possible unsigned int wrap into account.
2343 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2346 #define perf_output_put(handle, x) \
2347 perf_output_copy((handle), &(x), sizeof(x))
2349 static void perf_output_end(struct perf_output_handle *handle)
2351 struct perf_counter *counter = handle->counter;
2352 struct perf_mmap_data *data = handle->data;
2354 int wakeup_events = counter->attr.wakeup_events;
2356 if (handle->overflow && wakeup_events) {
2357 int events = atomic_inc_return(&data->events);
2358 if (events >= wakeup_events) {
2359 atomic_sub(wakeup_events, &data->events);
2360 atomic_set(&data->wakeup, 1);
2364 perf_output_unlock(handle);
2368 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2371 * only top level counters have the pid namespace they were created in
2373 if (counter->parent)
2374 counter = counter->parent;
2376 return task_tgid_nr_ns(p, counter->ns);
2379 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2382 * only top level counters have the pid namespace they were created in
2384 if (counter->parent)
2385 counter = counter->parent;
2387 return task_pid_nr_ns(p, counter->ns);
2390 static void perf_counter_output(struct perf_counter *counter, int nmi,
2391 struct perf_sample_data *data)
2394 u64 sample_type = counter->attr.sample_type;
2395 struct perf_output_handle handle;
2396 struct perf_event_header header;
2405 struct perf_callchain_entry *callchain = NULL;
2406 int callchain_size = 0;
2413 header.size = sizeof(header);
2415 header.misc = PERF_EVENT_MISC_OVERFLOW;
2416 header.misc |= perf_misc_flags(data->regs);
2418 if (sample_type & PERF_SAMPLE_IP) {
2419 ip = perf_instruction_pointer(data->regs);
2420 header.type |= PERF_SAMPLE_IP;
2421 header.size += sizeof(ip);
2424 if (sample_type & PERF_SAMPLE_TID) {
2425 /* namespace issues */
2426 tid_entry.pid = perf_counter_pid(counter, current);
2427 tid_entry.tid = perf_counter_tid(counter, current);
2429 header.type |= PERF_SAMPLE_TID;
2430 header.size += sizeof(tid_entry);
2433 if (sample_type & PERF_SAMPLE_TIME) {
2435 * Maybe do better on x86 and provide cpu_clock_nmi()
2437 time = sched_clock();
2439 header.type |= PERF_SAMPLE_TIME;
2440 header.size += sizeof(u64);
2443 if (sample_type & PERF_SAMPLE_ADDR) {
2444 header.type |= PERF_SAMPLE_ADDR;
2445 header.size += sizeof(u64);
2448 if (sample_type & PERF_SAMPLE_ID) {
2449 header.type |= PERF_SAMPLE_ID;
2450 header.size += sizeof(u64);
2453 if (sample_type & PERF_SAMPLE_CPU) {
2454 header.type |= PERF_SAMPLE_CPU;
2455 header.size += sizeof(cpu_entry);
2457 cpu_entry.cpu = raw_smp_processor_id();
2460 if (sample_type & PERF_SAMPLE_PERIOD) {
2461 header.type |= PERF_SAMPLE_PERIOD;
2462 header.size += sizeof(u64);
2465 if (sample_type & PERF_SAMPLE_GROUP) {
2466 header.type |= PERF_SAMPLE_GROUP;
2467 header.size += sizeof(u64) +
2468 counter->nr_siblings * sizeof(group_entry);
2471 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2472 callchain = perf_callchain(data->regs);
2475 callchain_size = (1 + callchain->nr) * sizeof(u64);
2477 header.type |= PERF_SAMPLE_CALLCHAIN;
2478 header.size += callchain_size;
2482 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2486 perf_output_put(&handle, header);
2488 if (sample_type & PERF_SAMPLE_IP)
2489 perf_output_put(&handle, ip);
2491 if (sample_type & PERF_SAMPLE_TID)
2492 perf_output_put(&handle, tid_entry);
2494 if (sample_type & PERF_SAMPLE_TIME)
2495 perf_output_put(&handle, time);
2497 if (sample_type & PERF_SAMPLE_ADDR)
2498 perf_output_put(&handle, data->addr);
2500 if (sample_type & PERF_SAMPLE_ID)
2501 perf_output_put(&handle, counter->id);
2503 if (sample_type & PERF_SAMPLE_CPU)
2504 perf_output_put(&handle, cpu_entry);
2506 if (sample_type & PERF_SAMPLE_PERIOD)
2507 perf_output_put(&handle, data->period);
2510 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2512 if (sample_type & PERF_SAMPLE_GROUP) {
2513 struct perf_counter *leader, *sub;
2514 u64 nr = counter->nr_siblings;
2516 perf_output_put(&handle, nr);
2518 leader = counter->group_leader;
2519 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2521 sub->pmu->read(sub);
2523 group_entry.id = sub->id;
2524 group_entry.counter = atomic64_read(&sub->count);
2526 perf_output_put(&handle, group_entry);
2531 perf_output_copy(&handle, callchain, callchain_size);
2533 perf_output_end(&handle);
2540 struct perf_fork_event {
2541 struct task_struct *task;
2544 struct perf_event_header header;
2551 static void perf_counter_fork_output(struct perf_counter *counter,
2552 struct perf_fork_event *fork_event)
2554 struct perf_output_handle handle;
2555 int size = fork_event->event.header.size;
2556 struct task_struct *task = fork_event->task;
2557 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2562 fork_event->event.pid = perf_counter_pid(counter, task);
2563 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2565 perf_output_put(&handle, fork_event->event);
2566 perf_output_end(&handle);
2569 static int perf_counter_fork_match(struct perf_counter *counter)
2571 if (counter->attr.comm || counter->attr.mmap)
2577 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2578 struct perf_fork_event *fork_event)
2580 struct perf_counter *counter;
2582 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2586 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2587 if (perf_counter_fork_match(counter))
2588 perf_counter_fork_output(counter, fork_event);
2593 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2595 struct perf_cpu_context *cpuctx;
2596 struct perf_counter_context *ctx;
2598 cpuctx = &get_cpu_var(perf_cpu_context);
2599 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2600 put_cpu_var(perf_cpu_context);
2604 * doesn't really matter which of the child contexts the
2605 * events ends up in.
2607 ctx = rcu_dereference(current->perf_counter_ctxp);
2609 perf_counter_fork_ctx(ctx, fork_event);
2613 void perf_counter_fork(struct task_struct *task)
2615 struct perf_fork_event fork_event;
2617 if (!atomic_read(&nr_comm_counters) &&
2618 !atomic_read(&nr_mmap_counters))
2621 fork_event = (struct perf_fork_event){
2625 .type = PERF_EVENT_FORK,
2626 .size = sizeof(fork_event.event),
2631 perf_counter_fork_event(&fork_event);
2638 struct perf_comm_event {
2639 struct task_struct *task;
2644 struct perf_event_header header;
2651 static void perf_counter_comm_output(struct perf_counter *counter,
2652 struct perf_comm_event *comm_event)
2654 struct perf_output_handle handle;
2655 int size = comm_event->event.header.size;
2656 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2661 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2662 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2664 perf_output_put(&handle, comm_event->event);
2665 perf_output_copy(&handle, comm_event->comm,
2666 comm_event->comm_size);
2667 perf_output_end(&handle);
2670 static int perf_counter_comm_match(struct perf_counter *counter)
2672 if (counter->attr.comm)
2678 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2679 struct perf_comm_event *comm_event)
2681 struct perf_counter *counter;
2683 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2687 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2688 if (perf_counter_comm_match(counter))
2689 perf_counter_comm_output(counter, comm_event);
2694 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2696 struct perf_cpu_context *cpuctx;
2697 struct perf_counter_context *ctx;
2699 char *comm = comm_event->task->comm;
2701 size = ALIGN(strlen(comm)+1, sizeof(u64));
2703 comm_event->comm = comm;
2704 comm_event->comm_size = size;
2706 comm_event->event.header.size = sizeof(comm_event->event) + size;
2708 cpuctx = &get_cpu_var(perf_cpu_context);
2709 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2710 put_cpu_var(perf_cpu_context);
2714 * doesn't really matter which of the child contexts the
2715 * events ends up in.
2717 ctx = rcu_dereference(current->perf_counter_ctxp);
2719 perf_counter_comm_ctx(ctx, comm_event);
2723 void perf_counter_comm(struct task_struct *task)
2725 struct perf_comm_event comm_event;
2727 if (!atomic_read(&nr_comm_counters))
2730 comm_event = (struct perf_comm_event){
2733 .header = { .type = PERF_EVENT_COMM, },
2737 perf_counter_comm_event(&comm_event);
2744 struct perf_mmap_event {
2745 struct vm_area_struct *vma;
2747 const char *file_name;
2751 struct perf_event_header header;
2761 static void perf_counter_mmap_output(struct perf_counter *counter,
2762 struct perf_mmap_event *mmap_event)
2764 struct perf_output_handle handle;
2765 int size = mmap_event->event.header.size;
2766 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2771 mmap_event->event.pid = perf_counter_pid(counter, current);
2772 mmap_event->event.tid = perf_counter_tid(counter, current);
2774 perf_output_put(&handle, mmap_event->event);
2775 perf_output_copy(&handle, mmap_event->file_name,
2776 mmap_event->file_size);
2777 perf_output_end(&handle);
2780 static int perf_counter_mmap_match(struct perf_counter *counter,
2781 struct perf_mmap_event *mmap_event)
2783 if (counter->attr.mmap)
2789 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2790 struct perf_mmap_event *mmap_event)
2792 struct perf_counter *counter;
2794 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2798 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2799 if (perf_counter_mmap_match(counter, mmap_event))
2800 perf_counter_mmap_output(counter, mmap_event);
2805 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2807 struct perf_cpu_context *cpuctx;
2808 struct perf_counter_context *ctx;
2809 struct vm_area_struct *vma = mmap_event->vma;
2810 struct file *file = vma->vm_file;
2817 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2819 name = strncpy(tmp, "//enomem", sizeof(tmp));
2822 name = d_path(&file->f_path, buf, PATH_MAX);
2824 name = strncpy(tmp, "//toolong", sizeof(tmp));
2828 name = arch_vma_name(mmap_event->vma);
2833 name = strncpy(tmp, "[vdso]", sizeof(tmp));
2837 name = strncpy(tmp, "//anon", sizeof(tmp));
2842 size = ALIGN(strlen(name)+1, sizeof(u64));
2844 mmap_event->file_name = name;
2845 mmap_event->file_size = size;
2847 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2849 cpuctx = &get_cpu_var(perf_cpu_context);
2850 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2851 put_cpu_var(perf_cpu_context);
2855 * doesn't really matter which of the child contexts the
2856 * events ends up in.
2858 ctx = rcu_dereference(current->perf_counter_ctxp);
2860 perf_counter_mmap_ctx(ctx, mmap_event);
2866 void __perf_counter_mmap(struct vm_area_struct *vma)
2868 struct perf_mmap_event mmap_event;
2870 if (!atomic_read(&nr_mmap_counters))
2873 mmap_event = (struct perf_mmap_event){
2876 .header = { .type = PERF_EVENT_MMAP, },
2877 .start = vma->vm_start,
2878 .len = vma->vm_end - vma->vm_start,
2879 .pgoff = vma->vm_pgoff,
2883 perf_counter_mmap_event(&mmap_event);
2887 * Log sample_period changes so that analyzing tools can re-normalize the
2892 struct perf_event_header header;
2898 static void perf_log_period(struct perf_counter *counter, u64 period)
2900 struct perf_output_handle handle;
2901 struct freq_event event;
2904 if (counter->hw.sample_period == period)
2907 if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2910 event = (struct freq_event) {
2912 .type = PERF_EVENT_PERIOD,
2914 .size = sizeof(event),
2916 .time = sched_clock(),
2921 ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2925 perf_output_put(&handle, event);
2926 perf_output_end(&handle);
2930 * IRQ throttle logging
2933 static void perf_log_throttle(struct perf_counter *counter, int enable)
2935 struct perf_output_handle handle;
2939 struct perf_event_header header;
2942 } throttle_event = {
2944 .type = PERF_EVENT_THROTTLE + 1,
2946 .size = sizeof(throttle_event),
2948 .time = sched_clock(),
2952 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2956 perf_output_put(&handle, throttle_event);
2957 perf_output_end(&handle);
2961 * Generic counter overflow handling.
2964 int perf_counter_overflow(struct perf_counter *counter, int nmi,
2965 struct perf_sample_data *data)
2967 int events = atomic_read(&counter->event_limit);
2968 int throttle = counter->pmu->unthrottle != NULL;
2969 struct hw_perf_counter *hwc = &counter->hw;
2975 if (hwc->interrupts != MAX_INTERRUPTS) {
2977 if (HZ * hwc->interrupts >
2978 (u64)sysctl_perf_counter_sample_rate) {
2979 hwc->interrupts = MAX_INTERRUPTS;
2980 perf_log_throttle(counter, 0);
2985 * Keep re-disabling counters even though on the previous
2986 * pass we disabled it - just in case we raced with a
2987 * sched-in and the counter got enabled again:
2993 if (counter->attr.freq) {
2994 u64 now = sched_clock();
2995 s64 delta = now - hwc->freq_stamp;
2997 hwc->freq_stamp = now;
2999 if (delta > 0 && delta < TICK_NSEC)
3000 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3004 * XXX event_limit might not quite work as expected on inherited
3008 counter->pending_kill = POLL_IN;
3009 if (events && atomic_dec_and_test(&counter->event_limit)) {
3011 counter->pending_kill = POLL_HUP;
3013 counter->pending_disable = 1;
3014 perf_pending_queue(&counter->pending,
3015 perf_pending_counter);
3017 perf_counter_disable(counter);
3020 perf_counter_output(counter, nmi, data);
3025 * Generic software counter infrastructure
3028 static void perf_swcounter_update(struct perf_counter *counter)
3030 struct hw_perf_counter *hwc = &counter->hw;
3035 prev = atomic64_read(&hwc->prev_count);
3036 now = atomic64_read(&hwc->count);
3037 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3042 atomic64_add(delta, &counter->count);
3043 atomic64_sub(delta, &hwc->period_left);
3046 static void perf_swcounter_set_period(struct perf_counter *counter)
3048 struct hw_perf_counter *hwc = &counter->hw;
3049 s64 left = atomic64_read(&hwc->period_left);
3050 s64 period = hwc->sample_period;
3052 if (unlikely(left <= -period)) {
3054 atomic64_set(&hwc->period_left, left);
3055 hwc->last_period = period;
3058 if (unlikely(left <= 0)) {
3060 atomic64_add(period, &hwc->period_left);
3061 hwc->last_period = period;
3064 atomic64_set(&hwc->prev_count, -left);
3065 atomic64_set(&hwc->count, -left);
3068 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3070 enum hrtimer_restart ret = HRTIMER_RESTART;
3071 struct perf_sample_data data;
3072 struct perf_counter *counter;
3075 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3076 counter->pmu->read(counter);
3079 data.regs = get_irq_regs();
3081 * In case we exclude kernel IPs or are somehow not in interrupt
3082 * context, provide the next best thing, the user IP.
3084 if ((counter->attr.exclude_kernel || !data.regs) &&
3085 !counter->attr.exclude_user)
3086 data.regs = task_pt_regs(current);
3089 if (perf_counter_overflow(counter, 0, &data))
3090 ret = HRTIMER_NORESTART;
3093 period = max_t(u64, 10000, counter->hw.sample_period);
3094 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3099 static void perf_swcounter_overflow(struct perf_counter *counter,
3100 int nmi, struct pt_regs *regs, u64 addr)
3102 struct perf_sample_data data = {
3105 .period = counter->hw.last_period,
3108 perf_swcounter_update(counter);
3109 perf_swcounter_set_period(counter);
3110 if (perf_counter_overflow(counter, nmi, &data))
3111 /* soft-disable the counter */
3116 static int perf_swcounter_is_counting(struct perf_counter *counter)
3118 struct perf_counter_context *ctx;
3119 unsigned long flags;
3122 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3125 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3129 * If the counter is inactive, it could be just because
3130 * its task is scheduled out, or because it's in a group
3131 * which could not go on the PMU. We want to count in
3132 * the first case but not the second. If the context is
3133 * currently active then an inactive software counter must
3134 * be the second case. If it's not currently active then
3135 * we need to know whether the counter was active when the
3136 * context was last active, which we can determine by
3137 * comparing counter->tstamp_stopped with ctx->time.
3139 * We are within an RCU read-side critical section,
3140 * which protects the existence of *ctx.
3143 spin_lock_irqsave(&ctx->lock, flags);
3145 /* Re-check state now we have the lock */
3146 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3147 counter->ctx->is_active ||
3148 counter->tstamp_stopped < ctx->time)
3150 spin_unlock_irqrestore(&ctx->lock, flags);
3154 static int perf_swcounter_match(struct perf_counter *counter,
3155 enum perf_type_id type,
3156 u32 event, struct pt_regs *regs)
3158 if (!perf_swcounter_is_counting(counter))
3161 if (counter->attr.type != type)
3163 if (counter->attr.config != event)
3167 if (counter->attr.exclude_user && user_mode(regs))
3170 if (counter->attr.exclude_kernel && !user_mode(regs))
3177 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3178 int nmi, struct pt_regs *regs, u64 addr)
3180 int neg = atomic64_add_negative(nr, &counter->hw.count);
3182 if (counter->hw.sample_period && !neg && regs)
3183 perf_swcounter_overflow(counter, nmi, regs, addr);
3186 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3187 enum perf_type_id type, u32 event,
3188 u64 nr, int nmi, struct pt_regs *regs,
3191 struct perf_counter *counter;
3193 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3197 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3198 if (perf_swcounter_match(counter, type, event, regs))
3199 perf_swcounter_add(counter, nr, nmi, regs, addr);
3204 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3207 return &cpuctx->recursion[3];
3210 return &cpuctx->recursion[2];
3213 return &cpuctx->recursion[1];
3215 return &cpuctx->recursion[0];
3218 static void __perf_swcounter_event(enum perf_type_id type, u32 event,
3219 u64 nr, int nmi, struct pt_regs *regs,
3222 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3223 int *recursion = perf_swcounter_recursion_context(cpuctx);
3224 struct perf_counter_context *ctx;
3232 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3233 nr, nmi, regs, addr);
3236 * doesn't really matter which of the child contexts the
3237 * events ends up in.
3239 ctx = rcu_dereference(current->perf_counter_ctxp);
3241 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3248 put_cpu_var(perf_cpu_context);
3252 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3254 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3257 static void perf_swcounter_read(struct perf_counter *counter)
3259 perf_swcounter_update(counter);
3262 static int perf_swcounter_enable(struct perf_counter *counter)
3264 perf_swcounter_set_period(counter);
3268 static void perf_swcounter_disable(struct perf_counter *counter)
3270 perf_swcounter_update(counter);
3273 static const struct pmu perf_ops_generic = {
3274 .enable = perf_swcounter_enable,
3275 .disable = perf_swcounter_disable,
3276 .read = perf_swcounter_read,
3280 * Software counter: cpu wall time clock
3283 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3285 int cpu = raw_smp_processor_id();
3289 now = cpu_clock(cpu);
3290 prev = atomic64_read(&counter->hw.prev_count);
3291 atomic64_set(&counter->hw.prev_count, now);
3292 atomic64_add(now - prev, &counter->count);
3295 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3297 struct hw_perf_counter *hwc = &counter->hw;
3298 int cpu = raw_smp_processor_id();
3300 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3301 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3302 hwc->hrtimer.function = perf_swcounter_hrtimer;
3303 if (hwc->sample_period) {
3304 u64 period = max_t(u64, 10000, hwc->sample_period);
3305 __hrtimer_start_range_ns(&hwc->hrtimer,
3306 ns_to_ktime(period), 0,
3307 HRTIMER_MODE_REL, 0);
3313 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3315 if (counter->hw.sample_period)
3316 hrtimer_cancel(&counter->hw.hrtimer);
3317 cpu_clock_perf_counter_update(counter);
3320 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3322 cpu_clock_perf_counter_update(counter);
3325 static const struct pmu perf_ops_cpu_clock = {
3326 .enable = cpu_clock_perf_counter_enable,
3327 .disable = cpu_clock_perf_counter_disable,
3328 .read = cpu_clock_perf_counter_read,
3332 * Software counter: task time clock
3335 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3340 prev = atomic64_xchg(&counter->hw.prev_count, now);
3342 atomic64_add(delta, &counter->count);
3345 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3347 struct hw_perf_counter *hwc = &counter->hw;
3350 now = counter->ctx->time;
3352 atomic64_set(&hwc->prev_count, now);
3353 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3354 hwc->hrtimer.function = perf_swcounter_hrtimer;
3355 if (hwc->sample_period) {
3356 u64 period = max_t(u64, 10000, hwc->sample_period);
3357 __hrtimer_start_range_ns(&hwc->hrtimer,
3358 ns_to_ktime(period), 0,
3359 HRTIMER_MODE_REL, 0);
3365 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3367 if (counter->hw.sample_period)
3368 hrtimer_cancel(&counter->hw.hrtimer);
3369 task_clock_perf_counter_update(counter, counter->ctx->time);
3373 static void task_clock_perf_counter_read(struct perf_counter *counter)
3378 update_context_time(counter->ctx);
3379 time = counter->ctx->time;
3381 u64 now = perf_clock();
3382 u64 delta = now - counter->ctx->timestamp;
3383 time = counter->ctx->time + delta;
3386 task_clock_perf_counter_update(counter, time);
3389 static const struct pmu perf_ops_task_clock = {
3390 .enable = task_clock_perf_counter_enable,
3391 .disable = task_clock_perf_counter_disable,
3392 .read = task_clock_perf_counter_read,
3396 * Software counter: cpu migrations
3398 void perf_counter_task_migration(struct task_struct *task, int cpu)
3400 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3401 struct perf_counter_context *ctx;
3403 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3404 PERF_COUNT_SW_CPU_MIGRATIONS,
3407 ctx = perf_pin_task_context(task);
3409 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3410 PERF_COUNT_SW_CPU_MIGRATIONS,
3412 perf_unpin_context(ctx);
3416 #ifdef CONFIG_EVENT_PROFILE
3417 void perf_tpcounter_event(int event_id)
3419 struct pt_regs *regs = get_irq_regs();
3422 regs = task_pt_regs(current);
3424 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3426 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3428 extern int ftrace_profile_enable(int);
3429 extern void ftrace_profile_disable(int);
3431 static void tp_perf_counter_destroy(struct perf_counter *counter)
3433 ftrace_profile_disable(perf_event_id(&counter->attr));
3436 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3438 int event_id = perf_event_id(&counter->attr);
3441 ret = ftrace_profile_enable(event_id);
3445 counter->destroy = tp_perf_counter_destroy;
3447 return &perf_ops_generic;
3450 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3456 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3458 const struct pmu *pmu = NULL;
3461 * Software counters (currently) can't in general distinguish
3462 * between user, kernel and hypervisor events.
3463 * However, context switches and cpu migrations are considered
3464 * to be kernel events, and page faults are never hypervisor
3467 switch (counter->attr.config) {
3468 case PERF_COUNT_SW_CPU_CLOCK:
3469 pmu = &perf_ops_cpu_clock;
3472 case PERF_COUNT_SW_TASK_CLOCK:
3474 * If the user instantiates this as a per-cpu counter,
3475 * use the cpu_clock counter instead.
3477 if (counter->ctx->task)
3478 pmu = &perf_ops_task_clock;
3480 pmu = &perf_ops_cpu_clock;
3483 case PERF_COUNT_SW_PAGE_FAULTS:
3484 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3485 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3486 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3487 case PERF_COUNT_SW_CPU_MIGRATIONS:
3488 pmu = &perf_ops_generic;
3496 * Allocate and initialize a counter structure
3498 static struct perf_counter *
3499 perf_counter_alloc(struct perf_counter_attr *attr,
3501 struct perf_counter_context *ctx,
3502 struct perf_counter *group_leader,
3505 const struct pmu *pmu;
3506 struct perf_counter *counter;
3507 struct hw_perf_counter *hwc;
3510 counter = kzalloc(sizeof(*counter), gfpflags);
3512 return ERR_PTR(-ENOMEM);
3515 * Single counters are their own group leaders, with an
3516 * empty sibling list:
3519 group_leader = counter;
3521 mutex_init(&counter->child_mutex);
3522 INIT_LIST_HEAD(&counter->child_list);
3524 INIT_LIST_HEAD(&counter->list_entry);
3525 INIT_LIST_HEAD(&counter->event_entry);
3526 INIT_LIST_HEAD(&counter->sibling_list);
3527 init_waitqueue_head(&counter->waitq);
3529 mutex_init(&counter->mmap_mutex);
3532 counter->attr = *attr;
3533 counter->group_leader = group_leader;
3534 counter->pmu = NULL;
3536 counter->oncpu = -1;
3538 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3539 counter->id = atomic64_inc_return(&perf_counter_id);
3541 counter->state = PERF_COUNTER_STATE_INACTIVE;
3544 counter->state = PERF_COUNTER_STATE_OFF;
3549 hwc->sample_period = attr->sample_period;
3550 if (attr->freq && attr->sample_freq)
3551 hwc->sample_period = 1;
3553 atomic64_set(&hwc->period_left, hwc->sample_period);
3556 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3558 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3561 switch (attr->type) {
3563 case PERF_TYPE_HARDWARE:
3564 case PERF_TYPE_HW_CACHE:
3565 pmu = hw_perf_counter_init(counter);
3568 case PERF_TYPE_SOFTWARE:
3569 pmu = sw_perf_counter_init(counter);
3572 case PERF_TYPE_TRACEPOINT:
3573 pmu = tp_perf_counter_init(counter);
3583 else if (IS_ERR(pmu))
3588 put_pid_ns(counter->ns);
3590 return ERR_PTR(err);
3595 atomic_inc(&nr_counters);
3596 if (counter->attr.mmap)
3597 atomic_inc(&nr_mmap_counters);
3598 if (counter->attr.comm)
3599 atomic_inc(&nr_comm_counters);
3604 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3605 struct perf_counter_attr *attr)
3610 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3614 * zero the full structure, so that a short copy will be nice.
3616 memset(attr, 0, sizeof(*attr));
3618 ret = get_user(size, &uattr->size);
3622 if (size > PAGE_SIZE) /* silly large */
3625 if (!size) /* abi compat */
3626 size = PERF_ATTR_SIZE_VER0;
3628 if (size < PERF_ATTR_SIZE_VER0)
3632 * If we're handed a bigger struct than we know of,
3633 * ensure all the unknown bits are 0.
3635 if (size > sizeof(*attr)) {
3637 unsigned long __user *addr;
3638 unsigned long __user *end;
3640 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3641 sizeof(unsigned long));
3642 end = PTR_ALIGN((void __user *)uattr + size,
3643 sizeof(unsigned long));
3645 for (; addr < end; addr += sizeof(unsigned long)) {
3646 ret = get_user(val, addr);
3654 ret = copy_from_user(attr, uattr, size);
3659 * If the type exists, the corresponding creation will verify
3662 if (attr->type >= PERF_TYPE_MAX)
3665 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3668 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3671 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3678 put_user(sizeof(*attr), &uattr->size);
3684 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3686 * @attr_uptr: event type attributes for monitoring/sampling
3689 * @group_fd: group leader counter fd
3691 SYSCALL_DEFINE5(perf_counter_open,
3692 struct perf_counter_attr __user *, attr_uptr,
3693 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3695 struct perf_counter *counter, *group_leader;
3696 struct perf_counter_attr attr;
3697 struct perf_counter_context *ctx;
3698 struct file *counter_file = NULL;
3699 struct file *group_file = NULL;
3700 int fput_needed = 0;
3701 int fput_needed2 = 0;
3704 /* for future expandability... */
3708 ret = perf_copy_attr(attr_uptr, &attr);
3712 if (!attr.exclude_kernel) {
3713 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3718 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3723 * Get the target context (task or percpu):
3725 ctx = find_get_context(pid, cpu);
3727 return PTR_ERR(ctx);
3730 * Look up the group leader (we will attach this counter to it):
3732 group_leader = NULL;
3733 if (group_fd != -1) {
3735 group_file = fget_light(group_fd, &fput_needed);
3737 goto err_put_context;
3738 if (group_file->f_op != &perf_fops)
3739 goto err_put_context;
3741 group_leader = group_file->private_data;
3743 * Do not allow a recursive hierarchy (this new sibling
3744 * becoming part of another group-sibling):
3746 if (group_leader->group_leader != group_leader)
3747 goto err_put_context;
3749 * Do not allow to attach to a group in a different
3750 * task or CPU context:
3752 if (group_leader->ctx != ctx)
3753 goto err_put_context;
3755 * Only a group leader can be exclusive or pinned
3757 if (attr.exclusive || attr.pinned)
3758 goto err_put_context;
3761 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3763 ret = PTR_ERR(counter);
3764 if (IS_ERR(counter))
3765 goto err_put_context;
3767 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3769 goto err_free_put_context;
3771 counter_file = fget_light(ret, &fput_needed2);
3773 goto err_free_put_context;
3775 counter->filp = counter_file;
3776 WARN_ON_ONCE(ctx->parent_ctx);
3777 mutex_lock(&ctx->mutex);
3778 perf_install_in_context(ctx, counter, cpu);
3780 mutex_unlock(&ctx->mutex);
3782 counter->owner = current;
3783 get_task_struct(current);
3784 mutex_lock(¤t->perf_counter_mutex);
3785 list_add_tail(&counter->owner_entry, ¤t->perf_counter_list);
3786 mutex_unlock(¤t->perf_counter_mutex);
3788 fput_light(counter_file, fput_needed2);
3791 fput_light(group_file, fput_needed);
3795 err_free_put_context:
3805 * inherit a counter from parent task to child task:
3807 static struct perf_counter *
3808 inherit_counter(struct perf_counter *parent_counter,
3809 struct task_struct *parent,
3810 struct perf_counter_context *parent_ctx,
3811 struct task_struct *child,
3812 struct perf_counter *group_leader,
3813 struct perf_counter_context *child_ctx)
3815 struct perf_counter *child_counter;
3818 * Instead of creating recursive hierarchies of counters,
3819 * we link inherited counters back to the original parent,
3820 * which has a filp for sure, which we use as the reference
3823 if (parent_counter->parent)
3824 parent_counter = parent_counter->parent;
3826 child_counter = perf_counter_alloc(&parent_counter->attr,
3827 parent_counter->cpu, child_ctx,
3828 group_leader, GFP_KERNEL);
3829 if (IS_ERR(child_counter))
3830 return child_counter;
3834 * Make the child state follow the state of the parent counter,
3835 * not its attr.disabled bit. We hold the parent's mutex,
3836 * so we won't race with perf_counter_{en, dis}able_family.
3838 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3839 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3841 child_counter->state = PERF_COUNTER_STATE_OFF;
3843 if (parent_counter->attr.freq)
3844 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3847 * Link it up in the child's context:
3849 add_counter_to_ctx(child_counter, child_ctx);
3851 child_counter->parent = parent_counter;
3853 * inherit into child's child as well:
3855 child_counter->attr.inherit = 1;
3858 * Get a reference to the parent filp - we will fput it
3859 * when the child counter exits. This is safe to do because
3860 * we are in the parent and we know that the filp still
3861 * exists and has a nonzero count:
3863 atomic_long_inc(&parent_counter->filp->f_count);
3866 * Link this into the parent counter's child list
3868 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3869 mutex_lock(&parent_counter->child_mutex);
3870 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3871 mutex_unlock(&parent_counter->child_mutex);
3873 return child_counter;
3876 static int inherit_group(struct perf_counter *parent_counter,
3877 struct task_struct *parent,
3878 struct perf_counter_context *parent_ctx,
3879 struct task_struct *child,
3880 struct perf_counter_context *child_ctx)
3882 struct perf_counter *leader;
3883 struct perf_counter *sub;
3884 struct perf_counter *child_ctr;
3886 leader = inherit_counter(parent_counter, parent, parent_ctx,
3887 child, NULL, child_ctx);
3889 return PTR_ERR(leader);
3890 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3891 child_ctr = inherit_counter(sub, parent, parent_ctx,
3892 child, leader, child_ctx);
3893 if (IS_ERR(child_ctr))
3894 return PTR_ERR(child_ctr);
3899 static void sync_child_counter(struct perf_counter *child_counter,
3900 struct perf_counter *parent_counter)
3904 child_val = atomic64_read(&child_counter->count);
3907 * Add back the child's count to the parent's count:
3909 atomic64_add(child_val, &parent_counter->count);
3910 atomic64_add(child_counter->total_time_enabled,
3911 &parent_counter->child_total_time_enabled);
3912 atomic64_add(child_counter->total_time_running,
3913 &parent_counter->child_total_time_running);
3916 * Remove this counter from the parent's list
3918 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3919 mutex_lock(&parent_counter->child_mutex);
3920 list_del_init(&child_counter->child_list);
3921 mutex_unlock(&parent_counter->child_mutex);
3924 * Release the parent counter, if this was the last
3927 fput(parent_counter->filp);
3931 __perf_counter_exit_task(struct perf_counter *child_counter,
3932 struct perf_counter_context *child_ctx)
3934 struct perf_counter *parent_counter;
3936 update_counter_times(child_counter);
3937 perf_counter_remove_from_context(child_counter);
3939 parent_counter = child_counter->parent;
3941 * It can happen that parent exits first, and has counters
3942 * that are still around due to the child reference. These
3943 * counters need to be zapped - but otherwise linger.
3945 if (parent_counter) {
3946 sync_child_counter(child_counter, parent_counter);
3947 free_counter(child_counter);
3952 * When a child task exits, feed back counter values to parent counters.
3954 void perf_counter_exit_task(struct task_struct *child)
3956 struct perf_counter *child_counter, *tmp;
3957 struct perf_counter_context *child_ctx;
3958 unsigned long flags;
3960 if (likely(!child->perf_counter_ctxp))
3963 local_irq_save(flags);
3965 * We can't reschedule here because interrupts are disabled,
3966 * and either child is current or it is a task that can't be
3967 * scheduled, so we are now safe from rescheduling changing
3970 child_ctx = child->perf_counter_ctxp;
3971 __perf_counter_task_sched_out(child_ctx);
3974 * Take the context lock here so that if find_get_context is
3975 * reading child->perf_counter_ctxp, we wait until it has
3976 * incremented the context's refcount before we do put_ctx below.
3978 spin_lock(&child_ctx->lock);
3979 child->perf_counter_ctxp = NULL;
3980 if (child_ctx->parent_ctx) {
3982 * This context is a clone; unclone it so it can't get
3983 * swapped to another process while we're removing all
3984 * the counters from it.
3986 put_ctx(child_ctx->parent_ctx);
3987 child_ctx->parent_ctx = NULL;
3989 spin_unlock(&child_ctx->lock);
3990 local_irq_restore(flags);
3993 * We can recurse on the same lock type through:
3995 * __perf_counter_exit_task()
3996 * sync_child_counter()
3997 * fput(parent_counter->filp)
3999 * mutex_lock(&ctx->mutex)
4001 * But since its the parent context it won't be the same instance.
4003 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4006 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4008 __perf_counter_exit_task(child_counter, child_ctx);
4011 * If the last counter was a group counter, it will have appended all
4012 * its siblings to the list, but we obtained 'tmp' before that which
4013 * will still point to the list head terminating the iteration.
4015 if (!list_empty(&child_ctx->counter_list))
4018 mutex_unlock(&child_ctx->mutex);
4024 * free an unexposed, unused context as created by inheritance by
4025 * init_task below, used by fork() in case of fail.
4027 void perf_counter_free_task(struct task_struct *task)
4029 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4030 struct perf_counter *counter, *tmp;
4035 mutex_lock(&ctx->mutex);
4037 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4038 struct perf_counter *parent = counter->parent;
4040 if (WARN_ON_ONCE(!parent))
4043 mutex_lock(&parent->child_mutex);
4044 list_del_init(&counter->child_list);
4045 mutex_unlock(&parent->child_mutex);
4049 list_del_counter(counter, ctx);
4050 free_counter(counter);
4053 if (!list_empty(&ctx->counter_list))
4056 mutex_unlock(&ctx->mutex);
4062 * Initialize the perf_counter context in task_struct
4064 int perf_counter_init_task(struct task_struct *child)
4066 struct perf_counter_context *child_ctx, *parent_ctx;
4067 struct perf_counter_context *cloned_ctx;
4068 struct perf_counter *counter;
4069 struct task_struct *parent = current;
4070 int inherited_all = 1;
4073 child->perf_counter_ctxp = NULL;
4075 mutex_init(&child->perf_counter_mutex);
4076 INIT_LIST_HEAD(&child->perf_counter_list);
4078 if (likely(!parent->perf_counter_ctxp))
4082 * This is executed from the parent task context, so inherit
4083 * counters that have been marked for cloning.
4084 * First allocate and initialize a context for the child.
4087 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4091 __perf_counter_init_context(child_ctx, child);
4092 child->perf_counter_ctxp = child_ctx;
4093 get_task_struct(child);
4096 * If the parent's context is a clone, pin it so it won't get
4099 parent_ctx = perf_pin_task_context(parent);
4102 * No need to check if parent_ctx != NULL here; since we saw
4103 * it non-NULL earlier, the only reason for it to become NULL
4104 * is if we exit, and since we're currently in the middle of
4105 * a fork we can't be exiting at the same time.
4109 * Lock the parent list. No need to lock the child - not PID
4110 * hashed yet and not running, so nobody can access it.
4112 mutex_lock(&parent_ctx->mutex);
4115 * We dont have to disable NMIs - we are only looking at
4116 * the list, not manipulating it:
4118 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4119 if (counter != counter->group_leader)
4122 if (!counter->attr.inherit) {
4127 ret = inherit_group(counter, parent, parent_ctx,
4135 if (inherited_all) {
4137 * Mark the child context as a clone of the parent
4138 * context, or of whatever the parent is a clone of.
4139 * Note that if the parent is a clone, it could get
4140 * uncloned at any point, but that doesn't matter
4141 * because the list of counters and the generation
4142 * count can't have changed since we took the mutex.
4144 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4146 child_ctx->parent_ctx = cloned_ctx;
4147 child_ctx->parent_gen = parent_ctx->parent_gen;
4149 child_ctx->parent_ctx = parent_ctx;
4150 child_ctx->parent_gen = parent_ctx->generation;
4152 get_ctx(child_ctx->parent_ctx);
4155 mutex_unlock(&parent_ctx->mutex);
4157 perf_unpin_context(parent_ctx);
4162 static void __cpuinit perf_counter_init_cpu(int cpu)
4164 struct perf_cpu_context *cpuctx;
4166 cpuctx = &per_cpu(perf_cpu_context, cpu);
4167 __perf_counter_init_context(&cpuctx->ctx, NULL);
4169 spin_lock(&perf_resource_lock);
4170 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4171 spin_unlock(&perf_resource_lock);
4173 hw_perf_counter_setup(cpu);
4176 #ifdef CONFIG_HOTPLUG_CPU
4177 static void __perf_counter_exit_cpu(void *info)
4179 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4180 struct perf_counter_context *ctx = &cpuctx->ctx;
4181 struct perf_counter *counter, *tmp;
4183 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4184 __perf_counter_remove_from_context(counter);
4186 static void perf_counter_exit_cpu(int cpu)
4188 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4189 struct perf_counter_context *ctx = &cpuctx->ctx;
4191 mutex_lock(&ctx->mutex);
4192 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4193 mutex_unlock(&ctx->mutex);
4196 static inline void perf_counter_exit_cpu(int cpu) { }
4199 static int __cpuinit
4200 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4202 unsigned int cpu = (long)hcpu;
4206 case CPU_UP_PREPARE:
4207 case CPU_UP_PREPARE_FROZEN:
4208 perf_counter_init_cpu(cpu);
4211 case CPU_DOWN_PREPARE:
4212 case CPU_DOWN_PREPARE_FROZEN:
4213 perf_counter_exit_cpu(cpu);
4224 * This has to have a higher priority than migration_notifier in sched.c.
4226 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4227 .notifier_call = perf_cpu_notify,
4231 void __init perf_counter_init(void)
4233 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4234 (void *)(long)smp_processor_id());
4235 register_cpu_notifier(&perf_cpu_nb);
4238 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4240 return sprintf(buf, "%d\n", perf_reserved_percpu);
4244 perf_set_reserve_percpu(struct sysdev_class *class,
4248 struct perf_cpu_context *cpuctx;
4252 err = strict_strtoul(buf, 10, &val);
4255 if (val > perf_max_counters)
4258 spin_lock(&perf_resource_lock);
4259 perf_reserved_percpu = val;
4260 for_each_online_cpu(cpu) {
4261 cpuctx = &per_cpu(perf_cpu_context, cpu);
4262 spin_lock_irq(&cpuctx->ctx.lock);
4263 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4264 perf_max_counters - perf_reserved_percpu);
4265 cpuctx->max_pertask = mpt;
4266 spin_unlock_irq(&cpuctx->ctx.lock);
4268 spin_unlock(&perf_resource_lock);
4273 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4275 return sprintf(buf, "%d\n", perf_overcommit);
4279 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4284 err = strict_strtoul(buf, 10, &val);
4290 spin_lock(&perf_resource_lock);
4291 perf_overcommit = val;
4292 spin_unlock(&perf_resource_lock);
4297 static SYSDEV_CLASS_ATTR(
4300 perf_show_reserve_percpu,
4301 perf_set_reserve_percpu
4304 static SYSDEV_CLASS_ATTR(
4307 perf_show_overcommit,
4311 static struct attribute *perfclass_attrs[] = {
4312 &attr_reserve_percpu.attr,
4313 &attr_overcommit.attr,
4317 static struct attribute_group perfclass_attr_group = {
4318 .attrs = perfclass_attrs,
4319 .name = "perf_counters",
4322 static int __init perf_counter_sysfs_init(void)
4324 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4325 &perfclass_attr_group);
4327 device_initcall(perf_counter_sysfs_init);