2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39 uint32_t read_domains,
40 uint32_t write_domain);
41 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
44 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
49 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
50 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
55 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
56 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57 static int i915_gem_evict_something(struct drm_device *dev);
58 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
59 struct drm_i915_gem_pwrite *args,
60 struct drm_file *file_priv);
62 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
65 drm_i915_private_t *dev_priv = dev->dev_private;
68 (start & (PAGE_SIZE - 1)) != 0 ||
69 (end & (PAGE_SIZE - 1)) != 0) {
73 drm_mm_init(&dev_priv->mm.gtt_space, start,
76 dev->gtt_total = (uint32_t) (end - start);
82 i915_gem_init_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file_priv)
85 struct drm_i915_gem_init *args = data;
88 mutex_lock(&dev->struct_mutex);
89 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90 mutex_unlock(&dev->struct_mutex);
96 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97 struct drm_file *file_priv)
99 struct drm_i915_gem_get_aperture *args = data;
101 if (!(dev->driver->driver_features & DRIVER_GEM))
104 args->aper_size = dev->gtt_total;
105 args->aper_available_size = (args->aper_size -
106 atomic_read(&dev->pin_memory));
113 * Creates a new mm object and returns a handle to it.
116 i915_gem_create_ioctl(struct drm_device *dev, void *data,
117 struct drm_file *file_priv)
119 struct drm_i915_gem_create *args = data;
120 struct drm_gem_object *obj;
123 args->size = roundup(args->size, PAGE_SIZE);
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
138 args->handle = handle;
144 * Reads data from the object referenced by handle.
146 * On error, the contents of *data are undefined.
149 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file_priv)
152 struct drm_i915_gem_pread *args = data;
153 struct drm_gem_object *obj;
154 struct drm_i915_gem_object *obj_priv;
159 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
162 obj_priv = obj->driver_private;
164 /* Bounds check source.
166 * XXX: This could use review for overflow issues...
168 if (args->offset > obj->size || args->size > obj->size ||
169 args->offset + args->size > obj->size) {
170 drm_gem_object_unreference(obj);
174 mutex_lock(&dev->struct_mutex);
176 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
179 drm_gem_object_unreference(obj);
180 mutex_unlock(&dev->struct_mutex);
184 offset = args->offset;
186 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
187 args->size, &offset);
188 if (read != args->size) {
189 drm_gem_object_unreference(obj);
190 mutex_unlock(&dev->struct_mutex);
197 drm_gem_object_unreference(obj);
198 mutex_unlock(&dev->struct_mutex);
203 /* This is the fast write path which cannot handle
204 * page faults in the source data
208 fast_user_write(struct io_mapping *mapping,
209 loff_t page_base, int page_offset,
210 char __user *user_data,
214 unsigned long unwritten;
216 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
217 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
219 io_mapping_unmap_atomic(vaddr_atomic);
225 /* Here's the write path which can sleep for
230 slow_user_write(struct io_mapping *mapping,
231 loff_t page_base, int page_offset,
232 char __user *user_data,
236 unsigned long unwritten;
238 vaddr = io_mapping_map_wc(mapping, page_base);
241 unwritten = __copy_from_user(vaddr + page_offset,
243 io_mapping_unmap(vaddr);
250 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pwrite *args,
252 struct drm_file *file_priv)
254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
255 drm_i915_private_t *dev_priv = dev->dev_private;
257 loff_t offset, page_base;
258 char __user *user_data;
259 int page_offset, page_length;
262 user_data = (char __user *) (uintptr_t) args->data_ptr;
264 if (!access_ok(VERIFY_READ, user_data, remain))
268 mutex_lock(&dev->struct_mutex);
269 ret = i915_gem_object_pin(obj, 0);
271 mutex_unlock(&dev->struct_mutex);
274 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
278 obj_priv = obj->driver_private;
279 offset = obj_priv->gtt_offset + args->offset;
283 /* Operation in this page
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
295 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
296 page_offset, user_data, page_length);
298 /* If we get a fault while copying data, then (presumably) our
299 * source page isn't available. In this case, use the
300 * non-atomic function
303 ret = slow_user_write (dev_priv->mm.gtt_mapping,
304 page_base, page_offset,
305 user_data, page_length);
310 remain -= page_length;
311 user_data += page_length;
312 offset += page_length;
316 i915_gem_object_unpin(obj);
317 mutex_unlock(&dev->struct_mutex);
323 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
324 struct drm_i915_gem_pwrite *args,
325 struct drm_file *file_priv)
331 mutex_lock(&dev->struct_mutex);
333 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
335 mutex_unlock(&dev->struct_mutex);
339 offset = args->offset;
341 written = vfs_write(obj->filp,
342 (char __user *)(uintptr_t) args->data_ptr,
343 args->size, &offset);
344 if (written != args->size) {
345 mutex_unlock(&dev->struct_mutex);
352 mutex_unlock(&dev->struct_mutex);
358 * Writes data to the object referenced by handle.
360 * On error, the contents of the buffer that were to be modified are undefined.
363 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
366 struct drm_i915_gem_pwrite *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
374 obj_priv = obj->driver_private;
376 /* Bounds check destination.
378 * XXX: This could use review for overflow issues...
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
386 /* We can only do the GTT pwrite on untiled buffers, as otherwise
387 * it would end up going through the fenced access, and we'll get
388 * different detiling behavior between reading and writing.
389 * pread/pwrite currently are reading and writing from the CPU
390 * perspective, requiring manual detiling by the client.
392 if (obj_priv->phys_obj)
393 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
394 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
396 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
398 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
402 DRM_INFO("pwrite failed %d\n", ret);
405 drm_gem_object_unreference(obj);
411 * Called when user space prepares to use an object with the CPU, either
412 * through the mmap ioctl's mapping or a GTT mapping.
415 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
416 struct drm_file *file_priv)
418 struct drm_i915_gem_set_domain *args = data;
419 struct drm_gem_object *obj;
420 uint32_t read_domains = args->read_domains;
421 uint32_t write_domain = args->write_domain;
424 if (!(dev->driver->driver_features & DRIVER_GEM))
427 /* Only handle setting domains to types used by the CPU. */
428 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
431 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
434 /* Having something in the write domain implies it's in the read
435 * domain, and only that read domain. Enforce that in the request.
437 if (write_domain != 0 && read_domains != write_domain)
440 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
444 mutex_lock(&dev->struct_mutex);
446 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
447 obj, obj->size, read_domains, write_domain);
449 if (read_domains & I915_GEM_DOMAIN_GTT) {
450 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
452 /* Silently promote "you're not bound, there was nothing to do"
453 * to success, since the client was just asking us to
454 * make sure everything was done.
459 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
462 drm_gem_object_unreference(obj);
463 mutex_unlock(&dev->struct_mutex);
468 * Called when user space has done writes to this buffer
471 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
472 struct drm_file *file_priv)
474 struct drm_i915_gem_sw_finish *args = data;
475 struct drm_gem_object *obj;
476 struct drm_i915_gem_object *obj_priv;
479 if (!(dev->driver->driver_features & DRIVER_GEM))
482 mutex_lock(&dev->struct_mutex);
483 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
485 mutex_unlock(&dev->struct_mutex);
490 DRM_INFO("%s: sw_finish %d (%p %d)\n",
491 __func__, args->handle, obj, obj->size);
493 obj_priv = obj->driver_private;
495 /* Pinned buffers may be scanout, so flush the cache */
496 if (obj_priv->pin_count)
497 i915_gem_object_flush_cpu_write_domain(obj);
499 drm_gem_object_unreference(obj);
500 mutex_unlock(&dev->struct_mutex);
505 * Maps the contents of an object, returning the address it is mapped
508 * While the mapping holds a reference on the contents of the object, it doesn't
509 * imply a ref on the object itself.
512 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file_priv)
515 struct drm_i915_gem_mmap *args = data;
516 struct drm_gem_object *obj;
520 if (!(dev->driver->driver_features & DRIVER_GEM))
523 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
527 offset = args->offset;
529 down_write(¤t->mm->mmap_sem);
530 addr = do_mmap(obj->filp, 0, args->size,
531 PROT_READ | PROT_WRITE, MAP_SHARED,
533 up_write(¤t->mm->mmap_sem);
534 mutex_lock(&dev->struct_mutex);
535 drm_gem_object_unreference(obj);
536 mutex_unlock(&dev->struct_mutex);
537 if (IS_ERR((void *)addr))
540 args->addr_ptr = (uint64_t) addr;
546 * i915_gem_fault - fault a page into the GTT
547 * vma: VMA in question
550 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
551 * from userspace. The fault handler takes care of binding the object to
552 * the GTT (if needed), allocating and programming a fence register (again,
553 * only if needed based on whether the old reg is still valid or the object
554 * is tiled) and inserting a new PTE into the faulting process.
556 * Note that the faulting process may involve evicting existing objects
557 * from the GTT and/or fence registers to make room. So performance may
558 * suffer if the GTT working set is large or there are few fence registers
561 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
563 struct drm_gem_object *obj = vma->vm_private_data;
564 struct drm_device *dev = obj->dev;
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 struct drm_i915_gem_object *obj_priv = obj->driver_private;
570 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
572 /* We don't use vmf->pgoff since that has the fake offset */
573 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
576 /* Now bind it into the GTT if needed */
577 mutex_lock(&dev->struct_mutex);
578 if (!obj_priv->gtt_space) {
579 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
581 mutex_unlock(&dev->struct_mutex);
582 return VM_FAULT_SIGBUS;
584 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
587 /* Need a new fence register? */
588 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
589 obj_priv->tiling_mode != I915_TILING_NONE) {
590 ret = i915_gem_object_get_fence_reg(obj, write);
592 mutex_unlock(&dev->struct_mutex);
593 return VM_FAULT_SIGBUS;
597 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
600 /* Finally, remap it using the new GTT offset */
601 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
603 mutex_unlock(&dev->struct_mutex);
611 DRM_ERROR("can't insert pfn?? fault or busy...\n");
612 return VM_FAULT_SIGBUS;
614 return VM_FAULT_NOPAGE;
619 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
620 * @obj: obj in question
622 * GEM memory mapping works by handing back to userspace a fake mmap offset
623 * it can use in a subsequent mmap(2) call. The DRM core code then looks
624 * up the object based on the offset and sets up the various memory mapping
627 * This routine allocates and attaches a fake offset for @obj.
630 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
632 struct drm_device *dev = obj->dev;
633 struct drm_gem_mm *mm = dev->mm_private;
634 struct drm_i915_gem_object *obj_priv = obj->driver_private;
635 struct drm_map_list *list;
639 /* Set the object up for mmap'ing */
640 list = &obj->map_list;
641 list->map = drm_calloc(1, sizeof(struct drm_map_list),
647 map->type = _DRM_GEM;
648 map->size = obj->size;
651 /* Get a DRM GEM mmap offset allocated... */
652 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
653 obj->size / PAGE_SIZE, 0, 0);
654 if (!list->file_offset_node) {
655 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
660 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
661 obj->size / PAGE_SIZE, 0);
662 if (!list->file_offset_node) {
667 list->hash.key = list->file_offset_node->start;
668 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
669 DRM_ERROR("failed to add to map hash\n");
673 /* By now we should be all set, any drm_mmap request on the offset
674 * below will get to our mmap & fault handler */
675 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
680 drm_mm_put_block(list->file_offset_node);
682 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
688 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
689 * @obj: object to check
691 * Return the required GTT alignment for an object, taking into account
692 * potential fence register mapping if needed.
695 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
697 struct drm_device *dev = obj->dev;
698 struct drm_i915_gem_object *obj_priv = obj->driver_private;
702 * Minimum alignment is 4k (GTT page size), but might be greater
703 * if a fence register is needed for the object.
705 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
709 * Previous chips need to be aligned to the size of the smallest
710 * fence register that can contain the object.
717 for (i = start; i < obj->size; i <<= 1)
724 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
726 * @data: GTT mapping ioctl data
727 * @file_priv: GEM object info
729 * Simply returns the fake offset to userspace so it can mmap it.
730 * The mmap call will end up in drm_gem_mmap(), which will set things
731 * up so we can get faults in the handler above.
733 * The fault handler will take care of binding the object into the GTT
734 * (since it may have been evicted to make room for something), allocating
735 * a fence register, and mapping the appropriate aperture address into
739 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file_priv)
742 struct drm_i915_gem_mmap_gtt *args = data;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 struct drm_gem_object *obj;
745 struct drm_i915_gem_object *obj_priv;
748 if (!(dev->driver->driver_features & DRIVER_GEM))
751 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
755 mutex_lock(&dev->struct_mutex);
757 obj_priv = obj->driver_private;
759 if (!obj_priv->mmap_offset) {
760 ret = i915_gem_create_mmap_offset(obj);
765 args->offset = obj_priv->mmap_offset;
767 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
769 /* Make sure the alignment is correct for fence regs etc */
770 if (obj_priv->agp_mem &&
771 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
772 drm_gem_object_unreference(obj);
773 mutex_unlock(&dev->struct_mutex);
778 * Pull it into the GTT so that we have a page list (makes the
779 * initial fault faster and any subsequent flushing possible).
781 if (!obj_priv->agp_mem) {
782 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
784 drm_gem_object_unreference(obj);
785 mutex_unlock(&dev->struct_mutex);
788 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
791 drm_gem_object_unreference(obj);
792 mutex_unlock(&dev->struct_mutex);
798 i915_gem_object_free_page_list(struct drm_gem_object *obj)
800 struct drm_i915_gem_object *obj_priv = obj->driver_private;
801 int page_count = obj->size / PAGE_SIZE;
804 if (obj_priv->page_list == NULL)
808 for (i = 0; i < page_count; i++)
809 if (obj_priv->page_list[i] != NULL) {
811 set_page_dirty(obj_priv->page_list[i]);
812 mark_page_accessed(obj_priv->page_list[i]);
813 page_cache_release(obj_priv->page_list[i]);
817 drm_free(obj_priv->page_list,
818 page_count * sizeof(struct page *),
820 obj_priv->page_list = NULL;
824 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
826 struct drm_device *dev = obj->dev;
827 drm_i915_private_t *dev_priv = dev->dev_private;
828 struct drm_i915_gem_object *obj_priv = obj->driver_private;
830 /* Add a reference if we're newly entering the active list. */
831 if (!obj_priv->active) {
832 drm_gem_object_reference(obj);
833 obj_priv->active = 1;
835 /* Move from whatever list we were on to the tail of execution. */
836 list_move_tail(&obj_priv->list,
837 &dev_priv->mm.active_list);
838 obj_priv->last_rendering_seqno = seqno;
842 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
844 struct drm_device *dev = obj->dev;
845 drm_i915_private_t *dev_priv = dev->dev_private;
846 struct drm_i915_gem_object *obj_priv = obj->driver_private;
848 BUG_ON(!obj_priv->active);
849 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
850 obj_priv->last_rendering_seqno = 0;
854 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
856 struct drm_device *dev = obj->dev;
857 drm_i915_private_t *dev_priv = dev->dev_private;
858 struct drm_i915_gem_object *obj_priv = obj->driver_private;
860 i915_verify_inactive(dev, __FILE__, __LINE__);
861 if (obj_priv->pin_count != 0)
862 list_del_init(&obj_priv->list);
864 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
866 obj_priv->last_rendering_seqno = 0;
867 if (obj_priv->active) {
868 obj_priv->active = 0;
869 drm_gem_object_unreference(obj);
871 i915_verify_inactive(dev, __FILE__, __LINE__);
875 * Creates a new sequence number, emitting a write of it to the status page
876 * plus an interrupt, which will trigger i915_user_interrupt_handler.
878 * Must be called with struct_lock held.
880 * Returned sequence numbers are nonzero on success.
883 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
885 drm_i915_private_t *dev_priv = dev->dev_private;
886 struct drm_i915_gem_request *request;
891 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
895 /* Grab the seqno we're going to make this request be, and bump the
896 * next (skipping 0 so it can be the reserved no-seqno value).
898 seqno = dev_priv->mm.next_gem_seqno;
899 dev_priv->mm.next_gem_seqno++;
900 if (dev_priv->mm.next_gem_seqno == 0)
901 dev_priv->mm.next_gem_seqno++;
904 OUT_RING(MI_STORE_DWORD_INDEX);
905 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
908 OUT_RING(MI_USER_INTERRUPT);
911 DRM_DEBUG("%d\n", seqno);
913 request->seqno = seqno;
914 request->emitted_jiffies = jiffies;
915 was_empty = list_empty(&dev_priv->mm.request_list);
916 list_add_tail(&request->list, &dev_priv->mm.request_list);
918 /* Associate any objects on the flushing list matching the write
919 * domain we're flushing with our flush.
921 if (flush_domains != 0) {
922 struct drm_i915_gem_object *obj_priv, *next;
924 list_for_each_entry_safe(obj_priv, next,
925 &dev_priv->mm.flushing_list, list) {
926 struct drm_gem_object *obj = obj_priv->obj;
928 if ((obj->write_domain & flush_domains) ==
930 obj->write_domain = 0;
931 i915_gem_object_move_to_active(obj, seqno);
937 if (was_empty && !dev_priv->mm.suspended)
938 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
943 * Command execution barrier
945 * Ensures that all commands in the ring are finished
946 * before signalling the CPU
949 i915_retire_commands(struct drm_device *dev)
951 drm_i915_private_t *dev_priv = dev->dev_private;
952 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
953 uint32_t flush_domains = 0;
956 /* The sampler always gets flushed on i965 (sigh) */
958 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
961 OUT_RING(0); /* noop */
963 return flush_domains;
967 * Moves buffers associated only with the given active seqno from the active
968 * to inactive list, potentially freeing them.
971 i915_gem_retire_request(struct drm_device *dev,
972 struct drm_i915_gem_request *request)
974 drm_i915_private_t *dev_priv = dev->dev_private;
976 /* Move any buffers on the active list that are no longer referenced
977 * by the ringbuffer to the flushing/inactive lists as appropriate.
979 while (!list_empty(&dev_priv->mm.active_list)) {
980 struct drm_gem_object *obj;
981 struct drm_i915_gem_object *obj_priv;
983 obj_priv = list_first_entry(&dev_priv->mm.active_list,
984 struct drm_i915_gem_object,
988 /* If the seqno being retired doesn't match the oldest in the
989 * list, then the oldest in the list must still be newer than
992 if (obj_priv->last_rendering_seqno != request->seqno)
996 DRM_INFO("%s: retire %d moves to inactive list %p\n",
997 __func__, request->seqno, obj);
1000 if (obj->write_domain != 0)
1001 i915_gem_object_move_to_flushing(obj);
1003 i915_gem_object_move_to_inactive(obj);
1008 * Returns true if seq1 is later than seq2.
1011 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1013 return (int32_t)(seq1 - seq2) >= 0;
1017 i915_get_gem_seqno(struct drm_device *dev)
1019 drm_i915_private_t *dev_priv = dev->dev_private;
1021 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1025 * This function clears the request list as sequence numbers are passed.
1028 i915_gem_retire_requests(struct drm_device *dev)
1030 drm_i915_private_t *dev_priv = dev->dev_private;
1033 seqno = i915_get_gem_seqno(dev);
1035 while (!list_empty(&dev_priv->mm.request_list)) {
1036 struct drm_i915_gem_request *request;
1037 uint32_t retiring_seqno;
1039 request = list_first_entry(&dev_priv->mm.request_list,
1040 struct drm_i915_gem_request,
1042 retiring_seqno = request->seqno;
1044 if (i915_seqno_passed(seqno, retiring_seqno) ||
1045 dev_priv->mm.wedged) {
1046 i915_gem_retire_request(dev, request);
1048 list_del(&request->list);
1049 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1056 i915_gem_retire_work_handler(struct work_struct *work)
1058 drm_i915_private_t *dev_priv;
1059 struct drm_device *dev;
1061 dev_priv = container_of(work, drm_i915_private_t,
1062 mm.retire_work.work);
1063 dev = dev_priv->dev;
1065 mutex_lock(&dev->struct_mutex);
1066 i915_gem_retire_requests(dev);
1067 if (!dev_priv->mm.suspended &&
1068 !list_empty(&dev_priv->mm.request_list))
1069 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1070 mutex_unlock(&dev->struct_mutex);
1074 * Waits for a sequence number to be signaled, and cleans up the
1075 * request and object lists appropriately for that event.
1078 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1080 drm_i915_private_t *dev_priv = dev->dev_private;
1085 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1086 dev_priv->mm.waiting_gem_seqno = seqno;
1087 i915_user_irq_get(dev);
1088 ret = wait_event_interruptible(dev_priv->irq_queue,
1089 i915_seqno_passed(i915_get_gem_seqno(dev),
1091 dev_priv->mm.wedged);
1092 i915_user_irq_put(dev);
1093 dev_priv->mm.waiting_gem_seqno = 0;
1095 if (dev_priv->mm.wedged)
1098 if (ret && ret != -ERESTARTSYS)
1099 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1100 __func__, ret, seqno, i915_get_gem_seqno(dev));
1102 /* Directly dispatch request retiring. While we have the work queue
1103 * to handle this, the waiter on a request often wants an associated
1104 * buffer to have made it to the inactive list, and we would need
1105 * a separate wait queue to handle that.
1108 i915_gem_retire_requests(dev);
1114 i915_gem_flush(struct drm_device *dev,
1115 uint32_t invalidate_domains,
1116 uint32_t flush_domains)
1118 drm_i915_private_t *dev_priv = dev->dev_private;
1123 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1124 invalidate_domains, flush_domains);
1127 if (flush_domains & I915_GEM_DOMAIN_CPU)
1128 drm_agp_chipset_flush(dev);
1130 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1131 I915_GEM_DOMAIN_GTT)) {
1133 * read/write caches:
1135 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1136 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1137 * also flushed at 2d versus 3d pipeline switches.
1141 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1142 * MI_READ_FLUSH is set, and is always flushed on 965.
1144 * I915_GEM_DOMAIN_COMMAND may not exist?
1146 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1147 * invalidated when MI_EXE_FLUSH is set.
1149 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1150 * invalidated with every MI_FLUSH.
1154 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1155 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1156 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1157 * are flushed at any MI_FLUSH.
1160 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1161 if ((invalidate_domains|flush_domains) &
1162 I915_GEM_DOMAIN_RENDER)
1163 cmd &= ~MI_NO_WRITE_FLUSH;
1164 if (!IS_I965G(dev)) {
1166 * On the 965, the sampler cache always gets flushed
1167 * and this bit is reserved.
1169 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1170 cmd |= MI_READ_FLUSH;
1172 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1173 cmd |= MI_EXE_FLUSH;
1176 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1180 OUT_RING(0); /* noop */
1186 * Ensures that all rendering to the object has completed and the object is
1187 * safe to unbind from the GTT or access from the CPU.
1190 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1192 struct drm_device *dev = obj->dev;
1193 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1196 /* This function only exists to support waiting for existing rendering,
1197 * not for emitting required flushes.
1199 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1201 /* If there is rendering queued on the buffer being evicted, wait for
1204 if (obj_priv->active) {
1206 DRM_INFO("%s: object %p wait for seqno %08x\n",
1207 __func__, obj, obj_priv->last_rendering_seqno);
1209 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1218 * Unbinds an object from the GTT aperture.
1221 i915_gem_object_unbind(struct drm_gem_object *obj)
1223 struct drm_device *dev = obj->dev;
1224 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1229 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1230 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1232 if (obj_priv->gtt_space == NULL)
1235 if (obj_priv->pin_count != 0) {
1236 DRM_ERROR("Attempting to unbind pinned buffer\n");
1240 /* Move the object to the CPU domain to ensure that
1241 * any possible CPU writes while it's not in the GTT
1242 * are flushed when we go to remap it. This will
1243 * also ensure that all pending GPU writes are finished
1246 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1248 if (ret != -ERESTARTSYS)
1249 DRM_ERROR("set_domain failed: %d\n", ret);
1253 if (obj_priv->agp_mem != NULL) {
1254 drm_unbind_agp(obj_priv->agp_mem);
1255 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1256 obj_priv->agp_mem = NULL;
1259 BUG_ON(obj_priv->active);
1261 /* blow away mappings if mapped through GTT */
1262 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1263 if (dev->dev_mapping)
1264 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1266 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1267 i915_gem_clear_fence_reg(obj);
1269 i915_gem_object_free_page_list(obj);
1271 if (obj_priv->gtt_space) {
1272 atomic_dec(&dev->gtt_count);
1273 atomic_sub(obj->size, &dev->gtt_memory);
1275 drm_mm_put_block(obj_priv->gtt_space);
1276 obj_priv->gtt_space = NULL;
1279 /* Remove ourselves from the LRU list if present. */
1280 if (!list_empty(&obj_priv->list))
1281 list_del_init(&obj_priv->list);
1287 i915_gem_evict_something(struct drm_device *dev)
1289 drm_i915_private_t *dev_priv = dev->dev_private;
1290 struct drm_gem_object *obj;
1291 struct drm_i915_gem_object *obj_priv;
1295 /* If there's an inactive buffer available now, grab it
1298 if (!list_empty(&dev_priv->mm.inactive_list)) {
1299 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1300 struct drm_i915_gem_object,
1302 obj = obj_priv->obj;
1303 BUG_ON(obj_priv->pin_count != 0);
1305 DRM_INFO("%s: evicting %p\n", __func__, obj);
1307 BUG_ON(obj_priv->active);
1309 /* Wait on the rendering and unbind the buffer. */
1310 ret = i915_gem_object_unbind(obj);
1314 /* If we didn't get anything, but the ring is still processing
1315 * things, wait for one of those things to finish and hopefully
1316 * leave us a buffer to evict.
1318 if (!list_empty(&dev_priv->mm.request_list)) {
1319 struct drm_i915_gem_request *request;
1321 request = list_first_entry(&dev_priv->mm.request_list,
1322 struct drm_i915_gem_request,
1325 ret = i915_wait_request(dev, request->seqno);
1329 /* if waiting caused an object to become inactive,
1330 * then loop around and wait for it. Otherwise, we
1331 * assume that waiting freed and unbound something,
1332 * so there should now be some space in the GTT
1334 if (!list_empty(&dev_priv->mm.inactive_list))
1339 /* If we didn't have anything on the request list but there
1340 * are buffers awaiting a flush, emit one and try again.
1341 * When we wait on it, those buffers waiting for that flush
1342 * will get moved to inactive.
1344 if (!list_empty(&dev_priv->mm.flushing_list)) {
1345 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1346 struct drm_i915_gem_object,
1348 obj = obj_priv->obj;
1353 i915_add_request(dev, obj->write_domain);
1359 DRM_ERROR("inactive empty %d request empty %d "
1360 "flushing empty %d\n",
1361 list_empty(&dev_priv->mm.inactive_list),
1362 list_empty(&dev_priv->mm.request_list),
1363 list_empty(&dev_priv->mm.flushing_list));
1364 /* If we didn't do any of the above, there's nothing to be done
1365 * and we just can't fit it in.
1373 i915_gem_evict_everything(struct drm_device *dev)
1378 ret = i915_gem_evict_something(dev);
1388 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1390 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1392 struct address_space *mapping;
1393 struct inode *inode;
1397 if (obj_priv->page_list)
1400 /* Get the list of pages out of our struct file. They'll be pinned
1401 * at this point until we release them.
1403 page_count = obj->size / PAGE_SIZE;
1404 BUG_ON(obj_priv->page_list != NULL);
1405 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1407 if (obj_priv->page_list == NULL) {
1408 DRM_ERROR("Faled to allocate page list\n");
1412 inode = obj->filp->f_path.dentry->d_inode;
1413 mapping = inode->i_mapping;
1414 for (i = 0; i < page_count; i++) {
1415 page = read_mapping_page(mapping, i, NULL);
1417 ret = PTR_ERR(page);
1418 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1419 i915_gem_object_free_page_list(obj);
1422 obj_priv->page_list[i] = page;
1427 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1429 struct drm_gem_object *obj = reg->obj;
1430 struct drm_device *dev = obj->dev;
1431 drm_i915_private_t *dev_priv = dev->dev_private;
1432 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1433 int regnum = obj_priv->fence_reg;
1436 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1438 val |= obj_priv->gtt_offset & 0xfffff000;
1439 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1440 if (obj_priv->tiling_mode == I915_TILING_Y)
1441 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1442 val |= I965_FENCE_REG_VALID;
1444 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1447 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1449 struct drm_gem_object *obj = reg->obj;
1450 struct drm_device *dev = obj->dev;
1451 drm_i915_private_t *dev_priv = dev->dev_private;
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int regnum = obj_priv->fence_reg;
1458 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1459 (obj_priv->gtt_offset & (obj->size - 1))) {
1460 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1461 __func__, obj_priv->gtt_offset, obj->size);
1465 if (obj_priv->tiling_mode == I915_TILING_Y &&
1466 HAS_128_BYTE_Y_TILING(dev))
1471 /* Note: pitch better be a power of two tile widths */
1472 pitch_val = obj_priv->stride / tile_width;
1473 pitch_val = ffs(pitch_val) - 1;
1475 val = obj_priv->gtt_offset;
1476 if (obj_priv->tiling_mode == I915_TILING_Y)
1477 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1478 val |= I915_FENCE_SIZE_BITS(obj->size);
1479 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1480 val |= I830_FENCE_REG_VALID;
1482 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1485 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1487 struct drm_gem_object *obj = reg->obj;
1488 struct drm_device *dev = obj->dev;
1489 drm_i915_private_t *dev_priv = dev->dev_private;
1490 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1491 int regnum = obj_priv->fence_reg;
1495 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1496 (obj_priv->gtt_offset & (obj->size - 1))) {
1497 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1498 __func__, obj_priv->gtt_offset);
1502 pitch_val = (obj_priv->stride / 128) - 1;
1504 val = obj_priv->gtt_offset;
1505 if (obj_priv->tiling_mode == I915_TILING_Y)
1506 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1507 val |= I830_FENCE_SIZE_BITS(obj->size);
1508 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1509 val |= I830_FENCE_REG_VALID;
1511 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1516 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1517 * @obj: object to map through a fence reg
1518 * @write: object is about to be written
1520 * When mapping objects through the GTT, userspace wants to be able to write
1521 * to them without having to worry about swizzling if the object is tiled.
1523 * This function walks the fence regs looking for a free one for @obj,
1524 * stealing one if it can't find any.
1526 * It then sets up the reg based on the object's properties: address, pitch
1527 * and tiling format.
1530 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
1532 struct drm_device *dev = obj->dev;
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1535 struct drm_i915_fence_reg *reg = NULL;
1538 switch (obj_priv->tiling_mode) {
1539 case I915_TILING_NONE:
1540 WARN(1, "allocating a fence for non-tiled object?\n");
1543 if (!obj_priv->stride)
1545 WARN((obj_priv->stride & (512 - 1)),
1546 "object 0x%08x is X tiled but has non-512B pitch\n",
1547 obj_priv->gtt_offset);
1550 if (!obj_priv->stride)
1552 WARN((obj_priv->stride & (128 - 1)),
1553 "object 0x%08x is Y tiled but has non-128B pitch\n",
1554 obj_priv->gtt_offset);
1558 /* First try to find a free reg */
1559 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1560 reg = &dev_priv->fence_regs[i];
1565 /* None available, try to steal one or wait for a user to finish */
1566 if (i == dev_priv->num_fence_regs) {
1567 struct drm_i915_gem_object *old_obj_priv = NULL;
1571 /* Could try to use LRU here instead... */
1572 for (i = dev_priv->fence_reg_start;
1573 i < dev_priv->num_fence_regs; i++) {
1574 reg = &dev_priv->fence_regs[i];
1575 old_obj_priv = reg->obj->driver_private;
1576 if (!old_obj_priv->pin_count)
1581 * Now things get ugly... we have to wait for one of the
1582 * objects to finish before trying again.
1584 if (i == dev_priv->num_fence_regs) {
1585 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
1587 WARN(ret != -ERESTARTSYS,
1588 "switch to GTT domain failed: %d\n", ret);
1595 * Zap this virtual mapping so we can set up a fence again
1596 * for this object next time we need it.
1598 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1599 if (dev->dev_mapping)
1600 unmap_mapping_range(dev->dev_mapping, offset,
1602 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1605 obj_priv->fence_reg = i;
1609 i965_write_fence_reg(reg);
1610 else if (IS_I9XX(dev))
1611 i915_write_fence_reg(reg);
1613 i830_write_fence_reg(reg);
1619 * i915_gem_clear_fence_reg - clear out fence register info
1620 * @obj: object to clear
1622 * Zeroes out the fence register itself and clears out the associated
1623 * data structures in dev_priv and obj_priv.
1626 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1628 struct drm_device *dev = obj->dev;
1629 drm_i915_private_t *dev_priv = dev->dev_private;
1630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1633 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1635 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1637 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1638 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1642 * Finds free space in the GTT aperture and binds the object there.
1645 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1647 struct drm_device *dev = obj->dev;
1648 drm_i915_private_t *dev_priv = dev->dev_private;
1649 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1650 struct drm_mm_node *free_space;
1651 int page_count, ret;
1653 if (dev_priv->mm.suspended)
1656 alignment = i915_gem_get_gtt_alignment(obj);
1657 if (alignment & (PAGE_SIZE - 1)) {
1658 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1663 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1664 obj->size, alignment, 0);
1665 if (free_space != NULL) {
1666 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1668 if (obj_priv->gtt_space != NULL) {
1669 obj_priv->gtt_space->private = obj;
1670 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1673 if (obj_priv->gtt_space == NULL) {
1674 /* If the gtt is empty and we're still having trouble
1675 * fitting our object in, we're out of memory.
1678 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1680 if (list_empty(&dev_priv->mm.inactive_list) &&
1681 list_empty(&dev_priv->mm.flushing_list) &&
1682 list_empty(&dev_priv->mm.active_list)) {
1683 DRM_ERROR("GTT full, but LRU list empty\n");
1687 ret = i915_gem_evict_something(dev);
1689 if (ret != -ERESTARTSYS)
1690 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1697 DRM_INFO("Binding object of size %d at 0x%08x\n",
1698 obj->size, obj_priv->gtt_offset);
1700 ret = i915_gem_object_get_page_list(obj);
1702 drm_mm_put_block(obj_priv->gtt_space);
1703 obj_priv->gtt_space = NULL;
1707 page_count = obj->size / PAGE_SIZE;
1708 /* Create an AGP memory structure pointing at our pages, and bind it
1711 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1712 obj_priv->page_list,
1714 obj_priv->gtt_offset,
1715 obj_priv->agp_type);
1716 if (obj_priv->agp_mem == NULL) {
1717 i915_gem_object_free_page_list(obj);
1718 drm_mm_put_block(obj_priv->gtt_space);
1719 obj_priv->gtt_space = NULL;
1722 atomic_inc(&dev->gtt_count);
1723 atomic_add(obj->size, &dev->gtt_memory);
1725 /* Assert that the object is not currently in any GPU domain. As it
1726 * wasn't in the GTT, there shouldn't be any way it could have been in
1729 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1730 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1736 i915_gem_clflush_object(struct drm_gem_object *obj)
1738 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1740 /* If we don't have a page list set up, then we're not pinned
1741 * to GPU, and we can ignore the cache flush because it'll happen
1742 * again at bind time.
1744 if (obj_priv->page_list == NULL)
1747 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1750 /** Flushes any GPU write domain for the object if it's dirty. */
1752 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1754 struct drm_device *dev = obj->dev;
1757 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1760 /* Queue the GPU write cache flushing we need. */
1761 i915_gem_flush(dev, 0, obj->write_domain);
1762 seqno = i915_add_request(dev, obj->write_domain);
1763 obj->write_domain = 0;
1764 i915_gem_object_move_to_active(obj, seqno);
1767 /** Flushes the GTT write domain for the object if it's dirty. */
1769 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1771 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1774 /* No actual flushing is required for the GTT write domain. Writes
1775 * to it immediately go to main memory as far as we know, so there's
1776 * no chipset flush. It also doesn't land in render cache.
1778 obj->write_domain = 0;
1781 /** Flushes the CPU write domain for the object if it's dirty. */
1783 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1785 struct drm_device *dev = obj->dev;
1787 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1790 i915_gem_clflush_object(obj);
1791 drm_agp_chipset_flush(dev);
1792 obj->write_domain = 0;
1796 * Moves a single object to the GTT read, and possibly write domain.
1798 * This function returns when the move is complete, including waiting on
1802 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1807 /* Not valid to be called on unbound objects. */
1808 if (obj_priv->gtt_space == NULL)
1811 i915_gem_object_flush_gpu_write_domain(obj);
1812 /* Wait on any GPU rendering and flushing to occur. */
1813 ret = i915_gem_object_wait_rendering(obj);
1817 /* If we're writing through the GTT domain, then CPU and GPU caches
1818 * will need to be invalidated at next use.
1821 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1823 i915_gem_object_flush_cpu_write_domain(obj);
1825 /* It should now be out of any other write domains, and we can update
1826 * the domain values for our changes.
1828 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1829 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1831 obj->write_domain = I915_GEM_DOMAIN_GTT;
1832 obj_priv->dirty = 1;
1839 * Moves a single object to the CPU read, and possibly write domain.
1841 * This function returns when the move is complete, including waiting on
1845 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1847 struct drm_device *dev = obj->dev;
1850 i915_gem_object_flush_gpu_write_domain(obj);
1851 /* Wait on any GPU rendering and flushing to occur. */
1852 ret = i915_gem_object_wait_rendering(obj);
1856 i915_gem_object_flush_gtt_write_domain(obj);
1858 /* If we have a partially-valid cache of the object in the CPU,
1859 * finish invalidating it and free the per-page flags.
1861 i915_gem_object_set_to_full_cpu_read_domain(obj);
1863 /* Flush the CPU cache if it's still invalid. */
1864 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1865 i915_gem_clflush_object(obj);
1866 drm_agp_chipset_flush(dev);
1868 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1871 /* It should now be out of any other write domains, and we can update
1872 * the domain values for our changes.
1874 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1876 /* If we're writing through the CPU, then the GPU read domains will
1877 * need to be invalidated at next use.
1880 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1881 obj->write_domain = I915_GEM_DOMAIN_CPU;
1888 * Set the next domain for the specified object. This
1889 * may not actually perform the necessary flushing/invaliding though,
1890 * as that may want to be batched with other set_domain operations
1892 * This is (we hope) the only really tricky part of gem. The goal
1893 * is fairly simple -- track which caches hold bits of the object
1894 * and make sure they remain coherent. A few concrete examples may
1895 * help to explain how it works. For shorthand, we use the notation
1896 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1897 * a pair of read and write domain masks.
1899 * Case 1: the batch buffer
1905 * 5. Unmapped from GTT
1908 * Let's take these a step at a time
1911 * Pages allocated from the kernel may still have
1912 * cache contents, so we set them to (CPU, CPU) always.
1913 * 2. Written by CPU (using pwrite)
1914 * The pwrite function calls set_domain (CPU, CPU) and
1915 * this function does nothing (as nothing changes)
1917 * This function asserts that the object is not
1918 * currently in any GPU-based read or write domains
1920 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1921 * As write_domain is zero, this function adds in the
1922 * current read domains (CPU+COMMAND, 0).
1923 * flush_domains is set to CPU.
1924 * invalidate_domains is set to COMMAND
1925 * clflush is run to get data out of the CPU caches
1926 * then i915_dev_set_domain calls i915_gem_flush to
1927 * emit an MI_FLUSH and drm_agp_chipset_flush
1928 * 5. Unmapped from GTT
1929 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1930 * flush_domains and invalidate_domains end up both zero
1931 * so no flushing/invalidating happens
1935 * Case 2: The shared render buffer
1939 * 3. Read/written by GPU
1940 * 4. set_domain to (CPU,CPU)
1941 * 5. Read/written by CPU
1942 * 6. Read/written by GPU
1945 * Same as last example, (CPU, CPU)
1947 * Nothing changes (assertions find that it is not in the GPU)
1948 * 3. Read/written by GPU
1949 * execbuffer calls set_domain (RENDER, RENDER)
1950 * flush_domains gets CPU
1951 * invalidate_domains gets GPU
1953 * MI_FLUSH and drm_agp_chipset_flush
1954 * 4. set_domain (CPU, CPU)
1955 * flush_domains gets GPU
1956 * invalidate_domains gets CPU
1957 * wait_rendering (obj) to make sure all drawing is complete.
1958 * This will include an MI_FLUSH to get the data from GPU
1960 * clflush (obj) to invalidate the CPU cache
1961 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1962 * 5. Read/written by CPU
1963 * cache lines are loaded and dirtied
1964 * 6. Read written by GPU
1965 * Same as last GPU access
1967 * Case 3: The constant buffer
1972 * 4. Updated (written) by CPU again
1981 * flush_domains = CPU
1982 * invalidate_domains = RENDER
1985 * drm_agp_chipset_flush
1986 * 4. Updated (written) by CPU again
1988 * flush_domains = 0 (no previous write domain)
1989 * invalidate_domains = 0 (no new read domains)
1992 * flush_domains = CPU
1993 * invalidate_domains = RENDER
1996 * drm_agp_chipset_flush
1999 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
2000 uint32_t read_domains,
2001 uint32_t write_domain)
2003 struct drm_device *dev = obj->dev;
2004 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2005 uint32_t invalidate_domains = 0;
2006 uint32_t flush_domains = 0;
2008 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
2009 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
2012 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2014 obj->read_domains, read_domains,
2015 obj->write_domain, write_domain);
2018 * If the object isn't moving to a new write domain,
2019 * let the object stay in multiple read domains
2021 if (write_domain == 0)
2022 read_domains |= obj->read_domains;
2024 obj_priv->dirty = 1;
2027 * Flush the current write domain if
2028 * the new read domains don't match. Invalidate
2029 * any read domains which differ from the old
2032 if (obj->write_domain && obj->write_domain != read_domains) {
2033 flush_domains |= obj->write_domain;
2034 invalidate_domains |= read_domains & ~obj->write_domain;
2037 * Invalidate any read caches which may have
2038 * stale data. That is, any new read domains.
2040 invalidate_domains |= read_domains & ~obj->read_domains;
2041 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2043 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2044 __func__, flush_domains, invalidate_domains);
2046 i915_gem_clflush_object(obj);
2049 if ((write_domain | flush_domains) != 0)
2050 obj->write_domain = write_domain;
2051 obj->read_domains = read_domains;
2053 dev->invalidate_domains |= invalidate_domains;
2054 dev->flush_domains |= flush_domains;
2056 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2058 obj->read_domains, obj->write_domain,
2059 dev->invalidate_domains, dev->flush_domains);
2064 * Moves the object from a partially CPU read to a full one.
2066 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2067 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2070 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2072 struct drm_device *dev = obj->dev;
2073 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2075 if (!obj_priv->page_cpu_valid)
2078 /* If we're partially in the CPU read domain, finish moving it in.
2080 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2083 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2084 if (obj_priv->page_cpu_valid[i])
2086 drm_clflush_pages(obj_priv->page_list + i, 1);
2088 drm_agp_chipset_flush(dev);
2091 /* Free the page_cpu_valid mappings which are now stale, whether
2092 * or not we've got I915_GEM_DOMAIN_CPU.
2094 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2096 obj_priv->page_cpu_valid = NULL;
2100 * Set the CPU read domain on a range of the object.
2102 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2103 * not entirely valid. The page_cpu_valid member of the object flags which
2104 * pages have been flushed, and will be respected by
2105 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2106 * of the whole object.
2108 * This function returns when the move is complete, including waiting on
2112 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2113 uint64_t offset, uint64_t size)
2115 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2118 if (offset == 0 && size == obj->size)
2119 return i915_gem_object_set_to_cpu_domain(obj, 0);
2121 i915_gem_object_flush_gpu_write_domain(obj);
2122 /* Wait on any GPU rendering and flushing to occur. */
2123 ret = i915_gem_object_wait_rendering(obj);
2126 i915_gem_object_flush_gtt_write_domain(obj);
2128 /* If we're already fully in the CPU read domain, we're done. */
2129 if (obj_priv->page_cpu_valid == NULL &&
2130 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2133 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2134 * newly adding I915_GEM_DOMAIN_CPU
2136 if (obj_priv->page_cpu_valid == NULL) {
2137 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2139 if (obj_priv->page_cpu_valid == NULL)
2141 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2142 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2144 /* Flush the cache on any pages that are still invalid from the CPU's
2147 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2149 if (obj_priv->page_cpu_valid[i])
2152 drm_clflush_pages(obj_priv->page_list + i, 1);
2154 obj_priv->page_cpu_valid[i] = 1;
2157 /* It should now be out of any other write domains, and we can update
2158 * the domain values for our changes.
2160 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2162 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2168 * Pin an object to the GTT and evaluate the relocations landing in it.
2171 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2172 struct drm_file *file_priv,
2173 struct drm_i915_gem_exec_object *entry)
2175 struct drm_device *dev = obj->dev;
2176 drm_i915_private_t *dev_priv = dev->dev_private;
2177 struct drm_i915_gem_relocation_entry reloc;
2178 struct drm_i915_gem_relocation_entry __user *relocs;
2179 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2181 void __iomem *reloc_page;
2183 /* Choose the GTT offset for our buffer and put it there. */
2184 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2188 entry->offset = obj_priv->gtt_offset;
2190 relocs = (struct drm_i915_gem_relocation_entry __user *)
2191 (uintptr_t) entry->relocs_ptr;
2192 /* Apply the relocations, using the GTT aperture to avoid cache
2193 * flushing requirements.
2195 for (i = 0; i < entry->relocation_count; i++) {
2196 struct drm_gem_object *target_obj;
2197 struct drm_i915_gem_object *target_obj_priv;
2198 uint32_t reloc_val, reloc_offset;
2199 uint32_t __iomem *reloc_entry;
2201 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2203 i915_gem_object_unpin(obj);
2207 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2208 reloc.target_handle);
2209 if (target_obj == NULL) {
2210 i915_gem_object_unpin(obj);
2213 target_obj_priv = target_obj->driver_private;
2215 /* The target buffer should have appeared before us in the
2216 * exec_object list, so it should have a GTT space bound by now.
2218 if (target_obj_priv->gtt_space == NULL) {
2219 DRM_ERROR("No GTT space found for object %d\n",
2220 reloc.target_handle);
2221 drm_gem_object_unreference(target_obj);
2222 i915_gem_object_unpin(obj);
2226 if (reloc.offset > obj->size - 4) {
2227 DRM_ERROR("Relocation beyond object bounds: "
2228 "obj %p target %d offset %d size %d.\n",
2229 obj, reloc.target_handle,
2230 (int) reloc.offset, (int) obj->size);
2231 drm_gem_object_unreference(target_obj);
2232 i915_gem_object_unpin(obj);
2235 if (reloc.offset & 3) {
2236 DRM_ERROR("Relocation not 4-byte aligned: "
2237 "obj %p target %d offset %d.\n",
2238 obj, reloc.target_handle,
2239 (int) reloc.offset);
2240 drm_gem_object_unreference(target_obj);
2241 i915_gem_object_unpin(obj);
2245 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2246 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2247 DRM_ERROR("reloc with read/write CPU domains: "
2248 "obj %p target %d offset %d "
2249 "read %08x write %08x",
2250 obj, reloc.target_handle,
2253 reloc.write_domain);
2257 if (reloc.write_domain && target_obj->pending_write_domain &&
2258 reloc.write_domain != target_obj->pending_write_domain) {
2259 DRM_ERROR("Write domain conflict: "
2260 "obj %p target %d offset %d "
2261 "new %08x old %08x\n",
2262 obj, reloc.target_handle,
2265 target_obj->pending_write_domain);
2266 drm_gem_object_unreference(target_obj);
2267 i915_gem_object_unpin(obj);
2272 DRM_INFO("%s: obj %p offset %08x target %d "
2273 "read %08x write %08x gtt %08x "
2274 "presumed %08x delta %08x\n",
2278 (int) reloc.target_handle,
2279 (int) reloc.read_domains,
2280 (int) reloc.write_domain,
2281 (int) target_obj_priv->gtt_offset,
2282 (int) reloc.presumed_offset,
2286 target_obj->pending_read_domains |= reloc.read_domains;
2287 target_obj->pending_write_domain |= reloc.write_domain;
2289 /* If the relocation already has the right value in it, no
2290 * more work needs to be done.
2292 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2293 drm_gem_object_unreference(target_obj);
2297 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2299 drm_gem_object_unreference(target_obj);
2300 i915_gem_object_unpin(obj);
2304 /* Map the page containing the relocation we're going to
2307 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2308 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2311 reloc_entry = (uint32_t __iomem *)(reloc_page +
2312 (reloc_offset & (PAGE_SIZE - 1)));
2313 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2316 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2317 obj, (unsigned int) reloc.offset,
2318 readl(reloc_entry), reloc_val);
2320 writel(reloc_val, reloc_entry);
2321 io_mapping_unmap_atomic(reloc_page);
2323 /* Write the updated presumed offset for this entry back out
2326 reloc.presumed_offset = target_obj_priv->gtt_offset;
2327 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2329 drm_gem_object_unreference(target_obj);
2330 i915_gem_object_unpin(obj);
2334 drm_gem_object_unreference(target_obj);
2339 i915_gem_dump_object(obj, 128, __func__, ~0);
2344 /** Dispatch a batchbuffer to the ring
2347 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2348 struct drm_i915_gem_execbuffer *exec,
2349 uint64_t exec_offset)
2351 drm_i915_private_t *dev_priv = dev->dev_private;
2352 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2353 (uintptr_t) exec->cliprects_ptr;
2354 int nbox = exec->num_cliprects;
2356 uint32_t exec_start, exec_len;
2359 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2360 exec_len = (uint32_t) exec->batch_len;
2362 if ((exec_start | exec_len) & 0x7) {
2363 DRM_ERROR("alignment\n");
2370 count = nbox ? nbox : 1;
2372 for (i = 0; i < count; i++) {
2374 int ret = i915_emit_box(dev, boxes, i,
2375 exec->DR1, exec->DR4);
2380 if (IS_I830(dev) || IS_845G(dev)) {
2382 OUT_RING(MI_BATCH_BUFFER);
2383 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2384 OUT_RING(exec_start + exec_len - 4);
2389 if (IS_I965G(dev)) {
2390 OUT_RING(MI_BATCH_BUFFER_START |
2392 MI_BATCH_NON_SECURE_I965);
2393 OUT_RING(exec_start);
2395 OUT_RING(MI_BATCH_BUFFER_START |
2397 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2403 /* XXX breadcrumb */
2407 /* Throttle our rendering by waiting until the ring has completed our requests
2408 * emitted over 20 msec ago.
2410 * This should get us reasonable parallelism between CPU and GPU but also
2411 * relatively low latency when blocking on a particular request to finish.
2414 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2416 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2420 mutex_lock(&dev->struct_mutex);
2421 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2422 i915_file_priv->mm.last_gem_throttle_seqno =
2423 i915_file_priv->mm.last_gem_seqno;
2425 ret = i915_wait_request(dev, seqno);
2426 mutex_unlock(&dev->struct_mutex);
2431 i915_gem_execbuffer(struct drm_device *dev, void *data,
2432 struct drm_file *file_priv)
2434 drm_i915_private_t *dev_priv = dev->dev_private;
2435 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2436 struct drm_i915_gem_execbuffer *args = data;
2437 struct drm_i915_gem_exec_object *exec_list = NULL;
2438 struct drm_gem_object **object_list = NULL;
2439 struct drm_gem_object *batch_obj;
2440 int ret, i, pinned = 0;
2441 uint64_t exec_offset;
2442 uint32_t seqno, flush_domains;
2446 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2447 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2450 if (args->buffer_count < 1) {
2451 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2454 /* Copy in the exec list from userland */
2455 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2457 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2459 if (exec_list == NULL || object_list == NULL) {
2460 DRM_ERROR("Failed to allocate exec or object list "
2462 args->buffer_count);
2466 ret = copy_from_user(exec_list,
2467 (struct drm_i915_relocation_entry __user *)
2468 (uintptr_t) args->buffers_ptr,
2469 sizeof(*exec_list) * args->buffer_count);
2471 DRM_ERROR("copy %d exec entries failed %d\n",
2472 args->buffer_count, ret);
2476 mutex_lock(&dev->struct_mutex);
2478 i915_verify_inactive(dev, __FILE__, __LINE__);
2480 if (dev_priv->mm.wedged) {
2481 DRM_ERROR("Execbuf while wedged\n");
2482 mutex_unlock(&dev->struct_mutex);
2486 if (dev_priv->mm.suspended) {
2487 DRM_ERROR("Execbuf while VT-switched.\n");
2488 mutex_unlock(&dev->struct_mutex);
2492 /* Look up object handles */
2493 for (i = 0; i < args->buffer_count; i++) {
2494 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2495 exec_list[i].handle);
2496 if (object_list[i] == NULL) {
2497 DRM_ERROR("Invalid object handle %d at index %d\n",
2498 exec_list[i].handle, i);
2504 /* Pin and relocate */
2505 for (pin_tries = 0; ; pin_tries++) {
2507 for (i = 0; i < args->buffer_count; i++) {
2508 object_list[i]->pending_read_domains = 0;
2509 object_list[i]->pending_write_domain = 0;
2510 ret = i915_gem_object_pin_and_relocate(object_list[i],
2521 /* error other than GTT full, or we've already tried again */
2522 if (ret != -ENOMEM || pin_tries >= 1) {
2523 if (ret != -ERESTARTSYS)
2524 DRM_ERROR("Failed to pin buffers %d\n", ret);
2528 /* unpin all of our buffers */
2529 for (i = 0; i < pinned; i++)
2530 i915_gem_object_unpin(object_list[i]);
2533 /* evict everyone we can from the aperture */
2534 ret = i915_gem_evict_everything(dev);
2539 /* Set the pending read domains for the batch buffer to COMMAND */
2540 batch_obj = object_list[args->buffer_count-1];
2541 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2542 batch_obj->pending_write_domain = 0;
2544 i915_verify_inactive(dev, __FILE__, __LINE__);
2546 /* Zero the global flush/invalidate flags. These
2547 * will be modified as new domains are computed
2550 dev->invalidate_domains = 0;
2551 dev->flush_domains = 0;
2553 for (i = 0; i < args->buffer_count; i++) {
2554 struct drm_gem_object *obj = object_list[i];
2556 /* Compute new gpu domains and update invalidate/flush */
2557 i915_gem_object_set_to_gpu_domain(obj,
2558 obj->pending_read_domains,
2559 obj->pending_write_domain);
2562 i915_verify_inactive(dev, __FILE__, __LINE__);
2564 if (dev->invalidate_domains | dev->flush_domains) {
2566 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2568 dev->invalidate_domains,
2569 dev->flush_domains);
2572 dev->invalidate_domains,
2573 dev->flush_domains);
2574 if (dev->flush_domains)
2575 (void)i915_add_request(dev, dev->flush_domains);
2578 i915_verify_inactive(dev, __FILE__, __LINE__);
2581 for (i = 0; i < args->buffer_count; i++) {
2582 i915_gem_object_check_coherency(object_list[i],
2583 exec_list[i].handle);
2587 exec_offset = exec_list[args->buffer_count - 1].offset;
2590 i915_gem_dump_object(object_list[args->buffer_count - 1],
2596 /* Exec the batchbuffer */
2597 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2599 DRM_ERROR("dispatch failed %d\n", ret);
2604 * Ensure that the commands in the batch buffer are
2605 * finished before the interrupt fires
2607 flush_domains = i915_retire_commands(dev);
2609 i915_verify_inactive(dev, __FILE__, __LINE__);
2612 * Get a seqno representing the execution of the current buffer,
2613 * which we can wait on. We would like to mitigate these interrupts,
2614 * likely by only creating seqnos occasionally (so that we have
2615 * *some* interrupts representing completion of buffers that we can
2616 * wait on when trying to clear up gtt space).
2618 seqno = i915_add_request(dev, flush_domains);
2620 i915_file_priv->mm.last_gem_seqno = seqno;
2621 for (i = 0; i < args->buffer_count; i++) {
2622 struct drm_gem_object *obj = object_list[i];
2624 i915_gem_object_move_to_active(obj, seqno);
2626 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2630 i915_dump_lru(dev, __func__);
2633 i915_verify_inactive(dev, __FILE__, __LINE__);
2635 /* Copy the new buffer offsets back to the user's exec list. */
2636 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2637 (uintptr_t) args->buffers_ptr,
2639 sizeof(*exec_list) * args->buffer_count);
2641 DRM_ERROR("failed to copy %d exec entries "
2642 "back to user (%d)\n",
2643 args->buffer_count, ret);
2645 for (i = 0; i < pinned; i++)
2646 i915_gem_object_unpin(object_list[i]);
2648 for (i = 0; i < args->buffer_count; i++)
2649 drm_gem_object_unreference(object_list[i]);
2651 mutex_unlock(&dev->struct_mutex);
2654 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2656 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2663 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2665 struct drm_device *dev = obj->dev;
2666 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2669 i915_verify_inactive(dev, __FILE__, __LINE__);
2670 if (obj_priv->gtt_space == NULL) {
2671 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2673 if (ret != -EBUSY && ret != -ERESTARTSYS)
2674 DRM_ERROR("Failure to bind: %d", ret);
2678 * Pre-965 chips need a fence register set up in order to
2679 * properly handle tiled surfaces.
2681 if (!IS_I965G(dev) &&
2682 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2683 obj_priv->tiling_mode != I915_TILING_NONE)
2684 i915_gem_object_get_fence_reg(obj, true);
2686 obj_priv->pin_count++;
2688 /* If the object is not active and not pending a flush,
2689 * remove it from the inactive list
2691 if (obj_priv->pin_count == 1) {
2692 atomic_inc(&dev->pin_count);
2693 atomic_add(obj->size, &dev->pin_memory);
2694 if (!obj_priv->active &&
2695 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2696 I915_GEM_DOMAIN_GTT)) == 0 &&
2697 !list_empty(&obj_priv->list))
2698 list_del_init(&obj_priv->list);
2700 i915_verify_inactive(dev, __FILE__, __LINE__);
2706 i915_gem_object_unpin(struct drm_gem_object *obj)
2708 struct drm_device *dev = obj->dev;
2709 drm_i915_private_t *dev_priv = dev->dev_private;
2710 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2712 i915_verify_inactive(dev, __FILE__, __LINE__);
2713 obj_priv->pin_count--;
2714 BUG_ON(obj_priv->pin_count < 0);
2715 BUG_ON(obj_priv->gtt_space == NULL);
2717 /* If the object is no longer pinned, and is
2718 * neither active nor being flushed, then stick it on
2721 if (obj_priv->pin_count == 0) {
2722 if (!obj_priv->active &&
2723 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2724 I915_GEM_DOMAIN_GTT)) == 0)
2725 list_move_tail(&obj_priv->list,
2726 &dev_priv->mm.inactive_list);
2727 atomic_dec(&dev->pin_count);
2728 atomic_sub(obj->size, &dev->pin_memory);
2730 i915_verify_inactive(dev, __FILE__, __LINE__);
2734 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2735 struct drm_file *file_priv)
2737 struct drm_i915_gem_pin *args = data;
2738 struct drm_gem_object *obj;
2739 struct drm_i915_gem_object *obj_priv;
2742 mutex_lock(&dev->struct_mutex);
2744 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2746 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2748 mutex_unlock(&dev->struct_mutex);
2751 obj_priv = obj->driver_private;
2753 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2754 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2756 mutex_unlock(&dev->struct_mutex);
2760 obj_priv->user_pin_count++;
2761 obj_priv->pin_filp = file_priv;
2762 if (obj_priv->user_pin_count == 1) {
2763 ret = i915_gem_object_pin(obj, args->alignment);
2765 drm_gem_object_unreference(obj);
2766 mutex_unlock(&dev->struct_mutex);
2771 /* XXX - flush the CPU caches for pinned objects
2772 * as the X server doesn't manage domains yet
2774 i915_gem_object_flush_cpu_write_domain(obj);
2775 args->offset = obj_priv->gtt_offset;
2776 drm_gem_object_unreference(obj);
2777 mutex_unlock(&dev->struct_mutex);
2783 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2784 struct drm_file *file_priv)
2786 struct drm_i915_gem_pin *args = data;
2787 struct drm_gem_object *obj;
2788 struct drm_i915_gem_object *obj_priv;
2790 mutex_lock(&dev->struct_mutex);
2792 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2794 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2796 mutex_unlock(&dev->struct_mutex);
2800 obj_priv = obj->driver_private;
2801 if (obj_priv->pin_filp != file_priv) {
2802 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2804 drm_gem_object_unreference(obj);
2805 mutex_unlock(&dev->struct_mutex);
2808 obj_priv->user_pin_count--;
2809 if (obj_priv->user_pin_count == 0) {
2810 obj_priv->pin_filp = NULL;
2811 i915_gem_object_unpin(obj);
2814 drm_gem_object_unreference(obj);
2815 mutex_unlock(&dev->struct_mutex);
2820 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2821 struct drm_file *file_priv)
2823 struct drm_i915_gem_busy *args = data;
2824 struct drm_gem_object *obj;
2825 struct drm_i915_gem_object *obj_priv;
2827 mutex_lock(&dev->struct_mutex);
2828 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2830 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2832 mutex_unlock(&dev->struct_mutex);
2836 obj_priv = obj->driver_private;
2837 /* Don't count being on the flushing list against the object being
2838 * done. Otherwise, a buffer left on the flushing list but not getting
2839 * flushed (because nobody's flushing that domain) won't ever return
2840 * unbusy and get reused by libdrm's bo cache. The other expected
2841 * consumer of this interface, OpenGL's occlusion queries, also specs
2842 * that the objects get unbusy "eventually" without any interference.
2844 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2846 drm_gem_object_unreference(obj);
2847 mutex_unlock(&dev->struct_mutex);
2852 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2853 struct drm_file *file_priv)
2855 return i915_gem_ring_throttle(dev, file_priv);
2858 int i915_gem_init_object(struct drm_gem_object *obj)
2860 struct drm_i915_gem_object *obj_priv;
2862 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2863 if (obj_priv == NULL)
2867 * We've just allocated pages from the kernel,
2868 * so they've just been written by the CPU with
2869 * zeros. They'll need to be clflushed before we
2870 * use them with the GPU.
2872 obj->write_domain = I915_GEM_DOMAIN_CPU;
2873 obj->read_domains = I915_GEM_DOMAIN_CPU;
2875 obj_priv->agp_type = AGP_USER_MEMORY;
2877 obj->driver_private = obj_priv;
2878 obj_priv->obj = obj;
2879 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2880 INIT_LIST_HEAD(&obj_priv->list);
2885 void i915_gem_free_object(struct drm_gem_object *obj)
2887 struct drm_device *dev = obj->dev;
2888 struct drm_gem_mm *mm = dev->mm_private;
2889 struct drm_map_list *list;
2890 struct drm_map *map;
2891 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2893 while (obj_priv->pin_count > 0)
2894 i915_gem_object_unpin(obj);
2896 if (obj_priv->phys_obj)
2897 i915_gem_detach_phys_object(dev, obj);
2899 i915_gem_object_unbind(obj);
2901 list = &obj->map_list;
2902 drm_ht_remove_item(&mm->offset_hash, &list->hash);
2904 if (list->file_offset_node) {
2905 drm_mm_put_block(list->file_offset_node);
2906 list->file_offset_node = NULL;
2911 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2915 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2916 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2919 /** Unbinds all objects that are on the given buffer list. */
2921 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2923 struct drm_gem_object *obj;
2924 struct drm_i915_gem_object *obj_priv;
2927 while (!list_empty(head)) {
2928 obj_priv = list_first_entry(head,
2929 struct drm_i915_gem_object,
2931 obj = obj_priv->obj;
2933 if (obj_priv->pin_count != 0) {
2934 DRM_ERROR("Pinned object in unbind list\n");
2935 mutex_unlock(&dev->struct_mutex);
2939 ret = i915_gem_object_unbind(obj);
2941 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2943 mutex_unlock(&dev->struct_mutex);
2953 i915_gem_idle(struct drm_device *dev)
2955 drm_i915_private_t *dev_priv = dev->dev_private;
2956 uint32_t seqno, cur_seqno, last_seqno;
2959 mutex_lock(&dev->struct_mutex);
2961 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2962 mutex_unlock(&dev->struct_mutex);
2966 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2967 * We need to replace this with a semaphore, or something.
2969 dev_priv->mm.suspended = 1;
2971 /* Cancel the retire work handler, wait for it to finish if running
2973 mutex_unlock(&dev->struct_mutex);
2974 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2975 mutex_lock(&dev->struct_mutex);
2977 i915_kernel_lost_context(dev);
2979 /* Flush the GPU along with all non-CPU write domains
2981 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2982 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2983 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
2986 mutex_unlock(&dev->struct_mutex);
2990 dev_priv->mm.waiting_gem_seqno = seqno;
2994 cur_seqno = i915_get_gem_seqno(dev);
2995 if (i915_seqno_passed(cur_seqno, seqno))
2997 if (last_seqno == cur_seqno) {
2998 if (stuck++ > 100) {
2999 DRM_ERROR("hardware wedged\n");
3000 dev_priv->mm.wedged = 1;
3001 DRM_WAKEUP(&dev_priv->irq_queue);
3006 last_seqno = cur_seqno;
3008 dev_priv->mm.waiting_gem_seqno = 0;
3010 i915_gem_retire_requests(dev);
3012 if (!dev_priv->mm.wedged) {
3013 /* Active and flushing should now be empty as we've
3014 * waited for a sequence higher than any pending execbuffer
3016 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3017 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3018 /* Request should now be empty as we've also waited
3019 * for the last request in the list
3021 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3024 /* Empty the active and flushing lists to inactive. If there's
3025 * anything left at this point, it means that we're wedged and
3026 * nothing good's going to happen by leaving them there. So strip
3027 * the GPU domains and just stuff them onto inactive.
3029 while (!list_empty(&dev_priv->mm.active_list)) {
3030 struct drm_i915_gem_object *obj_priv;
3032 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3033 struct drm_i915_gem_object,
3035 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3036 i915_gem_object_move_to_inactive(obj_priv->obj);
3039 while (!list_empty(&dev_priv->mm.flushing_list)) {
3040 struct drm_i915_gem_object *obj_priv;
3042 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3043 struct drm_i915_gem_object,
3045 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3046 i915_gem_object_move_to_inactive(obj_priv->obj);
3050 /* Move all inactive buffers out of the GTT. */
3051 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3052 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3054 mutex_unlock(&dev->struct_mutex);
3058 i915_gem_cleanup_ringbuffer(dev);
3059 mutex_unlock(&dev->struct_mutex);
3065 i915_gem_init_hws(struct drm_device *dev)
3067 drm_i915_private_t *dev_priv = dev->dev_private;
3068 struct drm_gem_object *obj;
3069 struct drm_i915_gem_object *obj_priv;
3072 /* If we need a physical address for the status page, it's already
3073 * initialized at driver load time.
3075 if (!I915_NEED_GFX_HWS(dev))
3078 obj = drm_gem_object_alloc(dev, 4096);
3080 DRM_ERROR("Failed to allocate status page\n");
3083 obj_priv = obj->driver_private;
3084 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3086 ret = i915_gem_object_pin(obj, 4096);
3088 drm_gem_object_unreference(obj);
3092 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3094 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3095 if (dev_priv->hw_status_page == NULL) {
3096 DRM_ERROR("Failed to map status page.\n");
3097 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3098 drm_gem_object_unreference(obj);
3101 dev_priv->hws_obj = obj;
3102 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3103 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3104 I915_READ(HWS_PGA); /* posting read */
3105 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3111 i915_gem_init_ringbuffer(struct drm_device *dev)
3113 drm_i915_private_t *dev_priv = dev->dev_private;
3114 struct drm_gem_object *obj;
3115 struct drm_i915_gem_object *obj_priv;
3116 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3120 ret = i915_gem_init_hws(dev);
3124 obj = drm_gem_object_alloc(dev, 128 * 1024);
3126 DRM_ERROR("Failed to allocate ringbuffer\n");
3129 obj_priv = obj->driver_private;
3131 ret = i915_gem_object_pin(obj, 4096);
3133 drm_gem_object_unreference(obj);
3137 /* Set up the kernel mapping for the ring. */
3138 ring->Size = obj->size;
3139 ring->tail_mask = obj->size - 1;
3141 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3142 ring->map.size = obj->size;
3144 ring->map.flags = 0;
3147 drm_core_ioremap_wc(&ring->map, dev);
3148 if (ring->map.handle == NULL) {
3149 DRM_ERROR("Failed to map ringbuffer.\n");
3150 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3151 drm_gem_object_unreference(obj);
3154 ring->ring_obj = obj;
3155 ring->virtual_start = ring->map.handle;
3157 /* Stop the ring if it's running. */
3158 I915_WRITE(PRB0_CTL, 0);
3159 I915_WRITE(PRB0_TAIL, 0);
3160 I915_WRITE(PRB0_HEAD, 0);
3162 /* Initialize the ring. */
3163 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3164 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3166 /* G45 ring initialization fails to reset head to zero */
3168 DRM_ERROR("Ring head not reset to zero "
3169 "ctl %08x head %08x tail %08x start %08x\n",
3170 I915_READ(PRB0_CTL),
3171 I915_READ(PRB0_HEAD),
3172 I915_READ(PRB0_TAIL),
3173 I915_READ(PRB0_START));
3174 I915_WRITE(PRB0_HEAD, 0);
3176 DRM_ERROR("Ring head forced to zero "
3177 "ctl %08x head %08x tail %08x start %08x\n",
3178 I915_READ(PRB0_CTL),
3179 I915_READ(PRB0_HEAD),
3180 I915_READ(PRB0_TAIL),
3181 I915_READ(PRB0_START));
3184 I915_WRITE(PRB0_CTL,
3185 ((obj->size - 4096) & RING_NR_PAGES) |
3189 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3191 /* If the head is still not zero, the ring is dead */
3193 DRM_ERROR("Ring initialization failed "
3194 "ctl %08x head %08x tail %08x start %08x\n",
3195 I915_READ(PRB0_CTL),
3196 I915_READ(PRB0_HEAD),
3197 I915_READ(PRB0_TAIL),
3198 I915_READ(PRB0_START));
3202 /* Update our cache of the ring state */
3203 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3204 i915_kernel_lost_context(dev);
3206 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3207 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3208 ring->space = ring->head - (ring->tail + 8);
3209 if (ring->space < 0)
3210 ring->space += ring->Size;
3217 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3219 drm_i915_private_t *dev_priv = dev->dev_private;
3221 if (dev_priv->ring.ring_obj == NULL)
3224 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3226 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3227 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3228 dev_priv->ring.ring_obj = NULL;
3229 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3231 if (dev_priv->hws_obj != NULL) {
3232 struct drm_gem_object *obj = dev_priv->hws_obj;
3233 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3235 kunmap(obj_priv->page_list[0]);
3236 i915_gem_object_unpin(obj);
3237 drm_gem_object_unreference(obj);
3238 dev_priv->hws_obj = NULL;
3239 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3240 dev_priv->hw_status_page = NULL;
3242 /* Write high address into HWS_PGA when disabling. */
3243 I915_WRITE(HWS_PGA, 0x1ffff000);
3248 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3249 struct drm_file *file_priv)
3251 drm_i915_private_t *dev_priv = dev->dev_private;
3254 if (drm_core_check_feature(dev, DRIVER_MODESET))
3257 if (dev_priv->mm.wedged) {
3258 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3259 dev_priv->mm.wedged = 0;
3262 mutex_lock(&dev->struct_mutex);
3263 dev_priv->mm.suspended = 0;
3265 ret = i915_gem_init_ringbuffer(dev);
3269 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3270 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3271 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3272 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3273 mutex_unlock(&dev->struct_mutex);
3275 drm_irq_install(dev);
3281 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3282 struct drm_file *file_priv)
3286 if (drm_core_check_feature(dev, DRIVER_MODESET))
3289 ret = i915_gem_idle(dev);
3290 drm_irq_uninstall(dev);
3296 i915_gem_lastclose(struct drm_device *dev)
3300 if (drm_core_check_feature(dev, DRIVER_MODESET))
3303 ret = i915_gem_idle(dev);
3305 DRM_ERROR("failed to idle hardware: %d\n", ret);
3309 i915_gem_load(struct drm_device *dev)
3311 drm_i915_private_t *dev_priv = dev->dev_private;
3313 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3314 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3315 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3316 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3317 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3318 i915_gem_retire_work_handler);
3319 dev_priv->mm.next_gem_seqno = 1;
3321 /* Old X drivers will take 0-2 for front, back, depth buffers */
3322 dev_priv->fence_reg_start = 3;
3324 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3325 dev_priv->num_fence_regs = 16;
3327 dev_priv->num_fence_regs = 8;
3329 i915_gem_detect_bit_6_swizzle(dev);
3333 * Create a physically contiguous memory object for this object
3334 * e.g. for cursor + overlay regs
3336 int i915_gem_init_phys_object(struct drm_device *dev,
3339 drm_i915_private_t *dev_priv = dev->dev_private;
3340 struct drm_i915_gem_phys_object *phys_obj;
3343 if (dev_priv->mm.phys_objs[id - 1] || !size)
3346 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3352 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3353 if (!phys_obj->handle) {
3358 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3361 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3365 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3369 void i915_gem_free_phys_object(struct drm_device *dev, int id)
3371 drm_i915_private_t *dev_priv = dev->dev_private;
3372 struct drm_i915_gem_phys_object *phys_obj;
3374 if (!dev_priv->mm.phys_objs[id - 1])
3377 phys_obj = dev_priv->mm.phys_objs[id - 1];
3378 if (phys_obj->cur_obj) {
3379 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3383 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3385 drm_pci_free(dev, phys_obj->handle);
3387 dev_priv->mm.phys_objs[id - 1] = NULL;
3390 void i915_gem_free_all_phys_object(struct drm_device *dev)
3394 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3395 i915_gem_free_phys_object(dev, i);
3398 void i915_gem_detach_phys_object(struct drm_device *dev,
3399 struct drm_gem_object *obj)
3401 struct drm_i915_gem_object *obj_priv;
3406 obj_priv = obj->driver_private;
3407 if (!obj_priv->phys_obj)
3410 ret = i915_gem_object_get_page_list(obj);
3414 page_count = obj->size / PAGE_SIZE;
3416 for (i = 0; i < page_count; i++) {
3417 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3418 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3420 memcpy(dst, src, PAGE_SIZE);
3421 kunmap_atomic(dst, KM_USER0);
3423 drm_clflush_pages(obj_priv->page_list, page_count);
3424 drm_agp_chipset_flush(dev);
3426 obj_priv->phys_obj->cur_obj = NULL;
3427 obj_priv->phys_obj = NULL;
3431 i915_gem_attach_phys_object(struct drm_device *dev,
3432 struct drm_gem_object *obj, int id)
3434 drm_i915_private_t *dev_priv = dev->dev_private;
3435 struct drm_i915_gem_object *obj_priv;
3440 if (id > I915_MAX_PHYS_OBJECT)
3443 obj_priv = obj->driver_private;
3445 if (obj_priv->phys_obj) {
3446 if (obj_priv->phys_obj->id == id)
3448 i915_gem_detach_phys_object(dev, obj);
3452 /* create a new object */
3453 if (!dev_priv->mm.phys_objs[id - 1]) {
3454 ret = i915_gem_init_phys_object(dev, id,
3457 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
3462 /* bind to the object */
3463 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3464 obj_priv->phys_obj->cur_obj = obj;
3466 ret = i915_gem_object_get_page_list(obj);
3468 DRM_ERROR("failed to get page list\n");
3472 page_count = obj->size / PAGE_SIZE;
3474 for (i = 0; i < page_count; i++) {
3475 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3476 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3478 memcpy(dst, src, PAGE_SIZE);
3479 kunmap_atomic(src, KM_USER0);
3488 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3489 struct drm_i915_gem_pwrite *args,
3490 struct drm_file *file_priv)
3492 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3495 char __user *user_data;
3497 user_data = (char __user *) (uintptr_t) args->data_ptr;
3498 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3500 DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3501 ret = copy_from_user(obj_addr, user_data, args->size);
3505 drm_agp_chipset_flush(dev);