tracing: fix leak in event_format_read()
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer is made up of a list of pages. A separate list of pages is
26  * allocated for each CPU. A writer may only write to a buffer that is
27  * associated with the CPU it is currently executing on.  A reader may read
28  * from any per cpu buffer.
29  *
30  * The reader is special. For each per cpu buffer, the reader has its own
31  * reader page. When a reader has read the entire reader page, this reader
32  * page is swapped with another page in the ring buffer.
33  *
34  * Now, as long as the writer is off the reader page, the reader can do what
35  * ever it wants with that page. The writer will never write to that page
36  * again (as long as it is out of the ring buffer).
37  *
38  * Here's some silly ASCII art.
39  *
40  *   +------+
41  *   |reader|          RING BUFFER
42  *   |page  |
43  *   +------+        +---+   +---+   +---+
44  *                   |   |-->|   |-->|   |
45  *                   +---+   +---+   +---+
46  *                     ^               |
47  *                     |               |
48  *                     +---------------+
49  *
50  *
51  *   +------+
52  *   |reader|          RING BUFFER
53  *   |page  |------------------v
54  *   +------+        +---+   +---+   +---+
55  *                   |   |-->|   |-->|   |
56  *                   +---+   +---+   +---+
57  *                     ^               |
58  *                     |               |
59  *                     +---------------+
60  *
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |------------------v
65  *   +------+        +---+   +---+   +---+
66  *      ^            |   |-->|   |-->|   |
67  *      |            +---+   +---+   +---+
68  *      |                              |
69  *      |                              |
70  *      +------------------------------+
71  *
72  *
73  *   +------+
74  *   |buffer|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *      ^            |   |   |   |-->|   |
78  *      |   New      +---+   +---+   +---+
79  *      |  Reader------^               |
80  *      |   page                       |
81  *      +------------------------------+
82  *
83  *
84  * After we make this swap, the reader can hand this page off to the splice
85  * code and be done with it. It can even allocate a new page if it needs to
86  * and swap that into the ring buffer.
87  *
88  * We will be using cmpxchg soon to make all this lockless.
89  *
90  */
91
92 /*
93  * A fast way to enable or disable all ring buffers is to
94  * call tracing_on or tracing_off. Turning off the ring buffers
95  * prevents all ring buffers from being recorded to.
96  * Turning this switch on, makes it OK to write to the
97  * ring buffer, if the ring buffer is enabled itself.
98  *
99  * There's three layers that must be on in order to write
100  * to the ring buffer.
101  *
102  * 1) This global flag must be set.
103  * 2) The ring buffer must be enabled for recording.
104  * 3) The per cpu buffer must be enabled for recording.
105  *
106  * In case of an anomaly, this global flag has a bit set that
107  * will permantly disable all ring buffers.
108  */
109
110 /*
111  * Global flag to disable all recording to ring buffers
112  *  This has two bits: ON, DISABLED
113  *
114  *  ON   DISABLED
115  * ---- ----------
116  *   0      0        : ring buffers are off
117  *   1      0        : ring buffers are on
118  *   X      1        : ring buffers are permanently disabled
119  */
120
121 enum {
122         RB_BUFFERS_ON_BIT       = 0,
123         RB_BUFFERS_DISABLED_BIT = 1,
124 };
125
126 enum {
127         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
128         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
129 };
130
131 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
132
133 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
134
135 /**
136  * tracing_on - enable all tracing buffers
137  *
138  * This function enables all tracing buffers that may have been
139  * disabled with tracing_off.
140  */
141 void tracing_on(void)
142 {
143         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
144 }
145 EXPORT_SYMBOL_GPL(tracing_on);
146
147 /**
148  * tracing_off - turn off all tracing buffers
149  *
150  * This function stops all tracing buffers from recording data.
151  * It does not disable any overhead the tracers themselves may
152  * be causing. This function simply causes all recording to
153  * the ring buffers to fail.
154  */
155 void tracing_off(void)
156 {
157         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
158 }
159 EXPORT_SYMBOL_GPL(tracing_off);
160
161 /**
162  * tracing_off_permanent - permanently disable ring buffers
163  *
164  * This function, once called, will disable all ring buffers
165  * permanently.
166  */
167 void tracing_off_permanent(void)
168 {
169         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
170 }
171
172 /**
173  * tracing_is_on - show state of ring buffers enabled
174  */
175 int tracing_is_on(void)
176 {
177         return ring_buffer_flags == RB_BUFFERS_ON;
178 }
179 EXPORT_SYMBOL_GPL(tracing_is_on);
180
181 #include "trace.h"
182
183 /* Up this if you want to test the TIME_EXTENTS and normalization */
184 #define DEBUG_SHIFT 0
185
186 u64 ring_buffer_time_stamp(int cpu)
187 {
188         u64 time;
189
190         preempt_disable_notrace();
191         /* shift to debug/test normalization and TIME_EXTENTS */
192         time = trace_clock_local() << DEBUG_SHIFT;
193         preempt_enable_no_resched_notrace();
194
195         return time;
196 }
197 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
198
199 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
200 {
201         /* Just stupid testing the normalize function and deltas */
202         *ts >>= DEBUG_SHIFT;
203 }
204 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       28
209
210 enum {
211         RB_LEN_TIME_EXTEND = 8,
212         RB_LEN_TIME_STAMP = 16,
213 };
214
215 /* inline for ring buffer fast paths */
216 static unsigned
217 rb_event_length(struct ring_buffer_event *event)
218 {
219         unsigned length;
220
221         switch (event->type) {
222         case RINGBUF_TYPE_PADDING:
223                 /* undefined */
224                 return -1;
225
226         case RINGBUF_TYPE_TIME_EXTEND:
227                 return RB_LEN_TIME_EXTEND;
228
229         case RINGBUF_TYPE_TIME_STAMP:
230                 return RB_LEN_TIME_STAMP;
231
232         case RINGBUF_TYPE_DATA:
233                 if (event->len)
234                         length = event->len * RB_ALIGNMENT;
235                 else
236                         length = event->array[0];
237                 return length + RB_EVNT_HDR_SIZE;
238         default:
239                 BUG();
240         }
241         /* not hit */
242         return 0;
243 }
244
245 /**
246  * ring_buffer_event_length - return the length of the event
247  * @event: the event to get the length of
248  */
249 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
250 {
251         unsigned length = rb_event_length(event);
252         if (event->type != RINGBUF_TYPE_DATA)
253                 return length;
254         length -= RB_EVNT_HDR_SIZE;
255         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
256                 length -= sizeof(event->array[0]);
257         return length;
258 }
259 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
260
261 /* inline for ring buffer fast paths */
262 static void *
263 rb_event_data(struct ring_buffer_event *event)
264 {
265         BUG_ON(event->type != RINGBUF_TYPE_DATA);
266         /* If length is in len field, then array[0] has the data */
267         if (event->len)
268                 return (void *)&event->array[0];
269         /* Otherwise length is in array[0] and array[1] has the data */
270         return (void *)&event->array[1];
271 }
272
273 /**
274  * ring_buffer_event_data - return the data of the event
275  * @event: the event to get the data from
276  */
277 void *ring_buffer_event_data(struct ring_buffer_event *event)
278 {
279         return rb_event_data(event);
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
282
283 #define for_each_buffer_cpu(buffer, cpu)                \
284         for_each_cpu(cpu, buffer->cpumask)
285
286 #define TS_SHIFT        27
287 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST   (~TS_MASK)
289
290 struct buffer_data_page {
291         u64              time_stamp;    /* page time stamp */
292         local_t          commit;        /* write committed index */
293         unsigned char    data[];        /* data of buffer page */
294 };
295
296 struct buffer_page {
297         local_t          write;         /* index for next write */
298         unsigned         read;          /* index for next read */
299         struct list_head list;          /* list of free pages */
300         struct buffer_data_page *page;  /* Actual data page */
301 };
302
303 static void rb_init_page(struct buffer_data_page *bpage)
304 {
305         local_set(&bpage->commit, 0);
306 }
307
308 /**
309  * ring_buffer_page_len - the size of data on the page.
310  * @page: The page to read
311  *
312  * Returns the amount of data on the page, including buffer page header.
313  */
314 size_t ring_buffer_page_len(void *page)
315 {
316         return local_read(&((struct buffer_data_page *)page)->commit)
317                 + BUF_PAGE_HDR_SIZE;
318 }
319
320 /*
321  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
322  * this issue out.
323  */
324 static void free_buffer_page(struct buffer_page *bpage)
325 {
326         free_page((unsigned long)bpage->page);
327         kfree(bpage);
328 }
329
330 /*
331  * We need to fit the time_stamp delta into 27 bits.
332  */
333 static inline int test_time_stamp(u64 delta)
334 {
335         if (delta & TS_DELTA_TEST)
336                 return 1;
337         return 0;
338 }
339
340 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
341
342 /*
343  * head_page == tail_page && head == tail then buffer is empty.
344  */
345 struct ring_buffer_per_cpu {
346         int                             cpu;
347         struct ring_buffer              *buffer;
348         spinlock_t                      reader_lock; /* serialize readers */
349         raw_spinlock_t                  lock;
350         struct lock_class_key           lock_key;
351         struct list_head                pages;
352         struct buffer_page              *head_page;     /* read from head */
353         struct buffer_page              *tail_page;     /* write to tail */
354         struct buffer_page              *commit_page;   /* committed pages */
355         struct buffer_page              *reader_page;
356         unsigned long                   overrun;
357         unsigned long                   entries;
358         u64                             write_stamp;
359         u64                             read_stamp;
360         atomic_t                        record_disabled;
361 };
362
363 struct ring_buffer {
364         unsigned                        pages;
365         unsigned                        flags;
366         int                             cpus;
367         atomic_t                        record_disabled;
368         cpumask_var_t                   cpumask;
369
370         struct mutex                    mutex;
371
372         struct ring_buffer_per_cpu      **buffers;
373
374 #ifdef CONFIG_HOTPLUG_CPU
375         struct notifier_block           cpu_notify;
376 #endif
377 };
378
379 struct ring_buffer_iter {
380         struct ring_buffer_per_cpu      *cpu_buffer;
381         unsigned long                   head;
382         struct buffer_page              *head_page;
383         u64                             read_stamp;
384 };
385
386 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
387 #define RB_WARN_ON(buffer, cond)                                \
388         ({                                                      \
389                 int _____ret = unlikely(cond);                  \
390                 if (_____ret) {                                 \
391                         atomic_inc(&buffer->record_disabled);   \
392                         WARN_ON(1);                             \
393                 }                                               \
394                 _____ret;                                       \
395         })
396
397 /**
398  * check_pages - integrity check of buffer pages
399  * @cpu_buffer: CPU buffer with pages to test
400  *
401  * As a safety measure we check to make sure the data pages have not
402  * been corrupted.
403  */
404 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
405 {
406         struct list_head *head = &cpu_buffer->pages;
407         struct buffer_page *bpage, *tmp;
408
409         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
410                 return -1;
411         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
412                 return -1;
413
414         list_for_each_entry_safe(bpage, tmp, head, list) {
415                 if (RB_WARN_ON(cpu_buffer,
416                                bpage->list.next->prev != &bpage->list))
417                         return -1;
418                 if (RB_WARN_ON(cpu_buffer,
419                                bpage->list.prev->next != &bpage->list))
420                         return -1;
421         }
422
423         return 0;
424 }
425
426 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
427                              unsigned nr_pages)
428 {
429         struct list_head *head = &cpu_buffer->pages;
430         struct buffer_page *bpage, *tmp;
431         unsigned long addr;
432         LIST_HEAD(pages);
433         unsigned i;
434
435         for (i = 0; i < nr_pages; i++) {
436                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
437                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
438                 if (!bpage)
439                         goto free_pages;
440                 list_add(&bpage->list, &pages);
441
442                 addr = __get_free_page(GFP_KERNEL);
443                 if (!addr)
444                         goto free_pages;
445                 bpage->page = (void *)addr;
446                 rb_init_page(bpage->page);
447         }
448
449         list_splice(&pages, head);
450
451         rb_check_pages(cpu_buffer);
452
453         return 0;
454
455  free_pages:
456         list_for_each_entry_safe(bpage, tmp, &pages, list) {
457                 list_del_init(&bpage->list);
458                 free_buffer_page(bpage);
459         }
460         return -ENOMEM;
461 }
462
463 static struct ring_buffer_per_cpu *
464 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
465 {
466         struct ring_buffer_per_cpu *cpu_buffer;
467         struct buffer_page *bpage;
468         unsigned long addr;
469         int ret;
470
471         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
472                                   GFP_KERNEL, cpu_to_node(cpu));
473         if (!cpu_buffer)
474                 return NULL;
475
476         cpu_buffer->cpu = cpu;
477         cpu_buffer->buffer = buffer;
478         spin_lock_init(&cpu_buffer->reader_lock);
479         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
480         INIT_LIST_HEAD(&cpu_buffer->pages);
481
482         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
483                             GFP_KERNEL, cpu_to_node(cpu));
484         if (!bpage)
485                 goto fail_free_buffer;
486
487         cpu_buffer->reader_page = bpage;
488         addr = __get_free_page(GFP_KERNEL);
489         if (!addr)
490                 goto fail_free_reader;
491         bpage->page = (void *)addr;
492         rb_init_page(bpage->page);
493
494         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
495
496         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
497         if (ret < 0)
498                 goto fail_free_reader;
499
500         cpu_buffer->head_page
501                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
502         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
503
504         return cpu_buffer;
505
506  fail_free_reader:
507         free_buffer_page(cpu_buffer->reader_page);
508
509  fail_free_buffer:
510         kfree(cpu_buffer);
511         return NULL;
512 }
513
514 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
515 {
516         struct list_head *head = &cpu_buffer->pages;
517         struct buffer_page *bpage, *tmp;
518
519         list_del_init(&cpu_buffer->reader_page->list);
520         free_buffer_page(cpu_buffer->reader_page);
521
522         list_for_each_entry_safe(bpage, tmp, head, list) {
523                 list_del_init(&bpage->list);
524                 free_buffer_page(bpage);
525         }
526         kfree(cpu_buffer);
527 }
528
529 /*
530  * Causes compile errors if the struct buffer_page gets bigger
531  * than the struct page.
532  */
533 extern int ring_buffer_page_too_big(void);
534
535 #ifdef CONFIG_HOTPLUG_CPU
536 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
537                                    unsigned long action, void *hcpu);
538 #endif
539
540 /**
541  * ring_buffer_alloc - allocate a new ring_buffer
542  * @size: the size in bytes per cpu that is needed.
543  * @flags: attributes to set for the ring buffer.
544  *
545  * Currently the only flag that is available is the RB_FL_OVERWRITE
546  * flag. This flag means that the buffer will overwrite old data
547  * when the buffer wraps. If this flag is not set, the buffer will
548  * drop data when the tail hits the head.
549  */
550 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
551 {
552         struct ring_buffer *buffer;
553         int bsize;
554         int cpu;
555
556         /* Paranoid! Optimizes out when all is well */
557         if (sizeof(struct buffer_page) > sizeof(struct page))
558                 ring_buffer_page_too_big();
559
560
561         /* keep it in its own cache line */
562         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
563                          GFP_KERNEL);
564         if (!buffer)
565                 return NULL;
566
567         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
568                 goto fail_free_buffer;
569
570         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
571         buffer->flags = flags;
572
573         /* need at least two pages */
574         if (buffer->pages == 1)
575                 buffer->pages++;
576
577         get_online_cpus();
578         cpumask_copy(buffer->cpumask, cpu_online_mask);
579         buffer->cpus = nr_cpu_ids;
580
581         bsize = sizeof(void *) * nr_cpu_ids;
582         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
583                                   GFP_KERNEL);
584         if (!buffer->buffers)
585                 goto fail_free_cpumask;
586
587         for_each_buffer_cpu(buffer, cpu) {
588                 buffer->buffers[cpu] =
589                         rb_allocate_cpu_buffer(buffer, cpu);
590                 if (!buffer->buffers[cpu])
591                         goto fail_free_buffers;
592         }
593
594 #ifdef CONFIG_HOTPLUG_CPU
595         buffer->cpu_notify.notifier_call = rb_cpu_notify;
596         buffer->cpu_notify.priority = 0;
597         register_cpu_notifier(&buffer->cpu_notify);
598 #endif
599
600         put_online_cpus();
601         mutex_init(&buffer->mutex);
602
603         return buffer;
604
605  fail_free_buffers:
606         for_each_buffer_cpu(buffer, cpu) {
607                 if (buffer->buffers[cpu])
608                         rb_free_cpu_buffer(buffer->buffers[cpu]);
609         }
610         kfree(buffer->buffers);
611
612  fail_free_cpumask:
613         free_cpumask_var(buffer->cpumask);
614         put_online_cpus();
615
616  fail_free_buffer:
617         kfree(buffer);
618         return NULL;
619 }
620 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
621
622 /**
623  * ring_buffer_free - free a ring buffer.
624  * @buffer: the buffer to free.
625  */
626 void
627 ring_buffer_free(struct ring_buffer *buffer)
628 {
629         int cpu;
630
631         get_online_cpus();
632
633 #ifdef CONFIG_HOTPLUG_CPU
634         unregister_cpu_notifier(&buffer->cpu_notify);
635 #endif
636
637         for_each_buffer_cpu(buffer, cpu)
638                 rb_free_cpu_buffer(buffer->buffers[cpu]);
639
640         put_online_cpus();
641
642         free_cpumask_var(buffer->cpumask);
643
644         kfree(buffer);
645 }
646 EXPORT_SYMBOL_GPL(ring_buffer_free);
647
648 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
649
650 static void
651 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
652 {
653         struct buffer_page *bpage;
654         struct list_head *p;
655         unsigned i;
656
657         atomic_inc(&cpu_buffer->record_disabled);
658         synchronize_sched();
659
660         for (i = 0; i < nr_pages; i++) {
661                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
662                         return;
663                 p = cpu_buffer->pages.next;
664                 bpage = list_entry(p, struct buffer_page, list);
665                 list_del_init(&bpage->list);
666                 free_buffer_page(bpage);
667         }
668         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
669                 return;
670
671         rb_reset_cpu(cpu_buffer);
672
673         rb_check_pages(cpu_buffer);
674
675         atomic_dec(&cpu_buffer->record_disabled);
676
677 }
678
679 static void
680 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
681                 struct list_head *pages, unsigned nr_pages)
682 {
683         struct buffer_page *bpage;
684         struct list_head *p;
685         unsigned i;
686
687         atomic_inc(&cpu_buffer->record_disabled);
688         synchronize_sched();
689
690         for (i = 0; i < nr_pages; i++) {
691                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
692                         return;
693                 p = pages->next;
694                 bpage = list_entry(p, struct buffer_page, list);
695                 list_del_init(&bpage->list);
696                 list_add_tail(&bpage->list, &cpu_buffer->pages);
697         }
698         rb_reset_cpu(cpu_buffer);
699
700         rb_check_pages(cpu_buffer);
701
702         atomic_dec(&cpu_buffer->record_disabled);
703 }
704
705 /**
706  * ring_buffer_resize - resize the ring buffer
707  * @buffer: the buffer to resize.
708  * @size: the new size.
709  *
710  * The tracer is responsible for making sure that the buffer is
711  * not being used while changing the size.
712  * Note: We may be able to change the above requirement by using
713  *  RCU synchronizations.
714  *
715  * Minimum size is 2 * BUF_PAGE_SIZE.
716  *
717  * Returns -1 on failure.
718  */
719 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
720 {
721         struct ring_buffer_per_cpu *cpu_buffer;
722         unsigned nr_pages, rm_pages, new_pages;
723         struct buffer_page *bpage, *tmp;
724         unsigned long buffer_size;
725         unsigned long addr;
726         LIST_HEAD(pages);
727         int i, cpu;
728
729         /*
730          * Always succeed at resizing a non-existent buffer:
731          */
732         if (!buffer)
733                 return size;
734
735         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
736         size *= BUF_PAGE_SIZE;
737         buffer_size = buffer->pages * BUF_PAGE_SIZE;
738
739         /* we need a minimum of two pages */
740         if (size < BUF_PAGE_SIZE * 2)
741                 size = BUF_PAGE_SIZE * 2;
742
743         if (size == buffer_size)
744                 return size;
745
746         mutex_lock(&buffer->mutex);
747         get_online_cpus();
748
749         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
750
751         if (size < buffer_size) {
752
753                 /* easy case, just free pages */
754                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
755                         goto out_fail;
756
757                 rm_pages = buffer->pages - nr_pages;
758
759                 for_each_buffer_cpu(buffer, cpu) {
760                         cpu_buffer = buffer->buffers[cpu];
761                         rb_remove_pages(cpu_buffer, rm_pages);
762                 }
763                 goto out;
764         }
765
766         /*
767          * This is a bit more difficult. We only want to add pages
768          * when we can allocate enough for all CPUs. We do this
769          * by allocating all the pages and storing them on a local
770          * link list. If we succeed in our allocation, then we
771          * add these pages to the cpu_buffers. Otherwise we just free
772          * them all and return -ENOMEM;
773          */
774         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
775                 goto out_fail;
776
777         new_pages = nr_pages - buffer->pages;
778
779         for_each_buffer_cpu(buffer, cpu) {
780                 for (i = 0; i < new_pages; i++) {
781                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
782                                                   cache_line_size()),
783                                             GFP_KERNEL, cpu_to_node(cpu));
784                         if (!bpage)
785                                 goto free_pages;
786                         list_add(&bpage->list, &pages);
787                         addr = __get_free_page(GFP_KERNEL);
788                         if (!addr)
789                                 goto free_pages;
790                         bpage->page = (void *)addr;
791                         rb_init_page(bpage->page);
792                 }
793         }
794
795         for_each_buffer_cpu(buffer, cpu) {
796                 cpu_buffer = buffer->buffers[cpu];
797                 rb_insert_pages(cpu_buffer, &pages, new_pages);
798         }
799
800         if (RB_WARN_ON(buffer, !list_empty(&pages)))
801                 goto out_fail;
802
803  out:
804         buffer->pages = nr_pages;
805         put_online_cpus();
806         mutex_unlock(&buffer->mutex);
807
808         return size;
809
810  free_pages:
811         list_for_each_entry_safe(bpage, tmp, &pages, list) {
812                 list_del_init(&bpage->list);
813                 free_buffer_page(bpage);
814         }
815         put_online_cpus();
816         mutex_unlock(&buffer->mutex);
817         return -ENOMEM;
818
819         /*
820          * Something went totally wrong, and we are too paranoid
821          * to even clean up the mess.
822          */
823  out_fail:
824         put_online_cpus();
825         mutex_unlock(&buffer->mutex);
826         return -1;
827 }
828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
829
830 static inline int rb_null_event(struct ring_buffer_event *event)
831 {
832         return event->type == RINGBUF_TYPE_PADDING;
833 }
834
835 static inline void *
836 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
837 {
838         return bpage->data + index;
839 }
840
841 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
842 {
843         return bpage->page->data + index;
844 }
845
846 static inline struct ring_buffer_event *
847 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
848 {
849         return __rb_page_index(cpu_buffer->reader_page,
850                                cpu_buffer->reader_page->read);
851 }
852
853 static inline struct ring_buffer_event *
854 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
855 {
856         return __rb_page_index(cpu_buffer->head_page,
857                                cpu_buffer->head_page->read);
858 }
859
860 static inline struct ring_buffer_event *
861 rb_iter_head_event(struct ring_buffer_iter *iter)
862 {
863         return __rb_page_index(iter->head_page, iter->head);
864 }
865
866 static inline unsigned rb_page_write(struct buffer_page *bpage)
867 {
868         return local_read(&bpage->write);
869 }
870
871 static inline unsigned rb_page_commit(struct buffer_page *bpage)
872 {
873         return local_read(&bpage->page->commit);
874 }
875
876 /* Size is determined by what has been commited */
877 static inline unsigned rb_page_size(struct buffer_page *bpage)
878 {
879         return rb_page_commit(bpage);
880 }
881
882 static inline unsigned
883 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885         return rb_page_commit(cpu_buffer->commit_page);
886 }
887
888 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
889 {
890         return rb_page_commit(cpu_buffer->head_page);
891 }
892
893 /*
894  * When the tail hits the head and the buffer is in overwrite mode,
895  * the head jumps to the next page and all content on the previous
896  * page is discarded. But before doing so, we update the overrun
897  * variable of the buffer.
898  */
899 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
900 {
901         struct ring_buffer_event *event;
902         unsigned long head;
903
904         for (head = 0; head < rb_head_size(cpu_buffer);
905              head += rb_event_length(event)) {
906
907                 event = __rb_page_index(cpu_buffer->head_page, head);
908                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
909                         return;
910                 /* Only count data entries */
911                 if (event->type != RINGBUF_TYPE_DATA)
912                         continue;
913                 cpu_buffer->overrun++;
914                 cpu_buffer->entries--;
915         }
916 }
917
918 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
919                                struct buffer_page **bpage)
920 {
921         struct list_head *p = (*bpage)->list.next;
922
923         if (p == &cpu_buffer->pages)
924                 p = p->next;
925
926         *bpage = list_entry(p, struct buffer_page, list);
927 }
928
929 static inline unsigned
930 rb_event_index(struct ring_buffer_event *event)
931 {
932         unsigned long addr = (unsigned long)event;
933
934         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
935 }
936
937 static int
938 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
939              struct ring_buffer_event *event)
940 {
941         unsigned long addr = (unsigned long)event;
942         unsigned long index;
943
944         index = rb_event_index(event);
945         addr &= PAGE_MASK;
946
947         return cpu_buffer->commit_page->page == (void *)addr &&
948                 rb_commit_index(cpu_buffer) == index;
949 }
950
951 static void
952 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
953                     struct ring_buffer_event *event)
954 {
955         unsigned long addr = (unsigned long)event;
956         unsigned long index;
957
958         index = rb_event_index(event);
959         addr &= PAGE_MASK;
960
961         while (cpu_buffer->commit_page->page != (void *)addr) {
962                 if (RB_WARN_ON(cpu_buffer,
963                           cpu_buffer->commit_page == cpu_buffer->tail_page))
964                         return;
965                 cpu_buffer->commit_page->page->commit =
966                         cpu_buffer->commit_page->write;
967                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
968                 cpu_buffer->write_stamp =
969                         cpu_buffer->commit_page->page->time_stamp;
970         }
971
972         /* Now set the commit to the event's index */
973         local_set(&cpu_buffer->commit_page->page->commit, index);
974 }
975
976 static void
977 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
978 {
979         /*
980          * We only race with interrupts and NMIs on this CPU.
981          * If we own the commit event, then we can commit
982          * all others that interrupted us, since the interruptions
983          * are in stack format (they finish before they come
984          * back to us). This allows us to do a simple loop to
985          * assign the commit to the tail.
986          */
987  again:
988         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
989                 cpu_buffer->commit_page->page->commit =
990                         cpu_buffer->commit_page->write;
991                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
992                 cpu_buffer->write_stamp =
993                         cpu_buffer->commit_page->page->time_stamp;
994                 /* add barrier to keep gcc from optimizing too much */
995                 barrier();
996         }
997         while (rb_commit_index(cpu_buffer) !=
998                rb_page_write(cpu_buffer->commit_page)) {
999                 cpu_buffer->commit_page->page->commit =
1000                         cpu_buffer->commit_page->write;
1001                 barrier();
1002         }
1003
1004         /* again, keep gcc from optimizing */
1005         barrier();
1006
1007         /*
1008          * If an interrupt came in just after the first while loop
1009          * and pushed the tail page forward, we will be left with
1010          * a dangling commit that will never go forward.
1011          */
1012         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1013                 goto again;
1014 }
1015
1016 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1017 {
1018         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1019         cpu_buffer->reader_page->read = 0;
1020 }
1021
1022 static void rb_inc_iter(struct ring_buffer_iter *iter)
1023 {
1024         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1025
1026         /*
1027          * The iterator could be on the reader page (it starts there).
1028          * But the head could have moved, since the reader was
1029          * found. Check for this case and assign the iterator
1030          * to the head page instead of next.
1031          */
1032         if (iter->head_page == cpu_buffer->reader_page)
1033                 iter->head_page = cpu_buffer->head_page;
1034         else
1035                 rb_inc_page(cpu_buffer, &iter->head_page);
1036
1037         iter->read_stamp = iter->head_page->page->time_stamp;
1038         iter->head = 0;
1039 }
1040
1041 /**
1042  * ring_buffer_update_event - update event type and data
1043  * @event: the even to update
1044  * @type: the type of event
1045  * @length: the size of the event field in the ring buffer
1046  *
1047  * Update the type and data fields of the event. The length
1048  * is the actual size that is written to the ring buffer,
1049  * and with this, we can determine what to place into the
1050  * data field.
1051  */
1052 static void
1053 rb_update_event(struct ring_buffer_event *event,
1054                          unsigned type, unsigned length)
1055 {
1056         event->type = type;
1057
1058         switch (type) {
1059
1060         case RINGBUF_TYPE_PADDING:
1061                 break;
1062
1063         case RINGBUF_TYPE_TIME_EXTEND:
1064                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
1065                 break;
1066
1067         case RINGBUF_TYPE_TIME_STAMP:
1068                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1069                 break;
1070
1071         case RINGBUF_TYPE_DATA:
1072                 length -= RB_EVNT_HDR_SIZE;
1073                 if (length > RB_MAX_SMALL_DATA) {
1074                         event->len = 0;
1075                         event->array[0] = length;
1076                 } else
1077                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1078                 break;
1079         default:
1080                 BUG();
1081         }
1082 }
1083
1084 static unsigned rb_calculate_event_length(unsigned length)
1085 {
1086         struct ring_buffer_event event; /* Used only for sizeof array */
1087
1088         /* zero length can cause confusions */
1089         if (!length)
1090                 length = 1;
1091
1092         if (length > RB_MAX_SMALL_DATA)
1093                 length += sizeof(event.array[0]);
1094
1095         length += RB_EVNT_HDR_SIZE;
1096         length = ALIGN(length, RB_ALIGNMENT);
1097
1098         return length;
1099 }
1100
1101 static struct ring_buffer_event *
1102 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1103                   unsigned type, unsigned long length, u64 *ts)
1104 {
1105         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1106         unsigned long tail, write;
1107         struct ring_buffer *buffer = cpu_buffer->buffer;
1108         struct ring_buffer_event *event;
1109         unsigned long flags;
1110         bool lock_taken = false;
1111
1112         commit_page = cpu_buffer->commit_page;
1113         /* we just need to protect against interrupts */
1114         barrier();
1115         tail_page = cpu_buffer->tail_page;
1116         write = local_add_return(length, &tail_page->write);
1117         tail = write - length;
1118
1119         /* See if we shot pass the end of this buffer page */
1120         if (write > BUF_PAGE_SIZE) {
1121                 struct buffer_page *next_page = tail_page;
1122
1123                 local_irq_save(flags);
1124                 /*
1125                  * Since the write to the buffer is still not
1126                  * fully lockless, we must be careful with NMIs.
1127                  * The locks in the writers are taken when a write
1128                  * crosses to a new page. The locks protect against
1129                  * races with the readers (this will soon be fixed
1130                  * with a lockless solution).
1131                  *
1132                  * Because we can not protect against NMIs, and we
1133                  * want to keep traces reentrant, we need to manage
1134                  * what happens when we are in an NMI.
1135                  *
1136                  * NMIs can happen after we take the lock.
1137                  * If we are in an NMI, only take the lock
1138                  * if it is not already taken. Otherwise
1139                  * simply fail.
1140                  */
1141                 if (unlikely(in_nmi())) {
1142                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1143                                 goto out_reset;
1144                 } else
1145                         __raw_spin_lock(&cpu_buffer->lock);
1146
1147                 lock_taken = true;
1148
1149                 rb_inc_page(cpu_buffer, &next_page);
1150
1151                 head_page = cpu_buffer->head_page;
1152                 reader_page = cpu_buffer->reader_page;
1153
1154                 /* we grabbed the lock before incrementing */
1155                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1156                         goto out_reset;
1157
1158                 /*
1159                  * If for some reason, we had an interrupt storm that made
1160                  * it all the way around the buffer, bail, and warn
1161                  * about it.
1162                  */
1163                 if (unlikely(next_page == commit_page)) {
1164                         WARN_ON_ONCE(1);
1165                         goto out_reset;
1166                 }
1167
1168                 if (next_page == head_page) {
1169                         if (!(buffer->flags & RB_FL_OVERWRITE))
1170                                 goto out_reset;
1171
1172                         /* tail_page has not moved yet? */
1173                         if (tail_page == cpu_buffer->tail_page) {
1174                                 /* count overflows */
1175                                 rb_update_overflow(cpu_buffer);
1176
1177                                 rb_inc_page(cpu_buffer, &head_page);
1178                                 cpu_buffer->head_page = head_page;
1179                                 cpu_buffer->head_page->read = 0;
1180                         }
1181                 }
1182
1183                 /*
1184                  * If the tail page is still the same as what we think
1185                  * it is, then it is up to us to update the tail
1186                  * pointer.
1187                  */
1188                 if (tail_page == cpu_buffer->tail_page) {
1189                         local_set(&next_page->write, 0);
1190                         local_set(&next_page->page->commit, 0);
1191                         cpu_buffer->tail_page = next_page;
1192
1193                         /* reread the time stamp */
1194                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1195                         cpu_buffer->tail_page->page->time_stamp = *ts;
1196                 }
1197
1198                 /*
1199                  * The actual tail page has moved forward.
1200                  */
1201                 if (tail < BUF_PAGE_SIZE) {
1202                         /* Mark the rest of the page with padding */
1203                         event = __rb_page_index(tail_page, tail);
1204                         event->type = RINGBUF_TYPE_PADDING;
1205                 }
1206
1207                 if (tail <= BUF_PAGE_SIZE)
1208                         /* Set the write back to the previous setting */
1209                         local_set(&tail_page->write, tail);
1210
1211                 /*
1212                  * If this was a commit entry that failed,
1213                  * increment that too
1214                  */
1215                 if (tail_page == cpu_buffer->commit_page &&
1216                     tail == rb_commit_index(cpu_buffer)) {
1217                         rb_set_commit_to_write(cpu_buffer);
1218                 }
1219
1220                 __raw_spin_unlock(&cpu_buffer->lock);
1221                 local_irq_restore(flags);
1222
1223                 /* fail and let the caller try again */
1224                 return ERR_PTR(-EAGAIN);
1225         }
1226
1227         /* We reserved something on the buffer */
1228
1229         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1230                 return NULL;
1231
1232         event = __rb_page_index(tail_page, tail);
1233         rb_update_event(event, type, length);
1234
1235         /*
1236          * If this is a commit and the tail is zero, then update
1237          * this page's time stamp.
1238          */
1239         if (!tail && rb_is_commit(cpu_buffer, event))
1240                 cpu_buffer->commit_page->page->time_stamp = *ts;
1241
1242         return event;
1243
1244  out_reset:
1245         /* reset write */
1246         if (tail <= BUF_PAGE_SIZE)
1247                 local_set(&tail_page->write, tail);
1248
1249         if (likely(lock_taken))
1250                 __raw_spin_unlock(&cpu_buffer->lock);
1251         local_irq_restore(flags);
1252         return NULL;
1253 }
1254
1255 static int
1256 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1257                   u64 *ts, u64 *delta)
1258 {
1259         struct ring_buffer_event *event;
1260         static int once;
1261         int ret;
1262
1263         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1264                 printk(KERN_WARNING "Delta way too big! %llu"
1265                        " ts=%llu write stamp = %llu\n",
1266                        (unsigned long long)*delta,
1267                        (unsigned long long)*ts,
1268                        (unsigned long long)cpu_buffer->write_stamp);
1269                 WARN_ON(1);
1270         }
1271
1272         /*
1273          * The delta is too big, we to add a
1274          * new timestamp.
1275          */
1276         event = __rb_reserve_next(cpu_buffer,
1277                                   RINGBUF_TYPE_TIME_EXTEND,
1278                                   RB_LEN_TIME_EXTEND,
1279                                   ts);
1280         if (!event)
1281                 return -EBUSY;
1282
1283         if (PTR_ERR(event) == -EAGAIN)
1284                 return -EAGAIN;
1285
1286         /* Only a commited time event can update the write stamp */
1287         if (rb_is_commit(cpu_buffer, event)) {
1288                 /*
1289                  * If this is the first on the page, then we need to
1290                  * update the page itself, and just put in a zero.
1291                  */
1292                 if (rb_event_index(event)) {
1293                         event->time_delta = *delta & TS_MASK;
1294                         event->array[0] = *delta >> TS_SHIFT;
1295                 } else {
1296                         cpu_buffer->commit_page->page->time_stamp = *ts;
1297                         event->time_delta = 0;
1298                         event->array[0] = 0;
1299                 }
1300                 cpu_buffer->write_stamp = *ts;
1301                 /* let the caller know this was the commit */
1302                 ret = 1;
1303         } else {
1304                 /* Darn, this is just wasted space */
1305                 event->time_delta = 0;
1306                 event->array[0] = 0;
1307                 ret = 0;
1308         }
1309
1310         *delta = 0;
1311
1312         return ret;
1313 }
1314
1315 static struct ring_buffer_event *
1316 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1317                       unsigned type, unsigned long length)
1318 {
1319         struct ring_buffer_event *event;
1320         u64 ts, delta;
1321         int commit = 0;
1322         int nr_loops = 0;
1323
1324  again:
1325         /*
1326          * We allow for interrupts to reenter here and do a trace.
1327          * If one does, it will cause this original code to loop
1328          * back here. Even with heavy interrupts happening, this
1329          * should only happen a few times in a row. If this happens
1330          * 1000 times in a row, there must be either an interrupt
1331          * storm or we have something buggy.
1332          * Bail!
1333          */
1334         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1335                 return NULL;
1336
1337         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1338
1339         /*
1340          * Only the first commit can update the timestamp.
1341          * Yes there is a race here. If an interrupt comes in
1342          * just after the conditional and it traces too, then it
1343          * will also check the deltas. More than one timestamp may
1344          * also be made. But only the entry that did the actual
1345          * commit will be something other than zero.
1346          */
1347         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1348             rb_page_write(cpu_buffer->tail_page) ==
1349             rb_commit_index(cpu_buffer)) {
1350
1351                 delta = ts - cpu_buffer->write_stamp;
1352
1353                 /* make sure this delta is calculated here */
1354                 barrier();
1355
1356                 /* Did the write stamp get updated already? */
1357                 if (unlikely(ts < cpu_buffer->write_stamp))
1358                         delta = 0;
1359
1360                 if (test_time_stamp(delta)) {
1361
1362                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1363
1364                         if (commit == -EBUSY)
1365                                 return NULL;
1366
1367                         if (commit == -EAGAIN)
1368                                 goto again;
1369
1370                         RB_WARN_ON(cpu_buffer, commit < 0);
1371                 }
1372         } else
1373                 /* Non commits have zero deltas */
1374                 delta = 0;
1375
1376         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1377         if (PTR_ERR(event) == -EAGAIN)
1378                 goto again;
1379
1380         if (!event) {
1381                 if (unlikely(commit))
1382                         /*
1383                          * Ouch! We needed a timestamp and it was commited. But
1384                          * we didn't get our event reserved.
1385                          */
1386                         rb_set_commit_to_write(cpu_buffer);
1387                 return NULL;
1388         }
1389
1390         /*
1391          * If the timestamp was commited, make the commit our entry
1392          * now so that we will update it when needed.
1393          */
1394         if (commit)
1395                 rb_set_commit_event(cpu_buffer, event);
1396         else if (!rb_is_commit(cpu_buffer, event))
1397                 delta = 0;
1398
1399         event->time_delta = delta;
1400
1401         return event;
1402 }
1403
1404 static DEFINE_PER_CPU(int, rb_need_resched);
1405
1406 /**
1407  * ring_buffer_lock_reserve - reserve a part of the buffer
1408  * @buffer: the ring buffer to reserve from
1409  * @length: the length of the data to reserve (excluding event header)
1410  *
1411  * Returns a reseverd event on the ring buffer to copy directly to.
1412  * The user of this interface will need to get the body to write into
1413  * and can use the ring_buffer_event_data() interface.
1414  *
1415  * The length is the length of the data needed, not the event length
1416  * which also includes the event header.
1417  *
1418  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1419  * If NULL is returned, then nothing has been allocated or locked.
1420  */
1421 struct ring_buffer_event *
1422 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1423 {
1424         struct ring_buffer_per_cpu *cpu_buffer;
1425         struct ring_buffer_event *event;
1426         int cpu, resched;
1427
1428         if (ring_buffer_flags != RB_BUFFERS_ON)
1429                 return NULL;
1430
1431         if (atomic_read(&buffer->record_disabled))
1432                 return NULL;
1433
1434         /* If we are tracing schedule, we don't want to recurse */
1435         resched = ftrace_preempt_disable();
1436
1437         cpu = raw_smp_processor_id();
1438
1439         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1440                 goto out;
1441
1442         cpu_buffer = buffer->buffers[cpu];
1443
1444         if (atomic_read(&cpu_buffer->record_disabled))
1445                 goto out;
1446
1447         length = rb_calculate_event_length(length);
1448         if (length > BUF_PAGE_SIZE)
1449                 goto out;
1450
1451         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1452         if (!event)
1453                 goto out;
1454
1455         /*
1456          * Need to store resched state on this cpu.
1457          * Only the first needs to.
1458          */
1459
1460         if (preempt_count() == 1)
1461                 per_cpu(rb_need_resched, cpu) = resched;
1462
1463         return event;
1464
1465  out:
1466         ftrace_preempt_enable(resched);
1467         return NULL;
1468 }
1469 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1470
1471 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1472                       struct ring_buffer_event *event)
1473 {
1474         cpu_buffer->entries++;
1475
1476         /* Only process further if we own the commit */
1477         if (!rb_is_commit(cpu_buffer, event))
1478                 return;
1479
1480         cpu_buffer->write_stamp += event->time_delta;
1481
1482         rb_set_commit_to_write(cpu_buffer);
1483 }
1484
1485 /**
1486  * ring_buffer_unlock_commit - commit a reserved
1487  * @buffer: The buffer to commit to
1488  * @event: The event pointer to commit.
1489  *
1490  * This commits the data to the ring buffer, and releases any locks held.
1491  *
1492  * Must be paired with ring_buffer_lock_reserve.
1493  */
1494 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1495                               struct ring_buffer_event *event)
1496 {
1497         struct ring_buffer_per_cpu *cpu_buffer;
1498         int cpu = raw_smp_processor_id();
1499
1500         cpu_buffer = buffer->buffers[cpu];
1501
1502         rb_commit(cpu_buffer, event);
1503
1504         /*
1505          * Only the last preempt count needs to restore preemption.
1506          */
1507         if (preempt_count() == 1)
1508                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1509         else
1510                 preempt_enable_no_resched_notrace();
1511
1512         return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1515
1516 /**
1517  * ring_buffer_write - write data to the buffer without reserving
1518  * @buffer: The ring buffer to write to.
1519  * @length: The length of the data being written (excluding the event header)
1520  * @data: The data to write to the buffer.
1521  *
1522  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1523  * one function. If you already have the data to write to the buffer, it
1524  * may be easier to simply call this function.
1525  *
1526  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1527  * and not the length of the event which would hold the header.
1528  */
1529 int ring_buffer_write(struct ring_buffer *buffer,
1530                         unsigned long length,
1531                         void *data)
1532 {
1533         struct ring_buffer_per_cpu *cpu_buffer;
1534         struct ring_buffer_event *event;
1535         unsigned long event_length;
1536         void *body;
1537         int ret = -EBUSY;
1538         int cpu, resched;
1539
1540         if (ring_buffer_flags != RB_BUFFERS_ON)
1541                 return -EBUSY;
1542
1543         if (atomic_read(&buffer->record_disabled))
1544                 return -EBUSY;
1545
1546         resched = ftrace_preempt_disable();
1547
1548         cpu = raw_smp_processor_id();
1549
1550         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1551                 goto out;
1552
1553         cpu_buffer = buffer->buffers[cpu];
1554
1555         if (atomic_read(&cpu_buffer->record_disabled))
1556                 goto out;
1557
1558         event_length = rb_calculate_event_length(length);
1559         event = rb_reserve_next_event(cpu_buffer,
1560                                       RINGBUF_TYPE_DATA, event_length);
1561         if (!event)
1562                 goto out;
1563
1564         body = rb_event_data(event);
1565
1566         memcpy(body, data, length);
1567
1568         rb_commit(cpu_buffer, event);
1569
1570         ret = 0;
1571  out:
1572         ftrace_preempt_enable(resched);
1573
1574         return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(ring_buffer_write);
1577
1578 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1579 {
1580         struct buffer_page *reader = cpu_buffer->reader_page;
1581         struct buffer_page *head = cpu_buffer->head_page;
1582         struct buffer_page *commit = cpu_buffer->commit_page;
1583
1584         return reader->read == rb_page_commit(reader) &&
1585                 (commit == reader ||
1586                  (commit == head &&
1587                   head->read == rb_page_commit(commit)));
1588 }
1589
1590 /**
1591  * ring_buffer_record_disable - stop all writes into the buffer
1592  * @buffer: The ring buffer to stop writes to.
1593  *
1594  * This prevents all writes to the buffer. Any attempt to write
1595  * to the buffer after this will fail and return NULL.
1596  *
1597  * The caller should call synchronize_sched() after this.
1598  */
1599 void ring_buffer_record_disable(struct ring_buffer *buffer)
1600 {
1601         atomic_inc(&buffer->record_disabled);
1602 }
1603 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1604
1605 /**
1606  * ring_buffer_record_enable - enable writes to the buffer
1607  * @buffer: The ring buffer to enable writes
1608  *
1609  * Note, multiple disables will need the same number of enables
1610  * to truely enable the writing (much like preempt_disable).
1611  */
1612 void ring_buffer_record_enable(struct ring_buffer *buffer)
1613 {
1614         atomic_dec(&buffer->record_disabled);
1615 }
1616 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1617
1618 /**
1619  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1620  * @buffer: The ring buffer to stop writes to.
1621  * @cpu: The CPU buffer to stop
1622  *
1623  * This prevents all writes to the buffer. Any attempt to write
1624  * to the buffer after this will fail and return NULL.
1625  *
1626  * The caller should call synchronize_sched() after this.
1627  */
1628 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1629 {
1630         struct ring_buffer_per_cpu *cpu_buffer;
1631
1632         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1633                 return;
1634
1635         cpu_buffer = buffer->buffers[cpu];
1636         atomic_inc(&cpu_buffer->record_disabled);
1637 }
1638 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1639
1640 /**
1641  * ring_buffer_record_enable_cpu - enable writes to the buffer
1642  * @buffer: The ring buffer to enable writes
1643  * @cpu: The CPU to enable.
1644  *
1645  * Note, multiple disables will need the same number of enables
1646  * to truely enable the writing (much like preempt_disable).
1647  */
1648 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1649 {
1650         struct ring_buffer_per_cpu *cpu_buffer;
1651
1652         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1653                 return;
1654
1655         cpu_buffer = buffer->buffers[cpu];
1656         atomic_dec(&cpu_buffer->record_disabled);
1657 }
1658 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1659
1660 /**
1661  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1662  * @buffer: The ring buffer
1663  * @cpu: The per CPU buffer to get the entries from.
1664  */
1665 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1666 {
1667         struct ring_buffer_per_cpu *cpu_buffer;
1668         unsigned long ret;
1669
1670         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1671                 return 0;
1672
1673         cpu_buffer = buffer->buffers[cpu];
1674         ret = cpu_buffer->entries;
1675
1676         return ret;
1677 }
1678 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1679
1680 /**
1681  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1682  * @buffer: The ring buffer
1683  * @cpu: The per CPU buffer to get the number of overruns from
1684  */
1685 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1686 {
1687         struct ring_buffer_per_cpu *cpu_buffer;
1688         unsigned long ret;
1689
1690         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1691                 return 0;
1692
1693         cpu_buffer = buffer->buffers[cpu];
1694         ret = cpu_buffer->overrun;
1695
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1699
1700 /**
1701  * ring_buffer_entries - get the number of entries in a buffer
1702  * @buffer: The ring buffer
1703  *
1704  * Returns the total number of entries in the ring buffer
1705  * (all CPU entries)
1706  */
1707 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1708 {
1709         struct ring_buffer_per_cpu *cpu_buffer;
1710         unsigned long entries = 0;
1711         int cpu;
1712
1713         /* if you care about this being correct, lock the buffer */
1714         for_each_buffer_cpu(buffer, cpu) {
1715                 cpu_buffer = buffer->buffers[cpu];
1716                 entries += cpu_buffer->entries;
1717         }
1718
1719         return entries;
1720 }
1721 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1722
1723 /**
1724  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1725  * @buffer: The ring buffer
1726  *
1727  * Returns the total number of overruns in the ring buffer
1728  * (all CPU entries)
1729  */
1730 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1731 {
1732         struct ring_buffer_per_cpu *cpu_buffer;
1733         unsigned long overruns = 0;
1734         int cpu;
1735
1736         /* if you care about this being correct, lock the buffer */
1737         for_each_buffer_cpu(buffer, cpu) {
1738                 cpu_buffer = buffer->buffers[cpu];
1739                 overruns += cpu_buffer->overrun;
1740         }
1741
1742         return overruns;
1743 }
1744 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1745
1746 static void rb_iter_reset(struct ring_buffer_iter *iter)
1747 {
1748         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1749
1750         /* Iterator usage is expected to have record disabled */
1751         if (list_empty(&cpu_buffer->reader_page->list)) {
1752                 iter->head_page = cpu_buffer->head_page;
1753                 iter->head = cpu_buffer->head_page->read;
1754         } else {
1755                 iter->head_page = cpu_buffer->reader_page;
1756                 iter->head = cpu_buffer->reader_page->read;
1757         }
1758         if (iter->head)
1759                 iter->read_stamp = cpu_buffer->read_stamp;
1760         else
1761                 iter->read_stamp = iter->head_page->page->time_stamp;
1762 }
1763
1764 /**
1765  * ring_buffer_iter_reset - reset an iterator
1766  * @iter: The iterator to reset
1767  *
1768  * Resets the iterator, so that it will start from the beginning
1769  * again.
1770  */
1771 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1772 {
1773         struct ring_buffer_per_cpu *cpu_buffer;
1774         unsigned long flags;
1775
1776         if (!iter)
1777                 return;
1778
1779         cpu_buffer = iter->cpu_buffer;
1780
1781         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1782         rb_iter_reset(iter);
1783         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1784 }
1785 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1786
1787 /**
1788  * ring_buffer_iter_empty - check if an iterator has no more to read
1789  * @iter: The iterator to check
1790  */
1791 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1792 {
1793         struct ring_buffer_per_cpu *cpu_buffer;
1794
1795         cpu_buffer = iter->cpu_buffer;
1796
1797         return iter->head_page == cpu_buffer->commit_page &&
1798                 iter->head == rb_commit_index(cpu_buffer);
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1801
1802 static void
1803 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1804                      struct ring_buffer_event *event)
1805 {
1806         u64 delta;
1807
1808         switch (event->type) {
1809         case RINGBUF_TYPE_PADDING:
1810                 return;
1811
1812         case RINGBUF_TYPE_TIME_EXTEND:
1813                 delta = event->array[0];
1814                 delta <<= TS_SHIFT;
1815                 delta += event->time_delta;
1816                 cpu_buffer->read_stamp += delta;
1817                 return;
1818
1819         case RINGBUF_TYPE_TIME_STAMP:
1820                 /* FIXME: not implemented */
1821                 return;
1822
1823         case RINGBUF_TYPE_DATA:
1824                 cpu_buffer->read_stamp += event->time_delta;
1825                 return;
1826
1827         default:
1828                 BUG();
1829         }
1830         return;
1831 }
1832
1833 static void
1834 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1835                           struct ring_buffer_event *event)
1836 {
1837         u64 delta;
1838
1839         switch (event->type) {
1840         case RINGBUF_TYPE_PADDING:
1841                 return;
1842
1843         case RINGBUF_TYPE_TIME_EXTEND:
1844                 delta = event->array[0];
1845                 delta <<= TS_SHIFT;
1846                 delta += event->time_delta;
1847                 iter->read_stamp += delta;
1848                 return;
1849
1850         case RINGBUF_TYPE_TIME_STAMP:
1851                 /* FIXME: not implemented */
1852                 return;
1853
1854         case RINGBUF_TYPE_DATA:
1855                 iter->read_stamp += event->time_delta;
1856                 return;
1857
1858         default:
1859                 BUG();
1860         }
1861         return;
1862 }
1863
1864 static struct buffer_page *
1865 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1866 {
1867         struct buffer_page *reader = NULL;
1868         unsigned long flags;
1869         int nr_loops = 0;
1870
1871         local_irq_save(flags);
1872         __raw_spin_lock(&cpu_buffer->lock);
1873
1874  again:
1875         /*
1876          * This should normally only loop twice. But because the
1877          * start of the reader inserts an empty page, it causes
1878          * a case where we will loop three times. There should be no
1879          * reason to loop four times (that I know of).
1880          */
1881         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1882                 reader = NULL;
1883                 goto out;
1884         }
1885
1886         reader = cpu_buffer->reader_page;
1887
1888         /* If there's more to read, return this page */
1889         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1890                 goto out;
1891
1892         /* Never should we have an index greater than the size */
1893         if (RB_WARN_ON(cpu_buffer,
1894                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1895                 goto out;
1896
1897         /* check if we caught up to the tail */
1898         reader = NULL;
1899         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1900                 goto out;
1901
1902         /*
1903          * Splice the empty reader page into the list around the head.
1904          * Reset the reader page to size zero.
1905          */
1906
1907         reader = cpu_buffer->head_page;
1908         cpu_buffer->reader_page->list.next = reader->list.next;
1909         cpu_buffer->reader_page->list.prev = reader->list.prev;
1910
1911         local_set(&cpu_buffer->reader_page->write, 0);
1912         local_set(&cpu_buffer->reader_page->page->commit, 0);
1913
1914         /* Make the reader page now replace the head */
1915         reader->list.prev->next = &cpu_buffer->reader_page->list;
1916         reader->list.next->prev = &cpu_buffer->reader_page->list;
1917
1918         /*
1919          * If the tail is on the reader, then we must set the head
1920          * to the inserted page, otherwise we set it one before.
1921          */
1922         cpu_buffer->head_page = cpu_buffer->reader_page;
1923
1924         if (cpu_buffer->commit_page != reader)
1925                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1926
1927         /* Finally update the reader page to the new head */
1928         cpu_buffer->reader_page = reader;
1929         rb_reset_reader_page(cpu_buffer);
1930
1931         goto again;
1932
1933  out:
1934         __raw_spin_unlock(&cpu_buffer->lock);
1935         local_irq_restore(flags);
1936
1937         return reader;
1938 }
1939
1940 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1941 {
1942         struct ring_buffer_event *event;
1943         struct buffer_page *reader;
1944         unsigned length;
1945
1946         reader = rb_get_reader_page(cpu_buffer);
1947
1948         /* This function should not be called when buffer is empty */
1949         if (RB_WARN_ON(cpu_buffer, !reader))
1950                 return;
1951
1952         event = rb_reader_event(cpu_buffer);
1953
1954         if (event->type == RINGBUF_TYPE_DATA)
1955                 cpu_buffer->entries--;
1956
1957         rb_update_read_stamp(cpu_buffer, event);
1958
1959         length = rb_event_length(event);
1960         cpu_buffer->reader_page->read += length;
1961 }
1962
1963 static void rb_advance_iter(struct ring_buffer_iter *iter)
1964 {
1965         struct ring_buffer *buffer;
1966         struct ring_buffer_per_cpu *cpu_buffer;
1967         struct ring_buffer_event *event;
1968         unsigned length;
1969
1970         cpu_buffer = iter->cpu_buffer;
1971         buffer = cpu_buffer->buffer;
1972
1973         /*
1974          * Check if we are at the end of the buffer.
1975          */
1976         if (iter->head >= rb_page_size(iter->head_page)) {
1977                 if (RB_WARN_ON(buffer,
1978                                iter->head_page == cpu_buffer->commit_page))
1979                         return;
1980                 rb_inc_iter(iter);
1981                 return;
1982         }
1983
1984         event = rb_iter_head_event(iter);
1985
1986         length = rb_event_length(event);
1987
1988         /*
1989          * This should not be called to advance the header if we are
1990          * at the tail of the buffer.
1991          */
1992         if (RB_WARN_ON(cpu_buffer,
1993                        (iter->head_page == cpu_buffer->commit_page) &&
1994                        (iter->head + length > rb_commit_index(cpu_buffer))))
1995                 return;
1996
1997         rb_update_iter_read_stamp(iter, event);
1998
1999         iter->head += length;
2000
2001         /* check for end of page padding */
2002         if ((iter->head >= rb_page_size(iter->head_page)) &&
2003             (iter->head_page != cpu_buffer->commit_page))
2004                 rb_advance_iter(iter);
2005 }
2006
2007 static struct ring_buffer_event *
2008 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2009 {
2010         struct ring_buffer_per_cpu *cpu_buffer;
2011         struct ring_buffer_event *event;
2012         struct buffer_page *reader;
2013         int nr_loops = 0;
2014
2015         cpu_buffer = buffer->buffers[cpu];
2016
2017  again:
2018         /*
2019          * We repeat when a timestamp is encountered. It is possible
2020          * to get multiple timestamps from an interrupt entering just
2021          * as one timestamp is about to be written. The max times
2022          * that this can happen is the number of nested interrupts we
2023          * can have.  Nesting 10 deep of interrupts is clearly
2024          * an anomaly.
2025          */
2026         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2027                 return NULL;
2028
2029         reader = rb_get_reader_page(cpu_buffer);
2030         if (!reader)
2031                 return NULL;
2032
2033         event = rb_reader_event(cpu_buffer);
2034
2035         switch (event->type) {
2036         case RINGBUF_TYPE_PADDING:
2037                 RB_WARN_ON(cpu_buffer, 1);
2038                 rb_advance_reader(cpu_buffer);
2039                 return NULL;
2040
2041         case RINGBUF_TYPE_TIME_EXTEND:
2042                 /* Internal data, OK to advance */
2043                 rb_advance_reader(cpu_buffer);
2044                 goto again;
2045
2046         case RINGBUF_TYPE_TIME_STAMP:
2047                 /* FIXME: not implemented */
2048                 rb_advance_reader(cpu_buffer);
2049                 goto again;
2050
2051         case RINGBUF_TYPE_DATA:
2052                 if (ts) {
2053                         *ts = cpu_buffer->read_stamp + event->time_delta;
2054                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2055                 }
2056                 return event;
2057
2058         default:
2059                 BUG();
2060         }
2061
2062         return NULL;
2063 }
2064 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2065
2066 static struct ring_buffer_event *
2067 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2068 {
2069         struct ring_buffer *buffer;
2070         struct ring_buffer_per_cpu *cpu_buffer;
2071         struct ring_buffer_event *event;
2072         int nr_loops = 0;
2073
2074         if (ring_buffer_iter_empty(iter))
2075                 return NULL;
2076
2077         cpu_buffer = iter->cpu_buffer;
2078         buffer = cpu_buffer->buffer;
2079
2080  again:
2081         /*
2082          * We repeat when a timestamp is encountered. It is possible
2083          * to get multiple timestamps from an interrupt entering just
2084          * as one timestamp is about to be written. The max times
2085          * that this can happen is the number of nested interrupts we
2086          * can have. Nesting 10 deep of interrupts is clearly
2087          * an anomaly.
2088          */
2089         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2090                 return NULL;
2091
2092         if (rb_per_cpu_empty(cpu_buffer))
2093                 return NULL;
2094
2095         event = rb_iter_head_event(iter);
2096
2097         switch (event->type) {
2098         case RINGBUF_TYPE_PADDING:
2099                 rb_inc_iter(iter);
2100                 goto again;
2101
2102         case RINGBUF_TYPE_TIME_EXTEND:
2103                 /* Internal data, OK to advance */
2104                 rb_advance_iter(iter);
2105                 goto again;
2106
2107         case RINGBUF_TYPE_TIME_STAMP:
2108                 /* FIXME: not implemented */
2109                 rb_advance_iter(iter);
2110                 goto again;
2111
2112         case RINGBUF_TYPE_DATA:
2113                 if (ts) {
2114                         *ts = iter->read_stamp + event->time_delta;
2115                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2116                 }
2117                 return event;
2118
2119         default:
2120                 BUG();
2121         }
2122
2123         return NULL;
2124 }
2125 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2126
2127 /**
2128  * ring_buffer_peek - peek at the next event to be read
2129  * @buffer: The ring buffer to read
2130  * @cpu: The cpu to peak at
2131  * @ts: The timestamp counter of this event.
2132  *
2133  * This will return the event that will be read next, but does
2134  * not consume the data.
2135  */
2136 struct ring_buffer_event *
2137 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2138 {
2139         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2140         struct ring_buffer_event *event;
2141         unsigned long flags;
2142
2143         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2144                 return NULL;
2145
2146         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2147         event = rb_buffer_peek(buffer, cpu, ts);
2148         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2149
2150         return event;
2151 }
2152
2153 /**
2154  * ring_buffer_iter_peek - peek at the next event to be read
2155  * @iter: The ring buffer iterator
2156  * @ts: The timestamp counter of this event.
2157  *
2158  * This will return the event that will be read next, but does
2159  * not increment the iterator.
2160  */
2161 struct ring_buffer_event *
2162 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2163 {
2164         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2165         struct ring_buffer_event *event;
2166         unsigned long flags;
2167
2168         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2169         event = rb_iter_peek(iter, ts);
2170         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2171
2172         return event;
2173 }
2174
2175 /**
2176  * ring_buffer_consume - return an event and consume it
2177  * @buffer: The ring buffer to get the next event from
2178  *
2179  * Returns the next event in the ring buffer, and that event is consumed.
2180  * Meaning, that sequential reads will keep returning a different event,
2181  * and eventually empty the ring buffer if the producer is slower.
2182  */
2183 struct ring_buffer_event *
2184 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2185 {
2186         struct ring_buffer_per_cpu *cpu_buffer;
2187         struct ring_buffer_event *event = NULL;
2188         unsigned long flags;
2189
2190         /* might be called in atomic */
2191         preempt_disable();
2192
2193         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2194                 goto out;
2195
2196         cpu_buffer = buffer->buffers[cpu];
2197         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2198
2199         event = rb_buffer_peek(buffer, cpu, ts);
2200         if (!event)
2201                 goto out_unlock;
2202
2203         rb_advance_reader(cpu_buffer);
2204
2205  out_unlock:
2206         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2207
2208  out:
2209         preempt_enable();
2210
2211         return event;
2212 }
2213 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2214
2215 /**
2216  * ring_buffer_read_start - start a non consuming read of the buffer
2217  * @buffer: The ring buffer to read from
2218  * @cpu: The cpu buffer to iterate over
2219  *
2220  * This starts up an iteration through the buffer. It also disables
2221  * the recording to the buffer until the reading is finished.
2222  * This prevents the reading from being corrupted. This is not
2223  * a consuming read, so a producer is not expected.
2224  *
2225  * Must be paired with ring_buffer_finish.
2226  */
2227 struct ring_buffer_iter *
2228 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2229 {
2230         struct ring_buffer_per_cpu *cpu_buffer;
2231         struct ring_buffer_iter *iter;
2232         unsigned long flags;
2233
2234         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2235                 return NULL;
2236
2237         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2238         if (!iter)
2239                 return NULL;
2240
2241         cpu_buffer = buffer->buffers[cpu];
2242
2243         iter->cpu_buffer = cpu_buffer;
2244
2245         atomic_inc(&cpu_buffer->record_disabled);
2246         synchronize_sched();
2247
2248         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2249         __raw_spin_lock(&cpu_buffer->lock);
2250         rb_iter_reset(iter);
2251         __raw_spin_unlock(&cpu_buffer->lock);
2252         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2253
2254         return iter;
2255 }
2256 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2257
2258 /**
2259  * ring_buffer_finish - finish reading the iterator of the buffer
2260  * @iter: The iterator retrieved by ring_buffer_start
2261  *
2262  * This re-enables the recording to the buffer, and frees the
2263  * iterator.
2264  */
2265 void
2266 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2267 {
2268         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2269
2270         atomic_dec(&cpu_buffer->record_disabled);
2271         kfree(iter);
2272 }
2273 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2274
2275 /**
2276  * ring_buffer_read - read the next item in the ring buffer by the iterator
2277  * @iter: The ring buffer iterator
2278  * @ts: The time stamp of the event read.
2279  *
2280  * This reads the next event in the ring buffer and increments the iterator.
2281  */
2282 struct ring_buffer_event *
2283 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2284 {
2285         struct ring_buffer_event *event;
2286         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2287         unsigned long flags;
2288
2289         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2290         event = rb_iter_peek(iter, ts);
2291         if (!event)
2292                 goto out;
2293
2294         rb_advance_iter(iter);
2295  out:
2296         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2297
2298         return event;
2299 }
2300 EXPORT_SYMBOL_GPL(ring_buffer_read);
2301
2302 /**
2303  * ring_buffer_size - return the size of the ring buffer (in bytes)
2304  * @buffer: The ring buffer.
2305  */
2306 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2307 {
2308         return BUF_PAGE_SIZE * buffer->pages;
2309 }
2310 EXPORT_SYMBOL_GPL(ring_buffer_size);
2311
2312 static void
2313 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2314 {
2315         cpu_buffer->head_page
2316                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2317         local_set(&cpu_buffer->head_page->write, 0);
2318         local_set(&cpu_buffer->head_page->page->commit, 0);
2319
2320         cpu_buffer->head_page->read = 0;
2321
2322         cpu_buffer->tail_page = cpu_buffer->head_page;
2323         cpu_buffer->commit_page = cpu_buffer->head_page;
2324
2325         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2326         local_set(&cpu_buffer->reader_page->write, 0);
2327         local_set(&cpu_buffer->reader_page->page->commit, 0);
2328         cpu_buffer->reader_page->read = 0;
2329
2330         cpu_buffer->overrun = 0;
2331         cpu_buffer->entries = 0;
2332
2333         cpu_buffer->write_stamp = 0;
2334         cpu_buffer->read_stamp = 0;
2335 }
2336
2337 /**
2338  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2339  * @buffer: The ring buffer to reset a per cpu buffer of
2340  * @cpu: The CPU buffer to be reset
2341  */
2342 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2343 {
2344         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2345         unsigned long flags;
2346
2347         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2348                 return;
2349
2350         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2351
2352         __raw_spin_lock(&cpu_buffer->lock);
2353
2354         rb_reset_cpu(cpu_buffer);
2355
2356         __raw_spin_unlock(&cpu_buffer->lock);
2357
2358         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2359 }
2360 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2361
2362 /**
2363  * ring_buffer_reset - reset a ring buffer
2364  * @buffer: The ring buffer to reset all cpu buffers
2365  */
2366 void ring_buffer_reset(struct ring_buffer *buffer)
2367 {
2368         int cpu;
2369
2370         for_each_buffer_cpu(buffer, cpu)
2371                 ring_buffer_reset_cpu(buffer, cpu);
2372 }
2373 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2374
2375 /**
2376  * rind_buffer_empty - is the ring buffer empty?
2377  * @buffer: The ring buffer to test
2378  */
2379 int ring_buffer_empty(struct ring_buffer *buffer)
2380 {
2381         struct ring_buffer_per_cpu *cpu_buffer;
2382         int cpu;
2383
2384         /* yes this is racy, but if you don't like the race, lock the buffer */
2385         for_each_buffer_cpu(buffer, cpu) {
2386                 cpu_buffer = buffer->buffers[cpu];
2387                 if (!rb_per_cpu_empty(cpu_buffer))
2388                         return 0;
2389         }
2390
2391         return 1;
2392 }
2393 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2394
2395 /**
2396  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2397  * @buffer: The ring buffer
2398  * @cpu: The CPU buffer to test
2399  */
2400 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2401 {
2402         struct ring_buffer_per_cpu *cpu_buffer;
2403         int ret;
2404
2405         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2406                 return 1;
2407
2408         cpu_buffer = buffer->buffers[cpu];
2409         ret = rb_per_cpu_empty(cpu_buffer);
2410
2411
2412         return ret;
2413 }
2414 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2415
2416 /**
2417  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2418  * @buffer_a: One buffer to swap with
2419  * @buffer_b: The other buffer to swap with
2420  *
2421  * This function is useful for tracers that want to take a "snapshot"
2422  * of a CPU buffer and has another back up buffer lying around.
2423  * it is expected that the tracer handles the cpu buffer not being
2424  * used at the moment.
2425  */
2426 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2427                          struct ring_buffer *buffer_b, int cpu)
2428 {
2429         struct ring_buffer_per_cpu *cpu_buffer_a;
2430         struct ring_buffer_per_cpu *cpu_buffer_b;
2431         int ret = -EINVAL;
2432
2433         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2434             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2435                 goto out;
2436
2437         /* At least make sure the two buffers are somewhat the same */
2438         if (buffer_a->pages != buffer_b->pages)
2439                 goto out;
2440
2441         ret = -EAGAIN;
2442
2443         if (ring_buffer_flags != RB_BUFFERS_ON)
2444                 goto out;
2445
2446         if (atomic_read(&buffer_a->record_disabled))
2447                 goto out;
2448
2449         if (atomic_read(&buffer_b->record_disabled))
2450                 goto out;
2451
2452         cpu_buffer_a = buffer_a->buffers[cpu];
2453         cpu_buffer_b = buffer_b->buffers[cpu];
2454
2455         if (atomic_read(&cpu_buffer_a->record_disabled))
2456                 goto out;
2457
2458         if (atomic_read(&cpu_buffer_b->record_disabled))
2459                 goto out;
2460
2461         /*
2462          * We can't do a synchronize_sched here because this
2463          * function can be called in atomic context.
2464          * Normally this will be called from the same CPU as cpu.
2465          * If not it's up to the caller to protect this.
2466          */
2467         atomic_inc(&cpu_buffer_a->record_disabled);
2468         atomic_inc(&cpu_buffer_b->record_disabled);
2469
2470         buffer_a->buffers[cpu] = cpu_buffer_b;
2471         buffer_b->buffers[cpu] = cpu_buffer_a;
2472
2473         cpu_buffer_b->buffer = buffer_a;
2474         cpu_buffer_a->buffer = buffer_b;
2475
2476         atomic_dec(&cpu_buffer_a->record_disabled);
2477         atomic_dec(&cpu_buffer_b->record_disabled);
2478
2479         ret = 0;
2480 out:
2481         return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2484
2485 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2486                               struct buffer_data_page *bpage,
2487                               unsigned int offset)
2488 {
2489         struct ring_buffer_event *event;
2490         unsigned long head;
2491
2492         __raw_spin_lock(&cpu_buffer->lock);
2493         for (head = offset; head < local_read(&bpage->commit);
2494              head += rb_event_length(event)) {
2495
2496                 event = __rb_data_page_index(bpage, head);
2497                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2498                         return;
2499                 /* Only count data entries */
2500                 if (event->type != RINGBUF_TYPE_DATA)
2501                         continue;
2502                 cpu_buffer->entries--;
2503         }
2504         __raw_spin_unlock(&cpu_buffer->lock);
2505 }
2506
2507 /**
2508  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2509  * @buffer: the buffer to allocate for.
2510  *
2511  * This function is used in conjunction with ring_buffer_read_page.
2512  * When reading a full page from the ring buffer, these functions
2513  * can be used to speed up the process. The calling function should
2514  * allocate a few pages first with this function. Then when it
2515  * needs to get pages from the ring buffer, it passes the result
2516  * of this function into ring_buffer_read_page, which will swap
2517  * the page that was allocated, with the read page of the buffer.
2518  *
2519  * Returns:
2520  *  The page allocated, or NULL on error.
2521  */
2522 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2523 {
2524         struct buffer_data_page *bpage;
2525         unsigned long addr;
2526
2527         addr = __get_free_page(GFP_KERNEL);
2528         if (!addr)
2529                 return NULL;
2530
2531         bpage = (void *)addr;
2532
2533         rb_init_page(bpage);
2534
2535         return bpage;
2536 }
2537
2538 /**
2539  * ring_buffer_free_read_page - free an allocated read page
2540  * @buffer: the buffer the page was allocate for
2541  * @data: the page to free
2542  *
2543  * Free a page allocated from ring_buffer_alloc_read_page.
2544  */
2545 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2546 {
2547         free_page((unsigned long)data);
2548 }
2549
2550 /**
2551  * ring_buffer_read_page - extract a page from the ring buffer
2552  * @buffer: buffer to extract from
2553  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2554  * @len: amount to extract
2555  * @cpu: the cpu of the buffer to extract
2556  * @full: should the extraction only happen when the page is full.
2557  *
2558  * This function will pull out a page from the ring buffer and consume it.
2559  * @data_page must be the address of the variable that was returned
2560  * from ring_buffer_alloc_read_page. This is because the page might be used
2561  * to swap with a page in the ring buffer.
2562  *
2563  * for example:
2564  *      rpage = ring_buffer_alloc_read_page(buffer);
2565  *      if (!rpage)
2566  *              return error;
2567  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2568  *      if (ret >= 0)
2569  *              process_page(rpage, ret);
2570  *
2571  * When @full is set, the function will not return true unless
2572  * the writer is off the reader page.
2573  *
2574  * Note: it is up to the calling functions to handle sleeps and wakeups.
2575  *  The ring buffer can be used anywhere in the kernel and can not
2576  *  blindly call wake_up. The layer that uses the ring buffer must be
2577  *  responsible for that.
2578  *
2579  * Returns:
2580  *  >=0 if data has been transferred, returns the offset of consumed data.
2581  *  <0 if no data has been transferred.
2582  */
2583 int ring_buffer_read_page(struct ring_buffer *buffer,
2584                           void **data_page, size_t len, int cpu, int full)
2585 {
2586         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2587         struct ring_buffer_event *event;
2588         struct buffer_data_page *bpage;
2589         struct buffer_page *reader;
2590         unsigned long flags;
2591         unsigned int commit;
2592         unsigned int read;
2593         u64 save_timestamp;
2594         int ret = -1;
2595
2596         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2597                 goto out;
2598
2599         /*
2600          * If len is not big enough to hold the page header, then
2601          * we can not copy anything.
2602          */
2603         if (len <= BUF_PAGE_HDR_SIZE)
2604                 goto out;
2605
2606         len -= BUF_PAGE_HDR_SIZE;
2607
2608         if (!data_page)
2609                 goto out;
2610
2611         bpage = *data_page;
2612         if (!bpage)
2613                 goto out;
2614
2615         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2616
2617         reader = rb_get_reader_page(cpu_buffer);
2618         if (!reader)
2619                 goto out_unlock;
2620
2621         event = rb_reader_event(cpu_buffer);
2622
2623         read = reader->read;
2624         commit = rb_page_commit(reader);
2625
2626         /*
2627          * If this page has been partially read or
2628          * if len is not big enough to read the rest of the page or
2629          * a writer is still on the page, then
2630          * we must copy the data from the page to the buffer.
2631          * Otherwise, we can simply swap the page with the one passed in.
2632          */
2633         if (read || (len < (commit - read)) ||
2634             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2635                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2636                 unsigned int rpos = read;
2637                 unsigned int pos = 0;
2638                 unsigned int size;
2639
2640                 if (full)
2641                         goto out_unlock;
2642
2643                 if (len > (commit - read))
2644                         len = (commit - read);
2645
2646                 size = rb_event_length(event);
2647
2648                 if (len < size)
2649                         goto out_unlock;
2650
2651                 /* save the current timestamp, since the user will need it */
2652                 save_timestamp = cpu_buffer->read_stamp;
2653
2654                 /* Need to copy one event at a time */
2655                 do {
2656                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2657
2658                         len -= size;
2659
2660                         rb_advance_reader(cpu_buffer);
2661                         rpos = reader->read;
2662                         pos += size;
2663
2664                         event = rb_reader_event(cpu_buffer);
2665                         size = rb_event_length(event);
2666                 } while (len > size);
2667
2668                 /* update bpage */
2669                 local_set(&bpage->commit, pos);
2670                 bpage->time_stamp = save_timestamp;
2671
2672                 /* we copied everything to the beginning */
2673                 read = 0;
2674         } else {
2675                 /* swap the pages */
2676                 rb_init_page(bpage);
2677                 bpage = reader->page;
2678                 reader->page = *data_page;
2679                 local_set(&reader->write, 0);
2680                 reader->read = 0;
2681                 *data_page = bpage;
2682
2683                 /* update the entry counter */
2684                 rb_remove_entries(cpu_buffer, bpage, read);
2685         }
2686         ret = read;
2687
2688  out_unlock:
2689         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2690
2691  out:
2692         return ret;
2693 }
2694
2695 static ssize_t
2696 rb_simple_read(struct file *filp, char __user *ubuf,
2697                size_t cnt, loff_t *ppos)
2698 {
2699         unsigned long *p = filp->private_data;
2700         char buf[64];
2701         int r;
2702
2703         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2704                 r = sprintf(buf, "permanently disabled\n");
2705         else
2706                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2707
2708         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2709 }
2710
2711 static ssize_t
2712 rb_simple_write(struct file *filp, const char __user *ubuf,
2713                 size_t cnt, loff_t *ppos)
2714 {
2715         unsigned long *p = filp->private_data;
2716         char buf[64];
2717         unsigned long val;
2718         int ret;
2719
2720         if (cnt >= sizeof(buf))
2721                 return -EINVAL;
2722
2723         if (copy_from_user(&buf, ubuf, cnt))
2724                 return -EFAULT;
2725
2726         buf[cnt] = 0;
2727
2728         ret = strict_strtoul(buf, 10, &val);
2729         if (ret < 0)
2730                 return ret;
2731
2732         if (val)
2733                 set_bit(RB_BUFFERS_ON_BIT, p);
2734         else
2735                 clear_bit(RB_BUFFERS_ON_BIT, p);
2736
2737         (*ppos)++;
2738
2739         return cnt;
2740 }
2741
2742 static const struct file_operations rb_simple_fops = {
2743         .open           = tracing_open_generic,
2744         .read           = rb_simple_read,
2745         .write          = rb_simple_write,
2746 };
2747
2748
2749 static __init int rb_init_debugfs(void)
2750 {
2751         struct dentry *d_tracer;
2752         struct dentry *entry;
2753
2754         d_tracer = tracing_init_dentry();
2755
2756         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2757                                     &ring_buffer_flags, &rb_simple_fops);
2758         if (!entry)
2759                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2760
2761         return 0;
2762 }
2763
2764 fs_initcall(rb_init_debugfs);
2765
2766 #ifdef CONFIG_HOTPLUG_CPU
2767 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2768                                    unsigned long action, void *hcpu)
2769 {
2770         struct ring_buffer *buffer =
2771                 container_of(self, struct ring_buffer, cpu_notify);
2772         long cpu = (long)hcpu;
2773
2774         switch (action) {
2775         case CPU_UP_PREPARE:
2776         case CPU_UP_PREPARE_FROZEN:
2777                 if (cpu_isset(cpu, *buffer->cpumask))
2778                         return NOTIFY_OK;
2779
2780                 buffer->buffers[cpu] =
2781                         rb_allocate_cpu_buffer(buffer, cpu);
2782                 if (!buffer->buffers[cpu]) {
2783                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2784                              cpu);
2785                         return NOTIFY_OK;
2786                 }
2787                 smp_wmb();
2788                 cpu_set(cpu, *buffer->cpumask);
2789                 break;
2790         case CPU_DOWN_PREPARE:
2791         case CPU_DOWN_PREPARE_FROZEN:
2792                 /*
2793                  * Do nothing.
2794                  *  If we were to free the buffer, then the user would
2795                  *  lose any trace that was in the buffer.
2796                  */
2797                 break;
2798         default:
2799                 break;
2800         }
2801         return NOTIFY_OK;
2802 }
2803 #endif