perf_counter: fix race in perf_output_*
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47
48 /*
49  * Mutex for (sysadmin-configurable) counter reservations:
50  */
51 static DEFINE_MUTEX(perf_resource_mutex);
52
53 /*
54  * Architecture provided APIs - weak aliases:
55  */
56 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
57 {
58         return NULL;
59 }
60
61 u64 __weak hw_perf_save_disable(void)           { return 0; }
62 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
63 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
64 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
65                struct perf_cpu_context *cpuctx,
66                struct perf_counter_context *ctx, int cpu)
67 {
68         return 0;
69 }
70
71 void __weak perf_counter_print_debug(void)      { }
72
73 static void
74 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
75 {
76         struct perf_counter *group_leader = counter->group_leader;
77
78         /*
79          * Depending on whether it is a standalone or sibling counter,
80          * add it straight to the context's counter list, or to the group
81          * leader's sibling list:
82          */
83         if (counter->group_leader == counter)
84                 list_add_tail(&counter->list_entry, &ctx->counter_list);
85         else {
86                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
87                 group_leader->nr_siblings++;
88         }
89
90         list_add_rcu(&counter->event_entry, &ctx->event_list);
91 }
92
93 static void
94 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
95 {
96         struct perf_counter *sibling, *tmp;
97
98         list_del_init(&counter->list_entry);
99         list_del_rcu(&counter->event_entry);
100
101         if (counter->group_leader != counter)
102                 counter->group_leader->nr_siblings--;
103
104         /*
105          * If this was a group counter with sibling counters then
106          * upgrade the siblings to singleton counters by adding them
107          * to the context list directly:
108          */
109         list_for_each_entry_safe(sibling, tmp,
110                                  &counter->sibling_list, list_entry) {
111
112                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
113                 sibling->group_leader = sibling;
114         }
115 }
116
117 static void
118 counter_sched_out(struct perf_counter *counter,
119                   struct perf_cpu_context *cpuctx,
120                   struct perf_counter_context *ctx)
121 {
122         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
123                 return;
124
125         counter->state = PERF_COUNTER_STATE_INACTIVE;
126         counter->tstamp_stopped = ctx->time;
127         counter->pmu->disable(counter);
128         counter->oncpu = -1;
129
130         if (!is_software_counter(counter))
131                 cpuctx->active_oncpu--;
132         ctx->nr_active--;
133         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
134                 cpuctx->exclusive = 0;
135 }
136
137 static void
138 group_sched_out(struct perf_counter *group_counter,
139                 struct perf_cpu_context *cpuctx,
140                 struct perf_counter_context *ctx)
141 {
142         struct perf_counter *counter;
143
144         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
145                 return;
146
147         counter_sched_out(group_counter, cpuctx, ctx);
148
149         /*
150          * Schedule out siblings (if any):
151          */
152         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
153                 counter_sched_out(counter, cpuctx, ctx);
154
155         if (group_counter->hw_event.exclusive)
156                 cpuctx->exclusive = 0;
157 }
158
159 /*
160  * Cross CPU call to remove a performance counter
161  *
162  * We disable the counter on the hardware level first. After that we
163  * remove it from the context list.
164  */
165 static void __perf_counter_remove_from_context(void *info)
166 {
167         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
168         struct perf_counter *counter = info;
169         struct perf_counter_context *ctx = counter->ctx;
170         unsigned long flags;
171         u64 perf_flags;
172
173         /*
174          * If this is a task context, we need to check whether it is
175          * the current task context of this cpu. If not it has been
176          * scheduled out before the smp call arrived.
177          */
178         if (ctx->task && cpuctx->task_ctx != ctx)
179                 return;
180
181         spin_lock_irqsave(&ctx->lock, flags);
182
183         counter_sched_out(counter, cpuctx, ctx);
184
185         counter->task = NULL;
186         ctx->nr_counters--;
187
188         /*
189          * Protect the list operation against NMI by disabling the
190          * counters on a global level. NOP for non NMI based counters.
191          */
192         perf_flags = hw_perf_save_disable();
193         list_del_counter(counter, ctx);
194         hw_perf_restore(perf_flags);
195
196         if (!ctx->task) {
197                 /*
198                  * Allow more per task counters with respect to the
199                  * reservation:
200                  */
201                 cpuctx->max_pertask =
202                         min(perf_max_counters - ctx->nr_counters,
203                             perf_max_counters - perf_reserved_percpu);
204         }
205
206         spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208
209
210 /*
211  * Remove the counter from a task's (or a CPU's) list of counters.
212  *
213  * Must be called with counter->mutex and ctx->mutex held.
214  *
215  * CPU counters are removed with a smp call. For task counters we only
216  * call when the task is on a CPU.
217  */
218 static void perf_counter_remove_from_context(struct perf_counter *counter)
219 {
220         struct perf_counter_context *ctx = counter->ctx;
221         struct task_struct *task = ctx->task;
222
223         if (!task) {
224                 /*
225                  * Per cpu counters are removed via an smp call and
226                  * the removal is always sucessful.
227                  */
228                 smp_call_function_single(counter->cpu,
229                                          __perf_counter_remove_from_context,
230                                          counter, 1);
231                 return;
232         }
233
234 retry:
235         task_oncpu_function_call(task, __perf_counter_remove_from_context,
236                                  counter);
237
238         spin_lock_irq(&ctx->lock);
239         /*
240          * If the context is active we need to retry the smp call.
241          */
242         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
243                 spin_unlock_irq(&ctx->lock);
244                 goto retry;
245         }
246
247         /*
248          * The lock prevents that this context is scheduled in so we
249          * can remove the counter safely, if the call above did not
250          * succeed.
251          */
252         if (!list_empty(&counter->list_entry)) {
253                 ctx->nr_counters--;
254                 list_del_counter(counter, ctx);
255                 counter->task = NULL;
256         }
257         spin_unlock_irq(&ctx->lock);
258 }
259
260 static inline u64 perf_clock(void)
261 {
262         return cpu_clock(smp_processor_id());
263 }
264
265 /*
266  * Update the record of the current time in a context.
267  */
268 static void update_context_time(struct perf_counter_context *ctx)
269 {
270         u64 now = perf_clock();
271
272         ctx->time += now - ctx->timestamp;
273         ctx->timestamp = now;
274 }
275
276 /*
277  * Update the total_time_enabled and total_time_running fields for a counter.
278  */
279 static void update_counter_times(struct perf_counter *counter)
280 {
281         struct perf_counter_context *ctx = counter->ctx;
282         u64 run_end;
283
284         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
285                 return;
286
287         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
288
289         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290                 run_end = counter->tstamp_stopped;
291         else
292                 run_end = ctx->time;
293
294         counter->total_time_running = run_end - counter->tstamp_running;
295 }
296
297 /*
298  * Update total_time_enabled and total_time_running for all counters in a group.
299  */
300 static void update_group_times(struct perf_counter *leader)
301 {
302         struct perf_counter *counter;
303
304         update_counter_times(leader);
305         list_for_each_entry(counter, &leader->sibling_list, list_entry)
306                 update_counter_times(counter);
307 }
308
309 /*
310  * Cross CPU call to disable a performance counter
311  */
312 static void __perf_counter_disable(void *info)
313 {
314         struct perf_counter *counter = info;
315         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316         struct perf_counter_context *ctx = counter->ctx;
317         unsigned long flags;
318
319         /*
320          * If this is a per-task counter, need to check whether this
321          * counter's task is the current task on this cpu.
322          */
323         if (ctx->task && cpuctx->task_ctx != ctx)
324                 return;
325
326         spin_lock_irqsave(&ctx->lock, flags);
327
328         /*
329          * If the counter is on, turn it off.
330          * If it is in error state, leave it in error state.
331          */
332         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333                 update_context_time(ctx);
334                 update_counter_times(counter);
335                 if (counter == counter->group_leader)
336                         group_sched_out(counter, cpuctx, ctx);
337                 else
338                         counter_sched_out(counter, cpuctx, ctx);
339                 counter->state = PERF_COUNTER_STATE_OFF;
340         }
341
342         spin_unlock_irqrestore(&ctx->lock, flags);
343 }
344
345 /*
346  * Disable a counter.
347  */
348 static void perf_counter_disable(struct perf_counter *counter)
349 {
350         struct perf_counter_context *ctx = counter->ctx;
351         struct task_struct *task = ctx->task;
352
353         if (!task) {
354                 /*
355                  * Disable the counter on the cpu that it's on
356                  */
357                 smp_call_function_single(counter->cpu, __perf_counter_disable,
358                                          counter, 1);
359                 return;
360         }
361
362  retry:
363         task_oncpu_function_call(task, __perf_counter_disable, counter);
364
365         spin_lock_irq(&ctx->lock);
366         /*
367          * If the counter is still active, we need to retry the cross-call.
368          */
369         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
370                 spin_unlock_irq(&ctx->lock);
371                 goto retry;
372         }
373
374         /*
375          * Since we have the lock this context can't be scheduled
376          * in, so we can change the state safely.
377          */
378         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
379                 update_counter_times(counter);
380                 counter->state = PERF_COUNTER_STATE_OFF;
381         }
382
383         spin_unlock_irq(&ctx->lock);
384 }
385
386 /*
387  * Disable a counter and all its children.
388  */
389 static void perf_counter_disable_family(struct perf_counter *counter)
390 {
391         struct perf_counter *child;
392
393         perf_counter_disable(counter);
394
395         /*
396          * Lock the mutex to protect the list of children
397          */
398         mutex_lock(&counter->mutex);
399         list_for_each_entry(child, &counter->child_list, child_list)
400                 perf_counter_disable(child);
401         mutex_unlock(&counter->mutex);
402 }
403
404 static int
405 counter_sched_in(struct perf_counter *counter,
406                  struct perf_cpu_context *cpuctx,
407                  struct perf_counter_context *ctx,
408                  int cpu)
409 {
410         if (counter->state <= PERF_COUNTER_STATE_OFF)
411                 return 0;
412
413         counter->state = PERF_COUNTER_STATE_ACTIVE;
414         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
415         /*
416          * The new state must be visible before we turn it on in the hardware:
417          */
418         smp_wmb();
419
420         if (counter->pmu->enable(counter)) {
421                 counter->state = PERF_COUNTER_STATE_INACTIVE;
422                 counter->oncpu = -1;
423                 return -EAGAIN;
424         }
425
426         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427
428         if (!is_software_counter(counter))
429                 cpuctx->active_oncpu++;
430         ctx->nr_active++;
431
432         if (counter->hw_event.exclusive)
433                 cpuctx->exclusive = 1;
434
435         return 0;
436 }
437
438 /*
439  * Return 1 for a group consisting entirely of software counters,
440  * 0 if the group contains any hardware counters.
441  */
442 static int is_software_only_group(struct perf_counter *leader)
443 {
444         struct perf_counter *counter;
445
446         if (!is_software_counter(leader))
447                 return 0;
448
449         list_for_each_entry(counter, &leader->sibling_list, list_entry)
450                 if (!is_software_counter(counter))
451                         return 0;
452
453         return 1;
454 }
455
456 /*
457  * Work out whether we can put this counter group on the CPU now.
458  */
459 static int group_can_go_on(struct perf_counter *counter,
460                            struct perf_cpu_context *cpuctx,
461                            int can_add_hw)
462 {
463         /*
464          * Groups consisting entirely of software counters can always go on.
465          */
466         if (is_software_only_group(counter))
467                 return 1;
468         /*
469          * If an exclusive group is already on, no other hardware
470          * counters can go on.
471          */
472         if (cpuctx->exclusive)
473                 return 0;
474         /*
475          * If this group is exclusive and there are already
476          * counters on the CPU, it can't go on.
477          */
478         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
479                 return 0;
480         /*
481          * Otherwise, try to add it if all previous groups were able
482          * to go on.
483          */
484         return can_add_hw;
485 }
486
487 static void add_counter_to_ctx(struct perf_counter *counter,
488                                struct perf_counter_context *ctx)
489 {
490         list_add_counter(counter, ctx);
491         ctx->nr_counters++;
492         counter->prev_state = PERF_COUNTER_STATE_OFF;
493         counter->tstamp_enabled = ctx->time;
494         counter->tstamp_running = ctx->time;
495         counter->tstamp_stopped = ctx->time;
496 }
497
498 /*
499  * Cross CPU call to install and enable a performance counter
500  */
501 static void __perf_install_in_context(void *info)
502 {
503         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504         struct perf_counter *counter = info;
505         struct perf_counter_context *ctx = counter->ctx;
506         struct perf_counter *leader = counter->group_leader;
507         int cpu = smp_processor_id();
508         unsigned long flags;
509         u64 perf_flags;
510         int err;
511
512         /*
513          * If this is a task context, we need to check whether it is
514          * the current task context of this cpu. If not it has been
515          * scheduled out before the smp call arrived.
516          */
517         if (ctx->task && cpuctx->task_ctx != ctx)
518                 return;
519
520         spin_lock_irqsave(&ctx->lock, flags);
521         update_context_time(ctx);
522
523         /*
524          * Protect the list operation against NMI by disabling the
525          * counters on a global level. NOP for non NMI based counters.
526          */
527         perf_flags = hw_perf_save_disable();
528
529         add_counter_to_ctx(counter, ctx);
530
531         /*
532          * Don't put the counter on if it is disabled or if
533          * it is in a group and the group isn't on.
534          */
535         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
536             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
537                 goto unlock;
538
539         /*
540          * An exclusive counter can't go on if there are already active
541          * hardware counters, and no hardware counter can go on if there
542          * is already an exclusive counter on.
543          */
544         if (!group_can_go_on(counter, cpuctx, 1))
545                 err = -EEXIST;
546         else
547                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
548
549         if (err) {
550                 /*
551                  * This counter couldn't go on.  If it is in a group
552                  * then we have to pull the whole group off.
553                  * If the counter group is pinned then put it in error state.
554                  */
555                 if (leader != counter)
556                         group_sched_out(leader, cpuctx, ctx);
557                 if (leader->hw_event.pinned) {
558                         update_group_times(leader);
559                         leader->state = PERF_COUNTER_STATE_ERROR;
560                 }
561         }
562
563         if (!err && !ctx->task && cpuctx->max_pertask)
564                 cpuctx->max_pertask--;
565
566  unlock:
567         hw_perf_restore(perf_flags);
568
569         spin_unlock_irqrestore(&ctx->lock, flags);
570 }
571
572 /*
573  * Attach a performance counter to a context
574  *
575  * First we add the counter to the list with the hardware enable bit
576  * in counter->hw_config cleared.
577  *
578  * If the counter is attached to a task which is on a CPU we use a smp
579  * call to enable it in the task context. The task might have been
580  * scheduled away, but we check this in the smp call again.
581  *
582  * Must be called with ctx->mutex held.
583  */
584 static void
585 perf_install_in_context(struct perf_counter_context *ctx,
586                         struct perf_counter *counter,
587                         int cpu)
588 {
589         struct task_struct *task = ctx->task;
590
591         if (!task) {
592                 /*
593                  * Per cpu counters are installed via an smp call and
594                  * the install is always sucessful.
595                  */
596                 smp_call_function_single(cpu, __perf_install_in_context,
597                                          counter, 1);
598                 return;
599         }
600
601         counter->task = task;
602 retry:
603         task_oncpu_function_call(task, __perf_install_in_context,
604                                  counter);
605
606         spin_lock_irq(&ctx->lock);
607         /*
608          * we need to retry the smp call.
609          */
610         if (ctx->is_active && list_empty(&counter->list_entry)) {
611                 spin_unlock_irq(&ctx->lock);
612                 goto retry;
613         }
614
615         /*
616          * The lock prevents that this context is scheduled in so we
617          * can add the counter safely, if it the call above did not
618          * succeed.
619          */
620         if (list_empty(&counter->list_entry))
621                 add_counter_to_ctx(counter, ctx);
622         spin_unlock_irq(&ctx->lock);
623 }
624
625 /*
626  * Cross CPU call to enable a performance counter
627  */
628 static void __perf_counter_enable(void *info)
629 {
630         struct perf_counter *counter = info;
631         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632         struct perf_counter_context *ctx = counter->ctx;
633         struct perf_counter *leader = counter->group_leader;
634         unsigned long flags;
635         int err;
636
637         /*
638          * If this is a per-task counter, need to check whether this
639          * counter's task is the current task on this cpu.
640          */
641         if (ctx->task && cpuctx->task_ctx != ctx)
642                 return;
643
644         spin_lock_irqsave(&ctx->lock, flags);
645         update_context_time(ctx);
646
647         counter->prev_state = counter->state;
648         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
649                 goto unlock;
650         counter->state = PERF_COUNTER_STATE_INACTIVE;
651         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652
653         /*
654          * If the counter is in a group and isn't the group leader,
655          * then don't put it on unless the group is on.
656          */
657         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
658                 goto unlock;
659
660         if (!group_can_go_on(counter, cpuctx, 1))
661                 err = -EEXIST;
662         else
663                 err = counter_sched_in(counter, cpuctx, ctx,
664                                        smp_processor_id());
665
666         if (err) {
667                 /*
668                  * If this counter can't go on and it's part of a
669                  * group, then the whole group has to come off.
670                  */
671                 if (leader != counter)
672                         group_sched_out(leader, cpuctx, ctx);
673                 if (leader->hw_event.pinned) {
674                         update_group_times(leader);
675                         leader->state = PERF_COUNTER_STATE_ERROR;
676                 }
677         }
678
679  unlock:
680         spin_unlock_irqrestore(&ctx->lock, flags);
681 }
682
683 /*
684  * Enable a counter.
685  */
686 static void perf_counter_enable(struct perf_counter *counter)
687 {
688         struct perf_counter_context *ctx = counter->ctx;
689         struct task_struct *task = ctx->task;
690
691         if (!task) {
692                 /*
693                  * Enable the counter on the cpu that it's on
694                  */
695                 smp_call_function_single(counter->cpu, __perf_counter_enable,
696                                          counter, 1);
697                 return;
698         }
699
700         spin_lock_irq(&ctx->lock);
701         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
702                 goto out;
703
704         /*
705          * If the counter is in error state, clear that first.
706          * That way, if we see the counter in error state below, we
707          * know that it has gone back into error state, as distinct
708          * from the task having been scheduled away before the
709          * cross-call arrived.
710          */
711         if (counter->state == PERF_COUNTER_STATE_ERROR)
712                 counter->state = PERF_COUNTER_STATE_OFF;
713
714  retry:
715         spin_unlock_irq(&ctx->lock);
716         task_oncpu_function_call(task, __perf_counter_enable, counter);
717
718         spin_lock_irq(&ctx->lock);
719
720         /*
721          * If the context is active and the counter is still off,
722          * we need to retry the cross-call.
723          */
724         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
725                 goto retry;
726
727         /*
728          * Since we have the lock this context can't be scheduled
729          * in, so we can change the state safely.
730          */
731         if (counter->state == PERF_COUNTER_STATE_OFF) {
732                 counter->state = PERF_COUNTER_STATE_INACTIVE;
733                 counter->tstamp_enabled =
734                         ctx->time - counter->total_time_enabled;
735         }
736  out:
737         spin_unlock_irq(&ctx->lock);
738 }
739
740 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
741 {
742         atomic_add(refresh, &counter->event_limit);
743         perf_counter_enable(counter);
744 }
745
746 /*
747  * Enable a counter and all its children.
748  */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751         struct perf_counter *child;
752
753         perf_counter_enable(counter);
754
755         /*
756          * Lock the mutex to protect the list of children
757          */
758         mutex_lock(&counter->mutex);
759         list_for_each_entry(child, &counter->child_list, child_list)
760                 perf_counter_enable(child);
761         mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765                               struct perf_cpu_context *cpuctx)
766 {
767         struct perf_counter *counter;
768         u64 flags;
769
770         spin_lock(&ctx->lock);
771         ctx->is_active = 0;
772         if (likely(!ctx->nr_counters))
773                 goto out;
774         update_context_time(ctx);
775
776         flags = hw_perf_save_disable();
777         if (ctx->nr_active) {
778                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779                         group_sched_out(counter, cpuctx, ctx);
780         }
781         hw_perf_restore(flags);
782  out:
783         spin_unlock(&ctx->lock);
784 }
785
786 /*
787  * Called from scheduler to remove the counters of the current task,
788  * with interrupts disabled.
789  *
790  * We stop each counter and update the counter value in counter->count.
791  *
792  * This does not protect us against NMI, but disable()
793  * sets the disabled bit in the control field of counter _before_
794  * accessing the counter control register. If a NMI hits, then it will
795  * not restart the counter.
796  */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800         struct perf_counter_context *ctx = &task->perf_counter_ctx;
801         struct pt_regs *regs;
802
803         if (likely(!cpuctx->task_ctx))
804                 return;
805
806         update_context_time(ctx);
807
808         regs = task_pt_regs(task);
809         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810         __perf_counter_sched_out(ctx, cpuctx);
811
812         cpuctx->task_ctx = NULL;
813 }
814
815 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816 {
817         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 }
819
820 static int
821 group_sched_in(struct perf_counter *group_counter,
822                struct perf_cpu_context *cpuctx,
823                struct perf_counter_context *ctx,
824                int cpu)
825 {
826         struct perf_counter *counter, *partial_group;
827         int ret;
828
829         if (group_counter->state == PERF_COUNTER_STATE_OFF)
830                 return 0;
831
832         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833         if (ret)
834                 return ret < 0 ? ret : 0;
835
836         group_counter->prev_state = group_counter->state;
837         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838                 return -EAGAIN;
839
840         /*
841          * Schedule in siblings as one group (if any):
842          */
843         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844                 counter->prev_state = counter->state;
845                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846                         partial_group = counter;
847                         goto group_error;
848                 }
849         }
850
851         return 0;
852
853 group_error:
854         /*
855          * Groups can be scheduled in as one unit only, so undo any
856          * partial group before returning:
857          */
858         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859                 if (counter == partial_group)
860                         break;
861                 counter_sched_out(counter, cpuctx, ctx);
862         }
863         counter_sched_out(group_counter, cpuctx, ctx);
864
865         return -EAGAIN;
866 }
867
868 static void
869 __perf_counter_sched_in(struct perf_counter_context *ctx,
870                         struct perf_cpu_context *cpuctx, int cpu)
871 {
872         struct perf_counter *counter;
873         u64 flags;
874         int can_add_hw = 1;
875
876         spin_lock(&ctx->lock);
877         ctx->is_active = 1;
878         if (likely(!ctx->nr_counters))
879                 goto out;
880
881         ctx->timestamp = perf_clock();
882
883         flags = hw_perf_save_disable();
884
885         /*
886          * First go through the list and put on any pinned groups
887          * in order to give them the best chance of going on.
888          */
889         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891                     !counter->hw_event.pinned)
892                         continue;
893                 if (counter->cpu != -1 && counter->cpu != cpu)
894                         continue;
895
896                 if (group_can_go_on(counter, cpuctx, 1))
897                         group_sched_in(counter, cpuctx, ctx, cpu);
898
899                 /*
900                  * If this pinned group hasn't been scheduled,
901                  * put it in error state.
902                  */
903                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904                         update_group_times(counter);
905                         counter->state = PERF_COUNTER_STATE_ERROR;
906                 }
907         }
908
909         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910                 /*
911                  * Ignore counters in OFF or ERROR state, and
912                  * ignore pinned counters since we did them already.
913                  */
914                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915                     counter->hw_event.pinned)
916                         continue;
917
918                 /*
919                  * Listen to the 'cpu' scheduling filter constraint
920                  * of counters:
921                  */
922                 if (counter->cpu != -1 && counter->cpu != cpu)
923                         continue;
924
925                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926                         if (group_sched_in(counter, cpuctx, ctx, cpu))
927                                 can_add_hw = 0;
928                 }
929         }
930         hw_perf_restore(flags);
931  out:
932         spin_unlock(&ctx->lock);
933 }
934
935 /*
936  * Called from scheduler to add the counters of the current task
937  * with interrupts disabled.
938  *
939  * We restore the counter value and then enable it.
940  *
941  * This does not protect us against NMI, but enable()
942  * sets the enabled bit in the control field of counter _before_
943  * accessing the counter control register. If a NMI hits, then it will
944  * keep the counter running.
945  */
946 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947 {
948         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949         struct perf_counter_context *ctx = &task->perf_counter_ctx;
950
951         __perf_counter_sched_in(ctx, cpuctx, cpu);
952         cpuctx->task_ctx = ctx;
953 }
954
955 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956 {
957         struct perf_counter_context *ctx = &cpuctx->ctx;
958
959         __perf_counter_sched_in(ctx, cpuctx, cpu);
960 }
961
962 int perf_counter_task_disable(void)
963 {
964         struct task_struct *curr = current;
965         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966         struct perf_counter *counter;
967         unsigned long flags;
968         u64 perf_flags;
969         int cpu;
970
971         if (likely(!ctx->nr_counters))
972                 return 0;
973
974         local_irq_save(flags);
975         cpu = smp_processor_id();
976
977         perf_counter_task_sched_out(curr, cpu);
978
979         spin_lock(&ctx->lock);
980
981         /*
982          * Disable all the counters:
983          */
984         perf_flags = hw_perf_save_disable();
985
986         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
988                         update_group_times(counter);
989                         counter->state = PERF_COUNTER_STATE_OFF;
990                 }
991         }
992
993         hw_perf_restore(perf_flags);
994
995         spin_unlock_irqrestore(&ctx->lock, flags);
996
997         return 0;
998 }
999
1000 int perf_counter_task_enable(void)
1001 {
1002         struct task_struct *curr = current;
1003         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1004         struct perf_counter *counter;
1005         unsigned long flags;
1006         u64 perf_flags;
1007         int cpu;
1008
1009         if (likely(!ctx->nr_counters))
1010                 return 0;
1011
1012         local_irq_save(flags);
1013         cpu = smp_processor_id();
1014
1015         perf_counter_task_sched_out(curr, cpu);
1016
1017         spin_lock(&ctx->lock);
1018
1019         /*
1020          * Disable all the counters:
1021          */
1022         perf_flags = hw_perf_save_disable();
1023
1024         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025                 if (counter->state > PERF_COUNTER_STATE_OFF)
1026                         continue;
1027                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1028                 counter->tstamp_enabled =
1029                         ctx->time - counter->total_time_enabled;
1030                 counter->hw_event.disabled = 0;
1031         }
1032         hw_perf_restore(perf_flags);
1033
1034         spin_unlock(&ctx->lock);
1035
1036         perf_counter_task_sched_in(curr, cpu);
1037
1038         local_irq_restore(flags);
1039
1040         return 0;
1041 }
1042
1043 /*
1044  * Round-robin a context's counters:
1045  */
1046 static void rotate_ctx(struct perf_counter_context *ctx)
1047 {
1048         struct perf_counter *counter;
1049         u64 perf_flags;
1050
1051         if (!ctx->nr_counters)
1052                 return;
1053
1054         spin_lock(&ctx->lock);
1055         /*
1056          * Rotate the first entry last (works just fine for group counters too):
1057          */
1058         perf_flags = hw_perf_save_disable();
1059         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1061                 break;
1062         }
1063         hw_perf_restore(perf_flags);
1064
1065         spin_unlock(&ctx->lock);
1066 }
1067
1068 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1069 {
1070         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1071         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1072         const int rotate_percpu = 0;
1073
1074         if (rotate_percpu)
1075                 perf_counter_cpu_sched_out(cpuctx);
1076         perf_counter_task_sched_out(curr, cpu);
1077
1078         if (rotate_percpu)
1079                 rotate_ctx(&cpuctx->ctx);
1080         rotate_ctx(ctx);
1081
1082         if (rotate_percpu)
1083                 perf_counter_cpu_sched_in(cpuctx, cpu);
1084         perf_counter_task_sched_in(curr, cpu);
1085 }
1086
1087 /*
1088  * Cross CPU call to read the hardware counter
1089  */
1090 static void __read(void *info)
1091 {
1092         struct perf_counter *counter = info;
1093         struct perf_counter_context *ctx = counter->ctx;
1094         unsigned long flags;
1095
1096         local_irq_save(flags);
1097         if (ctx->is_active)
1098                 update_context_time(ctx);
1099         counter->pmu->read(counter);
1100         update_counter_times(counter);
1101         local_irq_restore(flags);
1102 }
1103
1104 static u64 perf_counter_read(struct perf_counter *counter)
1105 {
1106         /*
1107          * If counter is enabled and currently active on a CPU, update the
1108          * value in the counter structure:
1109          */
1110         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1111                 smp_call_function_single(counter->oncpu,
1112                                          __read, counter, 1);
1113         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114                 update_counter_times(counter);
1115         }
1116
1117         return atomic64_read(&counter->count);
1118 }
1119
1120 static void put_context(struct perf_counter_context *ctx)
1121 {
1122         if (ctx->task)
1123                 put_task_struct(ctx->task);
1124 }
1125
1126 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1127 {
1128         struct perf_cpu_context *cpuctx;
1129         struct perf_counter_context *ctx;
1130         struct task_struct *task;
1131
1132         /*
1133          * If cpu is not a wildcard then this is a percpu counter:
1134          */
1135         if (cpu != -1) {
1136                 /* Must be root to operate on a CPU counter: */
1137                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1138                         return ERR_PTR(-EACCES);
1139
1140                 if (cpu < 0 || cpu > num_possible_cpus())
1141                         return ERR_PTR(-EINVAL);
1142
1143                 /*
1144                  * We could be clever and allow to attach a counter to an
1145                  * offline CPU and activate it when the CPU comes up, but
1146                  * that's for later.
1147                  */
1148                 if (!cpu_isset(cpu, cpu_online_map))
1149                         return ERR_PTR(-ENODEV);
1150
1151                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1152                 ctx = &cpuctx->ctx;
1153
1154                 return ctx;
1155         }
1156
1157         rcu_read_lock();
1158         if (!pid)
1159                 task = current;
1160         else
1161                 task = find_task_by_vpid(pid);
1162         if (task)
1163                 get_task_struct(task);
1164         rcu_read_unlock();
1165
1166         if (!task)
1167                 return ERR_PTR(-ESRCH);
1168
1169         ctx = &task->perf_counter_ctx;
1170         ctx->task = task;
1171
1172         /* Reuse ptrace permission checks for now. */
1173         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1174                 put_context(ctx);
1175                 return ERR_PTR(-EACCES);
1176         }
1177
1178         return ctx;
1179 }
1180
1181 static void free_counter_rcu(struct rcu_head *head)
1182 {
1183         struct perf_counter *counter;
1184
1185         counter = container_of(head, struct perf_counter, rcu_head);
1186         kfree(counter);
1187 }
1188
1189 static void perf_pending_sync(struct perf_counter *counter);
1190
1191 static void free_counter(struct perf_counter *counter)
1192 {
1193         perf_pending_sync(counter);
1194
1195         if (counter->hw_event.mmap)
1196                 atomic_dec(&nr_mmap_tracking);
1197         if (counter->hw_event.munmap)
1198                 atomic_dec(&nr_munmap_tracking);
1199         if (counter->hw_event.comm)
1200                 atomic_dec(&nr_comm_tracking);
1201
1202         if (counter->destroy)
1203                 counter->destroy(counter);
1204
1205         call_rcu(&counter->rcu_head, free_counter_rcu);
1206 }
1207
1208 /*
1209  * Called when the last reference to the file is gone.
1210  */
1211 static int perf_release(struct inode *inode, struct file *file)
1212 {
1213         struct perf_counter *counter = file->private_data;
1214         struct perf_counter_context *ctx = counter->ctx;
1215
1216         file->private_data = NULL;
1217
1218         mutex_lock(&ctx->mutex);
1219         mutex_lock(&counter->mutex);
1220
1221         perf_counter_remove_from_context(counter);
1222
1223         mutex_unlock(&counter->mutex);
1224         mutex_unlock(&ctx->mutex);
1225
1226         free_counter(counter);
1227         put_context(ctx);
1228
1229         return 0;
1230 }
1231
1232 /*
1233  * Read the performance counter - simple non blocking version for now
1234  */
1235 static ssize_t
1236 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1237 {
1238         u64 values[3];
1239         int n;
1240
1241         /*
1242          * Return end-of-file for a read on a counter that is in
1243          * error state (i.e. because it was pinned but it couldn't be
1244          * scheduled on to the CPU at some point).
1245          */
1246         if (counter->state == PERF_COUNTER_STATE_ERROR)
1247                 return 0;
1248
1249         mutex_lock(&counter->mutex);
1250         values[0] = perf_counter_read(counter);
1251         n = 1;
1252         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253                 values[n++] = counter->total_time_enabled +
1254                         atomic64_read(&counter->child_total_time_enabled);
1255         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256                 values[n++] = counter->total_time_running +
1257                         atomic64_read(&counter->child_total_time_running);
1258         mutex_unlock(&counter->mutex);
1259
1260         if (count < n * sizeof(u64))
1261                 return -EINVAL;
1262         count = n * sizeof(u64);
1263
1264         if (copy_to_user(buf, values, count))
1265                 return -EFAULT;
1266
1267         return count;
1268 }
1269
1270 static ssize_t
1271 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272 {
1273         struct perf_counter *counter = file->private_data;
1274
1275         return perf_read_hw(counter, buf, count);
1276 }
1277
1278 static unsigned int perf_poll(struct file *file, poll_table *wait)
1279 {
1280         struct perf_counter *counter = file->private_data;
1281         struct perf_mmap_data *data;
1282         unsigned int events = POLL_HUP;
1283
1284         rcu_read_lock();
1285         data = rcu_dereference(counter->data);
1286         if (data)
1287                 events = atomic_xchg(&data->poll, 0);
1288         rcu_read_unlock();
1289
1290         poll_wait(file, &counter->waitq, wait);
1291
1292         return events;
1293 }
1294
1295 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1296 {
1297         struct perf_counter *counter = file->private_data;
1298         int err = 0;
1299
1300         switch (cmd) {
1301         case PERF_COUNTER_IOC_ENABLE:
1302                 perf_counter_enable_family(counter);
1303                 break;
1304         case PERF_COUNTER_IOC_DISABLE:
1305                 perf_counter_disable_family(counter);
1306                 break;
1307         case PERF_COUNTER_IOC_REFRESH:
1308                 perf_counter_refresh(counter, arg);
1309                 break;
1310         default:
1311                 err = -ENOTTY;
1312         }
1313         return err;
1314 }
1315
1316 /*
1317  * Callers need to ensure there can be no nesting of this function, otherwise
1318  * the seqlock logic goes bad. We can not serialize this because the arch
1319  * code calls this from NMI context.
1320  */
1321 void perf_counter_update_userpage(struct perf_counter *counter)
1322 {
1323         struct perf_mmap_data *data;
1324         struct perf_counter_mmap_page *userpg;
1325
1326         rcu_read_lock();
1327         data = rcu_dereference(counter->data);
1328         if (!data)
1329                 goto unlock;
1330
1331         userpg = data->user_page;
1332
1333         /*
1334          * Disable preemption so as to not let the corresponding user-space
1335          * spin too long if we get preempted.
1336          */
1337         preempt_disable();
1338         ++userpg->lock;
1339         barrier();
1340         userpg->index = counter->hw.idx;
1341         userpg->offset = atomic64_read(&counter->count);
1342         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1343                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1344
1345         barrier();
1346         ++userpg->lock;
1347         preempt_enable();
1348 unlock:
1349         rcu_read_unlock();
1350 }
1351
1352 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1353 {
1354         struct perf_counter *counter = vma->vm_file->private_data;
1355         struct perf_mmap_data *data;
1356         int ret = VM_FAULT_SIGBUS;
1357
1358         rcu_read_lock();
1359         data = rcu_dereference(counter->data);
1360         if (!data)
1361                 goto unlock;
1362
1363         if (vmf->pgoff == 0) {
1364                 vmf->page = virt_to_page(data->user_page);
1365         } else {
1366                 int nr = vmf->pgoff - 1;
1367
1368                 if ((unsigned)nr > data->nr_pages)
1369                         goto unlock;
1370
1371                 vmf->page = virt_to_page(data->data_pages[nr]);
1372         }
1373         get_page(vmf->page);
1374         ret = 0;
1375 unlock:
1376         rcu_read_unlock();
1377
1378         return ret;
1379 }
1380
1381 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1382 {
1383         struct perf_mmap_data *data;
1384         unsigned long size;
1385         int i;
1386
1387         WARN_ON(atomic_read(&counter->mmap_count));
1388
1389         size = sizeof(struct perf_mmap_data);
1390         size += nr_pages * sizeof(void *);
1391
1392         data = kzalloc(size, GFP_KERNEL);
1393         if (!data)
1394                 goto fail;
1395
1396         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1397         if (!data->user_page)
1398                 goto fail_user_page;
1399
1400         for (i = 0; i < nr_pages; i++) {
1401                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1402                 if (!data->data_pages[i])
1403                         goto fail_data_pages;
1404         }
1405
1406         data->nr_pages = nr_pages;
1407
1408         rcu_assign_pointer(counter->data, data);
1409
1410         return 0;
1411
1412 fail_data_pages:
1413         for (i--; i >= 0; i--)
1414                 free_page((unsigned long)data->data_pages[i]);
1415
1416         free_page((unsigned long)data->user_page);
1417
1418 fail_user_page:
1419         kfree(data);
1420
1421 fail:
1422         return -ENOMEM;
1423 }
1424
1425 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1426 {
1427         struct perf_mmap_data *data = container_of(rcu_head,
1428                         struct perf_mmap_data, rcu_head);
1429         int i;
1430
1431         free_page((unsigned long)data->user_page);
1432         for (i = 0; i < data->nr_pages; i++)
1433                 free_page((unsigned long)data->data_pages[i]);
1434         kfree(data);
1435 }
1436
1437 static void perf_mmap_data_free(struct perf_counter *counter)
1438 {
1439         struct perf_mmap_data *data = counter->data;
1440
1441         WARN_ON(atomic_read(&counter->mmap_count));
1442
1443         rcu_assign_pointer(counter->data, NULL);
1444         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1445 }
1446
1447 static void perf_mmap_open(struct vm_area_struct *vma)
1448 {
1449         struct perf_counter *counter = vma->vm_file->private_data;
1450
1451         atomic_inc(&counter->mmap_count);
1452 }
1453
1454 static void perf_mmap_close(struct vm_area_struct *vma)
1455 {
1456         struct perf_counter *counter = vma->vm_file->private_data;
1457
1458         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1459                                       &counter->mmap_mutex)) {
1460                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1461                 perf_mmap_data_free(counter);
1462                 mutex_unlock(&counter->mmap_mutex);
1463         }
1464 }
1465
1466 static struct vm_operations_struct perf_mmap_vmops = {
1467         .open  = perf_mmap_open,
1468         .close = perf_mmap_close,
1469         .fault = perf_mmap_fault,
1470 };
1471
1472 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1473 {
1474         struct perf_counter *counter = file->private_data;
1475         unsigned long vma_size;
1476         unsigned long nr_pages;
1477         unsigned long locked, lock_limit;
1478         int ret = 0;
1479
1480         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1481                 return -EINVAL;
1482
1483         vma_size = vma->vm_end - vma->vm_start;
1484         nr_pages = (vma_size / PAGE_SIZE) - 1;
1485
1486         /*
1487          * If we have data pages ensure they're a power-of-two number, so we
1488          * can do bitmasks instead of modulo.
1489          */
1490         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1491                 return -EINVAL;
1492
1493         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1494                 return -EINVAL;
1495
1496         if (vma->vm_pgoff != 0)
1497                 return -EINVAL;
1498
1499         mutex_lock(&counter->mmap_mutex);
1500         if (atomic_inc_not_zero(&counter->mmap_count)) {
1501                 if (nr_pages != counter->data->nr_pages)
1502                         ret = -EINVAL;
1503                 goto unlock;
1504         }
1505
1506         locked = vma->vm_mm->locked_vm;
1507         locked += nr_pages + 1;
1508
1509         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1510         lock_limit >>= PAGE_SHIFT;
1511
1512         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1513                 ret = -EPERM;
1514                 goto unlock;
1515         }
1516
1517         WARN_ON(counter->data);
1518         ret = perf_mmap_data_alloc(counter, nr_pages);
1519         if (ret)
1520                 goto unlock;
1521
1522         atomic_set(&counter->mmap_count, 1);
1523         vma->vm_mm->locked_vm += nr_pages + 1;
1524 unlock:
1525         mutex_unlock(&counter->mmap_mutex);
1526
1527         vma->vm_flags &= ~VM_MAYWRITE;
1528         vma->vm_flags |= VM_RESERVED;
1529         vma->vm_ops = &perf_mmap_vmops;
1530
1531         return ret;
1532 }
1533
1534 static int perf_fasync(int fd, struct file *filp, int on)
1535 {
1536         struct perf_counter *counter = filp->private_data;
1537         struct inode *inode = filp->f_path.dentry->d_inode;
1538         int retval;
1539
1540         mutex_lock(&inode->i_mutex);
1541         retval = fasync_helper(fd, filp, on, &counter->fasync);
1542         mutex_unlock(&inode->i_mutex);
1543
1544         if (retval < 0)
1545                 return retval;
1546
1547         return 0;
1548 }
1549
1550 static const struct file_operations perf_fops = {
1551         .release                = perf_release,
1552         .read                   = perf_read,
1553         .poll                   = perf_poll,
1554         .unlocked_ioctl         = perf_ioctl,
1555         .compat_ioctl           = perf_ioctl,
1556         .mmap                   = perf_mmap,
1557         .fasync                 = perf_fasync,
1558 };
1559
1560 /*
1561  * Perf counter wakeup
1562  *
1563  * If there's data, ensure we set the poll() state and publish everything
1564  * to user-space before waking everybody up.
1565  */
1566
1567 void perf_counter_wakeup(struct perf_counter *counter)
1568 {
1569         wake_up_all(&counter->waitq);
1570
1571         if (counter->pending_kill) {
1572                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1573                 counter->pending_kill = 0;
1574         }
1575 }
1576
1577 /*
1578  * Pending wakeups
1579  *
1580  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1581  *
1582  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1583  * single linked list and use cmpxchg() to add entries lockless.
1584  */
1585
1586 static void perf_pending_counter(struct perf_pending_entry *entry)
1587 {
1588         struct perf_counter *counter = container_of(entry,
1589                         struct perf_counter, pending);
1590
1591         if (counter->pending_disable) {
1592                 counter->pending_disable = 0;
1593                 perf_counter_disable(counter);
1594         }
1595
1596         if (counter->pending_wakeup) {
1597                 counter->pending_wakeup = 0;
1598                 perf_counter_wakeup(counter);
1599         }
1600 }
1601
1602 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1603
1604 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1605         PENDING_TAIL,
1606 };
1607
1608 static void perf_pending_queue(struct perf_pending_entry *entry,
1609                                void (*func)(struct perf_pending_entry *))
1610 {
1611         struct perf_pending_entry **head;
1612
1613         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1614                 return;
1615
1616         entry->func = func;
1617
1618         head = &get_cpu_var(perf_pending_head);
1619
1620         do {
1621                 entry->next = *head;
1622         } while (cmpxchg(head, entry->next, entry) != entry->next);
1623
1624         set_perf_counter_pending();
1625
1626         put_cpu_var(perf_pending_head);
1627 }
1628
1629 static int __perf_pending_run(void)
1630 {
1631         struct perf_pending_entry *list;
1632         int nr = 0;
1633
1634         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1635         while (list != PENDING_TAIL) {
1636                 void (*func)(struct perf_pending_entry *);
1637                 struct perf_pending_entry *entry = list;
1638
1639                 list = list->next;
1640
1641                 func = entry->func;
1642                 entry->next = NULL;
1643                 /*
1644                  * Ensure we observe the unqueue before we issue the wakeup,
1645                  * so that we won't be waiting forever.
1646                  * -- see perf_not_pending().
1647                  */
1648                 smp_wmb();
1649
1650                 func(entry);
1651                 nr++;
1652         }
1653
1654         return nr;
1655 }
1656
1657 static inline int perf_not_pending(struct perf_counter *counter)
1658 {
1659         /*
1660          * If we flush on whatever cpu we run, there is a chance we don't
1661          * need to wait.
1662          */
1663         get_cpu();
1664         __perf_pending_run();
1665         put_cpu();
1666
1667         /*
1668          * Ensure we see the proper queue state before going to sleep
1669          * so that we do not miss the wakeup. -- see perf_pending_handle()
1670          */
1671         smp_rmb();
1672         return counter->pending.next == NULL;
1673 }
1674
1675 static void perf_pending_sync(struct perf_counter *counter)
1676 {
1677         wait_event(counter->waitq, perf_not_pending(counter));
1678 }
1679
1680 void perf_counter_do_pending(void)
1681 {
1682         __perf_pending_run();
1683 }
1684
1685 /*
1686  * Callchain support -- arch specific
1687  */
1688
1689 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1690 {
1691         return NULL;
1692 }
1693
1694 /*
1695  * Output
1696  */
1697
1698 struct perf_output_handle {
1699         struct perf_counter     *counter;
1700         struct perf_mmap_data   *data;
1701         unsigned int            offset;
1702         unsigned int            head;
1703         int                     wakeup;
1704         int                     nmi;
1705         int                     overflow;
1706         int                     locked;
1707         unsigned long           flags;
1708 };
1709
1710 static void perf_output_wakeup(struct perf_output_handle *handle)
1711 {
1712         atomic_set(&handle->data->poll, POLL_IN);
1713
1714         if (handle->nmi) {
1715                 handle->counter->pending_wakeup = 1;
1716                 perf_pending_queue(&handle->counter->pending,
1717                                    perf_pending_counter);
1718         } else
1719                 perf_counter_wakeup(handle->counter);
1720 }
1721
1722 /*
1723  * Curious locking construct.
1724  *
1725  * We need to ensure a later event doesn't publish a head when a former
1726  * event isn't done writing. However since we need to deal with NMIs we
1727  * cannot fully serialize things.
1728  *
1729  * What we do is serialize between CPUs so we only have to deal with NMI
1730  * nesting on a single CPU.
1731  *
1732  * We only publish the head (and generate a wakeup) when the outer-most
1733  * event completes.
1734  */
1735 static void perf_output_lock(struct perf_output_handle *handle)
1736 {
1737         struct perf_mmap_data *data = handle->data;
1738         int cpu;
1739
1740         handle->locked = 0;
1741
1742         local_irq_save(handle->flags);
1743         cpu = smp_processor_id();
1744
1745         if (in_nmi() && atomic_read(&data->lock) == cpu)
1746                 return;
1747
1748         while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1749                 cpu_relax();
1750
1751         handle->locked = 1;
1752 }
1753
1754 static void perf_output_unlock(struct perf_output_handle *handle)
1755 {
1756         struct perf_mmap_data *data = handle->data;
1757         int head, cpu;
1758
1759         if (handle->wakeup)
1760                 data->wakeup_head = data->head;
1761
1762         if (!handle->locked)
1763                 goto out;
1764
1765 again:
1766         /*
1767          * The xchg implies a full barrier that ensures all writes are done
1768          * before we publish the new head, matched by a rmb() in userspace when
1769          * reading this position.
1770          */
1771         while ((head = atomic_xchg(&data->wakeup_head, 0))) {
1772                 data->user_page->data_head = head;
1773                 handle->wakeup = 1;
1774         }
1775
1776         /*
1777          * NMI can happen here, which means we can miss a wakeup_head update.
1778          */
1779
1780         cpu = atomic_xchg(&data->lock, 0);
1781         WARN_ON_ONCE(cpu != smp_processor_id());
1782
1783         /*
1784          * Therefore we have to validate we did not indeed do so.
1785          */
1786         if (unlikely(atomic_read(&data->wakeup_head))) {
1787                 /*
1788                  * Since we had it locked, we can lock it again.
1789                  */
1790                 while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1791                         cpu_relax();
1792
1793                 goto again;
1794         }
1795
1796         if (handle->wakeup)
1797                 perf_output_wakeup(handle);
1798 out:
1799         local_irq_restore(handle->flags);
1800 }
1801
1802 static int perf_output_begin(struct perf_output_handle *handle,
1803                              struct perf_counter *counter, unsigned int size,
1804                              int nmi, int overflow)
1805 {
1806         struct perf_mmap_data *data;
1807         unsigned int offset, head;
1808
1809         rcu_read_lock();
1810         data = rcu_dereference(counter->data);
1811         if (!data)
1812                 goto out;
1813
1814         handle->data     = data;
1815         handle->counter  = counter;
1816         handle->nmi      = nmi;
1817         handle->overflow = overflow;
1818
1819         if (!data->nr_pages)
1820                 goto fail;
1821
1822         perf_output_lock(handle);
1823
1824         do {
1825                 offset = head = atomic_read(&data->head);
1826                 head += size;
1827         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1828
1829         handle->offset  = offset;
1830         handle->head    = head;
1831         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1832
1833         return 0;
1834
1835 fail:
1836         perf_output_wakeup(handle);
1837 out:
1838         rcu_read_unlock();
1839
1840         return -ENOSPC;
1841 }
1842
1843 static void perf_output_copy(struct perf_output_handle *handle,
1844                              void *buf, unsigned int len)
1845 {
1846         unsigned int pages_mask;
1847         unsigned int offset;
1848         unsigned int size;
1849         void **pages;
1850
1851         offset          = handle->offset;
1852         pages_mask      = handle->data->nr_pages - 1;
1853         pages           = handle->data->data_pages;
1854
1855         do {
1856                 unsigned int page_offset;
1857                 int nr;
1858
1859                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1860                 page_offset = offset & (PAGE_SIZE - 1);
1861                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1862
1863                 memcpy(pages[nr] + page_offset, buf, size);
1864
1865                 len         -= size;
1866                 buf         += size;
1867                 offset      += size;
1868         } while (len);
1869
1870         handle->offset = offset;
1871
1872         WARN_ON_ONCE(handle->offset > handle->head);
1873 }
1874
1875 #define perf_output_put(handle, x) \
1876         perf_output_copy((handle), &(x), sizeof(x))
1877
1878 static void perf_output_end(struct perf_output_handle *handle)
1879 {
1880         struct perf_counter *counter = handle->counter;
1881         struct perf_mmap_data *data = handle->data;
1882
1883         int wakeup_events = counter->hw_event.wakeup_events;
1884
1885         if (handle->overflow && wakeup_events) {
1886                 int events = atomic_inc_return(&data->events);
1887                 if (events >= wakeup_events) {
1888                         atomic_sub(wakeup_events, &data->events);
1889                         handle->wakeup = 1;
1890                 }
1891         }
1892
1893         perf_output_unlock(handle);
1894         rcu_read_unlock();
1895 }
1896
1897 static void perf_counter_output(struct perf_counter *counter,
1898                                 int nmi, struct pt_regs *regs, u64 addr)
1899 {
1900         int ret;
1901         u64 record_type = counter->hw_event.record_type;
1902         struct perf_output_handle handle;
1903         struct perf_event_header header;
1904         u64 ip;
1905         struct {
1906                 u32 pid, tid;
1907         } tid_entry;
1908         struct {
1909                 u64 event;
1910                 u64 counter;
1911         } group_entry;
1912         struct perf_callchain_entry *callchain = NULL;
1913         int callchain_size = 0;
1914         u64 time;
1915
1916         header.type = 0;
1917         header.size = sizeof(header);
1918
1919         header.misc = PERF_EVENT_MISC_OVERFLOW;
1920         header.misc |= user_mode(regs) ?
1921                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1922
1923         if (record_type & PERF_RECORD_IP) {
1924                 ip = instruction_pointer(regs);
1925                 header.type |= PERF_RECORD_IP;
1926                 header.size += sizeof(ip);
1927         }
1928
1929         if (record_type & PERF_RECORD_TID) {
1930                 /* namespace issues */
1931                 tid_entry.pid = current->group_leader->pid;
1932                 tid_entry.tid = current->pid;
1933
1934                 header.type |= PERF_RECORD_TID;
1935                 header.size += sizeof(tid_entry);
1936         }
1937
1938         if (record_type & PERF_RECORD_TIME) {
1939                 /*
1940                  * Maybe do better on x86 and provide cpu_clock_nmi()
1941                  */
1942                 time = sched_clock();
1943
1944                 header.type |= PERF_RECORD_TIME;
1945                 header.size += sizeof(u64);
1946         }
1947
1948         if (record_type & PERF_RECORD_ADDR) {
1949                 header.type |= PERF_RECORD_ADDR;
1950                 header.size += sizeof(u64);
1951         }
1952
1953         if (record_type & PERF_RECORD_GROUP) {
1954                 header.type |= PERF_RECORD_GROUP;
1955                 header.size += sizeof(u64) +
1956                         counter->nr_siblings * sizeof(group_entry);
1957         }
1958
1959         if (record_type & PERF_RECORD_CALLCHAIN) {
1960                 callchain = perf_callchain(regs);
1961
1962                 if (callchain) {
1963                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1964
1965                         header.type |= PERF_RECORD_CALLCHAIN;
1966                         header.size += callchain_size;
1967                 }
1968         }
1969
1970         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1971         if (ret)
1972                 return;
1973
1974         perf_output_put(&handle, header);
1975
1976         if (record_type & PERF_RECORD_IP)
1977                 perf_output_put(&handle, ip);
1978
1979         if (record_type & PERF_RECORD_TID)
1980                 perf_output_put(&handle, tid_entry);
1981
1982         if (record_type & PERF_RECORD_TIME)
1983                 perf_output_put(&handle, time);
1984
1985         if (record_type & PERF_RECORD_ADDR)
1986                 perf_output_put(&handle, addr);
1987
1988         if (record_type & PERF_RECORD_GROUP) {
1989                 struct perf_counter *leader, *sub;
1990                 u64 nr = counter->nr_siblings;
1991
1992                 perf_output_put(&handle, nr);
1993
1994                 leader = counter->group_leader;
1995                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1996                         if (sub != counter)
1997                                 sub->pmu->read(sub);
1998
1999                         group_entry.event = sub->hw_event.config;
2000                         group_entry.counter = atomic64_read(&sub->count);
2001
2002                         perf_output_put(&handle, group_entry);
2003                 }
2004         }
2005
2006         if (callchain)
2007                 perf_output_copy(&handle, callchain, callchain_size);
2008
2009         perf_output_end(&handle);
2010 }
2011
2012 /*
2013  * comm tracking
2014  */
2015
2016 struct perf_comm_event {
2017         struct task_struct      *task;
2018         char                    *comm;
2019         int                     comm_size;
2020
2021         struct {
2022                 struct perf_event_header        header;
2023
2024                 u32                             pid;
2025                 u32                             tid;
2026         } event;
2027 };
2028
2029 static void perf_counter_comm_output(struct perf_counter *counter,
2030                                      struct perf_comm_event *comm_event)
2031 {
2032         struct perf_output_handle handle;
2033         int size = comm_event->event.header.size;
2034         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2035
2036         if (ret)
2037                 return;
2038
2039         perf_output_put(&handle, comm_event->event);
2040         perf_output_copy(&handle, comm_event->comm,
2041                                    comm_event->comm_size);
2042         perf_output_end(&handle);
2043 }
2044
2045 static int perf_counter_comm_match(struct perf_counter *counter,
2046                                    struct perf_comm_event *comm_event)
2047 {
2048         if (counter->hw_event.comm &&
2049             comm_event->event.header.type == PERF_EVENT_COMM)
2050                 return 1;
2051
2052         return 0;
2053 }
2054
2055 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2056                                   struct perf_comm_event *comm_event)
2057 {
2058         struct perf_counter *counter;
2059
2060         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2061                 return;
2062
2063         rcu_read_lock();
2064         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2065                 if (perf_counter_comm_match(counter, comm_event))
2066                         perf_counter_comm_output(counter, comm_event);
2067         }
2068         rcu_read_unlock();
2069 }
2070
2071 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2072 {
2073         struct perf_cpu_context *cpuctx;
2074         unsigned int size;
2075         char *comm = comm_event->task->comm;
2076
2077         size = ALIGN(strlen(comm)+1, sizeof(u64));
2078
2079         comm_event->comm = comm;
2080         comm_event->comm_size = size;
2081
2082         comm_event->event.header.size = sizeof(comm_event->event) + size;
2083
2084         cpuctx = &get_cpu_var(perf_cpu_context);
2085         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2086         put_cpu_var(perf_cpu_context);
2087
2088         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2089 }
2090
2091 void perf_counter_comm(struct task_struct *task)
2092 {
2093         struct perf_comm_event comm_event;
2094
2095         if (!atomic_read(&nr_comm_tracking))
2096                 return;
2097        
2098         comm_event = (struct perf_comm_event){
2099                 .task   = task,
2100                 .event  = {
2101                         .header = { .type = PERF_EVENT_COMM, },
2102                         .pid    = task->group_leader->pid,
2103                         .tid    = task->pid,
2104                 },
2105         };
2106
2107         perf_counter_comm_event(&comm_event);
2108 }
2109
2110 /*
2111  * mmap tracking
2112  */
2113
2114 struct perf_mmap_event {
2115         struct file     *file;
2116         char            *file_name;
2117         int             file_size;
2118
2119         struct {
2120                 struct perf_event_header        header;
2121
2122                 u32                             pid;
2123                 u32                             tid;
2124                 u64                             start;
2125                 u64                             len;
2126                 u64                             pgoff;
2127         } event;
2128 };
2129
2130 static void perf_counter_mmap_output(struct perf_counter *counter,
2131                                      struct perf_mmap_event *mmap_event)
2132 {
2133         struct perf_output_handle handle;
2134         int size = mmap_event->event.header.size;
2135         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2136
2137         if (ret)
2138                 return;
2139
2140         perf_output_put(&handle, mmap_event->event);
2141         perf_output_copy(&handle, mmap_event->file_name,
2142                                    mmap_event->file_size);
2143         perf_output_end(&handle);
2144 }
2145
2146 static int perf_counter_mmap_match(struct perf_counter *counter,
2147                                    struct perf_mmap_event *mmap_event)
2148 {
2149         if (counter->hw_event.mmap &&
2150             mmap_event->event.header.type == PERF_EVENT_MMAP)
2151                 return 1;
2152
2153         if (counter->hw_event.munmap &&
2154             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2155                 return 1;
2156
2157         return 0;
2158 }
2159
2160 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2161                                   struct perf_mmap_event *mmap_event)
2162 {
2163         struct perf_counter *counter;
2164
2165         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2166                 return;
2167
2168         rcu_read_lock();
2169         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2170                 if (perf_counter_mmap_match(counter, mmap_event))
2171                         perf_counter_mmap_output(counter, mmap_event);
2172         }
2173         rcu_read_unlock();
2174 }
2175
2176 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2177 {
2178         struct perf_cpu_context *cpuctx;
2179         struct file *file = mmap_event->file;
2180         unsigned int size;
2181         char tmp[16];
2182         char *buf = NULL;
2183         char *name;
2184
2185         if (file) {
2186                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2187                 if (!buf) {
2188                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2189                         goto got_name;
2190                 }
2191                 name = d_path(&file->f_path, buf, PATH_MAX);
2192                 if (IS_ERR(name)) {
2193                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2194                         goto got_name;
2195                 }
2196         } else {
2197                 name = strncpy(tmp, "//anon", sizeof(tmp));
2198                 goto got_name;
2199         }
2200
2201 got_name:
2202         size = ALIGN(strlen(name)+1, sizeof(u64));
2203
2204         mmap_event->file_name = name;
2205         mmap_event->file_size = size;
2206
2207         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2208
2209         cpuctx = &get_cpu_var(perf_cpu_context);
2210         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2211         put_cpu_var(perf_cpu_context);
2212
2213         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2214
2215         kfree(buf);
2216 }
2217
2218 void perf_counter_mmap(unsigned long addr, unsigned long len,
2219                        unsigned long pgoff, struct file *file)
2220 {
2221         struct perf_mmap_event mmap_event;
2222
2223         if (!atomic_read(&nr_mmap_tracking))
2224                 return;
2225
2226         mmap_event = (struct perf_mmap_event){
2227                 .file   = file,
2228                 .event  = {
2229                         .header = { .type = PERF_EVENT_MMAP, },
2230                         .pid    = current->group_leader->pid,
2231                         .tid    = current->pid,
2232                         .start  = addr,
2233                         .len    = len,
2234                         .pgoff  = pgoff,
2235                 },
2236         };
2237
2238         perf_counter_mmap_event(&mmap_event);
2239 }
2240
2241 void perf_counter_munmap(unsigned long addr, unsigned long len,
2242                          unsigned long pgoff, struct file *file)
2243 {
2244         struct perf_mmap_event mmap_event;
2245
2246         if (!atomic_read(&nr_munmap_tracking))
2247                 return;
2248
2249         mmap_event = (struct perf_mmap_event){
2250                 .file   = file,
2251                 .event  = {
2252                         .header = { .type = PERF_EVENT_MUNMAP, },
2253                         .pid    = current->group_leader->pid,
2254                         .tid    = current->pid,
2255                         .start  = addr,
2256                         .len    = len,
2257                         .pgoff  = pgoff,
2258                 },
2259         };
2260
2261         perf_counter_mmap_event(&mmap_event);
2262 }
2263
2264 /*
2265  * Generic counter overflow handling.
2266  */
2267
2268 int perf_counter_overflow(struct perf_counter *counter,
2269                           int nmi, struct pt_regs *regs, u64 addr)
2270 {
2271         int events = atomic_read(&counter->event_limit);
2272         int ret = 0;
2273
2274         counter->pending_kill = POLL_IN;
2275         if (events && atomic_dec_and_test(&counter->event_limit)) {
2276                 ret = 1;
2277                 counter->pending_kill = POLL_HUP;
2278                 if (nmi) {
2279                         counter->pending_disable = 1;
2280                         perf_pending_queue(&counter->pending,
2281                                            perf_pending_counter);
2282                 } else
2283                         perf_counter_disable(counter);
2284         }
2285
2286         perf_counter_output(counter, nmi, regs, addr);
2287         return ret;
2288 }
2289
2290 /*
2291  * Generic software counter infrastructure
2292  */
2293
2294 static void perf_swcounter_update(struct perf_counter *counter)
2295 {
2296         struct hw_perf_counter *hwc = &counter->hw;
2297         u64 prev, now;
2298         s64 delta;
2299
2300 again:
2301         prev = atomic64_read(&hwc->prev_count);
2302         now = atomic64_read(&hwc->count);
2303         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2304                 goto again;
2305
2306         delta = now - prev;
2307
2308         atomic64_add(delta, &counter->count);
2309         atomic64_sub(delta, &hwc->period_left);
2310 }
2311
2312 static void perf_swcounter_set_period(struct perf_counter *counter)
2313 {
2314         struct hw_perf_counter *hwc = &counter->hw;
2315         s64 left = atomic64_read(&hwc->period_left);
2316         s64 period = hwc->irq_period;
2317
2318         if (unlikely(left <= -period)) {
2319                 left = period;
2320                 atomic64_set(&hwc->period_left, left);
2321         }
2322
2323         if (unlikely(left <= 0)) {
2324                 left += period;
2325                 atomic64_add(period, &hwc->period_left);
2326         }
2327
2328         atomic64_set(&hwc->prev_count, -left);
2329         atomic64_set(&hwc->count, -left);
2330 }
2331
2332 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2333 {
2334         enum hrtimer_restart ret = HRTIMER_RESTART;
2335         struct perf_counter *counter;
2336         struct pt_regs *regs;
2337
2338         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2339         counter->pmu->read(counter);
2340
2341         regs = get_irq_regs();
2342         /*
2343          * In case we exclude kernel IPs or are somehow not in interrupt
2344          * context, provide the next best thing, the user IP.
2345          */
2346         if ((counter->hw_event.exclude_kernel || !regs) &&
2347                         !counter->hw_event.exclude_user)
2348                 regs = task_pt_regs(current);
2349
2350         if (regs) {
2351                 if (perf_counter_overflow(counter, 0, regs, 0))
2352                         ret = HRTIMER_NORESTART;
2353         }
2354
2355         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2356
2357         return ret;
2358 }
2359
2360 static void perf_swcounter_overflow(struct perf_counter *counter,
2361                                     int nmi, struct pt_regs *regs, u64 addr)
2362 {
2363         perf_swcounter_update(counter);
2364         perf_swcounter_set_period(counter);
2365         if (perf_counter_overflow(counter, nmi, regs, addr))
2366                 /* soft-disable the counter */
2367                 ;
2368
2369 }
2370
2371 static int perf_swcounter_match(struct perf_counter *counter,
2372                                 enum perf_event_types type,
2373                                 u32 event, struct pt_regs *regs)
2374 {
2375         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2376                 return 0;
2377
2378         if (perf_event_raw(&counter->hw_event))
2379                 return 0;
2380
2381         if (perf_event_type(&counter->hw_event) != type)
2382                 return 0;
2383
2384         if (perf_event_id(&counter->hw_event) != event)
2385                 return 0;
2386
2387         if (counter->hw_event.exclude_user && user_mode(regs))
2388                 return 0;
2389
2390         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2391                 return 0;
2392
2393         return 1;
2394 }
2395
2396 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2397                                int nmi, struct pt_regs *regs, u64 addr)
2398 {
2399         int neg = atomic64_add_negative(nr, &counter->hw.count);
2400         if (counter->hw.irq_period && !neg)
2401                 perf_swcounter_overflow(counter, nmi, regs, addr);
2402 }
2403
2404 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2405                                      enum perf_event_types type, u32 event,
2406                                      u64 nr, int nmi, struct pt_regs *regs,
2407                                      u64 addr)
2408 {
2409         struct perf_counter *counter;
2410
2411         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2412                 return;
2413
2414         rcu_read_lock();
2415         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2416                 if (perf_swcounter_match(counter, type, event, regs))
2417                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2418         }
2419         rcu_read_unlock();
2420 }
2421
2422 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2423 {
2424         if (in_nmi())
2425                 return &cpuctx->recursion[3];
2426
2427         if (in_irq())
2428                 return &cpuctx->recursion[2];
2429
2430         if (in_softirq())
2431                 return &cpuctx->recursion[1];
2432
2433         return &cpuctx->recursion[0];
2434 }
2435
2436 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2437                                    u64 nr, int nmi, struct pt_regs *regs,
2438                                    u64 addr)
2439 {
2440         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2441         int *recursion = perf_swcounter_recursion_context(cpuctx);
2442
2443         if (*recursion)
2444                 goto out;
2445
2446         (*recursion)++;
2447         barrier();
2448
2449         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2450                                  nr, nmi, regs, addr);
2451         if (cpuctx->task_ctx) {
2452                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2453                                          nr, nmi, regs, addr);
2454         }
2455
2456         barrier();
2457         (*recursion)--;
2458
2459 out:
2460         put_cpu_var(perf_cpu_context);
2461 }
2462
2463 void
2464 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2465 {
2466         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2467 }
2468
2469 static void perf_swcounter_read(struct perf_counter *counter)
2470 {
2471         perf_swcounter_update(counter);
2472 }
2473
2474 static int perf_swcounter_enable(struct perf_counter *counter)
2475 {
2476         perf_swcounter_set_period(counter);
2477         return 0;
2478 }
2479
2480 static void perf_swcounter_disable(struct perf_counter *counter)
2481 {
2482         perf_swcounter_update(counter);
2483 }
2484
2485 static const struct pmu perf_ops_generic = {
2486         .enable         = perf_swcounter_enable,
2487         .disable        = perf_swcounter_disable,
2488         .read           = perf_swcounter_read,
2489 };
2490
2491 /*
2492  * Software counter: cpu wall time clock
2493  */
2494
2495 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2496 {
2497         int cpu = raw_smp_processor_id();
2498         s64 prev;
2499         u64 now;
2500
2501         now = cpu_clock(cpu);
2502         prev = atomic64_read(&counter->hw.prev_count);
2503         atomic64_set(&counter->hw.prev_count, now);
2504         atomic64_add(now - prev, &counter->count);
2505 }
2506
2507 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2508 {
2509         struct hw_perf_counter *hwc = &counter->hw;
2510         int cpu = raw_smp_processor_id();
2511
2512         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2513         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2514         hwc->hrtimer.function = perf_swcounter_hrtimer;
2515         if (hwc->irq_period) {
2516                 __hrtimer_start_range_ns(&hwc->hrtimer,
2517                                 ns_to_ktime(hwc->irq_period), 0,
2518                                 HRTIMER_MODE_REL, 0);
2519         }
2520
2521         return 0;
2522 }
2523
2524 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2525 {
2526         hrtimer_cancel(&counter->hw.hrtimer);
2527         cpu_clock_perf_counter_update(counter);
2528 }
2529
2530 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2531 {
2532         cpu_clock_perf_counter_update(counter);
2533 }
2534
2535 static const struct pmu perf_ops_cpu_clock = {
2536         .enable         = cpu_clock_perf_counter_enable,
2537         .disable        = cpu_clock_perf_counter_disable,
2538         .read           = cpu_clock_perf_counter_read,
2539 };
2540
2541 /*
2542  * Software counter: task time clock
2543  */
2544
2545 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2546 {
2547         u64 prev;
2548         s64 delta;
2549
2550         prev = atomic64_xchg(&counter->hw.prev_count, now);
2551         delta = now - prev;
2552         atomic64_add(delta, &counter->count);
2553 }
2554
2555 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2556 {
2557         struct hw_perf_counter *hwc = &counter->hw;
2558         u64 now;
2559
2560         now = counter->ctx->time;
2561
2562         atomic64_set(&hwc->prev_count, now);
2563         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2564         hwc->hrtimer.function = perf_swcounter_hrtimer;
2565         if (hwc->irq_period) {
2566                 __hrtimer_start_range_ns(&hwc->hrtimer,
2567                                 ns_to_ktime(hwc->irq_period), 0,
2568                                 HRTIMER_MODE_REL, 0);
2569         }
2570
2571         return 0;
2572 }
2573
2574 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2575 {
2576         hrtimer_cancel(&counter->hw.hrtimer);
2577         task_clock_perf_counter_update(counter, counter->ctx->time);
2578
2579 }
2580
2581 static void task_clock_perf_counter_read(struct perf_counter *counter)
2582 {
2583         u64 time;
2584
2585         if (!in_nmi()) {
2586                 update_context_time(counter->ctx);
2587                 time = counter->ctx->time;
2588         } else {
2589                 u64 now = perf_clock();
2590                 u64 delta = now - counter->ctx->timestamp;
2591                 time = counter->ctx->time + delta;
2592         }
2593
2594         task_clock_perf_counter_update(counter, time);
2595 }
2596
2597 static const struct pmu perf_ops_task_clock = {
2598         .enable         = task_clock_perf_counter_enable,
2599         .disable        = task_clock_perf_counter_disable,
2600         .read           = task_clock_perf_counter_read,
2601 };
2602
2603 /*
2604  * Software counter: cpu migrations
2605  */
2606
2607 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2608 {
2609         struct task_struct *curr = counter->ctx->task;
2610
2611         if (curr)
2612                 return curr->se.nr_migrations;
2613         return cpu_nr_migrations(smp_processor_id());
2614 }
2615
2616 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2617 {
2618         u64 prev, now;
2619         s64 delta;
2620
2621         prev = atomic64_read(&counter->hw.prev_count);
2622         now = get_cpu_migrations(counter);
2623
2624         atomic64_set(&counter->hw.prev_count, now);
2625
2626         delta = now - prev;
2627
2628         atomic64_add(delta, &counter->count);
2629 }
2630
2631 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2632 {
2633         cpu_migrations_perf_counter_update(counter);
2634 }
2635
2636 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2637 {
2638         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2639                 atomic64_set(&counter->hw.prev_count,
2640                              get_cpu_migrations(counter));
2641         return 0;
2642 }
2643
2644 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2645 {
2646         cpu_migrations_perf_counter_update(counter);
2647 }
2648
2649 static const struct pmu perf_ops_cpu_migrations = {
2650         .enable         = cpu_migrations_perf_counter_enable,
2651         .disable        = cpu_migrations_perf_counter_disable,
2652         .read           = cpu_migrations_perf_counter_read,
2653 };
2654
2655 #ifdef CONFIG_EVENT_PROFILE
2656 void perf_tpcounter_event(int event_id)
2657 {
2658         struct pt_regs *regs = get_irq_regs();
2659
2660         if (!regs)
2661                 regs = task_pt_regs(current);
2662
2663         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2664 }
2665 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2666
2667 extern int ftrace_profile_enable(int);
2668 extern void ftrace_profile_disable(int);
2669
2670 static void tp_perf_counter_destroy(struct perf_counter *counter)
2671 {
2672         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2673 }
2674
2675 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2676 {
2677         int event_id = perf_event_id(&counter->hw_event);
2678         int ret;
2679
2680         ret = ftrace_profile_enable(event_id);
2681         if (ret)
2682                 return NULL;
2683
2684         counter->destroy = tp_perf_counter_destroy;
2685         counter->hw.irq_period = counter->hw_event.irq_period;
2686
2687         return &perf_ops_generic;
2688 }
2689 #else
2690 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2691 {
2692         return NULL;
2693 }
2694 #endif
2695
2696 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2697 {
2698         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2699         const struct pmu *pmu = NULL;
2700         struct hw_perf_counter *hwc = &counter->hw;
2701
2702         /*
2703          * Software counters (currently) can't in general distinguish
2704          * between user, kernel and hypervisor events.
2705          * However, context switches and cpu migrations are considered
2706          * to be kernel events, and page faults are never hypervisor
2707          * events.
2708          */
2709         switch (perf_event_id(&counter->hw_event)) {
2710         case PERF_COUNT_CPU_CLOCK:
2711                 pmu = &perf_ops_cpu_clock;
2712
2713                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2714                         hw_event->irq_period = 10000;
2715                 break;
2716         case PERF_COUNT_TASK_CLOCK:
2717                 /*
2718                  * If the user instantiates this as a per-cpu counter,
2719                  * use the cpu_clock counter instead.
2720                  */
2721                 if (counter->ctx->task)
2722                         pmu = &perf_ops_task_clock;
2723                 else
2724                         pmu = &perf_ops_cpu_clock;
2725
2726                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2727                         hw_event->irq_period = 10000;
2728                 break;
2729         case PERF_COUNT_PAGE_FAULTS:
2730         case PERF_COUNT_PAGE_FAULTS_MIN:
2731         case PERF_COUNT_PAGE_FAULTS_MAJ:
2732         case PERF_COUNT_CONTEXT_SWITCHES:
2733                 pmu = &perf_ops_generic;
2734                 break;
2735         case PERF_COUNT_CPU_MIGRATIONS:
2736                 if (!counter->hw_event.exclude_kernel)
2737                         pmu = &perf_ops_cpu_migrations;
2738                 break;
2739         }
2740
2741         if (pmu)
2742                 hwc->irq_period = hw_event->irq_period;
2743
2744         return pmu;
2745 }
2746
2747 /*
2748  * Allocate and initialize a counter structure
2749  */
2750 static struct perf_counter *
2751 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2752                    int cpu,
2753                    struct perf_counter_context *ctx,
2754                    struct perf_counter *group_leader,
2755                    gfp_t gfpflags)
2756 {
2757         const struct pmu *pmu;
2758         struct perf_counter *counter;
2759         long err;
2760
2761         counter = kzalloc(sizeof(*counter), gfpflags);
2762         if (!counter)
2763                 return ERR_PTR(-ENOMEM);
2764
2765         /*
2766          * Single counters are their own group leaders, with an
2767          * empty sibling list:
2768          */
2769         if (!group_leader)
2770                 group_leader = counter;
2771
2772         mutex_init(&counter->mutex);
2773         INIT_LIST_HEAD(&counter->list_entry);
2774         INIT_LIST_HEAD(&counter->event_entry);
2775         INIT_LIST_HEAD(&counter->sibling_list);
2776         init_waitqueue_head(&counter->waitq);
2777
2778         mutex_init(&counter->mmap_mutex);
2779
2780         INIT_LIST_HEAD(&counter->child_list);
2781
2782         counter->cpu                    = cpu;
2783         counter->hw_event               = *hw_event;
2784         counter->group_leader           = group_leader;
2785         counter->pmu                    = NULL;
2786         counter->ctx                    = ctx;
2787
2788         counter->state = PERF_COUNTER_STATE_INACTIVE;
2789         if (hw_event->disabled)
2790                 counter->state = PERF_COUNTER_STATE_OFF;
2791
2792         pmu = NULL;
2793
2794         if (perf_event_raw(hw_event)) {
2795                 pmu = hw_perf_counter_init(counter);
2796                 goto done;
2797         }
2798
2799         switch (perf_event_type(hw_event)) {
2800         case PERF_TYPE_HARDWARE:
2801                 pmu = hw_perf_counter_init(counter);
2802                 break;
2803
2804         case PERF_TYPE_SOFTWARE:
2805                 pmu = sw_perf_counter_init(counter);
2806                 break;
2807
2808         case PERF_TYPE_TRACEPOINT:
2809                 pmu = tp_perf_counter_init(counter);
2810                 break;
2811         }
2812 done:
2813         err = 0;
2814         if (!pmu)
2815                 err = -EINVAL;
2816         else if (IS_ERR(pmu))
2817                 err = PTR_ERR(pmu);
2818
2819         if (err) {
2820                 kfree(counter);
2821                 return ERR_PTR(err);
2822         }
2823
2824         counter->pmu = pmu;
2825
2826         if (counter->hw_event.mmap)
2827                 atomic_inc(&nr_mmap_tracking);
2828         if (counter->hw_event.munmap)
2829                 atomic_inc(&nr_munmap_tracking);
2830         if (counter->hw_event.comm)
2831                 atomic_inc(&nr_comm_tracking);
2832
2833         return counter;
2834 }
2835
2836 /**
2837  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2838  *
2839  * @hw_event_uptr:      event type attributes for monitoring/sampling
2840  * @pid:                target pid
2841  * @cpu:                target cpu
2842  * @group_fd:           group leader counter fd
2843  */
2844 SYSCALL_DEFINE5(perf_counter_open,
2845                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2846                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2847 {
2848         struct perf_counter *counter, *group_leader;
2849         struct perf_counter_hw_event hw_event;
2850         struct perf_counter_context *ctx;
2851         struct file *counter_file = NULL;
2852         struct file *group_file = NULL;
2853         int fput_needed = 0;
2854         int fput_needed2 = 0;
2855         int ret;
2856
2857         /* for future expandability... */
2858         if (flags)
2859                 return -EINVAL;
2860
2861         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2862                 return -EFAULT;
2863
2864         /*
2865          * Get the target context (task or percpu):
2866          */
2867         ctx = find_get_context(pid, cpu);
2868         if (IS_ERR(ctx))
2869                 return PTR_ERR(ctx);
2870
2871         /*
2872          * Look up the group leader (we will attach this counter to it):
2873          */
2874         group_leader = NULL;
2875         if (group_fd != -1) {
2876                 ret = -EINVAL;
2877                 group_file = fget_light(group_fd, &fput_needed);
2878                 if (!group_file)
2879                         goto err_put_context;
2880                 if (group_file->f_op != &perf_fops)
2881                         goto err_put_context;
2882
2883                 group_leader = group_file->private_data;
2884                 /*
2885                  * Do not allow a recursive hierarchy (this new sibling
2886                  * becoming part of another group-sibling):
2887                  */
2888                 if (group_leader->group_leader != group_leader)
2889                         goto err_put_context;
2890                 /*
2891                  * Do not allow to attach to a group in a different
2892                  * task or CPU context:
2893                  */
2894                 if (group_leader->ctx != ctx)
2895                         goto err_put_context;
2896                 /*
2897                  * Only a group leader can be exclusive or pinned
2898                  */
2899                 if (hw_event.exclusive || hw_event.pinned)
2900                         goto err_put_context;
2901         }
2902
2903         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2904                                      GFP_KERNEL);
2905         ret = PTR_ERR(counter);
2906         if (IS_ERR(counter))
2907                 goto err_put_context;
2908
2909         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2910         if (ret < 0)
2911                 goto err_free_put_context;
2912
2913         counter_file = fget_light(ret, &fput_needed2);
2914         if (!counter_file)
2915                 goto err_free_put_context;
2916
2917         counter->filp = counter_file;
2918         mutex_lock(&ctx->mutex);
2919         perf_install_in_context(ctx, counter, cpu);
2920         mutex_unlock(&ctx->mutex);
2921
2922         fput_light(counter_file, fput_needed2);
2923
2924 out_fput:
2925         fput_light(group_file, fput_needed);
2926
2927         return ret;
2928
2929 err_free_put_context:
2930         kfree(counter);
2931
2932 err_put_context:
2933         put_context(ctx);
2934
2935         goto out_fput;
2936 }
2937
2938 /*
2939  * Initialize the perf_counter context in a task_struct:
2940  */
2941 static void
2942 __perf_counter_init_context(struct perf_counter_context *ctx,
2943                             struct task_struct *task)
2944 {
2945         memset(ctx, 0, sizeof(*ctx));
2946         spin_lock_init(&ctx->lock);
2947         mutex_init(&ctx->mutex);
2948         INIT_LIST_HEAD(&ctx->counter_list);
2949         INIT_LIST_HEAD(&ctx->event_list);
2950         ctx->task = task;
2951 }
2952
2953 /*
2954  * inherit a counter from parent task to child task:
2955  */
2956 static struct perf_counter *
2957 inherit_counter(struct perf_counter *parent_counter,
2958               struct task_struct *parent,
2959               struct perf_counter_context *parent_ctx,
2960               struct task_struct *child,
2961               struct perf_counter *group_leader,
2962               struct perf_counter_context *child_ctx)
2963 {
2964         struct perf_counter *child_counter;
2965
2966         /*
2967          * Instead of creating recursive hierarchies of counters,
2968          * we link inherited counters back to the original parent,
2969          * which has a filp for sure, which we use as the reference
2970          * count:
2971          */
2972         if (parent_counter->parent)
2973                 parent_counter = parent_counter->parent;
2974
2975         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2976                                            parent_counter->cpu, child_ctx,
2977                                            group_leader, GFP_KERNEL);
2978         if (IS_ERR(child_counter))
2979                 return child_counter;
2980
2981         /*
2982          * Link it up in the child's context:
2983          */
2984         child_counter->task = child;
2985         add_counter_to_ctx(child_counter, child_ctx);
2986
2987         child_counter->parent = parent_counter;
2988         /*
2989          * inherit into child's child as well:
2990          */
2991         child_counter->hw_event.inherit = 1;
2992
2993         /*
2994          * Get a reference to the parent filp - we will fput it
2995          * when the child counter exits. This is safe to do because
2996          * we are in the parent and we know that the filp still
2997          * exists and has a nonzero count:
2998          */
2999         atomic_long_inc(&parent_counter->filp->f_count);
3000
3001         /*
3002          * Link this into the parent counter's child list
3003          */
3004         mutex_lock(&parent_counter->mutex);
3005         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3006
3007         /*
3008          * Make the child state follow the state of the parent counter,
3009          * not its hw_event.disabled bit.  We hold the parent's mutex,
3010          * so we won't race with perf_counter_{en,dis}able_family.
3011          */
3012         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3013                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3014         else
3015                 child_counter->state = PERF_COUNTER_STATE_OFF;
3016
3017         mutex_unlock(&parent_counter->mutex);
3018
3019         return child_counter;
3020 }
3021
3022 static int inherit_group(struct perf_counter *parent_counter,
3023               struct task_struct *parent,
3024               struct perf_counter_context *parent_ctx,
3025               struct task_struct *child,
3026               struct perf_counter_context *child_ctx)
3027 {
3028         struct perf_counter *leader;
3029         struct perf_counter *sub;
3030         struct perf_counter *child_ctr;
3031
3032         leader = inherit_counter(parent_counter, parent, parent_ctx,
3033                                  child, NULL, child_ctx);
3034         if (IS_ERR(leader))
3035                 return PTR_ERR(leader);
3036         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3037                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3038                                             child, leader, child_ctx);
3039                 if (IS_ERR(child_ctr))
3040                         return PTR_ERR(child_ctr);
3041         }
3042         return 0;
3043 }
3044
3045 static void sync_child_counter(struct perf_counter *child_counter,
3046                                struct perf_counter *parent_counter)
3047 {
3048         u64 parent_val, child_val;
3049
3050         parent_val = atomic64_read(&parent_counter->count);
3051         child_val = atomic64_read(&child_counter->count);
3052
3053         /*
3054          * Add back the child's count to the parent's count:
3055          */
3056         atomic64_add(child_val, &parent_counter->count);
3057         atomic64_add(child_counter->total_time_enabled,
3058                      &parent_counter->child_total_time_enabled);
3059         atomic64_add(child_counter->total_time_running,
3060                      &parent_counter->child_total_time_running);
3061
3062         /*
3063          * Remove this counter from the parent's list
3064          */
3065         mutex_lock(&parent_counter->mutex);
3066         list_del_init(&child_counter->child_list);
3067         mutex_unlock(&parent_counter->mutex);
3068
3069         /*
3070          * Release the parent counter, if this was the last
3071          * reference to it.
3072          */
3073         fput(parent_counter->filp);
3074 }
3075
3076 static void
3077 __perf_counter_exit_task(struct task_struct *child,
3078                          struct perf_counter *child_counter,
3079                          struct perf_counter_context *child_ctx)
3080 {
3081         struct perf_counter *parent_counter;
3082         struct perf_counter *sub, *tmp;
3083
3084         /*
3085          * If we do not self-reap then we have to wait for the
3086          * child task to unschedule (it will happen for sure),
3087          * so that its counter is at its final count. (This
3088          * condition triggers rarely - child tasks usually get
3089          * off their CPU before the parent has a chance to
3090          * get this far into the reaping action)
3091          */
3092         if (child != current) {
3093                 wait_task_inactive(child, 0);
3094                 list_del_init(&child_counter->list_entry);
3095                 update_counter_times(child_counter);
3096         } else {
3097                 struct perf_cpu_context *cpuctx;
3098                 unsigned long flags;
3099                 u64 perf_flags;
3100
3101                 /*
3102                  * Disable and unlink this counter.
3103                  *
3104                  * Be careful about zapping the list - IRQ/NMI context
3105                  * could still be processing it:
3106                  */
3107                 local_irq_save(flags);
3108                 perf_flags = hw_perf_save_disable();
3109
3110                 cpuctx = &__get_cpu_var(perf_cpu_context);
3111
3112                 group_sched_out(child_counter, cpuctx, child_ctx);
3113                 update_counter_times(child_counter);
3114
3115                 list_del_init(&child_counter->list_entry);
3116
3117                 child_ctx->nr_counters--;
3118
3119                 hw_perf_restore(perf_flags);
3120                 local_irq_restore(flags);
3121         }
3122
3123         parent_counter = child_counter->parent;
3124         /*
3125          * It can happen that parent exits first, and has counters
3126          * that are still around due to the child reference. These
3127          * counters need to be zapped - but otherwise linger.
3128          */
3129         if (parent_counter) {
3130                 sync_child_counter(child_counter, parent_counter);
3131                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3132                                          list_entry) {
3133                         if (sub->parent) {
3134                                 sync_child_counter(sub, sub->parent);
3135                                 free_counter(sub);
3136                         }
3137                 }
3138                 free_counter(child_counter);
3139         }
3140 }
3141
3142 /*
3143  * When a child task exits, feed back counter values to parent counters.
3144  *
3145  * Note: we may be running in child context, but the PID is not hashed
3146  * anymore so new counters will not be added.
3147  */
3148 void perf_counter_exit_task(struct task_struct *child)
3149 {
3150         struct perf_counter *child_counter, *tmp;
3151         struct perf_counter_context *child_ctx;
3152
3153         child_ctx = &child->perf_counter_ctx;
3154
3155         if (likely(!child_ctx->nr_counters))
3156                 return;
3157
3158         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3159                                  list_entry)
3160                 __perf_counter_exit_task(child, child_counter, child_ctx);
3161 }
3162
3163 /*
3164  * Initialize the perf_counter context in task_struct
3165  */
3166 void perf_counter_init_task(struct task_struct *child)
3167 {
3168         struct perf_counter_context *child_ctx, *parent_ctx;
3169         struct perf_counter *counter;
3170         struct task_struct *parent = current;
3171
3172         child_ctx  =  &child->perf_counter_ctx;
3173         parent_ctx = &parent->perf_counter_ctx;
3174
3175         __perf_counter_init_context(child_ctx, child);
3176
3177         /*
3178          * This is executed from the parent task context, so inherit
3179          * counters that have been marked for cloning:
3180          */
3181
3182         if (likely(!parent_ctx->nr_counters))
3183                 return;
3184
3185         /*
3186          * Lock the parent list. No need to lock the child - not PID
3187          * hashed yet and not running, so nobody can access it.
3188          */
3189         mutex_lock(&parent_ctx->mutex);
3190
3191         /*
3192          * We dont have to disable NMIs - we are only looking at
3193          * the list, not manipulating it:
3194          */
3195         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3196                 if (!counter->hw_event.inherit)
3197                         continue;
3198
3199                 if (inherit_group(counter, parent,
3200                                   parent_ctx, child, child_ctx))
3201                         break;
3202         }
3203
3204         mutex_unlock(&parent_ctx->mutex);
3205 }
3206
3207 static void __cpuinit perf_counter_init_cpu(int cpu)
3208 {
3209         struct perf_cpu_context *cpuctx;
3210
3211         cpuctx = &per_cpu(perf_cpu_context, cpu);
3212         __perf_counter_init_context(&cpuctx->ctx, NULL);
3213
3214         mutex_lock(&perf_resource_mutex);
3215         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3216         mutex_unlock(&perf_resource_mutex);
3217
3218         hw_perf_counter_setup(cpu);
3219 }
3220
3221 #ifdef CONFIG_HOTPLUG_CPU
3222 static void __perf_counter_exit_cpu(void *info)
3223 {
3224         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3225         struct perf_counter_context *ctx = &cpuctx->ctx;
3226         struct perf_counter *counter, *tmp;
3227
3228         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3229                 __perf_counter_remove_from_context(counter);
3230 }
3231 static void perf_counter_exit_cpu(int cpu)
3232 {
3233         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3234         struct perf_counter_context *ctx = &cpuctx->ctx;
3235
3236         mutex_lock(&ctx->mutex);
3237         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3238         mutex_unlock(&ctx->mutex);
3239 }
3240 #else
3241 static inline void perf_counter_exit_cpu(int cpu) { }
3242 #endif
3243
3244 static int __cpuinit
3245 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3246 {
3247         unsigned int cpu = (long)hcpu;
3248
3249         switch (action) {
3250
3251         case CPU_UP_PREPARE:
3252         case CPU_UP_PREPARE_FROZEN:
3253                 perf_counter_init_cpu(cpu);
3254                 break;
3255
3256         case CPU_DOWN_PREPARE:
3257         case CPU_DOWN_PREPARE_FROZEN:
3258                 perf_counter_exit_cpu(cpu);
3259                 break;
3260
3261         default:
3262                 break;
3263         }
3264
3265         return NOTIFY_OK;
3266 }
3267
3268 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3269         .notifier_call          = perf_cpu_notify,
3270 };
3271
3272 static int __init perf_counter_init(void)
3273 {
3274         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3275                         (void *)(long)smp_processor_id());
3276         register_cpu_notifier(&perf_cpu_nb);
3277
3278         return 0;
3279 }
3280 early_initcall(perf_counter_init);
3281
3282 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3283 {
3284         return sprintf(buf, "%d\n", perf_reserved_percpu);
3285 }
3286
3287 static ssize_t
3288 perf_set_reserve_percpu(struct sysdev_class *class,
3289                         const char *buf,
3290                         size_t count)
3291 {
3292         struct perf_cpu_context *cpuctx;
3293         unsigned long val;
3294         int err, cpu, mpt;
3295
3296         err = strict_strtoul(buf, 10, &val);
3297         if (err)
3298                 return err;
3299         if (val > perf_max_counters)
3300                 return -EINVAL;
3301
3302         mutex_lock(&perf_resource_mutex);
3303         perf_reserved_percpu = val;
3304         for_each_online_cpu(cpu) {
3305                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3306                 spin_lock_irq(&cpuctx->ctx.lock);
3307                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3308                           perf_max_counters - perf_reserved_percpu);
3309                 cpuctx->max_pertask = mpt;
3310                 spin_unlock_irq(&cpuctx->ctx.lock);
3311         }
3312         mutex_unlock(&perf_resource_mutex);
3313
3314         return count;
3315 }
3316
3317 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3318 {
3319         return sprintf(buf, "%d\n", perf_overcommit);
3320 }
3321
3322 static ssize_t
3323 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3324 {
3325         unsigned long val;
3326         int err;
3327
3328         err = strict_strtoul(buf, 10, &val);
3329         if (err)
3330                 return err;
3331         if (val > 1)
3332                 return -EINVAL;
3333
3334         mutex_lock(&perf_resource_mutex);
3335         perf_overcommit = val;
3336         mutex_unlock(&perf_resource_mutex);
3337
3338         return count;
3339 }
3340
3341 static SYSDEV_CLASS_ATTR(
3342                                 reserve_percpu,
3343                                 0644,
3344                                 perf_show_reserve_percpu,
3345                                 perf_set_reserve_percpu
3346                         );
3347
3348 static SYSDEV_CLASS_ATTR(
3349                                 overcommit,
3350                                 0644,
3351                                 perf_show_overcommit,
3352                                 perf_set_overcommit
3353                         );
3354
3355 static struct attribute *perfclass_attrs[] = {
3356         &attr_reserve_percpu.attr,
3357         &attr_overcommit.attr,
3358         NULL
3359 };
3360
3361 static struct attribute_group perfclass_attr_group = {
3362         .attrs                  = perfclass_attrs,
3363         .name                   = "perf_counters",
3364 };
3365
3366 static int __init perf_counter_sysfs_init(void)
3367 {
3368         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3369                                   &perfclass_attr_group);
3370 }
3371 device_initcall(perf_counter_sysfs_init);