perf: Fix stack data leak
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47  * perf counter paranoia level:
48  *  0 - not paranoid
49  *  1 - disallow cpu counters to unpriv
50  *  2 - disallow kernel profiling to unpriv
51  */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56         return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61         return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67  * max perf counter sample rate
68  */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74  * Lock for (sysadmin-configurable) counter reservations:
75  */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79  * Architecture provided APIs - weak aliases:
80  */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83         return NULL;
84 }
85
86 void __weak hw_perf_disable(void)               { barrier(); }
87 void __weak hw_perf_enable(void)                { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93                struct perf_cpu_context *cpuctx,
94                struct perf_counter_context *ctx, int cpu)
95 {
96         return 0;
97 }
98
99 void __weak perf_counter_print_debug(void)      { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105         __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110         return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115         __perf_disable();
116         hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121         if (__perf_enable())
122                 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132         struct perf_counter_context *ctx;
133
134         ctx = container_of(head, struct perf_counter_context, rcu_head);
135         kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140         if (atomic_dec_and_test(&ctx->refcount)) {
141                 if (ctx->parent_ctx)
142                         put_ctx(ctx->parent_ctx);
143                 if (ctx->task)
144                         put_task_struct(ctx->task);
145                 call_rcu(&ctx->rcu_head, free_ctx);
146         }
147 }
148
149 static void unclone_ctx(struct perf_counter_context *ctx)
150 {
151         if (ctx->parent_ctx) {
152                 put_ctx(ctx->parent_ctx);
153                 ctx->parent_ctx = NULL;
154         }
155 }
156
157 /*
158  * Get the perf_counter_context for a task and lock it.
159  * This has to cope with with the fact that until it is locked,
160  * the context could get moved to another task.
161  */
162 static struct perf_counter_context *
163 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
164 {
165         struct perf_counter_context *ctx;
166
167         rcu_read_lock();
168  retry:
169         ctx = rcu_dereference(task->perf_counter_ctxp);
170         if (ctx) {
171                 /*
172                  * If this context is a clone of another, it might
173                  * get swapped for another underneath us by
174                  * perf_counter_task_sched_out, though the
175                  * rcu_read_lock() protects us from any context
176                  * getting freed.  Lock the context and check if it
177                  * got swapped before we could get the lock, and retry
178                  * if so.  If we locked the right context, then it
179                  * can't get swapped on us any more.
180                  */
181                 spin_lock_irqsave(&ctx->lock, *flags);
182                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
183                         spin_unlock_irqrestore(&ctx->lock, *flags);
184                         goto retry;
185                 }
186
187                 if (!atomic_inc_not_zero(&ctx->refcount)) {
188                         spin_unlock_irqrestore(&ctx->lock, *flags);
189                         ctx = NULL;
190                 }
191         }
192         rcu_read_unlock();
193         return ctx;
194 }
195
196 /*
197  * Get the context for a task and increment its pin_count so it
198  * can't get swapped to another task.  This also increments its
199  * reference count so that the context can't get freed.
200  */
201 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
202 {
203         struct perf_counter_context *ctx;
204         unsigned long flags;
205
206         ctx = perf_lock_task_context(task, &flags);
207         if (ctx) {
208                 ++ctx->pin_count;
209                 spin_unlock_irqrestore(&ctx->lock, flags);
210         }
211         return ctx;
212 }
213
214 static void perf_unpin_context(struct perf_counter_context *ctx)
215 {
216         unsigned long flags;
217
218         spin_lock_irqsave(&ctx->lock, flags);
219         --ctx->pin_count;
220         spin_unlock_irqrestore(&ctx->lock, flags);
221         put_ctx(ctx);
222 }
223
224 /*
225  * Add a counter from the lists for its context.
226  * Must be called with ctx->mutex and ctx->lock held.
227  */
228 static void
229 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
230 {
231         struct perf_counter *group_leader = counter->group_leader;
232
233         /*
234          * Depending on whether it is a standalone or sibling counter,
235          * add it straight to the context's counter list, or to the group
236          * leader's sibling list:
237          */
238         if (group_leader == counter)
239                 list_add_tail(&counter->list_entry, &ctx->counter_list);
240         else {
241                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
242                 group_leader->nr_siblings++;
243         }
244
245         list_add_rcu(&counter->event_entry, &ctx->event_list);
246         ctx->nr_counters++;
247         if (counter->attr.inherit_stat)
248                 ctx->nr_stat++;
249 }
250
251 /*
252  * Remove a counter from the lists for its context.
253  * Must be called with ctx->mutex and ctx->lock held.
254  */
255 static void
256 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
257 {
258         struct perf_counter *sibling, *tmp;
259
260         if (list_empty(&counter->list_entry))
261                 return;
262         ctx->nr_counters--;
263         if (counter->attr.inherit_stat)
264                 ctx->nr_stat--;
265
266         list_del_init(&counter->list_entry);
267         list_del_rcu(&counter->event_entry);
268
269         if (counter->group_leader != counter)
270                 counter->group_leader->nr_siblings--;
271
272         /*
273          * If this was a group counter with sibling counters then
274          * upgrade the siblings to singleton counters by adding them
275          * to the context list directly:
276          */
277         list_for_each_entry_safe(sibling, tmp,
278                                  &counter->sibling_list, list_entry) {
279
280                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
281                 sibling->group_leader = sibling;
282         }
283 }
284
285 static void
286 counter_sched_out(struct perf_counter *counter,
287                   struct perf_cpu_context *cpuctx,
288                   struct perf_counter_context *ctx)
289 {
290         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
291                 return;
292
293         counter->state = PERF_COUNTER_STATE_INACTIVE;
294         counter->tstamp_stopped = ctx->time;
295         counter->pmu->disable(counter);
296         counter->oncpu = -1;
297
298         if (!is_software_counter(counter))
299                 cpuctx->active_oncpu--;
300         ctx->nr_active--;
301         if (counter->attr.exclusive || !cpuctx->active_oncpu)
302                 cpuctx->exclusive = 0;
303 }
304
305 static void
306 group_sched_out(struct perf_counter *group_counter,
307                 struct perf_cpu_context *cpuctx,
308                 struct perf_counter_context *ctx)
309 {
310         struct perf_counter *counter;
311
312         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
313                 return;
314
315         counter_sched_out(group_counter, cpuctx, ctx);
316
317         /*
318          * Schedule out siblings (if any):
319          */
320         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
321                 counter_sched_out(counter, cpuctx, ctx);
322
323         if (group_counter->attr.exclusive)
324                 cpuctx->exclusive = 0;
325 }
326
327 /*
328  * Cross CPU call to remove a performance counter
329  *
330  * We disable the counter on the hardware level first. After that we
331  * remove it from the context list.
332  */
333 static void __perf_counter_remove_from_context(void *info)
334 {
335         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
336         struct perf_counter *counter = info;
337         struct perf_counter_context *ctx = counter->ctx;
338
339         /*
340          * If this is a task context, we need to check whether it is
341          * the current task context of this cpu. If not it has been
342          * scheduled out before the smp call arrived.
343          */
344         if (ctx->task && cpuctx->task_ctx != ctx)
345                 return;
346
347         spin_lock(&ctx->lock);
348         /*
349          * Protect the list operation against NMI by disabling the
350          * counters on a global level.
351          */
352         perf_disable();
353
354         counter_sched_out(counter, cpuctx, ctx);
355
356         list_del_counter(counter, ctx);
357
358         if (!ctx->task) {
359                 /*
360                  * Allow more per task counters with respect to the
361                  * reservation:
362                  */
363                 cpuctx->max_pertask =
364                         min(perf_max_counters - ctx->nr_counters,
365                             perf_max_counters - perf_reserved_percpu);
366         }
367
368         perf_enable();
369         spin_unlock(&ctx->lock);
370 }
371
372
373 /*
374  * Remove the counter from a task's (or a CPU's) list of counters.
375  *
376  * Must be called with ctx->mutex held.
377  *
378  * CPU counters are removed with a smp call. For task counters we only
379  * call when the task is on a CPU.
380  *
381  * If counter->ctx is a cloned context, callers must make sure that
382  * every task struct that counter->ctx->task could possibly point to
383  * remains valid.  This is OK when called from perf_release since
384  * that only calls us on the top-level context, which can't be a clone.
385  * When called from perf_counter_exit_task, it's OK because the
386  * context has been detached from its task.
387  */
388 static void perf_counter_remove_from_context(struct perf_counter *counter)
389 {
390         struct perf_counter_context *ctx = counter->ctx;
391         struct task_struct *task = ctx->task;
392
393         if (!task) {
394                 /*
395                  * Per cpu counters are removed via an smp call and
396                  * the removal is always sucessful.
397                  */
398                 smp_call_function_single(counter->cpu,
399                                          __perf_counter_remove_from_context,
400                                          counter, 1);
401                 return;
402         }
403
404 retry:
405         task_oncpu_function_call(task, __perf_counter_remove_from_context,
406                                  counter);
407
408         spin_lock_irq(&ctx->lock);
409         /*
410          * If the context is active we need to retry the smp call.
411          */
412         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
413                 spin_unlock_irq(&ctx->lock);
414                 goto retry;
415         }
416
417         /*
418          * The lock prevents that this context is scheduled in so we
419          * can remove the counter safely, if the call above did not
420          * succeed.
421          */
422         if (!list_empty(&counter->list_entry)) {
423                 list_del_counter(counter, ctx);
424         }
425         spin_unlock_irq(&ctx->lock);
426 }
427
428 static inline u64 perf_clock(void)
429 {
430         return cpu_clock(smp_processor_id());
431 }
432
433 /*
434  * Update the record of the current time in a context.
435  */
436 static void update_context_time(struct perf_counter_context *ctx)
437 {
438         u64 now = perf_clock();
439
440         ctx->time += now - ctx->timestamp;
441         ctx->timestamp = now;
442 }
443
444 /*
445  * Update the total_time_enabled and total_time_running fields for a counter.
446  */
447 static void update_counter_times(struct perf_counter *counter)
448 {
449         struct perf_counter_context *ctx = counter->ctx;
450         u64 run_end;
451
452         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
453                 return;
454
455         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
456
457         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
458                 run_end = counter->tstamp_stopped;
459         else
460                 run_end = ctx->time;
461
462         counter->total_time_running = run_end - counter->tstamp_running;
463 }
464
465 /*
466  * Update total_time_enabled and total_time_running for all counters in a group.
467  */
468 static void update_group_times(struct perf_counter *leader)
469 {
470         struct perf_counter *counter;
471
472         update_counter_times(leader);
473         list_for_each_entry(counter, &leader->sibling_list, list_entry)
474                 update_counter_times(counter);
475 }
476
477 /*
478  * Cross CPU call to disable a performance counter
479  */
480 static void __perf_counter_disable(void *info)
481 {
482         struct perf_counter *counter = info;
483         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
484         struct perf_counter_context *ctx = counter->ctx;
485
486         /*
487          * If this is a per-task counter, need to check whether this
488          * counter's task is the current task on this cpu.
489          */
490         if (ctx->task && cpuctx->task_ctx != ctx)
491                 return;
492
493         spin_lock(&ctx->lock);
494
495         /*
496          * If the counter is on, turn it off.
497          * If it is in error state, leave it in error state.
498          */
499         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
500                 update_context_time(ctx);
501                 update_counter_times(counter);
502                 if (counter == counter->group_leader)
503                         group_sched_out(counter, cpuctx, ctx);
504                 else
505                         counter_sched_out(counter, cpuctx, ctx);
506                 counter->state = PERF_COUNTER_STATE_OFF;
507         }
508
509         spin_unlock(&ctx->lock);
510 }
511
512 /*
513  * Disable a counter.
514  *
515  * If counter->ctx is a cloned context, callers must make sure that
516  * every task struct that counter->ctx->task could possibly point to
517  * remains valid.  This condition is satisifed when called through
518  * perf_counter_for_each_child or perf_counter_for_each because they
519  * hold the top-level counter's child_mutex, so any descendant that
520  * goes to exit will block in sync_child_counter.
521  * When called from perf_pending_counter it's OK because counter->ctx
522  * is the current context on this CPU and preemption is disabled,
523  * hence we can't get into perf_counter_task_sched_out for this context.
524  */
525 static void perf_counter_disable(struct perf_counter *counter)
526 {
527         struct perf_counter_context *ctx = counter->ctx;
528         struct task_struct *task = ctx->task;
529
530         if (!task) {
531                 /*
532                  * Disable the counter on the cpu that it's on
533                  */
534                 smp_call_function_single(counter->cpu, __perf_counter_disable,
535                                          counter, 1);
536                 return;
537         }
538
539  retry:
540         task_oncpu_function_call(task, __perf_counter_disable, counter);
541
542         spin_lock_irq(&ctx->lock);
543         /*
544          * If the counter is still active, we need to retry the cross-call.
545          */
546         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
547                 spin_unlock_irq(&ctx->lock);
548                 goto retry;
549         }
550
551         /*
552          * Since we have the lock this context can't be scheduled
553          * in, so we can change the state safely.
554          */
555         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
556                 update_counter_times(counter);
557                 counter->state = PERF_COUNTER_STATE_OFF;
558         }
559
560         spin_unlock_irq(&ctx->lock);
561 }
562
563 static int
564 counter_sched_in(struct perf_counter *counter,
565                  struct perf_cpu_context *cpuctx,
566                  struct perf_counter_context *ctx,
567                  int cpu)
568 {
569         if (counter->state <= PERF_COUNTER_STATE_OFF)
570                 return 0;
571
572         counter->state = PERF_COUNTER_STATE_ACTIVE;
573         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
574         /*
575          * The new state must be visible before we turn it on in the hardware:
576          */
577         smp_wmb();
578
579         if (counter->pmu->enable(counter)) {
580                 counter->state = PERF_COUNTER_STATE_INACTIVE;
581                 counter->oncpu = -1;
582                 return -EAGAIN;
583         }
584
585         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
586
587         if (!is_software_counter(counter))
588                 cpuctx->active_oncpu++;
589         ctx->nr_active++;
590
591         if (counter->attr.exclusive)
592                 cpuctx->exclusive = 1;
593
594         return 0;
595 }
596
597 static int
598 group_sched_in(struct perf_counter *group_counter,
599                struct perf_cpu_context *cpuctx,
600                struct perf_counter_context *ctx,
601                int cpu)
602 {
603         struct perf_counter *counter, *partial_group;
604         int ret;
605
606         if (group_counter->state == PERF_COUNTER_STATE_OFF)
607                 return 0;
608
609         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
610         if (ret)
611                 return ret < 0 ? ret : 0;
612
613         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
614                 return -EAGAIN;
615
616         /*
617          * Schedule in siblings as one group (if any):
618          */
619         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
620                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
621                         partial_group = counter;
622                         goto group_error;
623                 }
624         }
625
626         return 0;
627
628 group_error:
629         /*
630          * Groups can be scheduled in as one unit only, so undo any
631          * partial group before returning:
632          */
633         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
634                 if (counter == partial_group)
635                         break;
636                 counter_sched_out(counter, cpuctx, ctx);
637         }
638         counter_sched_out(group_counter, cpuctx, ctx);
639
640         return -EAGAIN;
641 }
642
643 /*
644  * Return 1 for a group consisting entirely of software counters,
645  * 0 if the group contains any hardware counters.
646  */
647 static int is_software_only_group(struct perf_counter *leader)
648 {
649         struct perf_counter *counter;
650
651         if (!is_software_counter(leader))
652                 return 0;
653
654         list_for_each_entry(counter, &leader->sibling_list, list_entry)
655                 if (!is_software_counter(counter))
656                         return 0;
657
658         return 1;
659 }
660
661 /*
662  * Work out whether we can put this counter group on the CPU now.
663  */
664 static int group_can_go_on(struct perf_counter *counter,
665                            struct perf_cpu_context *cpuctx,
666                            int can_add_hw)
667 {
668         /*
669          * Groups consisting entirely of software counters can always go on.
670          */
671         if (is_software_only_group(counter))
672                 return 1;
673         /*
674          * If an exclusive group is already on, no other hardware
675          * counters can go on.
676          */
677         if (cpuctx->exclusive)
678                 return 0;
679         /*
680          * If this group is exclusive and there are already
681          * counters on the CPU, it can't go on.
682          */
683         if (counter->attr.exclusive && cpuctx->active_oncpu)
684                 return 0;
685         /*
686          * Otherwise, try to add it if all previous groups were able
687          * to go on.
688          */
689         return can_add_hw;
690 }
691
692 static void add_counter_to_ctx(struct perf_counter *counter,
693                                struct perf_counter_context *ctx)
694 {
695         list_add_counter(counter, ctx);
696         counter->tstamp_enabled = ctx->time;
697         counter->tstamp_running = ctx->time;
698         counter->tstamp_stopped = ctx->time;
699 }
700
701 /*
702  * Cross CPU call to install and enable a performance counter
703  *
704  * Must be called with ctx->mutex held
705  */
706 static void __perf_install_in_context(void *info)
707 {
708         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
709         struct perf_counter *counter = info;
710         struct perf_counter_context *ctx = counter->ctx;
711         struct perf_counter *leader = counter->group_leader;
712         int cpu = smp_processor_id();
713         int err;
714
715         /*
716          * If this is a task context, we need to check whether it is
717          * the current task context of this cpu. If not it has been
718          * scheduled out before the smp call arrived.
719          * Or possibly this is the right context but it isn't
720          * on this cpu because it had no counters.
721          */
722         if (ctx->task && cpuctx->task_ctx != ctx) {
723                 if (cpuctx->task_ctx || ctx->task != current)
724                         return;
725                 cpuctx->task_ctx = ctx;
726         }
727
728         spin_lock(&ctx->lock);
729         ctx->is_active = 1;
730         update_context_time(ctx);
731
732         /*
733          * Protect the list operation against NMI by disabling the
734          * counters on a global level. NOP for non NMI based counters.
735          */
736         perf_disable();
737
738         add_counter_to_ctx(counter, ctx);
739
740         /*
741          * Don't put the counter on if it is disabled or if
742          * it is in a group and the group isn't on.
743          */
744         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
745             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
746                 goto unlock;
747
748         /*
749          * An exclusive counter can't go on if there are already active
750          * hardware counters, and no hardware counter can go on if there
751          * is already an exclusive counter on.
752          */
753         if (!group_can_go_on(counter, cpuctx, 1))
754                 err = -EEXIST;
755         else
756                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
757
758         if (err) {
759                 /*
760                  * This counter couldn't go on.  If it is in a group
761                  * then we have to pull the whole group off.
762                  * If the counter group is pinned then put it in error state.
763                  */
764                 if (leader != counter)
765                         group_sched_out(leader, cpuctx, ctx);
766                 if (leader->attr.pinned) {
767                         update_group_times(leader);
768                         leader->state = PERF_COUNTER_STATE_ERROR;
769                 }
770         }
771
772         if (!err && !ctx->task && cpuctx->max_pertask)
773                 cpuctx->max_pertask--;
774
775  unlock:
776         perf_enable();
777
778         spin_unlock(&ctx->lock);
779 }
780
781 /*
782  * Attach a performance counter to a context
783  *
784  * First we add the counter to the list with the hardware enable bit
785  * in counter->hw_config cleared.
786  *
787  * If the counter is attached to a task which is on a CPU we use a smp
788  * call to enable it in the task context. The task might have been
789  * scheduled away, but we check this in the smp call again.
790  *
791  * Must be called with ctx->mutex held.
792  */
793 static void
794 perf_install_in_context(struct perf_counter_context *ctx,
795                         struct perf_counter *counter,
796                         int cpu)
797 {
798         struct task_struct *task = ctx->task;
799
800         if (!task) {
801                 /*
802                  * Per cpu counters are installed via an smp call and
803                  * the install is always sucessful.
804                  */
805                 smp_call_function_single(cpu, __perf_install_in_context,
806                                          counter, 1);
807                 return;
808         }
809
810 retry:
811         task_oncpu_function_call(task, __perf_install_in_context,
812                                  counter);
813
814         spin_lock_irq(&ctx->lock);
815         /*
816          * we need to retry the smp call.
817          */
818         if (ctx->is_active && list_empty(&counter->list_entry)) {
819                 spin_unlock_irq(&ctx->lock);
820                 goto retry;
821         }
822
823         /*
824          * The lock prevents that this context is scheduled in so we
825          * can add the counter safely, if it the call above did not
826          * succeed.
827          */
828         if (list_empty(&counter->list_entry))
829                 add_counter_to_ctx(counter, ctx);
830         spin_unlock_irq(&ctx->lock);
831 }
832
833 /*
834  * Cross CPU call to enable a performance counter
835  */
836 static void __perf_counter_enable(void *info)
837 {
838         struct perf_counter *counter = info;
839         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
840         struct perf_counter_context *ctx = counter->ctx;
841         struct perf_counter *leader = counter->group_leader;
842         int err;
843
844         /*
845          * If this is a per-task counter, need to check whether this
846          * counter's task is the current task on this cpu.
847          */
848         if (ctx->task && cpuctx->task_ctx != ctx) {
849                 if (cpuctx->task_ctx || ctx->task != current)
850                         return;
851                 cpuctx->task_ctx = ctx;
852         }
853
854         spin_lock(&ctx->lock);
855         ctx->is_active = 1;
856         update_context_time(ctx);
857
858         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
859                 goto unlock;
860         counter->state = PERF_COUNTER_STATE_INACTIVE;
861         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
862
863         /*
864          * If the counter is in a group and isn't the group leader,
865          * then don't put it on unless the group is on.
866          */
867         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
868                 goto unlock;
869
870         if (!group_can_go_on(counter, cpuctx, 1)) {
871                 err = -EEXIST;
872         } else {
873                 perf_disable();
874                 if (counter == leader)
875                         err = group_sched_in(counter, cpuctx, ctx,
876                                              smp_processor_id());
877                 else
878                         err = counter_sched_in(counter, cpuctx, ctx,
879                                                smp_processor_id());
880                 perf_enable();
881         }
882
883         if (err) {
884                 /*
885                  * If this counter can't go on and it's part of a
886                  * group, then the whole group has to come off.
887                  */
888                 if (leader != counter)
889                         group_sched_out(leader, cpuctx, ctx);
890                 if (leader->attr.pinned) {
891                         update_group_times(leader);
892                         leader->state = PERF_COUNTER_STATE_ERROR;
893                 }
894         }
895
896  unlock:
897         spin_unlock(&ctx->lock);
898 }
899
900 /*
901  * Enable a counter.
902  *
903  * If counter->ctx is a cloned context, callers must make sure that
904  * every task struct that counter->ctx->task could possibly point to
905  * remains valid.  This condition is satisfied when called through
906  * perf_counter_for_each_child or perf_counter_for_each as described
907  * for perf_counter_disable.
908  */
909 static void perf_counter_enable(struct perf_counter *counter)
910 {
911         struct perf_counter_context *ctx = counter->ctx;
912         struct task_struct *task = ctx->task;
913
914         if (!task) {
915                 /*
916                  * Enable the counter on the cpu that it's on
917                  */
918                 smp_call_function_single(counter->cpu, __perf_counter_enable,
919                                          counter, 1);
920                 return;
921         }
922
923         spin_lock_irq(&ctx->lock);
924         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
925                 goto out;
926
927         /*
928          * If the counter is in error state, clear that first.
929          * That way, if we see the counter in error state below, we
930          * know that it has gone back into error state, as distinct
931          * from the task having been scheduled away before the
932          * cross-call arrived.
933          */
934         if (counter->state == PERF_COUNTER_STATE_ERROR)
935                 counter->state = PERF_COUNTER_STATE_OFF;
936
937  retry:
938         spin_unlock_irq(&ctx->lock);
939         task_oncpu_function_call(task, __perf_counter_enable, counter);
940
941         spin_lock_irq(&ctx->lock);
942
943         /*
944          * If the context is active and the counter is still off,
945          * we need to retry the cross-call.
946          */
947         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
948                 goto retry;
949
950         /*
951          * Since we have the lock this context can't be scheduled
952          * in, so we can change the state safely.
953          */
954         if (counter->state == PERF_COUNTER_STATE_OFF) {
955                 counter->state = PERF_COUNTER_STATE_INACTIVE;
956                 counter->tstamp_enabled =
957                         ctx->time - counter->total_time_enabled;
958         }
959  out:
960         spin_unlock_irq(&ctx->lock);
961 }
962
963 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
964 {
965         /*
966          * not supported on inherited counters
967          */
968         if (counter->attr.inherit)
969                 return -EINVAL;
970
971         atomic_add(refresh, &counter->event_limit);
972         perf_counter_enable(counter);
973
974         return 0;
975 }
976
977 void __perf_counter_sched_out(struct perf_counter_context *ctx,
978                               struct perf_cpu_context *cpuctx)
979 {
980         struct perf_counter *counter;
981
982         spin_lock(&ctx->lock);
983         ctx->is_active = 0;
984         if (likely(!ctx->nr_counters))
985                 goto out;
986         update_context_time(ctx);
987
988         perf_disable();
989         if (ctx->nr_active) {
990                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
991                         if (counter != counter->group_leader)
992                                 counter_sched_out(counter, cpuctx, ctx);
993                         else
994                                 group_sched_out(counter, cpuctx, ctx);
995                 }
996         }
997         perf_enable();
998  out:
999         spin_unlock(&ctx->lock);
1000 }
1001
1002 /*
1003  * Test whether two contexts are equivalent, i.e. whether they
1004  * have both been cloned from the same version of the same context
1005  * and they both have the same number of enabled counters.
1006  * If the number of enabled counters is the same, then the set
1007  * of enabled counters should be the same, because these are both
1008  * inherited contexts, therefore we can't access individual counters
1009  * in them directly with an fd; we can only enable/disable all
1010  * counters via prctl, or enable/disable all counters in a family
1011  * via ioctl, which will have the same effect on both contexts.
1012  */
1013 static int context_equiv(struct perf_counter_context *ctx1,
1014                          struct perf_counter_context *ctx2)
1015 {
1016         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1017                 && ctx1->parent_gen == ctx2->parent_gen
1018                 && !ctx1->pin_count && !ctx2->pin_count;
1019 }
1020
1021 static void __perf_counter_read(void *counter);
1022
1023 static void __perf_counter_sync_stat(struct perf_counter *counter,
1024                                      struct perf_counter *next_counter)
1025 {
1026         u64 value;
1027
1028         if (!counter->attr.inherit_stat)
1029                 return;
1030
1031         /*
1032          * Update the counter value, we cannot use perf_counter_read()
1033          * because we're in the middle of a context switch and have IRQs
1034          * disabled, which upsets smp_call_function_single(), however
1035          * we know the counter must be on the current CPU, therefore we
1036          * don't need to use it.
1037          */
1038         switch (counter->state) {
1039         case PERF_COUNTER_STATE_ACTIVE:
1040                 __perf_counter_read(counter);
1041                 break;
1042
1043         case PERF_COUNTER_STATE_INACTIVE:
1044                 update_counter_times(counter);
1045                 break;
1046
1047         default:
1048                 break;
1049         }
1050
1051         /*
1052          * In order to keep per-task stats reliable we need to flip the counter
1053          * values when we flip the contexts.
1054          */
1055         value = atomic64_read(&next_counter->count);
1056         value = atomic64_xchg(&counter->count, value);
1057         atomic64_set(&next_counter->count, value);
1058
1059         swap(counter->total_time_enabled, next_counter->total_time_enabled);
1060         swap(counter->total_time_running, next_counter->total_time_running);
1061
1062         /*
1063          * Since we swizzled the values, update the user visible data too.
1064          */
1065         perf_counter_update_userpage(counter);
1066         perf_counter_update_userpage(next_counter);
1067 }
1068
1069 #define list_next_entry(pos, member) \
1070         list_entry(pos->member.next, typeof(*pos), member)
1071
1072 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1073                                    struct perf_counter_context *next_ctx)
1074 {
1075         struct perf_counter *counter, *next_counter;
1076
1077         if (!ctx->nr_stat)
1078                 return;
1079
1080         counter = list_first_entry(&ctx->event_list,
1081                                    struct perf_counter, event_entry);
1082
1083         next_counter = list_first_entry(&next_ctx->event_list,
1084                                         struct perf_counter, event_entry);
1085
1086         while (&counter->event_entry != &ctx->event_list &&
1087                &next_counter->event_entry != &next_ctx->event_list) {
1088
1089                 __perf_counter_sync_stat(counter, next_counter);
1090
1091                 counter = list_next_entry(counter, event_entry);
1092                 next_counter = list_next_entry(counter, event_entry);
1093         }
1094 }
1095
1096 /*
1097  * Called from scheduler to remove the counters of the current task,
1098  * with interrupts disabled.
1099  *
1100  * We stop each counter and update the counter value in counter->count.
1101  *
1102  * This does not protect us against NMI, but disable()
1103  * sets the disabled bit in the control field of counter _before_
1104  * accessing the counter control register. If a NMI hits, then it will
1105  * not restart the counter.
1106  */
1107 void perf_counter_task_sched_out(struct task_struct *task,
1108                                  struct task_struct *next, int cpu)
1109 {
1110         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1111         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1112         struct perf_counter_context *next_ctx;
1113         struct perf_counter_context *parent;
1114         struct pt_regs *regs;
1115         int do_switch = 1;
1116
1117         regs = task_pt_regs(task);
1118         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1119
1120         if (likely(!ctx || !cpuctx->task_ctx))
1121                 return;
1122
1123         update_context_time(ctx);
1124
1125         rcu_read_lock();
1126         parent = rcu_dereference(ctx->parent_ctx);
1127         next_ctx = next->perf_counter_ctxp;
1128         if (parent && next_ctx &&
1129             rcu_dereference(next_ctx->parent_ctx) == parent) {
1130                 /*
1131                  * Looks like the two contexts are clones, so we might be
1132                  * able to optimize the context switch.  We lock both
1133                  * contexts and check that they are clones under the
1134                  * lock (including re-checking that neither has been
1135                  * uncloned in the meantime).  It doesn't matter which
1136                  * order we take the locks because no other cpu could
1137                  * be trying to lock both of these tasks.
1138                  */
1139                 spin_lock(&ctx->lock);
1140                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1141                 if (context_equiv(ctx, next_ctx)) {
1142                         /*
1143                          * XXX do we need a memory barrier of sorts
1144                          * wrt to rcu_dereference() of perf_counter_ctxp
1145                          */
1146                         task->perf_counter_ctxp = next_ctx;
1147                         next->perf_counter_ctxp = ctx;
1148                         ctx->task = next;
1149                         next_ctx->task = task;
1150                         do_switch = 0;
1151
1152                         perf_counter_sync_stat(ctx, next_ctx);
1153                 }
1154                 spin_unlock(&next_ctx->lock);
1155                 spin_unlock(&ctx->lock);
1156         }
1157         rcu_read_unlock();
1158
1159         if (do_switch) {
1160                 __perf_counter_sched_out(ctx, cpuctx);
1161                 cpuctx->task_ctx = NULL;
1162         }
1163 }
1164
1165 /*
1166  * Called with IRQs disabled
1167  */
1168 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1169 {
1170         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1171
1172         if (!cpuctx->task_ctx)
1173                 return;
1174
1175         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1176                 return;
1177
1178         __perf_counter_sched_out(ctx, cpuctx);
1179         cpuctx->task_ctx = NULL;
1180 }
1181
1182 /*
1183  * Called with IRQs disabled
1184  */
1185 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1186 {
1187         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1188 }
1189
1190 static void
1191 __perf_counter_sched_in(struct perf_counter_context *ctx,
1192                         struct perf_cpu_context *cpuctx, int cpu)
1193 {
1194         struct perf_counter *counter;
1195         int can_add_hw = 1;
1196
1197         spin_lock(&ctx->lock);
1198         ctx->is_active = 1;
1199         if (likely(!ctx->nr_counters))
1200                 goto out;
1201
1202         ctx->timestamp = perf_clock();
1203
1204         perf_disable();
1205
1206         /*
1207          * First go through the list and put on any pinned groups
1208          * in order to give them the best chance of going on.
1209          */
1210         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1211                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1212                     !counter->attr.pinned)
1213                         continue;
1214                 if (counter->cpu != -1 && counter->cpu != cpu)
1215                         continue;
1216
1217                 if (counter != counter->group_leader)
1218                         counter_sched_in(counter, cpuctx, ctx, cpu);
1219                 else {
1220                         if (group_can_go_on(counter, cpuctx, 1))
1221                                 group_sched_in(counter, cpuctx, ctx, cpu);
1222                 }
1223
1224                 /*
1225                  * If this pinned group hasn't been scheduled,
1226                  * put it in error state.
1227                  */
1228                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1229                         update_group_times(counter);
1230                         counter->state = PERF_COUNTER_STATE_ERROR;
1231                 }
1232         }
1233
1234         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1235                 /*
1236                  * Ignore counters in OFF or ERROR state, and
1237                  * ignore pinned counters since we did them already.
1238                  */
1239                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1240                     counter->attr.pinned)
1241                         continue;
1242
1243                 /*
1244                  * Listen to the 'cpu' scheduling filter constraint
1245                  * of counters:
1246                  */
1247                 if (counter->cpu != -1 && counter->cpu != cpu)
1248                         continue;
1249
1250                 if (counter != counter->group_leader) {
1251                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1252                                 can_add_hw = 0;
1253                 } else {
1254                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1255                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1256                                         can_add_hw = 0;
1257                         }
1258                 }
1259         }
1260         perf_enable();
1261  out:
1262         spin_unlock(&ctx->lock);
1263 }
1264
1265 /*
1266  * Called from scheduler to add the counters of the current task
1267  * with interrupts disabled.
1268  *
1269  * We restore the counter value and then enable it.
1270  *
1271  * This does not protect us against NMI, but enable()
1272  * sets the enabled bit in the control field of counter _before_
1273  * accessing the counter control register. If a NMI hits, then it will
1274  * keep the counter running.
1275  */
1276 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1277 {
1278         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1279         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1280
1281         if (likely(!ctx))
1282                 return;
1283         if (cpuctx->task_ctx == ctx)
1284                 return;
1285         __perf_counter_sched_in(ctx, cpuctx, cpu);
1286         cpuctx->task_ctx = ctx;
1287 }
1288
1289 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1290 {
1291         struct perf_counter_context *ctx = &cpuctx->ctx;
1292
1293         __perf_counter_sched_in(ctx, cpuctx, cpu);
1294 }
1295
1296 #define MAX_INTERRUPTS (~0ULL)
1297
1298 static void perf_log_throttle(struct perf_counter *counter, int enable);
1299 static void perf_log_period(struct perf_counter *counter, u64 period);
1300
1301 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1302 {
1303         struct hw_perf_counter *hwc = &counter->hw;
1304         u64 period, sample_period;
1305         s64 delta;
1306
1307         events *= hwc->sample_period;
1308         period = div64_u64(events, counter->attr.sample_freq);
1309
1310         delta = (s64)(period - hwc->sample_period);
1311         delta = (delta + 7) / 8; /* low pass filter */
1312
1313         sample_period = hwc->sample_period + delta;
1314
1315         if (!sample_period)
1316                 sample_period = 1;
1317
1318         perf_log_period(counter, sample_period);
1319
1320         hwc->sample_period = sample_period;
1321 }
1322
1323 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1324 {
1325         struct perf_counter *counter;
1326         struct hw_perf_counter *hwc;
1327         u64 interrupts, freq;
1328
1329         spin_lock(&ctx->lock);
1330         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1331                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1332                         continue;
1333
1334                 hwc = &counter->hw;
1335
1336                 interrupts = hwc->interrupts;
1337                 hwc->interrupts = 0;
1338
1339                 /*
1340                  * unthrottle counters on the tick
1341                  */
1342                 if (interrupts == MAX_INTERRUPTS) {
1343                         perf_log_throttle(counter, 1);
1344                         counter->pmu->unthrottle(counter);
1345                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1346                 }
1347
1348                 if (!counter->attr.freq || !counter->attr.sample_freq)
1349                         continue;
1350
1351                 /*
1352                  * if the specified freq < HZ then we need to skip ticks
1353                  */
1354                 if (counter->attr.sample_freq < HZ) {
1355                         freq = counter->attr.sample_freq;
1356
1357                         hwc->freq_count += freq;
1358                         hwc->freq_interrupts += interrupts;
1359
1360                         if (hwc->freq_count < HZ)
1361                                 continue;
1362
1363                         interrupts = hwc->freq_interrupts;
1364                         hwc->freq_interrupts = 0;
1365                         hwc->freq_count -= HZ;
1366                 } else
1367                         freq = HZ;
1368
1369                 perf_adjust_period(counter, freq * interrupts);
1370
1371                 /*
1372                  * In order to avoid being stalled by an (accidental) huge
1373                  * sample period, force reset the sample period if we didn't
1374                  * get any events in this freq period.
1375                  */
1376                 if (!interrupts) {
1377                         perf_disable();
1378                         counter->pmu->disable(counter);
1379                         atomic64_set(&hwc->period_left, 0);
1380                         counter->pmu->enable(counter);
1381                         perf_enable();
1382                 }
1383         }
1384         spin_unlock(&ctx->lock);
1385 }
1386
1387 /*
1388  * Round-robin a context's counters:
1389  */
1390 static void rotate_ctx(struct perf_counter_context *ctx)
1391 {
1392         struct perf_counter *counter;
1393
1394         if (!ctx->nr_counters)
1395                 return;
1396
1397         spin_lock(&ctx->lock);
1398         /*
1399          * Rotate the first entry last (works just fine for group counters too):
1400          */
1401         perf_disable();
1402         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1403                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1404                 break;
1405         }
1406         perf_enable();
1407
1408         spin_unlock(&ctx->lock);
1409 }
1410
1411 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1412 {
1413         struct perf_cpu_context *cpuctx;
1414         struct perf_counter_context *ctx;
1415
1416         if (!atomic_read(&nr_counters))
1417                 return;
1418
1419         cpuctx = &per_cpu(perf_cpu_context, cpu);
1420         ctx = curr->perf_counter_ctxp;
1421
1422         perf_ctx_adjust_freq(&cpuctx->ctx);
1423         if (ctx)
1424                 perf_ctx_adjust_freq(ctx);
1425
1426         perf_counter_cpu_sched_out(cpuctx);
1427         if (ctx)
1428                 __perf_counter_task_sched_out(ctx);
1429
1430         rotate_ctx(&cpuctx->ctx);
1431         if (ctx)
1432                 rotate_ctx(ctx);
1433
1434         perf_counter_cpu_sched_in(cpuctx, cpu);
1435         if (ctx)
1436                 perf_counter_task_sched_in(curr, cpu);
1437 }
1438
1439 /*
1440  * Enable all of a task's counters that have been marked enable-on-exec.
1441  * This expects task == current.
1442  */
1443 static void perf_counter_enable_on_exec(struct task_struct *task)
1444 {
1445         struct perf_counter_context *ctx;
1446         struct perf_counter *counter;
1447         unsigned long flags;
1448         int enabled = 0;
1449
1450         local_irq_save(flags);
1451         ctx = task->perf_counter_ctxp;
1452         if (!ctx || !ctx->nr_counters)
1453                 goto out;
1454
1455         __perf_counter_task_sched_out(ctx);
1456
1457         spin_lock(&ctx->lock);
1458
1459         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1460                 if (!counter->attr.enable_on_exec)
1461                         continue;
1462                 counter->attr.enable_on_exec = 0;
1463                 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1464                         continue;
1465                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1466                 counter->tstamp_enabled =
1467                         ctx->time - counter->total_time_enabled;
1468                 enabled = 1;
1469         }
1470
1471         /*
1472          * Unclone this context if we enabled any counter.
1473          */
1474         if (enabled)
1475                 unclone_ctx(ctx);
1476
1477         spin_unlock(&ctx->lock);
1478
1479         perf_counter_task_sched_in(task, smp_processor_id());
1480  out:
1481         local_irq_restore(flags);
1482 }
1483
1484 /*
1485  * Cross CPU call to read the hardware counter
1486  */
1487 static void __perf_counter_read(void *info)
1488 {
1489         struct perf_counter *counter = info;
1490         struct perf_counter_context *ctx = counter->ctx;
1491         unsigned long flags;
1492
1493         local_irq_save(flags);
1494         if (ctx->is_active)
1495                 update_context_time(ctx);
1496         counter->pmu->read(counter);
1497         update_counter_times(counter);
1498         local_irq_restore(flags);
1499 }
1500
1501 static u64 perf_counter_read(struct perf_counter *counter)
1502 {
1503         /*
1504          * If counter is enabled and currently active on a CPU, update the
1505          * value in the counter structure:
1506          */
1507         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1508                 smp_call_function_single(counter->oncpu,
1509                                          __perf_counter_read, counter, 1);
1510         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1511                 update_counter_times(counter);
1512         }
1513
1514         return atomic64_read(&counter->count);
1515 }
1516
1517 /*
1518  * Initialize the perf_counter context in a task_struct:
1519  */
1520 static void
1521 __perf_counter_init_context(struct perf_counter_context *ctx,
1522                             struct task_struct *task)
1523 {
1524         memset(ctx, 0, sizeof(*ctx));
1525         spin_lock_init(&ctx->lock);
1526         mutex_init(&ctx->mutex);
1527         INIT_LIST_HEAD(&ctx->counter_list);
1528         INIT_LIST_HEAD(&ctx->event_list);
1529         atomic_set(&ctx->refcount, 1);
1530         ctx->task = task;
1531 }
1532
1533 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1534 {
1535         struct perf_counter_context *ctx;
1536         struct perf_cpu_context *cpuctx;
1537         struct task_struct *task;
1538         unsigned long flags;
1539         int err;
1540
1541         /*
1542          * If cpu is not a wildcard then this is a percpu counter:
1543          */
1544         if (cpu != -1) {
1545                 /* Must be root to operate on a CPU counter: */
1546                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1547                         return ERR_PTR(-EACCES);
1548
1549                 if (cpu < 0 || cpu > num_possible_cpus())
1550                         return ERR_PTR(-EINVAL);
1551
1552                 /*
1553                  * We could be clever and allow to attach a counter to an
1554                  * offline CPU and activate it when the CPU comes up, but
1555                  * that's for later.
1556                  */
1557                 if (!cpu_isset(cpu, cpu_online_map))
1558                         return ERR_PTR(-ENODEV);
1559
1560                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1561                 ctx = &cpuctx->ctx;
1562                 get_ctx(ctx);
1563
1564                 return ctx;
1565         }
1566
1567         rcu_read_lock();
1568         if (!pid)
1569                 task = current;
1570         else
1571                 task = find_task_by_vpid(pid);
1572         if (task)
1573                 get_task_struct(task);
1574         rcu_read_unlock();
1575
1576         if (!task)
1577                 return ERR_PTR(-ESRCH);
1578
1579         /*
1580          * Can't attach counters to a dying task.
1581          */
1582         err = -ESRCH;
1583         if (task->flags & PF_EXITING)
1584                 goto errout;
1585
1586         /* Reuse ptrace permission checks for now. */
1587         err = -EACCES;
1588         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1589                 goto errout;
1590
1591  retry:
1592         ctx = perf_lock_task_context(task, &flags);
1593         if (ctx) {
1594                 unclone_ctx(ctx);
1595                 spin_unlock_irqrestore(&ctx->lock, flags);
1596         }
1597
1598         if (!ctx) {
1599                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1600                 err = -ENOMEM;
1601                 if (!ctx)
1602                         goto errout;
1603                 __perf_counter_init_context(ctx, task);
1604                 get_ctx(ctx);
1605                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1606                         /*
1607                          * We raced with some other task; use
1608                          * the context they set.
1609                          */
1610                         kfree(ctx);
1611                         goto retry;
1612                 }
1613                 get_task_struct(task);
1614         }
1615
1616         put_task_struct(task);
1617         return ctx;
1618
1619  errout:
1620         put_task_struct(task);
1621         return ERR_PTR(err);
1622 }
1623
1624 static void free_counter_rcu(struct rcu_head *head)
1625 {
1626         struct perf_counter *counter;
1627
1628         counter = container_of(head, struct perf_counter, rcu_head);
1629         if (counter->ns)
1630                 put_pid_ns(counter->ns);
1631         kfree(counter);
1632 }
1633
1634 static void perf_pending_sync(struct perf_counter *counter);
1635
1636 static void free_counter(struct perf_counter *counter)
1637 {
1638         perf_pending_sync(counter);
1639
1640         if (!counter->parent) {
1641                 atomic_dec(&nr_counters);
1642                 if (counter->attr.mmap)
1643                         atomic_dec(&nr_mmap_counters);
1644                 if (counter->attr.comm)
1645                         atomic_dec(&nr_comm_counters);
1646         }
1647
1648         if (counter->destroy)
1649                 counter->destroy(counter);
1650
1651         put_ctx(counter->ctx);
1652         call_rcu(&counter->rcu_head, free_counter_rcu);
1653 }
1654
1655 /*
1656  * Called when the last reference to the file is gone.
1657  */
1658 static int perf_release(struct inode *inode, struct file *file)
1659 {
1660         struct perf_counter *counter = file->private_data;
1661         struct perf_counter_context *ctx = counter->ctx;
1662
1663         file->private_data = NULL;
1664
1665         WARN_ON_ONCE(ctx->parent_ctx);
1666         mutex_lock(&ctx->mutex);
1667         perf_counter_remove_from_context(counter);
1668         mutex_unlock(&ctx->mutex);
1669
1670         mutex_lock(&counter->owner->perf_counter_mutex);
1671         list_del_init(&counter->owner_entry);
1672         mutex_unlock(&counter->owner->perf_counter_mutex);
1673         put_task_struct(counter->owner);
1674
1675         free_counter(counter);
1676
1677         return 0;
1678 }
1679
1680 /*
1681  * Read the performance counter - simple non blocking version for now
1682  */
1683 static ssize_t
1684 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1685 {
1686         u64 values[4];
1687         int n;
1688
1689         /*
1690          * Return end-of-file for a read on a counter that is in
1691          * error state (i.e. because it was pinned but it couldn't be
1692          * scheduled on to the CPU at some point).
1693          */
1694         if (counter->state == PERF_COUNTER_STATE_ERROR)
1695                 return 0;
1696
1697         WARN_ON_ONCE(counter->ctx->parent_ctx);
1698         mutex_lock(&counter->child_mutex);
1699         values[0] = perf_counter_read(counter);
1700         n = 1;
1701         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1702                 values[n++] = counter->total_time_enabled +
1703                         atomic64_read(&counter->child_total_time_enabled);
1704         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1705                 values[n++] = counter->total_time_running +
1706                         atomic64_read(&counter->child_total_time_running);
1707         if (counter->attr.read_format & PERF_FORMAT_ID)
1708                 values[n++] = counter->id;
1709         mutex_unlock(&counter->child_mutex);
1710
1711         if (count < n * sizeof(u64))
1712                 return -EINVAL;
1713         count = n * sizeof(u64);
1714
1715         if (copy_to_user(buf, values, count))
1716                 return -EFAULT;
1717
1718         return count;
1719 }
1720
1721 static ssize_t
1722 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1723 {
1724         struct perf_counter *counter = file->private_data;
1725
1726         return perf_read_hw(counter, buf, count);
1727 }
1728
1729 static unsigned int perf_poll(struct file *file, poll_table *wait)
1730 {
1731         struct perf_counter *counter = file->private_data;
1732         struct perf_mmap_data *data;
1733         unsigned int events = POLL_HUP;
1734
1735         rcu_read_lock();
1736         data = rcu_dereference(counter->data);
1737         if (data)
1738                 events = atomic_xchg(&data->poll, 0);
1739         rcu_read_unlock();
1740
1741         poll_wait(file, &counter->waitq, wait);
1742
1743         return events;
1744 }
1745
1746 static void perf_counter_reset(struct perf_counter *counter)
1747 {
1748         (void)perf_counter_read(counter);
1749         atomic64_set(&counter->count, 0);
1750         perf_counter_update_userpage(counter);
1751 }
1752
1753 /*
1754  * Holding the top-level counter's child_mutex means that any
1755  * descendant process that has inherited this counter will block
1756  * in sync_child_counter if it goes to exit, thus satisfying the
1757  * task existence requirements of perf_counter_enable/disable.
1758  */
1759 static void perf_counter_for_each_child(struct perf_counter *counter,
1760                                         void (*func)(struct perf_counter *))
1761 {
1762         struct perf_counter *child;
1763
1764         WARN_ON_ONCE(counter->ctx->parent_ctx);
1765         mutex_lock(&counter->child_mutex);
1766         func(counter);
1767         list_for_each_entry(child, &counter->child_list, child_list)
1768                 func(child);
1769         mutex_unlock(&counter->child_mutex);
1770 }
1771
1772 static void perf_counter_for_each(struct perf_counter *counter,
1773                                   void (*func)(struct perf_counter *))
1774 {
1775         struct perf_counter_context *ctx = counter->ctx;
1776         struct perf_counter *sibling;
1777
1778         WARN_ON_ONCE(ctx->parent_ctx);
1779         mutex_lock(&ctx->mutex);
1780         counter = counter->group_leader;
1781
1782         perf_counter_for_each_child(counter, func);
1783         func(counter);
1784         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1785                 perf_counter_for_each_child(counter, func);
1786         mutex_unlock(&ctx->mutex);
1787 }
1788
1789 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1790 {
1791         struct perf_counter_context *ctx = counter->ctx;
1792         unsigned long size;
1793         int ret = 0;
1794         u64 value;
1795
1796         if (!counter->attr.sample_period)
1797                 return -EINVAL;
1798
1799         size = copy_from_user(&value, arg, sizeof(value));
1800         if (size != sizeof(value))
1801                 return -EFAULT;
1802
1803         if (!value)
1804                 return -EINVAL;
1805
1806         spin_lock_irq(&ctx->lock);
1807         if (counter->attr.freq) {
1808                 if (value > sysctl_perf_counter_sample_rate) {
1809                         ret = -EINVAL;
1810                         goto unlock;
1811                 }
1812
1813                 counter->attr.sample_freq = value;
1814         } else {
1815                 perf_log_period(counter, value);
1816
1817                 counter->attr.sample_period = value;
1818                 counter->hw.sample_period = value;
1819         }
1820 unlock:
1821         spin_unlock_irq(&ctx->lock);
1822
1823         return ret;
1824 }
1825
1826 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1827 {
1828         struct perf_counter *counter = file->private_data;
1829         void (*func)(struct perf_counter *);
1830         u32 flags = arg;
1831
1832         switch (cmd) {
1833         case PERF_COUNTER_IOC_ENABLE:
1834                 func = perf_counter_enable;
1835                 break;
1836         case PERF_COUNTER_IOC_DISABLE:
1837                 func = perf_counter_disable;
1838                 break;
1839         case PERF_COUNTER_IOC_RESET:
1840                 func = perf_counter_reset;
1841                 break;
1842
1843         case PERF_COUNTER_IOC_REFRESH:
1844                 return perf_counter_refresh(counter, arg);
1845
1846         case PERF_COUNTER_IOC_PERIOD:
1847                 return perf_counter_period(counter, (u64 __user *)arg);
1848
1849         default:
1850                 return -ENOTTY;
1851         }
1852
1853         if (flags & PERF_IOC_FLAG_GROUP)
1854                 perf_counter_for_each(counter, func);
1855         else
1856                 perf_counter_for_each_child(counter, func);
1857
1858         return 0;
1859 }
1860
1861 int perf_counter_task_enable(void)
1862 {
1863         struct perf_counter *counter;
1864
1865         mutex_lock(&current->perf_counter_mutex);
1866         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1867                 perf_counter_for_each_child(counter, perf_counter_enable);
1868         mutex_unlock(&current->perf_counter_mutex);
1869
1870         return 0;
1871 }
1872
1873 int perf_counter_task_disable(void)
1874 {
1875         struct perf_counter *counter;
1876
1877         mutex_lock(&current->perf_counter_mutex);
1878         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1879                 perf_counter_for_each_child(counter, perf_counter_disable);
1880         mutex_unlock(&current->perf_counter_mutex);
1881
1882         return 0;
1883 }
1884
1885 static int perf_counter_index(struct perf_counter *counter)
1886 {
1887         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1888                 return 0;
1889
1890         return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1891 }
1892
1893 /*
1894  * Callers need to ensure there can be no nesting of this function, otherwise
1895  * the seqlock logic goes bad. We can not serialize this because the arch
1896  * code calls this from NMI context.
1897  */
1898 void perf_counter_update_userpage(struct perf_counter *counter)
1899 {
1900         struct perf_counter_mmap_page *userpg;
1901         struct perf_mmap_data *data;
1902
1903         rcu_read_lock();
1904         data = rcu_dereference(counter->data);
1905         if (!data)
1906                 goto unlock;
1907
1908         userpg = data->user_page;
1909
1910         /*
1911          * Disable preemption so as to not let the corresponding user-space
1912          * spin too long if we get preempted.
1913          */
1914         preempt_disable();
1915         ++userpg->lock;
1916         barrier();
1917         userpg->index = perf_counter_index(counter);
1918         userpg->offset = atomic64_read(&counter->count);
1919         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1920                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1921
1922         userpg->time_enabled = counter->total_time_enabled +
1923                         atomic64_read(&counter->child_total_time_enabled);
1924
1925         userpg->time_running = counter->total_time_running +
1926                         atomic64_read(&counter->child_total_time_running);
1927
1928         barrier();
1929         ++userpg->lock;
1930         preempt_enable();
1931 unlock:
1932         rcu_read_unlock();
1933 }
1934
1935 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1936 {
1937         struct perf_counter *counter = vma->vm_file->private_data;
1938         struct perf_mmap_data *data;
1939         int ret = VM_FAULT_SIGBUS;
1940
1941         if (vmf->flags & FAULT_FLAG_MKWRITE) {
1942                 if (vmf->pgoff == 0)
1943                         ret = 0;
1944                 return ret;
1945         }
1946
1947         rcu_read_lock();
1948         data = rcu_dereference(counter->data);
1949         if (!data)
1950                 goto unlock;
1951
1952         if (vmf->pgoff == 0) {
1953                 vmf->page = virt_to_page(data->user_page);
1954         } else {
1955                 int nr = vmf->pgoff - 1;
1956
1957                 if ((unsigned)nr > data->nr_pages)
1958                         goto unlock;
1959
1960                 if (vmf->flags & FAULT_FLAG_WRITE)
1961                         goto unlock;
1962
1963                 vmf->page = virt_to_page(data->data_pages[nr]);
1964         }
1965
1966         get_page(vmf->page);
1967         vmf->page->mapping = vma->vm_file->f_mapping;
1968         vmf->page->index   = vmf->pgoff;
1969
1970         ret = 0;
1971 unlock:
1972         rcu_read_unlock();
1973
1974         return ret;
1975 }
1976
1977 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1978 {
1979         struct perf_mmap_data *data;
1980         unsigned long size;
1981         int i;
1982
1983         WARN_ON(atomic_read(&counter->mmap_count));
1984
1985         size = sizeof(struct perf_mmap_data);
1986         size += nr_pages * sizeof(void *);
1987
1988         data = kzalloc(size, GFP_KERNEL);
1989         if (!data)
1990                 goto fail;
1991
1992         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1993         if (!data->user_page)
1994                 goto fail_user_page;
1995
1996         for (i = 0; i < nr_pages; i++) {
1997                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1998                 if (!data->data_pages[i])
1999                         goto fail_data_pages;
2000         }
2001
2002         data->nr_pages = nr_pages;
2003         atomic_set(&data->lock, -1);
2004
2005         rcu_assign_pointer(counter->data, data);
2006
2007         return 0;
2008
2009 fail_data_pages:
2010         for (i--; i >= 0; i--)
2011                 free_page((unsigned long)data->data_pages[i]);
2012
2013         free_page((unsigned long)data->user_page);
2014
2015 fail_user_page:
2016         kfree(data);
2017
2018 fail:
2019         return -ENOMEM;
2020 }
2021
2022 static void perf_mmap_free_page(unsigned long addr)
2023 {
2024         struct page *page = virt_to_page(addr);
2025
2026         page->mapping = NULL;
2027         __free_page(page);
2028 }
2029
2030 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2031 {
2032         struct perf_mmap_data *data;
2033         int i;
2034
2035         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2036
2037         perf_mmap_free_page((unsigned long)data->user_page);
2038         for (i = 0; i < data->nr_pages; i++)
2039                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2040
2041         kfree(data);
2042 }
2043
2044 static void perf_mmap_data_free(struct perf_counter *counter)
2045 {
2046         struct perf_mmap_data *data = counter->data;
2047
2048         WARN_ON(atomic_read(&counter->mmap_count));
2049
2050         rcu_assign_pointer(counter->data, NULL);
2051         call_rcu(&data->rcu_head, __perf_mmap_data_free);
2052 }
2053
2054 static void perf_mmap_open(struct vm_area_struct *vma)
2055 {
2056         struct perf_counter *counter = vma->vm_file->private_data;
2057
2058         atomic_inc(&counter->mmap_count);
2059 }
2060
2061 static void perf_mmap_close(struct vm_area_struct *vma)
2062 {
2063         struct perf_counter *counter = vma->vm_file->private_data;
2064
2065         WARN_ON_ONCE(counter->ctx->parent_ctx);
2066         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2067                 struct user_struct *user = current_user();
2068
2069                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2070                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2071                 perf_mmap_data_free(counter);
2072                 mutex_unlock(&counter->mmap_mutex);
2073         }
2074 }
2075
2076 static struct vm_operations_struct perf_mmap_vmops = {
2077         .open           = perf_mmap_open,
2078         .close          = perf_mmap_close,
2079         .fault          = perf_mmap_fault,
2080         .page_mkwrite   = perf_mmap_fault,
2081 };
2082
2083 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2084 {
2085         struct perf_counter *counter = file->private_data;
2086         unsigned long user_locked, user_lock_limit;
2087         struct user_struct *user = current_user();
2088         unsigned long locked, lock_limit;
2089         unsigned long vma_size;
2090         unsigned long nr_pages;
2091         long user_extra, extra;
2092         int ret = 0;
2093
2094         if (!(vma->vm_flags & VM_SHARED))
2095                 return -EINVAL;
2096
2097         vma_size = vma->vm_end - vma->vm_start;
2098         nr_pages = (vma_size / PAGE_SIZE) - 1;
2099
2100         /*
2101          * If we have data pages ensure they're a power-of-two number, so we
2102          * can do bitmasks instead of modulo.
2103          */
2104         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2105                 return -EINVAL;
2106
2107         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2108                 return -EINVAL;
2109
2110         if (vma->vm_pgoff != 0)
2111                 return -EINVAL;
2112
2113         WARN_ON_ONCE(counter->ctx->parent_ctx);
2114         mutex_lock(&counter->mmap_mutex);
2115         if (atomic_inc_not_zero(&counter->mmap_count)) {
2116                 if (nr_pages != counter->data->nr_pages)
2117                         ret = -EINVAL;
2118                 goto unlock;
2119         }
2120
2121         user_extra = nr_pages + 1;
2122         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2123
2124         /*
2125          * Increase the limit linearly with more CPUs:
2126          */
2127         user_lock_limit *= num_online_cpus();
2128
2129         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2130
2131         extra = 0;
2132         if (user_locked > user_lock_limit)
2133                 extra = user_locked - user_lock_limit;
2134
2135         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2136         lock_limit >>= PAGE_SHIFT;
2137         locked = vma->vm_mm->locked_vm + extra;
2138
2139         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2140                 ret = -EPERM;
2141                 goto unlock;
2142         }
2143
2144         WARN_ON(counter->data);
2145         ret = perf_mmap_data_alloc(counter, nr_pages);
2146         if (ret)
2147                 goto unlock;
2148
2149         atomic_set(&counter->mmap_count, 1);
2150         atomic_long_add(user_extra, &user->locked_vm);
2151         vma->vm_mm->locked_vm += extra;
2152         counter->data->nr_locked = extra;
2153         if (vma->vm_flags & VM_WRITE)
2154                 counter->data->writable = 1;
2155
2156 unlock:
2157         mutex_unlock(&counter->mmap_mutex);
2158
2159         vma->vm_flags |= VM_RESERVED;
2160         vma->vm_ops = &perf_mmap_vmops;
2161
2162         return ret;
2163 }
2164
2165 static int perf_fasync(int fd, struct file *filp, int on)
2166 {
2167         struct inode *inode = filp->f_path.dentry->d_inode;
2168         struct perf_counter *counter = filp->private_data;
2169         int retval;
2170
2171         mutex_lock(&inode->i_mutex);
2172         retval = fasync_helper(fd, filp, on, &counter->fasync);
2173         mutex_unlock(&inode->i_mutex);
2174
2175         if (retval < 0)
2176                 return retval;
2177
2178         return 0;
2179 }
2180
2181 static const struct file_operations perf_fops = {
2182         .release                = perf_release,
2183         .read                   = perf_read,
2184         .poll                   = perf_poll,
2185         .unlocked_ioctl         = perf_ioctl,
2186         .compat_ioctl           = perf_ioctl,
2187         .mmap                   = perf_mmap,
2188         .fasync                 = perf_fasync,
2189 };
2190
2191 /*
2192  * Perf counter wakeup
2193  *
2194  * If there's data, ensure we set the poll() state and publish everything
2195  * to user-space before waking everybody up.
2196  */
2197
2198 void perf_counter_wakeup(struct perf_counter *counter)
2199 {
2200         wake_up_all(&counter->waitq);
2201
2202         if (counter->pending_kill) {
2203                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2204                 counter->pending_kill = 0;
2205         }
2206 }
2207
2208 /*
2209  * Pending wakeups
2210  *
2211  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2212  *
2213  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2214  * single linked list and use cmpxchg() to add entries lockless.
2215  */
2216
2217 static void perf_pending_counter(struct perf_pending_entry *entry)
2218 {
2219         struct perf_counter *counter = container_of(entry,
2220                         struct perf_counter, pending);
2221
2222         if (counter->pending_disable) {
2223                 counter->pending_disable = 0;
2224                 perf_counter_disable(counter);
2225         }
2226
2227         if (counter->pending_wakeup) {
2228                 counter->pending_wakeup = 0;
2229                 perf_counter_wakeup(counter);
2230         }
2231 }
2232
2233 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2234
2235 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2236         PENDING_TAIL,
2237 };
2238
2239 static void perf_pending_queue(struct perf_pending_entry *entry,
2240                                void (*func)(struct perf_pending_entry *))
2241 {
2242         struct perf_pending_entry **head;
2243
2244         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2245                 return;
2246
2247         entry->func = func;
2248
2249         head = &get_cpu_var(perf_pending_head);
2250
2251         do {
2252                 entry->next = *head;
2253         } while (cmpxchg(head, entry->next, entry) != entry->next);
2254
2255         set_perf_counter_pending();
2256
2257         put_cpu_var(perf_pending_head);
2258 }
2259
2260 static int __perf_pending_run(void)
2261 {
2262         struct perf_pending_entry *list;
2263         int nr = 0;
2264
2265         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2266         while (list != PENDING_TAIL) {
2267                 void (*func)(struct perf_pending_entry *);
2268                 struct perf_pending_entry *entry = list;
2269
2270                 list = list->next;
2271
2272                 func = entry->func;
2273                 entry->next = NULL;
2274                 /*
2275                  * Ensure we observe the unqueue before we issue the wakeup,
2276                  * so that we won't be waiting forever.
2277                  * -- see perf_not_pending().
2278                  */
2279                 smp_wmb();
2280
2281                 func(entry);
2282                 nr++;
2283         }
2284
2285         return nr;
2286 }
2287
2288 static inline int perf_not_pending(struct perf_counter *counter)
2289 {
2290         /*
2291          * If we flush on whatever cpu we run, there is a chance we don't
2292          * need to wait.
2293          */
2294         get_cpu();
2295         __perf_pending_run();
2296         put_cpu();
2297
2298         /*
2299          * Ensure we see the proper queue state before going to sleep
2300          * so that we do not miss the wakeup. -- see perf_pending_handle()
2301          */
2302         smp_rmb();
2303         return counter->pending.next == NULL;
2304 }
2305
2306 static void perf_pending_sync(struct perf_counter *counter)
2307 {
2308         wait_event(counter->waitq, perf_not_pending(counter));
2309 }
2310
2311 void perf_counter_do_pending(void)
2312 {
2313         __perf_pending_run();
2314 }
2315
2316 /*
2317  * Callchain support -- arch specific
2318  */
2319
2320 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2321 {
2322         return NULL;
2323 }
2324
2325 /*
2326  * Output
2327  */
2328
2329 struct perf_output_handle {
2330         struct perf_counter     *counter;
2331         struct perf_mmap_data   *data;
2332         unsigned long           head;
2333         unsigned long           offset;
2334         int                     nmi;
2335         int                     sample;
2336         int                     locked;
2337         unsigned long           flags;
2338 };
2339
2340 static bool perf_output_space(struct perf_mmap_data *data,
2341                               unsigned int offset, unsigned int head)
2342 {
2343         unsigned long tail;
2344         unsigned long mask;
2345
2346         if (!data->writable)
2347                 return true;
2348
2349         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2350         /*
2351          * Userspace could choose to issue a mb() before updating the tail
2352          * pointer. So that all reads will be completed before the write is
2353          * issued.
2354          */
2355         tail = ACCESS_ONCE(data->user_page->data_tail);
2356         smp_rmb();
2357
2358         offset = (offset - tail) & mask;
2359         head   = (head   - tail) & mask;
2360
2361         if ((int)(head - offset) < 0)
2362                 return false;
2363
2364         return true;
2365 }
2366
2367 static void perf_output_wakeup(struct perf_output_handle *handle)
2368 {
2369         atomic_set(&handle->data->poll, POLL_IN);
2370
2371         if (handle->nmi) {
2372                 handle->counter->pending_wakeup = 1;
2373                 perf_pending_queue(&handle->counter->pending,
2374                                    perf_pending_counter);
2375         } else
2376                 perf_counter_wakeup(handle->counter);
2377 }
2378
2379 /*
2380  * Curious locking construct.
2381  *
2382  * We need to ensure a later event doesn't publish a head when a former
2383  * event isn't done writing. However since we need to deal with NMIs we
2384  * cannot fully serialize things.
2385  *
2386  * What we do is serialize between CPUs so we only have to deal with NMI
2387  * nesting on a single CPU.
2388  *
2389  * We only publish the head (and generate a wakeup) when the outer-most
2390  * event completes.
2391  */
2392 static void perf_output_lock(struct perf_output_handle *handle)
2393 {
2394         struct perf_mmap_data *data = handle->data;
2395         int cpu;
2396
2397         handle->locked = 0;
2398
2399         local_irq_save(handle->flags);
2400         cpu = smp_processor_id();
2401
2402         if (in_nmi() && atomic_read(&data->lock) == cpu)
2403                 return;
2404
2405         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2406                 cpu_relax();
2407
2408         handle->locked = 1;
2409 }
2410
2411 static void perf_output_unlock(struct perf_output_handle *handle)
2412 {
2413         struct perf_mmap_data *data = handle->data;
2414         unsigned long head;
2415         int cpu;
2416
2417         data->done_head = data->head;
2418
2419         if (!handle->locked)
2420                 goto out;
2421
2422 again:
2423         /*
2424          * The xchg implies a full barrier that ensures all writes are done
2425          * before we publish the new head, matched by a rmb() in userspace when
2426          * reading this position.
2427          */
2428         while ((head = atomic_long_xchg(&data->done_head, 0)))
2429                 data->user_page->data_head = head;
2430
2431         /*
2432          * NMI can happen here, which means we can miss a done_head update.
2433          */
2434
2435         cpu = atomic_xchg(&data->lock, -1);
2436         WARN_ON_ONCE(cpu != smp_processor_id());
2437
2438         /*
2439          * Therefore we have to validate we did not indeed do so.
2440          */
2441         if (unlikely(atomic_long_read(&data->done_head))) {
2442                 /*
2443                  * Since we had it locked, we can lock it again.
2444                  */
2445                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2446                         cpu_relax();
2447
2448                 goto again;
2449         }
2450
2451         if (atomic_xchg(&data->wakeup, 0))
2452                 perf_output_wakeup(handle);
2453 out:
2454         local_irq_restore(handle->flags);
2455 }
2456
2457 static void perf_output_copy(struct perf_output_handle *handle,
2458                              const void *buf, unsigned int len)
2459 {
2460         unsigned int pages_mask;
2461         unsigned int offset;
2462         unsigned int size;
2463         void **pages;
2464
2465         offset          = handle->offset;
2466         pages_mask      = handle->data->nr_pages - 1;
2467         pages           = handle->data->data_pages;
2468
2469         do {
2470                 unsigned int page_offset;
2471                 int nr;
2472
2473                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2474                 page_offset = offset & (PAGE_SIZE - 1);
2475                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2476
2477                 memcpy(pages[nr] + page_offset, buf, size);
2478
2479                 len         -= size;
2480                 buf         += size;
2481                 offset      += size;
2482         } while (len);
2483
2484         handle->offset = offset;
2485
2486         /*
2487          * Check we didn't copy past our reservation window, taking the
2488          * possible unsigned int wrap into account.
2489          */
2490         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2491 }
2492
2493 #define perf_output_put(handle, x) \
2494         perf_output_copy((handle), &(x), sizeof(x))
2495
2496 static int perf_output_begin(struct perf_output_handle *handle,
2497                              struct perf_counter *counter, unsigned int size,
2498                              int nmi, int sample)
2499 {
2500         struct perf_mmap_data *data;
2501         unsigned int offset, head;
2502         int have_lost;
2503         struct {
2504                 struct perf_event_header header;
2505                 u64                      id;
2506                 u64                      lost;
2507         } lost_event;
2508
2509         /*
2510          * For inherited counters we send all the output towards the parent.
2511          */
2512         if (counter->parent)
2513                 counter = counter->parent;
2514
2515         rcu_read_lock();
2516         data = rcu_dereference(counter->data);
2517         if (!data)
2518                 goto out;
2519
2520         handle->data    = data;
2521         handle->counter = counter;
2522         handle->nmi     = nmi;
2523         handle->sample  = sample;
2524
2525         if (!data->nr_pages)
2526                 goto fail;
2527
2528         have_lost = atomic_read(&data->lost);
2529         if (have_lost)
2530                 size += sizeof(lost_event);
2531
2532         perf_output_lock(handle);
2533
2534         do {
2535                 offset = head = atomic_long_read(&data->head);
2536                 head += size;
2537                 if (unlikely(!perf_output_space(data, offset, head)))
2538                         goto fail;
2539         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2540
2541         handle->offset  = offset;
2542         handle->head    = head;
2543
2544         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2545                 atomic_set(&data->wakeup, 1);
2546
2547         if (have_lost) {
2548                 lost_event.header.type = PERF_EVENT_LOST;
2549                 lost_event.header.misc = 0;
2550                 lost_event.header.size = sizeof(lost_event);
2551                 lost_event.id          = counter->id;
2552                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2553
2554                 perf_output_put(handle, lost_event);
2555         }
2556
2557         return 0;
2558
2559 fail:
2560         atomic_inc(&data->lost);
2561         perf_output_unlock(handle);
2562 out:
2563         rcu_read_unlock();
2564
2565         return -ENOSPC;
2566 }
2567
2568 static void perf_output_end(struct perf_output_handle *handle)
2569 {
2570         struct perf_counter *counter = handle->counter;
2571         struct perf_mmap_data *data = handle->data;
2572
2573         int wakeup_events = counter->attr.wakeup_events;
2574
2575         if (handle->sample && wakeup_events) {
2576                 int events = atomic_inc_return(&data->events);
2577                 if (events >= wakeup_events) {
2578                         atomic_sub(wakeup_events, &data->events);
2579                         atomic_set(&data->wakeup, 1);
2580                 }
2581         }
2582
2583         perf_output_unlock(handle);
2584         rcu_read_unlock();
2585 }
2586
2587 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2588 {
2589         /*
2590          * only top level counters have the pid namespace they were created in
2591          */
2592         if (counter->parent)
2593                 counter = counter->parent;
2594
2595         return task_tgid_nr_ns(p, counter->ns);
2596 }
2597
2598 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2599 {
2600         /*
2601          * only top level counters have the pid namespace they were created in
2602          */
2603         if (counter->parent)
2604                 counter = counter->parent;
2605
2606         return task_pid_nr_ns(p, counter->ns);
2607 }
2608
2609 static void perf_counter_output(struct perf_counter *counter, int nmi,
2610                                 struct perf_sample_data *data)
2611 {
2612         int ret;
2613         u64 sample_type = counter->attr.sample_type;
2614         struct perf_output_handle handle;
2615         struct perf_event_header header;
2616         u64 ip;
2617         struct {
2618                 u32 pid, tid;
2619         } tid_entry;
2620         struct {
2621                 u64 id;
2622                 u64 counter;
2623         } group_entry;
2624         struct perf_callchain_entry *callchain = NULL;
2625         int callchain_size = 0;
2626         u64 time;
2627         struct {
2628                 u32 cpu, reserved;
2629         } cpu_entry;
2630
2631         header.type = PERF_EVENT_SAMPLE;
2632         header.size = sizeof(header);
2633
2634         header.misc = 0;
2635         header.misc |= perf_misc_flags(data->regs);
2636
2637         if (sample_type & PERF_SAMPLE_IP) {
2638                 ip = perf_instruction_pointer(data->regs);
2639                 header.size += sizeof(ip);
2640         }
2641
2642         if (sample_type & PERF_SAMPLE_TID) {
2643                 /* namespace issues */
2644                 tid_entry.pid = perf_counter_pid(counter, current);
2645                 tid_entry.tid = perf_counter_tid(counter, current);
2646
2647                 header.size += sizeof(tid_entry);
2648         }
2649
2650         if (sample_type & PERF_SAMPLE_TIME) {
2651                 /*
2652                  * Maybe do better on x86 and provide cpu_clock_nmi()
2653                  */
2654                 time = sched_clock();
2655
2656                 header.size += sizeof(u64);
2657         }
2658
2659         if (sample_type & PERF_SAMPLE_ADDR)
2660                 header.size += sizeof(u64);
2661
2662         if (sample_type & PERF_SAMPLE_ID)
2663                 header.size += sizeof(u64);
2664
2665         if (sample_type & PERF_SAMPLE_CPU) {
2666                 header.size += sizeof(cpu_entry);
2667
2668                 cpu_entry.cpu = raw_smp_processor_id();
2669                 cpu_entry.reserved = 0;
2670         }
2671
2672         if (sample_type & PERF_SAMPLE_PERIOD)
2673                 header.size += sizeof(u64);
2674
2675         if (sample_type & PERF_SAMPLE_GROUP) {
2676                 header.size += sizeof(u64) +
2677                         counter->nr_siblings * sizeof(group_entry);
2678         }
2679
2680         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2681                 callchain = perf_callchain(data->regs);
2682
2683                 if (callchain) {
2684                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2685                         header.size += callchain_size;
2686                 } else
2687                         header.size += sizeof(u64);
2688         }
2689
2690         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2691         if (ret)
2692                 return;
2693
2694         perf_output_put(&handle, header);
2695
2696         if (sample_type & PERF_SAMPLE_IP)
2697                 perf_output_put(&handle, ip);
2698
2699         if (sample_type & PERF_SAMPLE_TID)
2700                 perf_output_put(&handle, tid_entry);
2701
2702         if (sample_type & PERF_SAMPLE_TIME)
2703                 perf_output_put(&handle, time);
2704
2705         if (sample_type & PERF_SAMPLE_ADDR)
2706                 perf_output_put(&handle, data->addr);
2707
2708         if (sample_type & PERF_SAMPLE_ID)
2709                 perf_output_put(&handle, counter->id);
2710
2711         if (sample_type & PERF_SAMPLE_CPU)
2712                 perf_output_put(&handle, cpu_entry);
2713
2714         if (sample_type & PERF_SAMPLE_PERIOD)
2715                 perf_output_put(&handle, data->period);
2716
2717         /*
2718          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2719          */
2720         if (sample_type & PERF_SAMPLE_GROUP) {
2721                 struct perf_counter *leader, *sub;
2722                 u64 nr = counter->nr_siblings;
2723
2724                 perf_output_put(&handle, nr);
2725
2726                 leader = counter->group_leader;
2727                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2728                         if (sub != counter)
2729                                 sub->pmu->read(sub);
2730
2731                         group_entry.id = sub->id;
2732                         group_entry.counter = atomic64_read(&sub->count);
2733
2734                         perf_output_put(&handle, group_entry);
2735                 }
2736         }
2737
2738         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2739                 if (callchain)
2740                         perf_output_copy(&handle, callchain, callchain_size);
2741                 else {
2742                         u64 nr = 0;
2743                         perf_output_put(&handle, nr);
2744                 }
2745         }
2746
2747         perf_output_end(&handle);
2748 }
2749
2750 /*
2751  * read event
2752  */
2753
2754 struct perf_read_event {
2755         struct perf_event_header        header;
2756
2757         u32                             pid;
2758         u32                             tid;
2759         u64                             value;
2760         u64                             format[3];
2761 };
2762
2763 static void
2764 perf_counter_read_event(struct perf_counter *counter,
2765                         struct task_struct *task)
2766 {
2767         struct perf_output_handle handle;
2768         struct perf_read_event event = {
2769                 .header = {
2770                         .type = PERF_EVENT_READ,
2771                         .misc = 0,
2772                         .size = sizeof(event) - sizeof(event.format),
2773                 },
2774                 .pid = perf_counter_pid(counter, task),
2775                 .tid = perf_counter_tid(counter, task),
2776                 .value = atomic64_read(&counter->count),
2777         };
2778         int ret, i = 0;
2779
2780         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2781                 event.header.size += sizeof(u64);
2782                 event.format[i++] = counter->total_time_enabled;
2783         }
2784
2785         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2786                 event.header.size += sizeof(u64);
2787                 event.format[i++] = counter->total_time_running;
2788         }
2789
2790         if (counter->attr.read_format & PERF_FORMAT_ID) {
2791                 u64 id;
2792
2793                 event.header.size += sizeof(u64);
2794                 if (counter->parent)
2795                         id = counter->parent->id;
2796                 else
2797                         id = counter->id;
2798
2799                 event.format[i++] = id;
2800         }
2801
2802         ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2803         if (ret)
2804                 return;
2805
2806         perf_output_copy(&handle, &event, event.header.size);
2807         perf_output_end(&handle);
2808 }
2809
2810 /*
2811  * fork tracking
2812  */
2813
2814 struct perf_fork_event {
2815         struct task_struct      *task;
2816
2817         struct {
2818                 struct perf_event_header        header;
2819
2820                 u32                             pid;
2821                 u32                             ppid;
2822         } event;
2823 };
2824
2825 static void perf_counter_fork_output(struct perf_counter *counter,
2826                                      struct perf_fork_event *fork_event)
2827 {
2828         struct perf_output_handle handle;
2829         int size = fork_event->event.header.size;
2830         struct task_struct *task = fork_event->task;
2831         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2832
2833         if (ret)
2834                 return;
2835
2836         fork_event->event.pid = perf_counter_pid(counter, task);
2837         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2838
2839         perf_output_put(&handle, fork_event->event);
2840         perf_output_end(&handle);
2841 }
2842
2843 static int perf_counter_fork_match(struct perf_counter *counter)
2844 {
2845         if (counter->attr.comm || counter->attr.mmap)
2846                 return 1;
2847
2848         return 0;
2849 }
2850
2851 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2852                                   struct perf_fork_event *fork_event)
2853 {
2854         struct perf_counter *counter;
2855
2856         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2857                 return;
2858
2859         rcu_read_lock();
2860         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2861                 if (perf_counter_fork_match(counter))
2862                         perf_counter_fork_output(counter, fork_event);
2863         }
2864         rcu_read_unlock();
2865 }
2866
2867 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2868 {
2869         struct perf_cpu_context *cpuctx;
2870         struct perf_counter_context *ctx;
2871
2872         cpuctx = &get_cpu_var(perf_cpu_context);
2873         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2874         put_cpu_var(perf_cpu_context);
2875
2876         rcu_read_lock();
2877         /*
2878          * doesn't really matter which of the child contexts the
2879          * events ends up in.
2880          */
2881         ctx = rcu_dereference(current->perf_counter_ctxp);
2882         if (ctx)
2883                 perf_counter_fork_ctx(ctx, fork_event);
2884         rcu_read_unlock();
2885 }
2886
2887 void perf_counter_fork(struct task_struct *task)
2888 {
2889         struct perf_fork_event fork_event;
2890
2891         if (!atomic_read(&nr_comm_counters) &&
2892             !atomic_read(&nr_mmap_counters))
2893                 return;
2894
2895         fork_event = (struct perf_fork_event){
2896                 .task   = task,
2897                 .event  = {
2898                         .header = {
2899                                 .type = PERF_EVENT_FORK,
2900                                 .size = sizeof(fork_event.event),
2901                         },
2902                 },
2903         };
2904
2905         perf_counter_fork_event(&fork_event);
2906 }
2907
2908 /*
2909  * comm tracking
2910  */
2911
2912 struct perf_comm_event {
2913         struct task_struct      *task;
2914         char                    *comm;
2915         int                     comm_size;
2916
2917         struct {
2918                 struct perf_event_header        header;
2919
2920                 u32                             pid;
2921                 u32                             tid;
2922         } event;
2923 };
2924
2925 static void perf_counter_comm_output(struct perf_counter *counter,
2926                                      struct perf_comm_event *comm_event)
2927 {
2928         struct perf_output_handle handle;
2929         int size = comm_event->event.header.size;
2930         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2931
2932         if (ret)
2933                 return;
2934
2935         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2936         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2937
2938         perf_output_put(&handle, comm_event->event);
2939         perf_output_copy(&handle, comm_event->comm,
2940                                    comm_event->comm_size);
2941         perf_output_end(&handle);
2942 }
2943
2944 static int perf_counter_comm_match(struct perf_counter *counter)
2945 {
2946         if (counter->attr.comm)
2947                 return 1;
2948
2949         return 0;
2950 }
2951
2952 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2953                                   struct perf_comm_event *comm_event)
2954 {
2955         struct perf_counter *counter;
2956
2957         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2958                 return;
2959
2960         rcu_read_lock();
2961         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2962                 if (perf_counter_comm_match(counter))
2963                         perf_counter_comm_output(counter, comm_event);
2964         }
2965         rcu_read_unlock();
2966 }
2967
2968 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2969 {
2970         struct perf_cpu_context *cpuctx;
2971         struct perf_counter_context *ctx;
2972         unsigned int size;
2973         char comm[TASK_COMM_LEN];
2974
2975         memset(comm, 0, sizeof(comm));
2976         strncpy(comm, comm_event->task->comm, sizeof(comm));
2977         size = ALIGN(strlen(comm)+1, sizeof(u64));
2978
2979         comm_event->comm = comm;
2980         comm_event->comm_size = size;
2981
2982         comm_event->event.header.size = sizeof(comm_event->event) + size;
2983
2984         cpuctx = &get_cpu_var(perf_cpu_context);
2985         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2986         put_cpu_var(perf_cpu_context);
2987
2988         rcu_read_lock();
2989         /*
2990          * doesn't really matter which of the child contexts the
2991          * events ends up in.
2992          */
2993         ctx = rcu_dereference(current->perf_counter_ctxp);
2994         if (ctx)
2995                 perf_counter_comm_ctx(ctx, comm_event);
2996         rcu_read_unlock();
2997 }
2998
2999 void perf_counter_comm(struct task_struct *task)
3000 {
3001         struct perf_comm_event comm_event;
3002
3003         if (task->perf_counter_ctxp)
3004                 perf_counter_enable_on_exec(task);
3005
3006         if (!atomic_read(&nr_comm_counters))
3007                 return;
3008
3009         comm_event = (struct perf_comm_event){
3010                 .task   = task,
3011                 .event  = {
3012                         .header = { .type = PERF_EVENT_COMM, },
3013                 },
3014         };
3015
3016         perf_counter_comm_event(&comm_event);
3017 }
3018
3019 /*
3020  * mmap tracking
3021  */
3022
3023 struct perf_mmap_event {
3024         struct vm_area_struct   *vma;
3025
3026         const char              *file_name;
3027         int                     file_size;
3028
3029         struct {
3030                 struct perf_event_header        header;
3031
3032                 u32                             pid;
3033                 u32                             tid;
3034                 u64                             start;
3035                 u64                             len;
3036                 u64                             pgoff;
3037         } event;
3038 };
3039
3040 static void perf_counter_mmap_output(struct perf_counter *counter,
3041                                      struct perf_mmap_event *mmap_event)
3042 {
3043         struct perf_output_handle handle;
3044         int size = mmap_event->event.header.size;
3045         int ret = perf_output_begin(&handle, counter, size, 0, 0);
3046
3047         if (ret)
3048                 return;
3049
3050         mmap_event->event.pid = perf_counter_pid(counter, current);
3051         mmap_event->event.tid = perf_counter_tid(counter, current);
3052
3053         perf_output_put(&handle, mmap_event->event);
3054         perf_output_copy(&handle, mmap_event->file_name,
3055                                    mmap_event->file_size);
3056         perf_output_end(&handle);
3057 }
3058
3059 static int perf_counter_mmap_match(struct perf_counter *counter,
3060                                    struct perf_mmap_event *mmap_event)
3061 {
3062         if (counter->attr.mmap)
3063                 return 1;
3064
3065         return 0;
3066 }
3067
3068 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3069                                   struct perf_mmap_event *mmap_event)
3070 {
3071         struct perf_counter *counter;
3072
3073         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3074                 return;
3075
3076         rcu_read_lock();
3077         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3078                 if (perf_counter_mmap_match(counter, mmap_event))
3079                         perf_counter_mmap_output(counter, mmap_event);
3080         }
3081         rcu_read_unlock();
3082 }
3083
3084 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3085 {
3086         struct perf_cpu_context *cpuctx;
3087         struct perf_counter_context *ctx;
3088         struct vm_area_struct *vma = mmap_event->vma;
3089         struct file *file = vma->vm_file;
3090         unsigned int size;
3091         char tmp[16];
3092         char *buf = NULL;
3093         const char *name;
3094
3095         memset(tmp, 0, sizeof(tmp));
3096
3097         if (file) {
3098                 /*
3099                  * d_path works from the end of the buffer backwards, so we
3100                  * need to add enough zero bytes after the string to handle
3101                  * the 64bit alignment we do later.
3102                  */
3103                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3104                 if (!buf) {
3105                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3106                         goto got_name;
3107                 }
3108                 name = d_path(&file->f_path, buf, PATH_MAX);
3109                 if (IS_ERR(name)) {
3110                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3111                         goto got_name;
3112                 }
3113         } else {
3114                 if (arch_vma_name(mmap_event->vma)) {
3115                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3116                                        sizeof(tmp));
3117                         goto got_name;
3118                 }
3119
3120                 if (!vma->vm_mm) {
3121                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3122                         goto got_name;
3123                 }
3124
3125                 name = strncpy(tmp, "//anon", sizeof(tmp));
3126                 goto got_name;
3127         }
3128
3129 got_name:
3130         size = ALIGN(strlen(name)+1, sizeof(u64));
3131
3132         mmap_event->file_name = name;
3133         mmap_event->file_size = size;
3134
3135         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3136
3137         cpuctx = &get_cpu_var(perf_cpu_context);
3138         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3139         put_cpu_var(perf_cpu_context);
3140
3141         rcu_read_lock();
3142         /*
3143          * doesn't really matter which of the child contexts the
3144          * events ends up in.
3145          */
3146         ctx = rcu_dereference(current->perf_counter_ctxp);
3147         if (ctx)
3148                 perf_counter_mmap_ctx(ctx, mmap_event);
3149         rcu_read_unlock();
3150
3151         kfree(buf);
3152 }
3153
3154 void __perf_counter_mmap(struct vm_area_struct *vma)
3155 {
3156         struct perf_mmap_event mmap_event;
3157
3158         if (!atomic_read(&nr_mmap_counters))
3159                 return;
3160
3161         mmap_event = (struct perf_mmap_event){
3162                 .vma    = vma,
3163                 .event  = {
3164                         .header = { .type = PERF_EVENT_MMAP, },
3165                         .start  = vma->vm_start,
3166                         .len    = vma->vm_end - vma->vm_start,
3167                         .pgoff  = vma->vm_pgoff,
3168                 },
3169         };
3170
3171         perf_counter_mmap_event(&mmap_event);
3172 }
3173
3174 /*
3175  * Log sample_period changes so that analyzing tools can re-normalize the
3176  * event flow.
3177  */
3178
3179 struct freq_event {
3180         struct perf_event_header        header;
3181         u64                             time;
3182         u64                             id;
3183         u64                             period;
3184 };
3185
3186 static void perf_log_period(struct perf_counter *counter, u64 period)
3187 {
3188         struct perf_output_handle handle;
3189         struct freq_event event;
3190         int ret;
3191
3192         if (counter->hw.sample_period == period)
3193                 return;
3194
3195         if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
3196                 return;
3197
3198         event = (struct freq_event) {
3199                 .header = {
3200                         .type = PERF_EVENT_PERIOD,
3201                         .misc = 0,
3202                         .size = sizeof(event),
3203                 },
3204                 .time = sched_clock(),
3205                 .id = counter->id,
3206                 .period = period,
3207         };
3208
3209         ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3210         if (ret)
3211                 return;
3212
3213         perf_output_put(&handle, event);
3214         perf_output_end(&handle);
3215 }
3216
3217 /*
3218  * IRQ throttle logging
3219  */
3220
3221 static void perf_log_throttle(struct perf_counter *counter, int enable)
3222 {
3223         struct perf_output_handle handle;
3224         int ret;
3225
3226         struct {
3227                 struct perf_event_header        header;
3228                 u64                             time;
3229                 u64                             id;
3230         } throttle_event = {
3231                 .header = {
3232                         .type = PERF_EVENT_THROTTLE + 1,
3233                         .misc = 0,
3234                         .size = sizeof(throttle_event),
3235                 },
3236                 .time   = sched_clock(),
3237                 .id     = counter->id,
3238         };
3239
3240         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3241         if (ret)
3242                 return;
3243
3244         perf_output_put(&handle, throttle_event);
3245         perf_output_end(&handle);
3246 }
3247
3248 /*
3249  * Generic counter overflow handling, sampling.
3250  */
3251
3252 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3253                           struct perf_sample_data *data)
3254 {
3255         int events = atomic_read(&counter->event_limit);
3256         int throttle = counter->pmu->unthrottle != NULL;
3257         struct hw_perf_counter *hwc = &counter->hw;
3258         int ret = 0;
3259
3260         if (!throttle) {
3261                 hwc->interrupts++;
3262         } else {
3263                 if (hwc->interrupts != MAX_INTERRUPTS) {
3264                         hwc->interrupts++;
3265                         if (HZ * hwc->interrupts >
3266                                         (u64)sysctl_perf_counter_sample_rate) {
3267                                 hwc->interrupts = MAX_INTERRUPTS;
3268                                 perf_log_throttle(counter, 0);
3269                                 ret = 1;
3270                         }
3271                 } else {
3272                         /*
3273                          * Keep re-disabling counters even though on the previous
3274                          * pass we disabled it - just in case we raced with a
3275                          * sched-in and the counter got enabled again:
3276                          */
3277                         ret = 1;
3278                 }
3279         }
3280
3281         if (counter->attr.freq) {
3282                 u64 now = sched_clock();
3283                 s64 delta = now - hwc->freq_stamp;
3284
3285                 hwc->freq_stamp = now;
3286
3287                 if (delta > 0 && delta < TICK_NSEC)
3288                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3289         }
3290
3291         /*
3292          * XXX event_limit might not quite work as expected on inherited
3293          * counters
3294          */
3295
3296         counter->pending_kill = POLL_IN;
3297         if (events && atomic_dec_and_test(&counter->event_limit)) {
3298                 ret = 1;
3299                 counter->pending_kill = POLL_HUP;
3300                 if (nmi) {
3301                         counter->pending_disable = 1;
3302                         perf_pending_queue(&counter->pending,
3303                                            perf_pending_counter);
3304                 } else
3305                         perf_counter_disable(counter);
3306         }
3307
3308         perf_counter_output(counter, nmi, data);
3309         return ret;
3310 }
3311
3312 /*
3313  * Generic software counter infrastructure
3314  */
3315
3316 static void perf_swcounter_update(struct perf_counter *counter)
3317 {
3318         struct hw_perf_counter *hwc = &counter->hw;
3319         u64 prev, now;
3320         s64 delta;
3321
3322 again:
3323         prev = atomic64_read(&hwc->prev_count);
3324         now = atomic64_read(&hwc->count);
3325         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3326                 goto again;
3327
3328         delta = now - prev;
3329
3330         atomic64_add(delta, &counter->count);
3331         atomic64_sub(delta, &hwc->period_left);
3332 }
3333
3334 static void perf_swcounter_set_period(struct perf_counter *counter)
3335 {
3336         struct hw_perf_counter *hwc = &counter->hw;
3337         s64 left = atomic64_read(&hwc->period_left);
3338         s64 period = hwc->sample_period;
3339
3340         if (unlikely(left <= -period)) {
3341                 left = period;
3342                 atomic64_set(&hwc->period_left, left);
3343                 hwc->last_period = period;
3344         }
3345
3346         if (unlikely(left <= 0)) {
3347                 left += period;
3348                 atomic64_add(period, &hwc->period_left);
3349                 hwc->last_period = period;
3350         }
3351
3352         atomic64_set(&hwc->prev_count, -left);
3353         atomic64_set(&hwc->count, -left);
3354 }
3355
3356 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3357 {
3358         enum hrtimer_restart ret = HRTIMER_RESTART;
3359         struct perf_sample_data data;
3360         struct perf_counter *counter;
3361         u64 period;
3362
3363         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3364         counter->pmu->read(counter);
3365
3366         data.addr = 0;
3367         data.regs = get_irq_regs();
3368         /*
3369          * In case we exclude kernel IPs or are somehow not in interrupt
3370          * context, provide the next best thing, the user IP.
3371          */
3372         if ((counter->attr.exclude_kernel || !data.regs) &&
3373                         !counter->attr.exclude_user)
3374                 data.regs = task_pt_regs(current);
3375
3376         if (data.regs) {
3377                 if (perf_counter_overflow(counter, 0, &data))
3378                         ret = HRTIMER_NORESTART;
3379         }
3380
3381         period = max_t(u64, 10000, counter->hw.sample_period);
3382         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3383
3384         return ret;
3385 }
3386
3387 static void perf_swcounter_overflow(struct perf_counter *counter,
3388                                     int nmi, struct perf_sample_data *data)
3389 {
3390         data->period = counter->hw.last_period;
3391
3392         perf_swcounter_update(counter);
3393         perf_swcounter_set_period(counter);
3394         if (perf_counter_overflow(counter, nmi, data))
3395                 /* soft-disable the counter */
3396                 ;
3397 }
3398
3399 static int perf_swcounter_is_counting(struct perf_counter *counter)
3400 {
3401         struct perf_counter_context *ctx;
3402         unsigned long flags;
3403         int count;
3404
3405         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3406                 return 1;
3407
3408         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3409                 return 0;
3410
3411         /*
3412          * If the counter is inactive, it could be just because
3413          * its task is scheduled out, or because it's in a group
3414          * which could not go on the PMU.  We want to count in
3415          * the first case but not the second.  If the context is
3416          * currently active then an inactive software counter must
3417          * be the second case.  If it's not currently active then
3418          * we need to know whether the counter was active when the
3419          * context was last active, which we can determine by
3420          * comparing counter->tstamp_stopped with ctx->time.
3421          *
3422          * We are within an RCU read-side critical section,
3423          * which protects the existence of *ctx.
3424          */
3425         ctx = counter->ctx;
3426         spin_lock_irqsave(&ctx->lock, flags);
3427         count = 1;
3428         /* Re-check state now we have the lock */
3429         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3430             counter->ctx->is_active ||
3431             counter->tstamp_stopped < ctx->time)
3432                 count = 0;
3433         spin_unlock_irqrestore(&ctx->lock, flags);
3434         return count;
3435 }
3436
3437 static int perf_swcounter_match(struct perf_counter *counter,
3438                                 enum perf_type_id type,
3439                                 u32 event, struct pt_regs *regs)
3440 {
3441         if (!perf_swcounter_is_counting(counter))
3442                 return 0;
3443
3444         if (counter->attr.type != type)
3445                 return 0;
3446         if (counter->attr.config != event)
3447                 return 0;
3448
3449         if (regs) {
3450                 if (counter->attr.exclude_user && user_mode(regs))
3451                         return 0;
3452
3453                 if (counter->attr.exclude_kernel && !user_mode(regs))
3454                         return 0;
3455         }
3456
3457         return 1;
3458 }
3459
3460 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3461                                int nmi, struct perf_sample_data *data)
3462 {
3463         int neg = atomic64_add_negative(nr, &counter->hw.count);
3464
3465         if (counter->hw.sample_period && !neg && data->regs)
3466                 perf_swcounter_overflow(counter, nmi, data);
3467 }
3468
3469 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3470                                      enum perf_type_id type,
3471                                      u32 event, u64 nr, int nmi,
3472                                      struct perf_sample_data *data)
3473 {
3474         struct perf_counter *counter;
3475
3476         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3477                 return;
3478
3479         rcu_read_lock();
3480         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3481                 if (perf_swcounter_match(counter, type, event, data->regs))
3482                         perf_swcounter_add(counter, nr, nmi, data);
3483         }
3484         rcu_read_unlock();
3485 }
3486
3487 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3488 {
3489         if (in_nmi())
3490                 return &cpuctx->recursion[3];
3491
3492         if (in_irq())
3493                 return &cpuctx->recursion[2];
3494
3495         if (in_softirq())
3496                 return &cpuctx->recursion[1];
3497
3498         return &cpuctx->recursion[0];
3499 }
3500
3501 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3502                                     u64 nr, int nmi,
3503                                     struct perf_sample_data *data)
3504 {
3505         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3506         int *recursion = perf_swcounter_recursion_context(cpuctx);
3507         struct perf_counter_context *ctx;
3508
3509         if (*recursion)
3510                 goto out;
3511
3512         (*recursion)++;
3513         barrier();
3514
3515         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3516                                  nr, nmi, data);
3517         rcu_read_lock();
3518         /*
3519          * doesn't really matter which of the child contexts the
3520          * events ends up in.
3521          */
3522         ctx = rcu_dereference(current->perf_counter_ctxp);
3523         if (ctx)
3524                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3525         rcu_read_unlock();
3526
3527         barrier();
3528         (*recursion)--;
3529
3530 out:
3531         put_cpu_var(perf_cpu_context);
3532 }
3533
3534 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3535                             struct pt_regs *regs, u64 addr)
3536 {
3537         struct perf_sample_data data = {
3538                 .regs = regs,
3539                 .addr = addr,
3540         };
3541
3542         do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3543 }
3544
3545 static void perf_swcounter_read(struct perf_counter *counter)
3546 {
3547         perf_swcounter_update(counter);
3548 }
3549
3550 static int perf_swcounter_enable(struct perf_counter *counter)
3551 {
3552         perf_swcounter_set_period(counter);
3553         return 0;
3554 }
3555
3556 static void perf_swcounter_disable(struct perf_counter *counter)
3557 {
3558         perf_swcounter_update(counter);
3559 }
3560
3561 static const struct pmu perf_ops_generic = {
3562         .enable         = perf_swcounter_enable,
3563         .disable        = perf_swcounter_disable,
3564         .read           = perf_swcounter_read,
3565 };
3566
3567 /*
3568  * Software counter: cpu wall time clock
3569  */
3570
3571 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3572 {
3573         int cpu = raw_smp_processor_id();
3574         s64 prev;
3575         u64 now;
3576
3577         now = cpu_clock(cpu);
3578         prev = atomic64_read(&counter->hw.prev_count);
3579         atomic64_set(&counter->hw.prev_count, now);
3580         atomic64_add(now - prev, &counter->count);
3581 }
3582
3583 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3584 {
3585         struct hw_perf_counter *hwc = &counter->hw;
3586         int cpu = raw_smp_processor_id();
3587
3588         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3589         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3590         hwc->hrtimer.function = perf_swcounter_hrtimer;
3591         if (hwc->sample_period) {
3592                 u64 period = max_t(u64, 10000, hwc->sample_period);
3593                 __hrtimer_start_range_ns(&hwc->hrtimer,
3594                                 ns_to_ktime(period), 0,
3595                                 HRTIMER_MODE_REL, 0);
3596         }
3597
3598         return 0;
3599 }
3600
3601 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3602 {
3603         if (counter->hw.sample_period)
3604                 hrtimer_cancel(&counter->hw.hrtimer);
3605         cpu_clock_perf_counter_update(counter);
3606 }
3607
3608 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3609 {
3610         cpu_clock_perf_counter_update(counter);
3611 }
3612
3613 static const struct pmu perf_ops_cpu_clock = {
3614         .enable         = cpu_clock_perf_counter_enable,
3615         .disable        = cpu_clock_perf_counter_disable,
3616         .read           = cpu_clock_perf_counter_read,
3617 };
3618
3619 /*
3620  * Software counter: task time clock
3621  */
3622
3623 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3624 {
3625         u64 prev;
3626         s64 delta;
3627
3628         prev = atomic64_xchg(&counter->hw.prev_count, now);
3629         delta = now - prev;
3630         atomic64_add(delta, &counter->count);
3631 }
3632
3633 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3634 {
3635         struct hw_perf_counter *hwc = &counter->hw;
3636         u64 now;
3637
3638         now = counter->ctx->time;
3639
3640         atomic64_set(&hwc->prev_count, now);
3641         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3642         hwc->hrtimer.function = perf_swcounter_hrtimer;
3643         if (hwc->sample_period) {
3644                 u64 period = max_t(u64, 10000, hwc->sample_period);
3645                 __hrtimer_start_range_ns(&hwc->hrtimer,
3646                                 ns_to_ktime(period), 0,
3647                                 HRTIMER_MODE_REL, 0);
3648         }
3649
3650         return 0;
3651 }
3652
3653 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3654 {
3655         if (counter->hw.sample_period)
3656                 hrtimer_cancel(&counter->hw.hrtimer);
3657         task_clock_perf_counter_update(counter, counter->ctx->time);
3658
3659 }
3660
3661 static void task_clock_perf_counter_read(struct perf_counter *counter)
3662 {
3663         u64 time;
3664
3665         if (!in_nmi()) {
3666                 update_context_time(counter->ctx);
3667                 time = counter->ctx->time;
3668         } else {
3669                 u64 now = perf_clock();
3670                 u64 delta = now - counter->ctx->timestamp;
3671                 time = counter->ctx->time + delta;
3672         }
3673
3674         task_clock_perf_counter_update(counter, time);
3675 }
3676
3677 static const struct pmu perf_ops_task_clock = {
3678         .enable         = task_clock_perf_counter_enable,
3679         .disable        = task_clock_perf_counter_disable,
3680         .read           = task_clock_perf_counter_read,
3681 };
3682
3683 #ifdef CONFIG_EVENT_PROFILE
3684 void perf_tpcounter_event(int event_id)
3685 {
3686         struct perf_sample_data data = {
3687                 .regs = get_irq_regs(),
3688                 .addr = 0,
3689         };
3690
3691         if (!data.regs)
3692                 data.regs = task_pt_regs(current);
3693
3694         do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3695 }
3696 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3697
3698 extern int ftrace_profile_enable(int);
3699 extern void ftrace_profile_disable(int);
3700
3701 static void tp_perf_counter_destroy(struct perf_counter *counter)
3702 {
3703         ftrace_profile_disable(counter->attr.config);
3704 }
3705
3706 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3707 {
3708         if (ftrace_profile_enable(counter->attr.config))
3709                 return NULL;
3710
3711         counter->destroy = tp_perf_counter_destroy;
3712
3713         return &perf_ops_generic;
3714 }
3715 #else
3716 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3717 {
3718         return NULL;
3719 }
3720 #endif
3721
3722 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3723
3724 static void sw_perf_counter_destroy(struct perf_counter *counter)
3725 {
3726         u64 event = counter->attr.config;
3727
3728         WARN_ON(counter->parent);
3729
3730         atomic_dec(&perf_swcounter_enabled[event]);
3731 }
3732
3733 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3734 {
3735         const struct pmu *pmu = NULL;
3736         u64 event = counter->attr.config;
3737
3738         /*
3739          * Software counters (currently) can't in general distinguish
3740          * between user, kernel and hypervisor events.
3741          * However, context switches and cpu migrations are considered
3742          * to be kernel events, and page faults are never hypervisor
3743          * events.
3744          */
3745         switch (event) {
3746         case PERF_COUNT_SW_CPU_CLOCK:
3747                 pmu = &perf_ops_cpu_clock;
3748
3749                 break;
3750         case PERF_COUNT_SW_TASK_CLOCK:
3751                 /*
3752                  * If the user instantiates this as a per-cpu counter,
3753                  * use the cpu_clock counter instead.
3754                  */
3755                 if (counter->ctx->task)
3756                         pmu = &perf_ops_task_clock;
3757                 else
3758                         pmu = &perf_ops_cpu_clock;
3759
3760                 break;
3761         case PERF_COUNT_SW_PAGE_FAULTS:
3762         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3763         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3764         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3765         case PERF_COUNT_SW_CPU_MIGRATIONS:
3766                 if (!counter->parent) {
3767                         atomic_inc(&perf_swcounter_enabled[event]);
3768                         counter->destroy = sw_perf_counter_destroy;
3769                 }
3770                 pmu = &perf_ops_generic;
3771                 break;
3772         }
3773
3774         return pmu;
3775 }
3776
3777 /*
3778  * Allocate and initialize a counter structure
3779  */
3780 static struct perf_counter *
3781 perf_counter_alloc(struct perf_counter_attr *attr,
3782                    int cpu,
3783                    struct perf_counter_context *ctx,
3784                    struct perf_counter *group_leader,
3785                    struct perf_counter *parent_counter,
3786                    gfp_t gfpflags)
3787 {
3788         const struct pmu *pmu;
3789         struct perf_counter *counter;
3790         struct hw_perf_counter *hwc;
3791         long err;
3792
3793         counter = kzalloc(sizeof(*counter), gfpflags);
3794         if (!counter)
3795                 return ERR_PTR(-ENOMEM);
3796
3797         /*
3798          * Single counters are their own group leaders, with an
3799          * empty sibling list:
3800          */
3801         if (!group_leader)
3802                 group_leader = counter;
3803
3804         mutex_init(&counter->child_mutex);
3805         INIT_LIST_HEAD(&counter->child_list);
3806
3807         INIT_LIST_HEAD(&counter->list_entry);
3808         INIT_LIST_HEAD(&counter->event_entry);
3809         INIT_LIST_HEAD(&counter->sibling_list);
3810         init_waitqueue_head(&counter->waitq);
3811
3812         mutex_init(&counter->mmap_mutex);
3813
3814         counter->cpu            = cpu;
3815         counter->attr           = *attr;
3816         counter->group_leader   = group_leader;
3817         counter->pmu            = NULL;
3818         counter->ctx            = ctx;
3819         counter->oncpu          = -1;
3820
3821         counter->parent         = parent_counter;
3822
3823         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3824         counter->id             = atomic64_inc_return(&perf_counter_id);
3825
3826         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3827
3828         if (attr->disabled)
3829                 counter->state = PERF_COUNTER_STATE_OFF;
3830
3831         pmu = NULL;
3832
3833         hwc = &counter->hw;
3834         hwc->sample_period = attr->sample_period;
3835         if (attr->freq && attr->sample_freq)
3836                 hwc->sample_period = 1;
3837
3838         atomic64_set(&hwc->period_left, hwc->sample_period);
3839
3840         /*
3841          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3842          */
3843         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3844                 goto done;
3845
3846         switch (attr->type) {
3847         case PERF_TYPE_RAW:
3848         case PERF_TYPE_HARDWARE:
3849         case PERF_TYPE_HW_CACHE:
3850                 pmu = hw_perf_counter_init(counter);
3851                 break;
3852
3853         case PERF_TYPE_SOFTWARE:
3854                 pmu = sw_perf_counter_init(counter);
3855                 break;
3856
3857         case PERF_TYPE_TRACEPOINT:
3858                 pmu = tp_perf_counter_init(counter);
3859                 break;
3860
3861         default:
3862                 break;
3863         }
3864 done:
3865         err = 0;
3866         if (!pmu)
3867                 err = -EINVAL;
3868         else if (IS_ERR(pmu))
3869                 err = PTR_ERR(pmu);
3870
3871         if (err) {
3872                 if (counter->ns)
3873                         put_pid_ns(counter->ns);
3874                 kfree(counter);
3875                 return ERR_PTR(err);
3876         }
3877
3878         counter->pmu = pmu;
3879
3880         if (!counter->parent) {
3881                 atomic_inc(&nr_counters);
3882                 if (counter->attr.mmap)
3883                         atomic_inc(&nr_mmap_counters);
3884                 if (counter->attr.comm)
3885                         atomic_inc(&nr_comm_counters);
3886         }
3887
3888         return counter;
3889 }
3890
3891 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3892                           struct perf_counter_attr *attr)
3893 {
3894         int ret;
3895         u32 size;
3896
3897         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3898                 return -EFAULT;
3899
3900         /*
3901          * zero the full structure, so that a short copy will be nice.
3902          */
3903         memset(attr, 0, sizeof(*attr));
3904
3905         ret = get_user(size, &uattr->size);
3906         if (ret)
3907                 return ret;
3908
3909         if (size > PAGE_SIZE)   /* silly large */
3910                 goto err_size;
3911
3912         if (!size)              /* abi compat */
3913                 size = PERF_ATTR_SIZE_VER0;
3914
3915         if (size < PERF_ATTR_SIZE_VER0)
3916                 goto err_size;
3917
3918         /*
3919          * If we're handed a bigger struct than we know of,
3920          * ensure all the unknown bits are 0.
3921          */
3922         if (size > sizeof(*attr)) {
3923                 unsigned long val;
3924                 unsigned long __user *addr;
3925                 unsigned long __user *end;
3926
3927                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3928                                 sizeof(unsigned long));
3929                 end  = PTR_ALIGN((void __user *)uattr + size,
3930                                 sizeof(unsigned long));
3931
3932                 for (; addr < end; addr += sizeof(unsigned long)) {
3933                         ret = get_user(val, addr);
3934                         if (ret)
3935                                 return ret;
3936                         if (val)
3937                                 goto err_size;
3938                 }
3939         }
3940
3941         ret = copy_from_user(attr, uattr, size);
3942         if (ret)
3943                 return -EFAULT;
3944
3945         /*
3946          * If the type exists, the corresponding creation will verify
3947          * the attr->config.
3948          */
3949         if (attr->type >= PERF_TYPE_MAX)
3950                 return -EINVAL;
3951
3952         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3953                 return -EINVAL;
3954
3955         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3956                 return -EINVAL;
3957
3958         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3959                 return -EINVAL;
3960
3961 out:
3962         return ret;
3963
3964 err_size:
3965         put_user(sizeof(*attr), &uattr->size);
3966         ret = -E2BIG;
3967         goto out;
3968 }
3969
3970 /**
3971  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3972  *
3973  * @attr_uptr:  event type attributes for monitoring/sampling
3974  * @pid:                target pid
3975  * @cpu:                target cpu
3976  * @group_fd:           group leader counter fd
3977  */
3978 SYSCALL_DEFINE5(perf_counter_open,
3979                 struct perf_counter_attr __user *, attr_uptr,
3980                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3981 {
3982         struct perf_counter *counter, *group_leader;
3983         struct perf_counter_attr attr;
3984         struct perf_counter_context *ctx;
3985         struct file *counter_file = NULL;
3986         struct file *group_file = NULL;
3987         int fput_needed = 0;
3988         int fput_needed2 = 0;
3989         int ret;
3990
3991         /* for future expandability... */
3992         if (flags)
3993                 return -EINVAL;
3994
3995         ret = perf_copy_attr(attr_uptr, &attr);
3996         if (ret)
3997                 return ret;
3998
3999         if (!attr.exclude_kernel) {
4000                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4001                         return -EACCES;
4002         }
4003
4004         if (attr.freq) {
4005                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4006                         return -EINVAL;
4007         }
4008
4009         /*
4010          * Get the target context (task or percpu):
4011          */
4012         ctx = find_get_context(pid, cpu);
4013         if (IS_ERR(ctx))
4014                 return PTR_ERR(ctx);
4015
4016         /*
4017          * Look up the group leader (we will attach this counter to it):
4018          */
4019         group_leader = NULL;
4020         if (group_fd != -1) {
4021                 ret = -EINVAL;
4022                 group_file = fget_light(group_fd, &fput_needed);
4023                 if (!group_file)
4024                         goto err_put_context;
4025                 if (group_file->f_op != &perf_fops)
4026                         goto err_put_context;
4027
4028                 group_leader = group_file->private_data;
4029                 /*
4030                  * Do not allow a recursive hierarchy (this new sibling
4031                  * becoming part of another group-sibling):
4032                  */
4033                 if (group_leader->group_leader != group_leader)
4034                         goto err_put_context;
4035                 /*
4036                  * Do not allow to attach to a group in a different
4037                  * task or CPU context:
4038                  */
4039                 if (group_leader->ctx != ctx)
4040                         goto err_put_context;
4041                 /*
4042                  * Only a group leader can be exclusive or pinned
4043                  */
4044                 if (attr.exclusive || attr.pinned)
4045                         goto err_put_context;
4046         }
4047
4048         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4049                                      NULL, GFP_KERNEL);
4050         ret = PTR_ERR(counter);
4051         if (IS_ERR(counter))
4052                 goto err_put_context;
4053
4054         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4055         if (ret < 0)
4056                 goto err_free_put_context;
4057
4058         counter_file = fget_light(ret, &fput_needed2);
4059         if (!counter_file)
4060                 goto err_free_put_context;
4061
4062         counter->filp = counter_file;
4063         WARN_ON_ONCE(ctx->parent_ctx);
4064         mutex_lock(&ctx->mutex);
4065         perf_install_in_context(ctx, counter, cpu);
4066         ++ctx->generation;
4067         mutex_unlock(&ctx->mutex);
4068
4069         counter->owner = current;
4070         get_task_struct(current);
4071         mutex_lock(&current->perf_counter_mutex);
4072         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4073         mutex_unlock(&current->perf_counter_mutex);
4074
4075         fput_light(counter_file, fput_needed2);
4076
4077 out_fput:
4078         fput_light(group_file, fput_needed);
4079
4080         return ret;
4081
4082 err_free_put_context:
4083         kfree(counter);
4084
4085 err_put_context:
4086         put_ctx(ctx);
4087
4088         goto out_fput;
4089 }
4090
4091 /*
4092  * inherit a counter from parent task to child task:
4093  */
4094 static struct perf_counter *
4095 inherit_counter(struct perf_counter *parent_counter,
4096               struct task_struct *parent,
4097               struct perf_counter_context *parent_ctx,
4098               struct task_struct *child,
4099               struct perf_counter *group_leader,
4100               struct perf_counter_context *child_ctx)
4101 {
4102         struct perf_counter *child_counter;
4103
4104         /*
4105          * Instead of creating recursive hierarchies of counters,
4106          * we link inherited counters back to the original parent,
4107          * which has a filp for sure, which we use as the reference
4108          * count:
4109          */
4110         if (parent_counter->parent)
4111                 parent_counter = parent_counter->parent;
4112
4113         child_counter = perf_counter_alloc(&parent_counter->attr,
4114                                            parent_counter->cpu, child_ctx,
4115                                            group_leader, parent_counter,
4116                                            GFP_KERNEL);
4117         if (IS_ERR(child_counter))
4118                 return child_counter;
4119         get_ctx(child_ctx);
4120
4121         /*
4122          * Make the child state follow the state of the parent counter,
4123          * not its attr.disabled bit.  We hold the parent's mutex,
4124          * so we won't race with perf_counter_{en, dis}able_family.
4125          */
4126         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4127                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4128         else
4129                 child_counter->state = PERF_COUNTER_STATE_OFF;
4130
4131         if (parent_counter->attr.freq)
4132                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4133
4134         /*
4135          * Link it up in the child's context:
4136          */
4137         add_counter_to_ctx(child_counter, child_ctx);
4138
4139         /*
4140          * Get a reference to the parent filp - we will fput it
4141          * when the child counter exits. This is safe to do because
4142          * we are in the parent and we know that the filp still
4143          * exists and has a nonzero count:
4144          */
4145         atomic_long_inc(&parent_counter->filp->f_count);
4146
4147         /*
4148          * Link this into the parent counter's child list
4149          */
4150         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4151         mutex_lock(&parent_counter->child_mutex);
4152         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4153         mutex_unlock(&parent_counter->child_mutex);
4154
4155         return child_counter;
4156 }
4157
4158 static int inherit_group(struct perf_counter *parent_counter,
4159               struct task_struct *parent,
4160               struct perf_counter_context *parent_ctx,
4161               struct task_struct *child,
4162               struct perf_counter_context *child_ctx)
4163 {
4164         struct perf_counter *leader;
4165         struct perf_counter *sub;
4166         struct perf_counter *child_ctr;
4167
4168         leader = inherit_counter(parent_counter, parent, parent_ctx,
4169                                  child, NULL, child_ctx);
4170         if (IS_ERR(leader))
4171                 return PTR_ERR(leader);
4172         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4173                 child_ctr = inherit_counter(sub, parent, parent_ctx,
4174                                             child, leader, child_ctx);
4175                 if (IS_ERR(child_ctr))
4176                         return PTR_ERR(child_ctr);
4177         }
4178         return 0;
4179 }
4180
4181 static void sync_child_counter(struct perf_counter *child_counter,
4182                                struct task_struct *child)
4183 {
4184         struct perf_counter *parent_counter = child_counter->parent;
4185         u64 child_val;
4186
4187         if (child_counter->attr.inherit_stat)
4188                 perf_counter_read_event(child_counter, child);
4189
4190         child_val = atomic64_read(&child_counter->count);
4191
4192         /*
4193          * Add back the child's count to the parent's count:
4194          */
4195         atomic64_add(child_val, &parent_counter->count);
4196         atomic64_add(child_counter->total_time_enabled,
4197                      &parent_counter->child_total_time_enabled);
4198         atomic64_add(child_counter->total_time_running,
4199                      &parent_counter->child_total_time_running);
4200
4201         /*
4202          * Remove this counter from the parent's list
4203          */
4204         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4205         mutex_lock(&parent_counter->child_mutex);
4206         list_del_init(&child_counter->child_list);
4207         mutex_unlock(&parent_counter->child_mutex);
4208
4209         /*
4210          * Release the parent counter, if this was the last
4211          * reference to it.
4212          */
4213         fput(parent_counter->filp);
4214 }
4215
4216 static void
4217 __perf_counter_exit_task(struct perf_counter *child_counter,
4218                          struct perf_counter_context *child_ctx,
4219                          struct task_struct *child)
4220 {
4221         struct perf_counter *parent_counter;
4222
4223         update_counter_times(child_counter);
4224         perf_counter_remove_from_context(child_counter);
4225
4226         parent_counter = child_counter->parent;
4227         /*
4228          * It can happen that parent exits first, and has counters
4229          * that are still around due to the child reference. These
4230          * counters need to be zapped - but otherwise linger.
4231          */
4232         if (parent_counter) {
4233                 sync_child_counter(child_counter, child);
4234                 free_counter(child_counter);
4235         }
4236 }
4237
4238 /*
4239  * When a child task exits, feed back counter values to parent counters.
4240  */
4241 void perf_counter_exit_task(struct task_struct *child)
4242 {
4243         struct perf_counter *child_counter, *tmp;
4244         struct perf_counter_context *child_ctx;
4245         unsigned long flags;
4246
4247         if (likely(!child->perf_counter_ctxp))
4248                 return;
4249
4250         local_irq_save(flags);
4251         /*
4252          * We can't reschedule here because interrupts are disabled,
4253          * and either child is current or it is a task that can't be
4254          * scheduled, so we are now safe from rescheduling changing
4255          * our context.
4256          */
4257         child_ctx = child->perf_counter_ctxp;
4258         __perf_counter_task_sched_out(child_ctx);
4259
4260         /*
4261          * Take the context lock here so that if find_get_context is
4262          * reading child->perf_counter_ctxp, we wait until it has
4263          * incremented the context's refcount before we do put_ctx below.
4264          */
4265         spin_lock(&child_ctx->lock);
4266         child->perf_counter_ctxp = NULL;
4267         /*
4268          * If this context is a clone; unclone it so it can't get
4269          * swapped to another process while we're removing all
4270          * the counters from it.
4271          */
4272         unclone_ctx(child_ctx);
4273         spin_unlock(&child_ctx->lock);
4274         local_irq_restore(flags);
4275
4276         /*
4277          * We can recurse on the same lock type through:
4278          *
4279          *   __perf_counter_exit_task()
4280          *     sync_child_counter()
4281          *       fput(parent_counter->filp)
4282          *         perf_release()
4283          *           mutex_lock(&ctx->mutex)
4284          *
4285          * But since its the parent context it won't be the same instance.
4286          */
4287         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4288
4289 again:
4290         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4291                                  list_entry)
4292                 __perf_counter_exit_task(child_counter, child_ctx, child);
4293
4294         /*
4295          * If the last counter was a group counter, it will have appended all
4296          * its siblings to the list, but we obtained 'tmp' before that which
4297          * will still point to the list head terminating the iteration.
4298          */
4299         if (!list_empty(&child_ctx->counter_list))
4300                 goto again;
4301
4302         mutex_unlock(&child_ctx->mutex);
4303
4304         put_ctx(child_ctx);
4305 }
4306
4307 /*
4308  * free an unexposed, unused context as created by inheritance by
4309  * init_task below, used by fork() in case of fail.
4310  */
4311 void perf_counter_free_task(struct task_struct *task)
4312 {
4313         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4314         struct perf_counter *counter, *tmp;
4315
4316         if (!ctx)
4317                 return;
4318
4319         mutex_lock(&ctx->mutex);
4320 again:
4321         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4322                 struct perf_counter *parent = counter->parent;
4323
4324                 if (WARN_ON_ONCE(!parent))
4325                         continue;
4326
4327                 mutex_lock(&parent->child_mutex);
4328                 list_del_init(&counter->child_list);
4329                 mutex_unlock(&parent->child_mutex);
4330
4331                 fput(parent->filp);
4332
4333                 list_del_counter(counter, ctx);
4334                 free_counter(counter);
4335         }
4336
4337         if (!list_empty(&ctx->counter_list))
4338                 goto again;
4339
4340         mutex_unlock(&ctx->mutex);
4341
4342         put_ctx(ctx);
4343 }
4344
4345 /*
4346  * Initialize the perf_counter context in task_struct
4347  */
4348 int perf_counter_init_task(struct task_struct *child)
4349 {
4350         struct perf_counter_context *child_ctx, *parent_ctx;
4351         struct perf_counter_context *cloned_ctx;
4352         struct perf_counter *counter;
4353         struct task_struct *parent = current;
4354         int inherited_all = 1;
4355         int ret = 0;
4356
4357         child->perf_counter_ctxp = NULL;
4358
4359         mutex_init(&child->perf_counter_mutex);
4360         INIT_LIST_HEAD(&child->perf_counter_list);
4361
4362         if (likely(!parent->perf_counter_ctxp))
4363                 return 0;
4364
4365         /*
4366          * This is executed from the parent task context, so inherit
4367          * counters that have been marked for cloning.
4368          * First allocate and initialize a context for the child.
4369          */
4370
4371         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4372         if (!child_ctx)
4373                 return -ENOMEM;
4374
4375         __perf_counter_init_context(child_ctx, child);
4376         child->perf_counter_ctxp = child_ctx;
4377         get_task_struct(child);
4378
4379         /*
4380          * If the parent's context is a clone, pin it so it won't get
4381          * swapped under us.
4382          */
4383         parent_ctx = perf_pin_task_context(parent);
4384
4385         /*
4386          * No need to check if parent_ctx != NULL here; since we saw
4387          * it non-NULL earlier, the only reason for it to become NULL
4388          * is if we exit, and since we're currently in the middle of
4389          * a fork we can't be exiting at the same time.
4390          */
4391
4392         /*
4393          * Lock the parent list. No need to lock the child - not PID
4394          * hashed yet and not running, so nobody can access it.
4395          */
4396         mutex_lock(&parent_ctx->mutex);
4397
4398         /*
4399          * We dont have to disable NMIs - we are only looking at
4400          * the list, not manipulating it:
4401          */
4402         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4403                 if (counter != counter->group_leader)
4404                         continue;
4405
4406                 if (!counter->attr.inherit) {
4407                         inherited_all = 0;
4408                         continue;
4409                 }
4410
4411                 ret = inherit_group(counter, parent, parent_ctx,
4412                                              child, child_ctx);
4413                 if (ret) {
4414                         inherited_all = 0;
4415                         break;
4416                 }
4417         }
4418
4419         if (inherited_all) {
4420                 /*
4421                  * Mark the child context as a clone of the parent
4422                  * context, or of whatever the parent is a clone of.
4423                  * Note that if the parent is a clone, it could get
4424                  * uncloned at any point, but that doesn't matter
4425                  * because the list of counters and the generation
4426                  * count can't have changed since we took the mutex.
4427                  */
4428                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4429                 if (cloned_ctx) {
4430                         child_ctx->parent_ctx = cloned_ctx;
4431                         child_ctx->parent_gen = parent_ctx->parent_gen;
4432                 } else {
4433                         child_ctx->parent_ctx = parent_ctx;
4434                         child_ctx->parent_gen = parent_ctx->generation;
4435                 }
4436                 get_ctx(child_ctx->parent_ctx);
4437         }
4438
4439         mutex_unlock(&parent_ctx->mutex);
4440
4441         perf_unpin_context(parent_ctx);
4442
4443         return ret;
4444 }
4445
4446 static void __cpuinit perf_counter_init_cpu(int cpu)
4447 {
4448         struct perf_cpu_context *cpuctx;
4449
4450         cpuctx = &per_cpu(perf_cpu_context, cpu);
4451         __perf_counter_init_context(&cpuctx->ctx, NULL);
4452
4453         spin_lock(&perf_resource_lock);
4454         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4455         spin_unlock(&perf_resource_lock);
4456
4457         hw_perf_counter_setup(cpu);
4458 }
4459
4460 #ifdef CONFIG_HOTPLUG_CPU
4461 static void __perf_counter_exit_cpu(void *info)
4462 {
4463         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4464         struct perf_counter_context *ctx = &cpuctx->ctx;
4465         struct perf_counter *counter, *tmp;
4466
4467         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4468                 __perf_counter_remove_from_context(counter);
4469 }
4470 static void perf_counter_exit_cpu(int cpu)
4471 {
4472         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4473         struct perf_counter_context *ctx = &cpuctx->ctx;
4474
4475         mutex_lock(&ctx->mutex);
4476         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4477         mutex_unlock(&ctx->mutex);
4478 }
4479 #else
4480 static inline void perf_counter_exit_cpu(int cpu) { }
4481 #endif
4482
4483 static int __cpuinit
4484 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4485 {
4486         unsigned int cpu = (long)hcpu;
4487
4488         switch (action) {
4489
4490         case CPU_UP_PREPARE:
4491         case CPU_UP_PREPARE_FROZEN:
4492                 perf_counter_init_cpu(cpu);
4493                 break;
4494
4495         case CPU_DOWN_PREPARE:
4496         case CPU_DOWN_PREPARE_FROZEN:
4497                 perf_counter_exit_cpu(cpu);
4498                 break;
4499
4500         default:
4501                 break;
4502         }
4503
4504         return NOTIFY_OK;
4505 }
4506
4507 /*
4508  * This has to have a higher priority than migration_notifier in sched.c.
4509  */
4510 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4511         .notifier_call          = perf_cpu_notify,
4512         .priority               = 20,
4513 };
4514
4515 void __init perf_counter_init(void)
4516 {
4517         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4518                         (void *)(long)smp_processor_id());
4519         register_cpu_notifier(&perf_cpu_nb);
4520 }
4521
4522 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4523 {
4524         return sprintf(buf, "%d\n", perf_reserved_percpu);
4525 }
4526
4527 static ssize_t
4528 perf_set_reserve_percpu(struct sysdev_class *class,
4529                         const char *buf,
4530                         size_t count)
4531 {
4532         struct perf_cpu_context *cpuctx;
4533         unsigned long val;
4534         int err, cpu, mpt;
4535
4536         err = strict_strtoul(buf, 10, &val);
4537         if (err)
4538                 return err;
4539         if (val > perf_max_counters)
4540                 return -EINVAL;
4541
4542         spin_lock(&perf_resource_lock);
4543         perf_reserved_percpu = val;
4544         for_each_online_cpu(cpu) {
4545                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4546                 spin_lock_irq(&cpuctx->ctx.lock);
4547                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4548                           perf_max_counters - perf_reserved_percpu);
4549                 cpuctx->max_pertask = mpt;
4550                 spin_unlock_irq(&cpuctx->ctx.lock);
4551         }
4552         spin_unlock(&perf_resource_lock);
4553
4554         return count;
4555 }
4556
4557 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4558 {
4559         return sprintf(buf, "%d\n", perf_overcommit);
4560 }
4561
4562 static ssize_t
4563 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4564 {
4565         unsigned long val;
4566         int err;
4567
4568         err = strict_strtoul(buf, 10, &val);
4569         if (err)
4570                 return err;
4571         if (val > 1)
4572                 return -EINVAL;
4573
4574         spin_lock(&perf_resource_lock);
4575         perf_overcommit = val;
4576         spin_unlock(&perf_resource_lock);
4577
4578         return count;
4579 }
4580
4581 static SYSDEV_CLASS_ATTR(
4582                                 reserve_percpu,
4583                                 0644,
4584                                 perf_show_reserve_percpu,
4585                                 perf_set_reserve_percpu
4586                         );
4587
4588 static SYSDEV_CLASS_ATTR(
4589                                 overcommit,
4590                                 0644,
4591                                 perf_show_overcommit,
4592                                 perf_set_overcommit
4593                         );
4594
4595 static struct attribute *perfclass_attrs[] = {
4596         &attr_reserve_percpu.attr,
4597         &attr_overcommit.attr,
4598         NULL
4599 };
4600
4601 static struct attribute_group perfclass_attr_group = {
4602         .attrs                  = perfclass_attrs,
4603         .name                   = "perf_counters",
4604 };
4605
4606 static int __init perf_counter_sysfs_init(void)
4607 {
4608         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4609                                   &perfclass_attr_group);
4610 }
4611 device_initcall(perf_counter_sysfs_init);