perf_counter: Simplify and fix task migration counting
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47  * perf counter paranoia level:
48  *  0 - not paranoid
49  *  1 - disallow cpu counters to unpriv
50  *  2 - disallow kernel profiling to unpriv
51  */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56         return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61         return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67  * max perf counter sample rate
68  */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74  * Lock for (sysadmin-configurable) counter reservations:
75  */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79  * Architecture provided APIs - weak aliases:
80  */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83         return NULL;
84 }
85
86 void __weak hw_perf_disable(void)               { barrier(); }
87 void __weak hw_perf_enable(void)                { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93                struct perf_cpu_context *cpuctx,
94                struct perf_counter_context *ctx, int cpu)
95 {
96         return 0;
97 }
98
99 void __weak perf_counter_print_debug(void)      { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105         __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110         return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115         __perf_disable();
116         hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121         if (__perf_enable())
122                 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132         struct perf_counter_context *ctx;
133
134         ctx = container_of(head, struct perf_counter_context, rcu_head);
135         kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140         if (atomic_dec_and_test(&ctx->refcount)) {
141                 if (ctx->parent_ctx)
142                         put_ctx(ctx->parent_ctx);
143                 if (ctx->task)
144                         put_task_struct(ctx->task);
145                 call_rcu(&ctx->rcu_head, free_ctx);
146         }
147 }
148
149 /*
150  * Get the perf_counter_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 {
157         struct perf_counter_context *ctx;
158
159         rcu_read_lock();
160  retry:
161         ctx = rcu_dereference(task->perf_counter_ctxp);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_counter_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175                         spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178         }
179         rcu_read_unlock();
180         return ctx;
181 }
182
183 /*
184  * Get the context for a task and increment its pin_count so it
185  * can't get swapped to another task.  This also increments its
186  * reference count so that the context can't get freed.
187  */
188 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
189 {
190         struct perf_counter_context *ctx;
191         unsigned long flags;
192
193         ctx = perf_lock_task_context(task, &flags);
194         if (ctx) {
195                 ++ctx->pin_count;
196                 get_ctx(ctx);
197                 spin_unlock_irqrestore(&ctx->lock, flags);
198         }
199         return ctx;
200 }
201
202 static void perf_unpin_context(struct perf_counter_context *ctx)
203 {
204         unsigned long flags;
205
206         spin_lock_irqsave(&ctx->lock, flags);
207         --ctx->pin_count;
208         spin_unlock_irqrestore(&ctx->lock, flags);
209         put_ctx(ctx);
210 }
211
212 /*
213  * Add a counter from the lists for its context.
214  * Must be called with ctx->mutex and ctx->lock held.
215  */
216 static void
217 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
218 {
219         struct perf_counter *group_leader = counter->group_leader;
220
221         /*
222          * Depending on whether it is a standalone or sibling counter,
223          * add it straight to the context's counter list, or to the group
224          * leader's sibling list:
225          */
226         if (group_leader == counter)
227                 list_add_tail(&counter->list_entry, &ctx->counter_list);
228         else {
229                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
230                 group_leader->nr_siblings++;
231         }
232
233         list_add_rcu(&counter->event_entry, &ctx->event_list);
234         ctx->nr_counters++;
235 }
236
237 /*
238  * Remove a counter from the lists for its context.
239  * Must be called with ctx->mutex and ctx->lock held.
240  */
241 static void
242 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
243 {
244         struct perf_counter *sibling, *tmp;
245
246         if (list_empty(&counter->list_entry))
247                 return;
248         ctx->nr_counters--;
249
250         list_del_init(&counter->list_entry);
251         list_del_rcu(&counter->event_entry);
252
253         if (counter->group_leader != counter)
254                 counter->group_leader->nr_siblings--;
255
256         /*
257          * If this was a group counter with sibling counters then
258          * upgrade the siblings to singleton counters by adding them
259          * to the context list directly:
260          */
261         list_for_each_entry_safe(sibling, tmp,
262                                  &counter->sibling_list, list_entry) {
263
264                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
265                 sibling->group_leader = sibling;
266         }
267 }
268
269 static void
270 counter_sched_out(struct perf_counter *counter,
271                   struct perf_cpu_context *cpuctx,
272                   struct perf_counter_context *ctx)
273 {
274         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
275                 return;
276
277         counter->state = PERF_COUNTER_STATE_INACTIVE;
278         counter->tstamp_stopped = ctx->time;
279         counter->pmu->disable(counter);
280         counter->oncpu = -1;
281
282         if (!is_software_counter(counter))
283                 cpuctx->active_oncpu--;
284         ctx->nr_active--;
285         if (counter->attr.exclusive || !cpuctx->active_oncpu)
286                 cpuctx->exclusive = 0;
287 }
288
289 static void
290 group_sched_out(struct perf_counter *group_counter,
291                 struct perf_cpu_context *cpuctx,
292                 struct perf_counter_context *ctx)
293 {
294         struct perf_counter *counter;
295
296         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
297                 return;
298
299         counter_sched_out(group_counter, cpuctx, ctx);
300
301         /*
302          * Schedule out siblings (if any):
303          */
304         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
305                 counter_sched_out(counter, cpuctx, ctx);
306
307         if (group_counter->attr.exclusive)
308                 cpuctx->exclusive = 0;
309 }
310
311 /*
312  * Cross CPU call to remove a performance counter
313  *
314  * We disable the counter on the hardware level first. After that we
315  * remove it from the context list.
316  */
317 static void __perf_counter_remove_from_context(void *info)
318 {
319         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
320         struct perf_counter *counter = info;
321         struct perf_counter_context *ctx = counter->ctx;
322
323         /*
324          * If this is a task context, we need to check whether it is
325          * the current task context of this cpu. If not it has been
326          * scheduled out before the smp call arrived.
327          */
328         if (ctx->task && cpuctx->task_ctx != ctx)
329                 return;
330
331         spin_lock(&ctx->lock);
332         /*
333          * Protect the list operation against NMI by disabling the
334          * counters on a global level.
335          */
336         perf_disable();
337
338         counter_sched_out(counter, cpuctx, ctx);
339
340         list_del_counter(counter, ctx);
341
342         if (!ctx->task) {
343                 /*
344                  * Allow more per task counters with respect to the
345                  * reservation:
346                  */
347                 cpuctx->max_pertask =
348                         min(perf_max_counters - ctx->nr_counters,
349                             perf_max_counters - perf_reserved_percpu);
350         }
351
352         perf_enable();
353         spin_unlock(&ctx->lock);
354 }
355
356
357 /*
358  * Remove the counter from a task's (or a CPU's) list of counters.
359  *
360  * Must be called with ctx->mutex held.
361  *
362  * CPU counters are removed with a smp call. For task counters we only
363  * call when the task is on a CPU.
364  *
365  * If counter->ctx is a cloned context, callers must make sure that
366  * every task struct that counter->ctx->task could possibly point to
367  * remains valid.  This is OK when called from perf_release since
368  * that only calls us on the top-level context, which can't be a clone.
369  * When called from perf_counter_exit_task, it's OK because the
370  * context has been detached from its task.
371  */
372 static void perf_counter_remove_from_context(struct perf_counter *counter)
373 {
374         struct perf_counter_context *ctx = counter->ctx;
375         struct task_struct *task = ctx->task;
376
377         if (!task) {
378                 /*
379                  * Per cpu counters are removed via an smp call and
380                  * the removal is always sucessful.
381                  */
382                 smp_call_function_single(counter->cpu,
383                                          __perf_counter_remove_from_context,
384                                          counter, 1);
385                 return;
386         }
387
388 retry:
389         task_oncpu_function_call(task, __perf_counter_remove_from_context,
390                                  counter);
391
392         spin_lock_irq(&ctx->lock);
393         /*
394          * If the context is active we need to retry the smp call.
395          */
396         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
397                 spin_unlock_irq(&ctx->lock);
398                 goto retry;
399         }
400
401         /*
402          * The lock prevents that this context is scheduled in so we
403          * can remove the counter safely, if the call above did not
404          * succeed.
405          */
406         if (!list_empty(&counter->list_entry)) {
407                 list_del_counter(counter, ctx);
408         }
409         spin_unlock_irq(&ctx->lock);
410 }
411
412 static inline u64 perf_clock(void)
413 {
414         return cpu_clock(smp_processor_id());
415 }
416
417 /*
418  * Update the record of the current time in a context.
419  */
420 static void update_context_time(struct perf_counter_context *ctx)
421 {
422         u64 now = perf_clock();
423
424         ctx->time += now - ctx->timestamp;
425         ctx->timestamp = now;
426 }
427
428 /*
429  * Update the total_time_enabled and total_time_running fields for a counter.
430  */
431 static void update_counter_times(struct perf_counter *counter)
432 {
433         struct perf_counter_context *ctx = counter->ctx;
434         u64 run_end;
435
436         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
437                 return;
438
439         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
440
441         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
442                 run_end = counter->tstamp_stopped;
443         else
444                 run_end = ctx->time;
445
446         counter->total_time_running = run_end - counter->tstamp_running;
447 }
448
449 /*
450  * Update total_time_enabled and total_time_running for all counters in a group.
451  */
452 static void update_group_times(struct perf_counter *leader)
453 {
454         struct perf_counter *counter;
455
456         update_counter_times(leader);
457         list_for_each_entry(counter, &leader->sibling_list, list_entry)
458                 update_counter_times(counter);
459 }
460
461 /*
462  * Cross CPU call to disable a performance counter
463  */
464 static void __perf_counter_disable(void *info)
465 {
466         struct perf_counter *counter = info;
467         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
468         struct perf_counter_context *ctx = counter->ctx;
469
470         /*
471          * If this is a per-task counter, need to check whether this
472          * counter's task is the current task on this cpu.
473          */
474         if (ctx->task && cpuctx->task_ctx != ctx)
475                 return;
476
477         spin_lock(&ctx->lock);
478
479         /*
480          * If the counter is on, turn it off.
481          * If it is in error state, leave it in error state.
482          */
483         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
484                 update_context_time(ctx);
485                 update_counter_times(counter);
486                 if (counter == counter->group_leader)
487                         group_sched_out(counter, cpuctx, ctx);
488                 else
489                         counter_sched_out(counter, cpuctx, ctx);
490                 counter->state = PERF_COUNTER_STATE_OFF;
491         }
492
493         spin_unlock(&ctx->lock);
494 }
495
496 /*
497  * Disable a counter.
498  *
499  * If counter->ctx is a cloned context, callers must make sure that
500  * every task struct that counter->ctx->task could possibly point to
501  * remains valid.  This condition is satisifed when called through
502  * perf_counter_for_each_child or perf_counter_for_each because they
503  * hold the top-level counter's child_mutex, so any descendant that
504  * goes to exit will block in sync_child_counter.
505  * When called from perf_pending_counter it's OK because counter->ctx
506  * is the current context on this CPU and preemption is disabled,
507  * hence we can't get into perf_counter_task_sched_out for this context.
508  */
509 static void perf_counter_disable(struct perf_counter *counter)
510 {
511         struct perf_counter_context *ctx = counter->ctx;
512         struct task_struct *task = ctx->task;
513
514         if (!task) {
515                 /*
516                  * Disable the counter on the cpu that it's on
517                  */
518                 smp_call_function_single(counter->cpu, __perf_counter_disable,
519                                          counter, 1);
520                 return;
521         }
522
523  retry:
524         task_oncpu_function_call(task, __perf_counter_disable, counter);
525
526         spin_lock_irq(&ctx->lock);
527         /*
528          * If the counter is still active, we need to retry the cross-call.
529          */
530         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
531                 spin_unlock_irq(&ctx->lock);
532                 goto retry;
533         }
534
535         /*
536          * Since we have the lock this context can't be scheduled
537          * in, so we can change the state safely.
538          */
539         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
540                 update_counter_times(counter);
541                 counter->state = PERF_COUNTER_STATE_OFF;
542         }
543
544         spin_unlock_irq(&ctx->lock);
545 }
546
547 static int
548 counter_sched_in(struct perf_counter *counter,
549                  struct perf_cpu_context *cpuctx,
550                  struct perf_counter_context *ctx,
551                  int cpu)
552 {
553         if (counter->state <= PERF_COUNTER_STATE_OFF)
554                 return 0;
555
556         counter->state = PERF_COUNTER_STATE_ACTIVE;
557         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
558         /*
559          * The new state must be visible before we turn it on in the hardware:
560          */
561         smp_wmb();
562
563         if (counter->pmu->enable(counter)) {
564                 counter->state = PERF_COUNTER_STATE_INACTIVE;
565                 counter->oncpu = -1;
566                 return -EAGAIN;
567         }
568
569         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
570
571         if (!is_software_counter(counter))
572                 cpuctx->active_oncpu++;
573         ctx->nr_active++;
574
575         if (counter->attr.exclusive)
576                 cpuctx->exclusive = 1;
577
578         return 0;
579 }
580
581 static int
582 group_sched_in(struct perf_counter *group_counter,
583                struct perf_cpu_context *cpuctx,
584                struct perf_counter_context *ctx,
585                int cpu)
586 {
587         struct perf_counter *counter, *partial_group;
588         int ret;
589
590         if (group_counter->state == PERF_COUNTER_STATE_OFF)
591                 return 0;
592
593         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
594         if (ret)
595                 return ret < 0 ? ret : 0;
596
597         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
598                 return -EAGAIN;
599
600         /*
601          * Schedule in siblings as one group (if any):
602          */
603         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
604                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
605                         partial_group = counter;
606                         goto group_error;
607                 }
608         }
609
610         return 0;
611
612 group_error:
613         /*
614          * Groups can be scheduled in as one unit only, so undo any
615          * partial group before returning:
616          */
617         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
618                 if (counter == partial_group)
619                         break;
620                 counter_sched_out(counter, cpuctx, ctx);
621         }
622         counter_sched_out(group_counter, cpuctx, ctx);
623
624         return -EAGAIN;
625 }
626
627 /*
628  * Return 1 for a group consisting entirely of software counters,
629  * 0 if the group contains any hardware counters.
630  */
631 static int is_software_only_group(struct perf_counter *leader)
632 {
633         struct perf_counter *counter;
634
635         if (!is_software_counter(leader))
636                 return 0;
637
638         list_for_each_entry(counter, &leader->sibling_list, list_entry)
639                 if (!is_software_counter(counter))
640                         return 0;
641
642         return 1;
643 }
644
645 /*
646  * Work out whether we can put this counter group on the CPU now.
647  */
648 static int group_can_go_on(struct perf_counter *counter,
649                            struct perf_cpu_context *cpuctx,
650                            int can_add_hw)
651 {
652         /*
653          * Groups consisting entirely of software counters can always go on.
654          */
655         if (is_software_only_group(counter))
656                 return 1;
657         /*
658          * If an exclusive group is already on, no other hardware
659          * counters can go on.
660          */
661         if (cpuctx->exclusive)
662                 return 0;
663         /*
664          * If this group is exclusive and there are already
665          * counters on the CPU, it can't go on.
666          */
667         if (counter->attr.exclusive && cpuctx->active_oncpu)
668                 return 0;
669         /*
670          * Otherwise, try to add it if all previous groups were able
671          * to go on.
672          */
673         return can_add_hw;
674 }
675
676 static void add_counter_to_ctx(struct perf_counter *counter,
677                                struct perf_counter_context *ctx)
678 {
679         list_add_counter(counter, ctx);
680         counter->tstamp_enabled = ctx->time;
681         counter->tstamp_running = ctx->time;
682         counter->tstamp_stopped = ctx->time;
683 }
684
685 /*
686  * Cross CPU call to install and enable a performance counter
687  *
688  * Must be called with ctx->mutex held
689  */
690 static void __perf_install_in_context(void *info)
691 {
692         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
693         struct perf_counter *counter = info;
694         struct perf_counter_context *ctx = counter->ctx;
695         struct perf_counter *leader = counter->group_leader;
696         int cpu = smp_processor_id();
697         int err;
698
699         /*
700          * If this is a task context, we need to check whether it is
701          * the current task context of this cpu. If not it has been
702          * scheduled out before the smp call arrived.
703          * Or possibly this is the right context but it isn't
704          * on this cpu because it had no counters.
705          */
706         if (ctx->task && cpuctx->task_ctx != ctx) {
707                 if (cpuctx->task_ctx || ctx->task != current)
708                         return;
709                 cpuctx->task_ctx = ctx;
710         }
711
712         spin_lock(&ctx->lock);
713         ctx->is_active = 1;
714         update_context_time(ctx);
715
716         /*
717          * Protect the list operation against NMI by disabling the
718          * counters on a global level. NOP for non NMI based counters.
719          */
720         perf_disable();
721
722         add_counter_to_ctx(counter, ctx);
723
724         /*
725          * Don't put the counter on if it is disabled or if
726          * it is in a group and the group isn't on.
727          */
728         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
729             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
730                 goto unlock;
731
732         /*
733          * An exclusive counter can't go on if there are already active
734          * hardware counters, and no hardware counter can go on if there
735          * is already an exclusive counter on.
736          */
737         if (!group_can_go_on(counter, cpuctx, 1))
738                 err = -EEXIST;
739         else
740                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
741
742         if (err) {
743                 /*
744                  * This counter couldn't go on.  If it is in a group
745                  * then we have to pull the whole group off.
746                  * If the counter group is pinned then put it in error state.
747                  */
748                 if (leader != counter)
749                         group_sched_out(leader, cpuctx, ctx);
750                 if (leader->attr.pinned) {
751                         update_group_times(leader);
752                         leader->state = PERF_COUNTER_STATE_ERROR;
753                 }
754         }
755
756         if (!err && !ctx->task && cpuctx->max_pertask)
757                 cpuctx->max_pertask--;
758
759  unlock:
760         perf_enable();
761
762         spin_unlock(&ctx->lock);
763 }
764
765 /*
766  * Attach a performance counter to a context
767  *
768  * First we add the counter to the list with the hardware enable bit
769  * in counter->hw_config cleared.
770  *
771  * If the counter is attached to a task which is on a CPU we use a smp
772  * call to enable it in the task context. The task might have been
773  * scheduled away, but we check this in the smp call again.
774  *
775  * Must be called with ctx->mutex held.
776  */
777 static void
778 perf_install_in_context(struct perf_counter_context *ctx,
779                         struct perf_counter *counter,
780                         int cpu)
781 {
782         struct task_struct *task = ctx->task;
783
784         if (!task) {
785                 /*
786                  * Per cpu counters are installed via an smp call and
787                  * the install is always sucessful.
788                  */
789                 smp_call_function_single(cpu, __perf_install_in_context,
790                                          counter, 1);
791                 return;
792         }
793
794 retry:
795         task_oncpu_function_call(task, __perf_install_in_context,
796                                  counter);
797
798         spin_lock_irq(&ctx->lock);
799         /*
800          * we need to retry the smp call.
801          */
802         if (ctx->is_active && list_empty(&counter->list_entry)) {
803                 spin_unlock_irq(&ctx->lock);
804                 goto retry;
805         }
806
807         /*
808          * The lock prevents that this context is scheduled in so we
809          * can add the counter safely, if it the call above did not
810          * succeed.
811          */
812         if (list_empty(&counter->list_entry))
813                 add_counter_to_ctx(counter, ctx);
814         spin_unlock_irq(&ctx->lock);
815 }
816
817 /*
818  * Cross CPU call to enable a performance counter
819  */
820 static void __perf_counter_enable(void *info)
821 {
822         struct perf_counter *counter = info;
823         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
824         struct perf_counter_context *ctx = counter->ctx;
825         struct perf_counter *leader = counter->group_leader;
826         int err;
827
828         /*
829          * If this is a per-task counter, need to check whether this
830          * counter's task is the current task on this cpu.
831          */
832         if (ctx->task && cpuctx->task_ctx != ctx) {
833                 if (cpuctx->task_ctx || ctx->task != current)
834                         return;
835                 cpuctx->task_ctx = ctx;
836         }
837
838         spin_lock(&ctx->lock);
839         ctx->is_active = 1;
840         update_context_time(ctx);
841
842         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
843                 goto unlock;
844         counter->state = PERF_COUNTER_STATE_INACTIVE;
845         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
846
847         /*
848          * If the counter is in a group and isn't the group leader,
849          * then don't put it on unless the group is on.
850          */
851         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
852                 goto unlock;
853
854         if (!group_can_go_on(counter, cpuctx, 1)) {
855                 err = -EEXIST;
856         } else {
857                 perf_disable();
858                 if (counter == leader)
859                         err = group_sched_in(counter, cpuctx, ctx,
860                                              smp_processor_id());
861                 else
862                         err = counter_sched_in(counter, cpuctx, ctx,
863                                                smp_processor_id());
864                 perf_enable();
865         }
866
867         if (err) {
868                 /*
869                  * If this counter can't go on and it's part of a
870                  * group, then the whole group has to come off.
871                  */
872                 if (leader != counter)
873                         group_sched_out(leader, cpuctx, ctx);
874                 if (leader->attr.pinned) {
875                         update_group_times(leader);
876                         leader->state = PERF_COUNTER_STATE_ERROR;
877                 }
878         }
879
880  unlock:
881         spin_unlock(&ctx->lock);
882 }
883
884 /*
885  * Enable a counter.
886  *
887  * If counter->ctx is a cloned context, callers must make sure that
888  * every task struct that counter->ctx->task could possibly point to
889  * remains valid.  This condition is satisfied when called through
890  * perf_counter_for_each_child or perf_counter_for_each as described
891  * for perf_counter_disable.
892  */
893 static void perf_counter_enable(struct perf_counter *counter)
894 {
895         struct perf_counter_context *ctx = counter->ctx;
896         struct task_struct *task = ctx->task;
897
898         if (!task) {
899                 /*
900                  * Enable the counter on the cpu that it's on
901                  */
902                 smp_call_function_single(counter->cpu, __perf_counter_enable,
903                                          counter, 1);
904                 return;
905         }
906
907         spin_lock_irq(&ctx->lock);
908         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
909                 goto out;
910
911         /*
912          * If the counter is in error state, clear that first.
913          * That way, if we see the counter in error state below, we
914          * know that it has gone back into error state, as distinct
915          * from the task having been scheduled away before the
916          * cross-call arrived.
917          */
918         if (counter->state == PERF_COUNTER_STATE_ERROR)
919                 counter->state = PERF_COUNTER_STATE_OFF;
920
921  retry:
922         spin_unlock_irq(&ctx->lock);
923         task_oncpu_function_call(task, __perf_counter_enable, counter);
924
925         spin_lock_irq(&ctx->lock);
926
927         /*
928          * If the context is active and the counter is still off,
929          * we need to retry the cross-call.
930          */
931         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
932                 goto retry;
933
934         /*
935          * Since we have the lock this context can't be scheduled
936          * in, so we can change the state safely.
937          */
938         if (counter->state == PERF_COUNTER_STATE_OFF) {
939                 counter->state = PERF_COUNTER_STATE_INACTIVE;
940                 counter->tstamp_enabled =
941                         ctx->time - counter->total_time_enabled;
942         }
943  out:
944         spin_unlock_irq(&ctx->lock);
945 }
946
947 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
948 {
949         /*
950          * not supported on inherited counters
951          */
952         if (counter->attr.inherit)
953                 return -EINVAL;
954
955         atomic_add(refresh, &counter->event_limit);
956         perf_counter_enable(counter);
957
958         return 0;
959 }
960
961 void __perf_counter_sched_out(struct perf_counter_context *ctx,
962                               struct perf_cpu_context *cpuctx)
963 {
964         struct perf_counter *counter;
965
966         spin_lock(&ctx->lock);
967         ctx->is_active = 0;
968         if (likely(!ctx->nr_counters))
969                 goto out;
970         update_context_time(ctx);
971
972         perf_disable();
973         if (ctx->nr_active) {
974                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
975                         if (counter != counter->group_leader)
976                                 counter_sched_out(counter, cpuctx, ctx);
977                         else
978                                 group_sched_out(counter, cpuctx, ctx);
979                 }
980         }
981         perf_enable();
982  out:
983         spin_unlock(&ctx->lock);
984 }
985
986 /*
987  * Test whether two contexts are equivalent, i.e. whether they
988  * have both been cloned from the same version of the same context
989  * and they both have the same number of enabled counters.
990  * If the number of enabled counters is the same, then the set
991  * of enabled counters should be the same, because these are both
992  * inherited contexts, therefore we can't access individual counters
993  * in them directly with an fd; we can only enable/disable all
994  * counters via prctl, or enable/disable all counters in a family
995  * via ioctl, which will have the same effect on both contexts.
996  */
997 static int context_equiv(struct perf_counter_context *ctx1,
998                          struct perf_counter_context *ctx2)
999 {
1000         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1001                 && ctx1->parent_gen == ctx2->parent_gen
1002                 && !ctx1->pin_count && !ctx2->pin_count;
1003 }
1004
1005 /*
1006  * Called from scheduler to remove the counters of the current task,
1007  * with interrupts disabled.
1008  *
1009  * We stop each counter and update the counter value in counter->count.
1010  *
1011  * This does not protect us against NMI, but disable()
1012  * sets the disabled bit in the control field of counter _before_
1013  * accessing the counter control register. If a NMI hits, then it will
1014  * not restart the counter.
1015  */
1016 void perf_counter_task_sched_out(struct task_struct *task,
1017                                  struct task_struct *next, int cpu)
1018 {
1019         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1020         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1021         struct perf_counter_context *next_ctx;
1022         struct perf_counter_context *parent;
1023         struct pt_regs *regs;
1024         int do_switch = 1;
1025
1026         regs = task_pt_regs(task);
1027         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1028
1029         if (likely(!ctx || !cpuctx->task_ctx))
1030                 return;
1031
1032         update_context_time(ctx);
1033
1034         rcu_read_lock();
1035         parent = rcu_dereference(ctx->parent_ctx);
1036         next_ctx = next->perf_counter_ctxp;
1037         if (parent && next_ctx &&
1038             rcu_dereference(next_ctx->parent_ctx) == parent) {
1039                 /*
1040                  * Looks like the two contexts are clones, so we might be
1041                  * able to optimize the context switch.  We lock both
1042                  * contexts and check that they are clones under the
1043                  * lock (including re-checking that neither has been
1044                  * uncloned in the meantime).  It doesn't matter which
1045                  * order we take the locks because no other cpu could
1046                  * be trying to lock both of these tasks.
1047                  */
1048                 spin_lock(&ctx->lock);
1049                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1050                 if (context_equiv(ctx, next_ctx)) {
1051                         /*
1052                          * XXX do we need a memory barrier of sorts
1053                          * wrt to rcu_dereference() of perf_counter_ctxp
1054                          */
1055                         task->perf_counter_ctxp = next_ctx;
1056                         next->perf_counter_ctxp = ctx;
1057                         ctx->task = next;
1058                         next_ctx->task = task;
1059                         do_switch = 0;
1060                 }
1061                 spin_unlock(&next_ctx->lock);
1062                 spin_unlock(&ctx->lock);
1063         }
1064         rcu_read_unlock();
1065
1066         if (do_switch) {
1067                 __perf_counter_sched_out(ctx, cpuctx);
1068                 cpuctx->task_ctx = NULL;
1069         }
1070 }
1071
1072 /*
1073  * Called with IRQs disabled
1074  */
1075 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1076 {
1077         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1078
1079         if (!cpuctx->task_ctx)
1080                 return;
1081
1082         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1083                 return;
1084
1085         __perf_counter_sched_out(ctx, cpuctx);
1086         cpuctx->task_ctx = NULL;
1087 }
1088
1089 /*
1090  * Called with IRQs disabled
1091  */
1092 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1093 {
1094         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1095 }
1096
1097 static void
1098 __perf_counter_sched_in(struct perf_counter_context *ctx,
1099                         struct perf_cpu_context *cpuctx, int cpu)
1100 {
1101         struct perf_counter *counter;
1102         int can_add_hw = 1;
1103
1104         spin_lock(&ctx->lock);
1105         ctx->is_active = 1;
1106         if (likely(!ctx->nr_counters))
1107                 goto out;
1108
1109         ctx->timestamp = perf_clock();
1110
1111         perf_disable();
1112
1113         /*
1114          * First go through the list and put on any pinned groups
1115          * in order to give them the best chance of going on.
1116          */
1117         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1118                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1119                     !counter->attr.pinned)
1120                         continue;
1121                 if (counter->cpu != -1 && counter->cpu != cpu)
1122                         continue;
1123
1124                 if (counter != counter->group_leader)
1125                         counter_sched_in(counter, cpuctx, ctx, cpu);
1126                 else {
1127                         if (group_can_go_on(counter, cpuctx, 1))
1128                                 group_sched_in(counter, cpuctx, ctx, cpu);
1129                 }
1130
1131                 /*
1132                  * If this pinned group hasn't been scheduled,
1133                  * put it in error state.
1134                  */
1135                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1136                         update_group_times(counter);
1137                         counter->state = PERF_COUNTER_STATE_ERROR;
1138                 }
1139         }
1140
1141         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1142                 /*
1143                  * Ignore counters in OFF or ERROR state, and
1144                  * ignore pinned counters since we did them already.
1145                  */
1146                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1147                     counter->attr.pinned)
1148                         continue;
1149
1150                 /*
1151                  * Listen to the 'cpu' scheduling filter constraint
1152                  * of counters:
1153                  */
1154                 if (counter->cpu != -1 && counter->cpu != cpu)
1155                         continue;
1156
1157                 if (counter != counter->group_leader) {
1158                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1159                                 can_add_hw = 0;
1160                 } else {
1161                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1162                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1163                                         can_add_hw = 0;
1164                         }
1165                 }
1166         }
1167         perf_enable();
1168  out:
1169         spin_unlock(&ctx->lock);
1170 }
1171
1172 /*
1173  * Called from scheduler to add the counters of the current task
1174  * with interrupts disabled.
1175  *
1176  * We restore the counter value and then enable it.
1177  *
1178  * This does not protect us against NMI, but enable()
1179  * sets the enabled bit in the control field of counter _before_
1180  * accessing the counter control register. If a NMI hits, then it will
1181  * keep the counter running.
1182  */
1183 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1184 {
1185         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1186         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1187
1188         if (likely(!ctx))
1189                 return;
1190         if (cpuctx->task_ctx == ctx)
1191                 return;
1192         __perf_counter_sched_in(ctx, cpuctx, cpu);
1193         cpuctx->task_ctx = ctx;
1194 }
1195
1196 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1197 {
1198         struct perf_counter_context *ctx = &cpuctx->ctx;
1199
1200         __perf_counter_sched_in(ctx, cpuctx, cpu);
1201 }
1202
1203 #define MAX_INTERRUPTS (~0ULL)
1204
1205 static void perf_log_throttle(struct perf_counter *counter, int enable);
1206 static void perf_log_period(struct perf_counter *counter, u64 period);
1207
1208 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1209 {
1210         struct hw_perf_counter *hwc = &counter->hw;
1211         u64 period, sample_period;
1212         s64 delta;
1213
1214         events *= hwc->sample_period;
1215         period = div64_u64(events, counter->attr.sample_freq);
1216
1217         delta = (s64)(period - hwc->sample_period);
1218         delta = (delta + 7) / 8; /* low pass filter */
1219
1220         sample_period = hwc->sample_period + delta;
1221
1222         if (!sample_period)
1223                 sample_period = 1;
1224
1225         perf_log_period(counter, sample_period);
1226
1227         hwc->sample_period = sample_period;
1228 }
1229
1230 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1231 {
1232         struct perf_counter *counter;
1233         struct hw_perf_counter *hwc;
1234         u64 interrupts, freq;
1235
1236         spin_lock(&ctx->lock);
1237         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1238                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1239                         continue;
1240
1241                 hwc = &counter->hw;
1242
1243                 interrupts = hwc->interrupts;
1244                 hwc->interrupts = 0;
1245
1246                 /*
1247                  * unthrottle counters on the tick
1248                  */
1249                 if (interrupts == MAX_INTERRUPTS) {
1250                         perf_log_throttle(counter, 1);
1251                         counter->pmu->unthrottle(counter);
1252                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1253                 }
1254
1255                 if (!counter->attr.freq || !counter->attr.sample_freq)
1256                         continue;
1257
1258                 /*
1259                  * if the specified freq < HZ then we need to skip ticks
1260                  */
1261                 if (counter->attr.sample_freq < HZ) {
1262                         freq = counter->attr.sample_freq;
1263
1264                         hwc->freq_count += freq;
1265                         hwc->freq_interrupts += interrupts;
1266
1267                         if (hwc->freq_count < HZ)
1268                                 continue;
1269
1270                         interrupts = hwc->freq_interrupts;
1271                         hwc->freq_interrupts = 0;
1272                         hwc->freq_count -= HZ;
1273                 } else
1274                         freq = HZ;
1275
1276                 perf_adjust_period(counter, freq * interrupts);
1277
1278                 /*
1279                  * In order to avoid being stalled by an (accidental) huge
1280                  * sample period, force reset the sample period if we didn't
1281                  * get any events in this freq period.
1282                  */
1283                 if (!interrupts) {
1284                         perf_disable();
1285                         counter->pmu->disable(counter);
1286                         atomic64_set(&hwc->period_left, 0);
1287                         counter->pmu->enable(counter);
1288                         perf_enable();
1289                 }
1290         }
1291         spin_unlock(&ctx->lock);
1292 }
1293
1294 /*
1295  * Round-robin a context's counters:
1296  */
1297 static void rotate_ctx(struct perf_counter_context *ctx)
1298 {
1299         struct perf_counter *counter;
1300
1301         if (!ctx->nr_counters)
1302                 return;
1303
1304         spin_lock(&ctx->lock);
1305         /*
1306          * Rotate the first entry last (works just fine for group counters too):
1307          */
1308         perf_disable();
1309         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1310                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1311                 break;
1312         }
1313         perf_enable();
1314
1315         spin_unlock(&ctx->lock);
1316 }
1317
1318 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1319 {
1320         struct perf_cpu_context *cpuctx;
1321         struct perf_counter_context *ctx;
1322
1323         if (!atomic_read(&nr_counters))
1324                 return;
1325
1326         cpuctx = &per_cpu(perf_cpu_context, cpu);
1327         ctx = curr->perf_counter_ctxp;
1328
1329         perf_ctx_adjust_freq(&cpuctx->ctx);
1330         if (ctx)
1331                 perf_ctx_adjust_freq(ctx);
1332
1333         perf_counter_cpu_sched_out(cpuctx);
1334         if (ctx)
1335                 __perf_counter_task_sched_out(ctx);
1336
1337         rotate_ctx(&cpuctx->ctx);
1338         if (ctx)
1339                 rotate_ctx(ctx);
1340
1341         perf_counter_cpu_sched_in(cpuctx, cpu);
1342         if (ctx)
1343                 perf_counter_task_sched_in(curr, cpu);
1344 }
1345
1346 /*
1347  * Cross CPU call to read the hardware counter
1348  */
1349 static void __read(void *info)
1350 {
1351         struct perf_counter *counter = info;
1352         struct perf_counter_context *ctx = counter->ctx;
1353         unsigned long flags;
1354
1355         local_irq_save(flags);
1356         if (ctx->is_active)
1357                 update_context_time(ctx);
1358         counter->pmu->read(counter);
1359         update_counter_times(counter);
1360         local_irq_restore(flags);
1361 }
1362
1363 static u64 perf_counter_read(struct perf_counter *counter)
1364 {
1365         /*
1366          * If counter is enabled and currently active on a CPU, update the
1367          * value in the counter structure:
1368          */
1369         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1370                 smp_call_function_single(counter->oncpu,
1371                                          __read, counter, 1);
1372         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1373                 update_counter_times(counter);
1374         }
1375
1376         return atomic64_read(&counter->count);
1377 }
1378
1379 /*
1380  * Initialize the perf_counter context in a task_struct:
1381  */
1382 static void
1383 __perf_counter_init_context(struct perf_counter_context *ctx,
1384                             struct task_struct *task)
1385 {
1386         memset(ctx, 0, sizeof(*ctx));
1387         spin_lock_init(&ctx->lock);
1388         mutex_init(&ctx->mutex);
1389         INIT_LIST_HEAD(&ctx->counter_list);
1390         INIT_LIST_HEAD(&ctx->event_list);
1391         atomic_set(&ctx->refcount, 1);
1392         ctx->task = task;
1393 }
1394
1395 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1396 {
1397         struct perf_counter_context *parent_ctx;
1398         struct perf_counter_context *ctx;
1399         struct perf_cpu_context *cpuctx;
1400         struct task_struct *task;
1401         unsigned long flags;
1402         int err;
1403
1404         /*
1405          * If cpu is not a wildcard then this is a percpu counter:
1406          */
1407         if (cpu != -1) {
1408                 /* Must be root to operate on a CPU counter: */
1409                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1410                         return ERR_PTR(-EACCES);
1411
1412                 if (cpu < 0 || cpu > num_possible_cpus())
1413                         return ERR_PTR(-EINVAL);
1414
1415                 /*
1416                  * We could be clever and allow to attach a counter to an
1417                  * offline CPU and activate it when the CPU comes up, but
1418                  * that's for later.
1419                  */
1420                 if (!cpu_isset(cpu, cpu_online_map))
1421                         return ERR_PTR(-ENODEV);
1422
1423                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1424                 ctx = &cpuctx->ctx;
1425                 get_ctx(ctx);
1426
1427                 return ctx;
1428         }
1429
1430         rcu_read_lock();
1431         if (!pid)
1432                 task = current;
1433         else
1434                 task = find_task_by_vpid(pid);
1435         if (task)
1436                 get_task_struct(task);
1437         rcu_read_unlock();
1438
1439         if (!task)
1440                 return ERR_PTR(-ESRCH);
1441
1442         /*
1443          * Can't attach counters to a dying task.
1444          */
1445         err = -ESRCH;
1446         if (task->flags & PF_EXITING)
1447                 goto errout;
1448
1449         /* Reuse ptrace permission checks for now. */
1450         err = -EACCES;
1451         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1452                 goto errout;
1453
1454  retry:
1455         ctx = perf_lock_task_context(task, &flags);
1456         if (ctx) {
1457                 parent_ctx = ctx->parent_ctx;
1458                 if (parent_ctx) {
1459                         put_ctx(parent_ctx);
1460                         ctx->parent_ctx = NULL;         /* no longer a clone */
1461                 }
1462                 /*
1463                  * Get an extra reference before dropping the lock so that
1464                  * this context won't get freed if the task exits.
1465                  */
1466                 get_ctx(ctx);
1467                 spin_unlock_irqrestore(&ctx->lock, flags);
1468         }
1469
1470         if (!ctx) {
1471                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1472                 err = -ENOMEM;
1473                 if (!ctx)
1474                         goto errout;
1475                 __perf_counter_init_context(ctx, task);
1476                 get_ctx(ctx);
1477                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1478                         /*
1479                          * We raced with some other task; use
1480                          * the context they set.
1481                          */
1482                         kfree(ctx);
1483                         goto retry;
1484                 }
1485                 get_task_struct(task);
1486         }
1487
1488         put_task_struct(task);
1489         return ctx;
1490
1491  errout:
1492         put_task_struct(task);
1493         return ERR_PTR(err);
1494 }
1495
1496 static void free_counter_rcu(struct rcu_head *head)
1497 {
1498         struct perf_counter *counter;
1499
1500         counter = container_of(head, struct perf_counter, rcu_head);
1501         if (counter->ns)
1502                 put_pid_ns(counter->ns);
1503         kfree(counter);
1504 }
1505
1506 static void perf_pending_sync(struct perf_counter *counter);
1507
1508 static void free_counter(struct perf_counter *counter)
1509 {
1510         perf_pending_sync(counter);
1511
1512         atomic_dec(&nr_counters);
1513         if (counter->attr.mmap)
1514                 atomic_dec(&nr_mmap_counters);
1515         if (counter->attr.comm)
1516                 atomic_dec(&nr_comm_counters);
1517
1518         if (counter->destroy)
1519                 counter->destroy(counter);
1520
1521         put_ctx(counter->ctx);
1522         call_rcu(&counter->rcu_head, free_counter_rcu);
1523 }
1524
1525 /*
1526  * Called when the last reference to the file is gone.
1527  */
1528 static int perf_release(struct inode *inode, struct file *file)
1529 {
1530         struct perf_counter *counter = file->private_data;
1531         struct perf_counter_context *ctx = counter->ctx;
1532
1533         file->private_data = NULL;
1534
1535         WARN_ON_ONCE(ctx->parent_ctx);
1536         mutex_lock(&ctx->mutex);
1537         perf_counter_remove_from_context(counter);
1538         mutex_unlock(&ctx->mutex);
1539
1540         mutex_lock(&counter->owner->perf_counter_mutex);
1541         list_del_init(&counter->owner_entry);
1542         mutex_unlock(&counter->owner->perf_counter_mutex);
1543         put_task_struct(counter->owner);
1544
1545         free_counter(counter);
1546
1547         return 0;
1548 }
1549
1550 /*
1551  * Read the performance counter - simple non blocking version for now
1552  */
1553 static ssize_t
1554 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1555 {
1556         u64 values[4];
1557         int n;
1558
1559         /*
1560          * Return end-of-file for a read on a counter that is in
1561          * error state (i.e. because it was pinned but it couldn't be
1562          * scheduled on to the CPU at some point).
1563          */
1564         if (counter->state == PERF_COUNTER_STATE_ERROR)
1565                 return 0;
1566
1567         WARN_ON_ONCE(counter->ctx->parent_ctx);
1568         mutex_lock(&counter->child_mutex);
1569         values[0] = perf_counter_read(counter);
1570         n = 1;
1571         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1572                 values[n++] = counter->total_time_enabled +
1573                         atomic64_read(&counter->child_total_time_enabled);
1574         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1575                 values[n++] = counter->total_time_running +
1576                         atomic64_read(&counter->child_total_time_running);
1577         if (counter->attr.read_format & PERF_FORMAT_ID)
1578                 values[n++] = counter->id;
1579         mutex_unlock(&counter->child_mutex);
1580
1581         if (count < n * sizeof(u64))
1582                 return -EINVAL;
1583         count = n * sizeof(u64);
1584
1585         if (copy_to_user(buf, values, count))
1586                 return -EFAULT;
1587
1588         return count;
1589 }
1590
1591 static ssize_t
1592 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1593 {
1594         struct perf_counter *counter = file->private_data;
1595
1596         return perf_read_hw(counter, buf, count);
1597 }
1598
1599 static unsigned int perf_poll(struct file *file, poll_table *wait)
1600 {
1601         struct perf_counter *counter = file->private_data;
1602         struct perf_mmap_data *data;
1603         unsigned int events = POLL_HUP;
1604
1605         rcu_read_lock();
1606         data = rcu_dereference(counter->data);
1607         if (data)
1608                 events = atomic_xchg(&data->poll, 0);
1609         rcu_read_unlock();
1610
1611         poll_wait(file, &counter->waitq, wait);
1612
1613         return events;
1614 }
1615
1616 static void perf_counter_reset(struct perf_counter *counter)
1617 {
1618         (void)perf_counter_read(counter);
1619         atomic64_set(&counter->count, 0);
1620         perf_counter_update_userpage(counter);
1621 }
1622
1623 /*
1624  * Holding the top-level counter's child_mutex means that any
1625  * descendant process that has inherited this counter will block
1626  * in sync_child_counter if it goes to exit, thus satisfying the
1627  * task existence requirements of perf_counter_enable/disable.
1628  */
1629 static void perf_counter_for_each_child(struct perf_counter *counter,
1630                                         void (*func)(struct perf_counter *))
1631 {
1632         struct perf_counter *child;
1633
1634         WARN_ON_ONCE(counter->ctx->parent_ctx);
1635         mutex_lock(&counter->child_mutex);
1636         func(counter);
1637         list_for_each_entry(child, &counter->child_list, child_list)
1638                 func(child);
1639         mutex_unlock(&counter->child_mutex);
1640 }
1641
1642 static void perf_counter_for_each(struct perf_counter *counter,
1643                                   void (*func)(struct perf_counter *))
1644 {
1645         struct perf_counter_context *ctx = counter->ctx;
1646         struct perf_counter *sibling;
1647
1648         WARN_ON_ONCE(ctx->parent_ctx);
1649         mutex_lock(&ctx->mutex);
1650         counter = counter->group_leader;
1651
1652         perf_counter_for_each_child(counter, func);
1653         func(counter);
1654         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1655                 perf_counter_for_each_child(counter, func);
1656         mutex_unlock(&ctx->mutex);
1657 }
1658
1659 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1660 {
1661         struct perf_counter_context *ctx = counter->ctx;
1662         unsigned long size;
1663         int ret = 0;
1664         u64 value;
1665
1666         if (!counter->attr.sample_period)
1667                 return -EINVAL;
1668
1669         size = copy_from_user(&value, arg, sizeof(value));
1670         if (size != sizeof(value))
1671                 return -EFAULT;
1672
1673         if (!value)
1674                 return -EINVAL;
1675
1676         spin_lock_irq(&ctx->lock);
1677         if (counter->attr.freq) {
1678                 if (value > sysctl_perf_counter_sample_rate) {
1679                         ret = -EINVAL;
1680                         goto unlock;
1681                 }
1682
1683                 counter->attr.sample_freq = value;
1684         } else {
1685                 perf_log_period(counter, value);
1686
1687                 counter->attr.sample_period = value;
1688                 counter->hw.sample_period = value;
1689         }
1690 unlock:
1691         spin_unlock_irq(&ctx->lock);
1692
1693         return ret;
1694 }
1695
1696 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1697 {
1698         struct perf_counter *counter = file->private_data;
1699         void (*func)(struct perf_counter *);
1700         u32 flags = arg;
1701
1702         switch (cmd) {
1703         case PERF_COUNTER_IOC_ENABLE:
1704                 func = perf_counter_enable;
1705                 break;
1706         case PERF_COUNTER_IOC_DISABLE:
1707                 func = perf_counter_disable;
1708                 break;
1709         case PERF_COUNTER_IOC_RESET:
1710                 func = perf_counter_reset;
1711                 break;
1712
1713         case PERF_COUNTER_IOC_REFRESH:
1714                 return perf_counter_refresh(counter, arg);
1715
1716         case PERF_COUNTER_IOC_PERIOD:
1717                 return perf_counter_period(counter, (u64 __user *)arg);
1718
1719         default:
1720                 return -ENOTTY;
1721         }
1722
1723         if (flags & PERF_IOC_FLAG_GROUP)
1724                 perf_counter_for_each(counter, func);
1725         else
1726                 perf_counter_for_each_child(counter, func);
1727
1728         return 0;
1729 }
1730
1731 int perf_counter_task_enable(void)
1732 {
1733         struct perf_counter *counter;
1734
1735         mutex_lock(&current->perf_counter_mutex);
1736         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1737                 perf_counter_for_each_child(counter, perf_counter_enable);
1738         mutex_unlock(&current->perf_counter_mutex);
1739
1740         return 0;
1741 }
1742
1743 int perf_counter_task_disable(void)
1744 {
1745         struct perf_counter *counter;
1746
1747         mutex_lock(&current->perf_counter_mutex);
1748         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1749                 perf_counter_for_each_child(counter, perf_counter_disable);
1750         mutex_unlock(&current->perf_counter_mutex);
1751
1752         return 0;
1753 }
1754
1755 /*
1756  * Callers need to ensure there can be no nesting of this function, otherwise
1757  * the seqlock logic goes bad. We can not serialize this because the arch
1758  * code calls this from NMI context.
1759  */
1760 void perf_counter_update_userpage(struct perf_counter *counter)
1761 {
1762         struct perf_counter_mmap_page *userpg;
1763         struct perf_mmap_data *data;
1764
1765         rcu_read_lock();
1766         data = rcu_dereference(counter->data);
1767         if (!data)
1768                 goto unlock;
1769
1770         userpg = data->user_page;
1771
1772         /*
1773          * Disable preemption so as to not let the corresponding user-space
1774          * spin too long if we get preempted.
1775          */
1776         preempt_disable();
1777         ++userpg->lock;
1778         barrier();
1779         userpg->index = counter->hw.idx;
1780         userpg->offset = atomic64_read(&counter->count);
1781         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1782                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1783
1784         barrier();
1785         ++userpg->lock;
1786         preempt_enable();
1787 unlock:
1788         rcu_read_unlock();
1789 }
1790
1791 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792 {
1793         struct perf_counter *counter = vma->vm_file->private_data;
1794         struct perf_mmap_data *data;
1795         int ret = VM_FAULT_SIGBUS;
1796
1797         if (vmf->flags & FAULT_FLAG_MKWRITE) {
1798                 if (vmf->pgoff == 0)
1799                         ret = 0;
1800                 return ret;
1801         }
1802
1803         rcu_read_lock();
1804         data = rcu_dereference(counter->data);
1805         if (!data)
1806                 goto unlock;
1807
1808         if (vmf->pgoff == 0) {
1809                 vmf->page = virt_to_page(data->user_page);
1810         } else {
1811                 int nr = vmf->pgoff - 1;
1812
1813                 if ((unsigned)nr > data->nr_pages)
1814                         goto unlock;
1815
1816                 if (vmf->flags & FAULT_FLAG_WRITE)
1817                         goto unlock;
1818
1819                 vmf->page = virt_to_page(data->data_pages[nr]);
1820         }
1821
1822         get_page(vmf->page);
1823         vmf->page->mapping = vma->vm_file->f_mapping;
1824         vmf->page->index   = vmf->pgoff;
1825
1826         ret = 0;
1827 unlock:
1828         rcu_read_unlock();
1829
1830         return ret;
1831 }
1832
1833 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1834 {
1835         struct perf_mmap_data *data;
1836         unsigned long size;
1837         int i;
1838
1839         WARN_ON(atomic_read(&counter->mmap_count));
1840
1841         size = sizeof(struct perf_mmap_data);
1842         size += nr_pages * sizeof(void *);
1843
1844         data = kzalloc(size, GFP_KERNEL);
1845         if (!data)
1846                 goto fail;
1847
1848         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1849         if (!data->user_page)
1850                 goto fail_user_page;
1851
1852         for (i = 0; i < nr_pages; i++) {
1853                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1854                 if (!data->data_pages[i])
1855                         goto fail_data_pages;
1856         }
1857
1858         data->nr_pages = nr_pages;
1859         atomic_set(&data->lock, -1);
1860
1861         rcu_assign_pointer(counter->data, data);
1862
1863         return 0;
1864
1865 fail_data_pages:
1866         for (i--; i >= 0; i--)
1867                 free_page((unsigned long)data->data_pages[i]);
1868
1869         free_page((unsigned long)data->user_page);
1870
1871 fail_user_page:
1872         kfree(data);
1873
1874 fail:
1875         return -ENOMEM;
1876 }
1877
1878 static void perf_mmap_free_page(unsigned long addr)
1879 {
1880         struct page *page = virt_to_page(addr);
1881
1882         page->mapping = NULL;
1883         __free_page(page);
1884 }
1885
1886 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1887 {
1888         struct perf_mmap_data *data;
1889         int i;
1890
1891         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1892
1893         perf_mmap_free_page((unsigned long)data->user_page);
1894         for (i = 0; i < data->nr_pages; i++)
1895                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
1896
1897         kfree(data);
1898 }
1899
1900 static void perf_mmap_data_free(struct perf_counter *counter)
1901 {
1902         struct perf_mmap_data *data = counter->data;
1903
1904         WARN_ON(atomic_read(&counter->mmap_count));
1905
1906         rcu_assign_pointer(counter->data, NULL);
1907         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1908 }
1909
1910 static void perf_mmap_open(struct vm_area_struct *vma)
1911 {
1912         struct perf_counter *counter = vma->vm_file->private_data;
1913
1914         atomic_inc(&counter->mmap_count);
1915 }
1916
1917 static void perf_mmap_close(struct vm_area_struct *vma)
1918 {
1919         struct perf_counter *counter = vma->vm_file->private_data;
1920
1921         WARN_ON_ONCE(counter->ctx->parent_ctx);
1922         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1923                 struct user_struct *user = current_user();
1924
1925                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1926                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1927                 perf_mmap_data_free(counter);
1928                 mutex_unlock(&counter->mmap_mutex);
1929         }
1930 }
1931
1932 static struct vm_operations_struct perf_mmap_vmops = {
1933         .open           = perf_mmap_open,
1934         .close          = perf_mmap_close,
1935         .fault          = perf_mmap_fault,
1936         .page_mkwrite   = perf_mmap_fault,
1937 };
1938
1939 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1940 {
1941         struct perf_counter *counter = file->private_data;
1942         unsigned long user_locked, user_lock_limit;
1943         struct user_struct *user = current_user();
1944         unsigned long locked, lock_limit;
1945         unsigned long vma_size;
1946         unsigned long nr_pages;
1947         long user_extra, extra;
1948         int ret = 0;
1949
1950         if (!(vma->vm_flags & VM_SHARED))
1951                 return -EINVAL;
1952
1953         vma_size = vma->vm_end - vma->vm_start;
1954         nr_pages = (vma_size / PAGE_SIZE) - 1;
1955
1956         /*
1957          * If we have data pages ensure they're a power-of-two number, so we
1958          * can do bitmasks instead of modulo.
1959          */
1960         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1961                 return -EINVAL;
1962
1963         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1964                 return -EINVAL;
1965
1966         if (vma->vm_pgoff != 0)
1967                 return -EINVAL;
1968
1969         WARN_ON_ONCE(counter->ctx->parent_ctx);
1970         mutex_lock(&counter->mmap_mutex);
1971         if (atomic_inc_not_zero(&counter->mmap_count)) {
1972                 if (nr_pages != counter->data->nr_pages)
1973                         ret = -EINVAL;
1974                 goto unlock;
1975         }
1976
1977         user_extra = nr_pages + 1;
1978         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1979
1980         /*
1981          * Increase the limit linearly with more CPUs:
1982          */
1983         user_lock_limit *= num_online_cpus();
1984
1985         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1986
1987         extra = 0;
1988         if (user_locked > user_lock_limit)
1989                 extra = user_locked - user_lock_limit;
1990
1991         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1992         lock_limit >>= PAGE_SHIFT;
1993         locked = vma->vm_mm->locked_vm + extra;
1994
1995         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1996                 ret = -EPERM;
1997                 goto unlock;
1998         }
1999
2000         WARN_ON(counter->data);
2001         ret = perf_mmap_data_alloc(counter, nr_pages);
2002         if (ret)
2003                 goto unlock;
2004
2005         atomic_set(&counter->mmap_count, 1);
2006         atomic_long_add(user_extra, &user->locked_vm);
2007         vma->vm_mm->locked_vm += extra;
2008         counter->data->nr_locked = extra;
2009         if (vma->vm_flags & VM_WRITE)
2010                 counter->data->writable = 1;
2011
2012 unlock:
2013         mutex_unlock(&counter->mmap_mutex);
2014
2015         vma->vm_flags |= VM_RESERVED;
2016         vma->vm_ops = &perf_mmap_vmops;
2017
2018         return ret;
2019 }
2020
2021 static int perf_fasync(int fd, struct file *filp, int on)
2022 {
2023         struct inode *inode = filp->f_path.dentry->d_inode;
2024         struct perf_counter *counter = filp->private_data;
2025         int retval;
2026
2027         mutex_lock(&inode->i_mutex);
2028         retval = fasync_helper(fd, filp, on, &counter->fasync);
2029         mutex_unlock(&inode->i_mutex);
2030
2031         if (retval < 0)
2032                 return retval;
2033
2034         return 0;
2035 }
2036
2037 static const struct file_operations perf_fops = {
2038         .release                = perf_release,
2039         .read                   = perf_read,
2040         .poll                   = perf_poll,
2041         .unlocked_ioctl         = perf_ioctl,
2042         .compat_ioctl           = perf_ioctl,
2043         .mmap                   = perf_mmap,
2044         .fasync                 = perf_fasync,
2045 };
2046
2047 /*
2048  * Perf counter wakeup
2049  *
2050  * If there's data, ensure we set the poll() state and publish everything
2051  * to user-space before waking everybody up.
2052  */
2053
2054 void perf_counter_wakeup(struct perf_counter *counter)
2055 {
2056         wake_up_all(&counter->waitq);
2057
2058         if (counter->pending_kill) {
2059                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2060                 counter->pending_kill = 0;
2061         }
2062 }
2063
2064 /*
2065  * Pending wakeups
2066  *
2067  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2068  *
2069  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2070  * single linked list and use cmpxchg() to add entries lockless.
2071  */
2072
2073 static void perf_pending_counter(struct perf_pending_entry *entry)
2074 {
2075         struct perf_counter *counter = container_of(entry,
2076                         struct perf_counter, pending);
2077
2078         if (counter->pending_disable) {
2079                 counter->pending_disable = 0;
2080                 perf_counter_disable(counter);
2081         }
2082
2083         if (counter->pending_wakeup) {
2084                 counter->pending_wakeup = 0;
2085                 perf_counter_wakeup(counter);
2086         }
2087 }
2088
2089 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2090
2091 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2092         PENDING_TAIL,
2093 };
2094
2095 static void perf_pending_queue(struct perf_pending_entry *entry,
2096                                void (*func)(struct perf_pending_entry *))
2097 {
2098         struct perf_pending_entry **head;
2099
2100         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2101                 return;
2102
2103         entry->func = func;
2104
2105         head = &get_cpu_var(perf_pending_head);
2106
2107         do {
2108                 entry->next = *head;
2109         } while (cmpxchg(head, entry->next, entry) != entry->next);
2110
2111         set_perf_counter_pending();
2112
2113         put_cpu_var(perf_pending_head);
2114 }
2115
2116 static int __perf_pending_run(void)
2117 {
2118         struct perf_pending_entry *list;
2119         int nr = 0;
2120
2121         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2122         while (list != PENDING_TAIL) {
2123                 void (*func)(struct perf_pending_entry *);
2124                 struct perf_pending_entry *entry = list;
2125
2126                 list = list->next;
2127
2128                 func = entry->func;
2129                 entry->next = NULL;
2130                 /*
2131                  * Ensure we observe the unqueue before we issue the wakeup,
2132                  * so that we won't be waiting forever.
2133                  * -- see perf_not_pending().
2134                  */
2135                 smp_wmb();
2136
2137                 func(entry);
2138                 nr++;
2139         }
2140
2141         return nr;
2142 }
2143
2144 static inline int perf_not_pending(struct perf_counter *counter)
2145 {
2146         /*
2147          * If we flush on whatever cpu we run, there is a chance we don't
2148          * need to wait.
2149          */
2150         get_cpu();
2151         __perf_pending_run();
2152         put_cpu();
2153
2154         /*
2155          * Ensure we see the proper queue state before going to sleep
2156          * so that we do not miss the wakeup. -- see perf_pending_handle()
2157          */
2158         smp_rmb();
2159         return counter->pending.next == NULL;
2160 }
2161
2162 static void perf_pending_sync(struct perf_counter *counter)
2163 {
2164         wait_event(counter->waitq, perf_not_pending(counter));
2165 }
2166
2167 void perf_counter_do_pending(void)
2168 {
2169         __perf_pending_run();
2170 }
2171
2172 /*
2173  * Callchain support -- arch specific
2174  */
2175
2176 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2177 {
2178         return NULL;
2179 }
2180
2181 /*
2182  * Output
2183  */
2184
2185 struct perf_output_handle {
2186         struct perf_counter     *counter;
2187         struct perf_mmap_data   *data;
2188         unsigned long           head;
2189         unsigned long           offset;
2190         int                     nmi;
2191         int                     sample;
2192         int                     locked;
2193         unsigned long           flags;
2194 };
2195
2196 static bool perf_output_space(struct perf_mmap_data *data,
2197                               unsigned int offset, unsigned int head)
2198 {
2199         unsigned long tail;
2200         unsigned long mask;
2201
2202         if (!data->writable)
2203                 return true;
2204
2205         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2206         /*
2207          * Userspace could choose to issue a mb() before updating the tail
2208          * pointer. So that all reads will be completed before the write is
2209          * issued.
2210          */
2211         tail = ACCESS_ONCE(data->user_page->data_tail);
2212         smp_rmb();
2213
2214         offset = (offset - tail) & mask;
2215         head   = (head   - tail) & mask;
2216
2217         if ((int)(head - offset) < 0)
2218                 return false;
2219
2220         return true;
2221 }
2222
2223 static void perf_output_wakeup(struct perf_output_handle *handle)
2224 {
2225         atomic_set(&handle->data->poll, POLL_IN);
2226
2227         if (handle->nmi) {
2228                 handle->counter->pending_wakeup = 1;
2229                 perf_pending_queue(&handle->counter->pending,
2230                                    perf_pending_counter);
2231         } else
2232                 perf_counter_wakeup(handle->counter);
2233 }
2234
2235 /*
2236  * Curious locking construct.
2237  *
2238  * We need to ensure a later event doesn't publish a head when a former
2239  * event isn't done writing. However since we need to deal with NMIs we
2240  * cannot fully serialize things.
2241  *
2242  * What we do is serialize between CPUs so we only have to deal with NMI
2243  * nesting on a single CPU.
2244  *
2245  * We only publish the head (and generate a wakeup) when the outer-most
2246  * event completes.
2247  */
2248 static void perf_output_lock(struct perf_output_handle *handle)
2249 {
2250         struct perf_mmap_data *data = handle->data;
2251         int cpu;
2252
2253         handle->locked = 0;
2254
2255         local_irq_save(handle->flags);
2256         cpu = smp_processor_id();
2257
2258         if (in_nmi() && atomic_read(&data->lock) == cpu)
2259                 return;
2260
2261         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2262                 cpu_relax();
2263
2264         handle->locked = 1;
2265 }
2266
2267 static void perf_output_unlock(struct perf_output_handle *handle)
2268 {
2269         struct perf_mmap_data *data = handle->data;
2270         unsigned long head;
2271         int cpu;
2272
2273         data->done_head = data->head;
2274
2275         if (!handle->locked)
2276                 goto out;
2277
2278 again:
2279         /*
2280          * The xchg implies a full barrier that ensures all writes are done
2281          * before we publish the new head, matched by a rmb() in userspace when
2282          * reading this position.
2283          */
2284         while ((head = atomic_long_xchg(&data->done_head, 0)))
2285                 data->user_page->data_head = head;
2286
2287         /*
2288          * NMI can happen here, which means we can miss a done_head update.
2289          */
2290
2291         cpu = atomic_xchg(&data->lock, -1);
2292         WARN_ON_ONCE(cpu != smp_processor_id());
2293
2294         /*
2295          * Therefore we have to validate we did not indeed do so.
2296          */
2297         if (unlikely(atomic_long_read(&data->done_head))) {
2298                 /*
2299                  * Since we had it locked, we can lock it again.
2300                  */
2301                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2302                         cpu_relax();
2303
2304                 goto again;
2305         }
2306
2307         if (atomic_xchg(&data->wakeup, 0))
2308                 perf_output_wakeup(handle);
2309 out:
2310         local_irq_restore(handle->flags);
2311 }
2312
2313 static void perf_output_copy(struct perf_output_handle *handle,
2314                              const void *buf, unsigned int len)
2315 {
2316         unsigned int pages_mask;
2317         unsigned int offset;
2318         unsigned int size;
2319         void **pages;
2320
2321         offset          = handle->offset;
2322         pages_mask      = handle->data->nr_pages - 1;
2323         pages           = handle->data->data_pages;
2324
2325         do {
2326                 unsigned int page_offset;
2327                 int nr;
2328
2329                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2330                 page_offset = offset & (PAGE_SIZE - 1);
2331                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2332
2333                 memcpy(pages[nr] + page_offset, buf, size);
2334
2335                 len         -= size;
2336                 buf         += size;
2337                 offset      += size;
2338         } while (len);
2339
2340         handle->offset = offset;
2341
2342         /*
2343          * Check we didn't copy past our reservation window, taking the
2344          * possible unsigned int wrap into account.
2345          */
2346         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2347 }
2348
2349 #define perf_output_put(handle, x) \
2350         perf_output_copy((handle), &(x), sizeof(x))
2351
2352 static int perf_output_begin(struct perf_output_handle *handle,
2353                              struct perf_counter *counter, unsigned int size,
2354                              int nmi, int sample)
2355 {
2356         struct perf_mmap_data *data;
2357         unsigned int offset, head;
2358         int have_lost;
2359         struct {
2360                 struct perf_event_header header;
2361                 u64                      id;
2362                 u64                      lost;
2363         } lost_event;
2364
2365         /*
2366          * For inherited counters we send all the output towards the parent.
2367          */
2368         if (counter->parent)
2369                 counter = counter->parent;
2370
2371         rcu_read_lock();
2372         data = rcu_dereference(counter->data);
2373         if (!data)
2374                 goto out;
2375
2376         handle->data    = data;
2377         handle->counter = counter;
2378         handle->nmi     = nmi;
2379         handle->sample  = sample;
2380
2381         if (!data->nr_pages)
2382                 goto fail;
2383
2384         have_lost = atomic_read(&data->lost);
2385         if (have_lost)
2386                 size += sizeof(lost_event);
2387
2388         perf_output_lock(handle);
2389
2390         do {
2391                 offset = head = atomic_long_read(&data->head);
2392                 head += size;
2393                 if (unlikely(!perf_output_space(data, offset, head)))
2394                         goto fail;
2395         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2396
2397         handle->offset  = offset;
2398         handle->head    = head;
2399
2400         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2401                 atomic_set(&data->wakeup, 1);
2402
2403         if (have_lost) {
2404                 lost_event.header.type = PERF_EVENT_LOST;
2405                 lost_event.header.misc = 0;
2406                 lost_event.header.size = sizeof(lost_event);
2407                 lost_event.id          = counter->id;
2408                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2409
2410                 perf_output_put(handle, lost_event);
2411         }
2412
2413         return 0;
2414
2415 fail:
2416         atomic_inc(&data->lost);
2417         perf_output_unlock(handle);
2418 out:
2419         rcu_read_unlock();
2420
2421         return -ENOSPC;
2422 }
2423
2424 static void perf_output_end(struct perf_output_handle *handle)
2425 {
2426         struct perf_counter *counter = handle->counter;
2427         struct perf_mmap_data *data = handle->data;
2428
2429         int wakeup_events = counter->attr.wakeup_events;
2430
2431         if (handle->sample && wakeup_events) {
2432                 int events = atomic_inc_return(&data->events);
2433                 if (events >= wakeup_events) {
2434                         atomic_sub(wakeup_events, &data->events);
2435                         atomic_set(&data->wakeup, 1);
2436                 }
2437         }
2438
2439         perf_output_unlock(handle);
2440         rcu_read_unlock();
2441 }
2442
2443 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2444 {
2445         /*
2446          * only top level counters have the pid namespace they were created in
2447          */
2448         if (counter->parent)
2449                 counter = counter->parent;
2450
2451         return task_tgid_nr_ns(p, counter->ns);
2452 }
2453
2454 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2455 {
2456         /*
2457          * only top level counters have the pid namespace they were created in
2458          */
2459         if (counter->parent)
2460                 counter = counter->parent;
2461
2462         return task_pid_nr_ns(p, counter->ns);
2463 }
2464
2465 static void perf_counter_output(struct perf_counter *counter, int nmi,
2466                                 struct perf_sample_data *data)
2467 {
2468         int ret;
2469         u64 sample_type = counter->attr.sample_type;
2470         struct perf_output_handle handle;
2471         struct perf_event_header header;
2472         u64 ip;
2473         struct {
2474                 u32 pid, tid;
2475         } tid_entry;
2476         struct {
2477                 u64 id;
2478                 u64 counter;
2479         } group_entry;
2480         struct perf_callchain_entry *callchain = NULL;
2481         int callchain_size = 0;
2482         u64 time;
2483         struct {
2484                 u32 cpu, reserved;
2485         } cpu_entry;
2486
2487         header.type = 0;
2488         header.size = sizeof(header);
2489
2490         header.misc = PERF_EVENT_MISC_OVERFLOW;
2491         header.misc |= perf_misc_flags(data->regs);
2492
2493         if (sample_type & PERF_SAMPLE_IP) {
2494                 ip = perf_instruction_pointer(data->regs);
2495                 header.type |= PERF_SAMPLE_IP;
2496                 header.size += sizeof(ip);
2497         }
2498
2499         if (sample_type & PERF_SAMPLE_TID) {
2500                 /* namespace issues */
2501                 tid_entry.pid = perf_counter_pid(counter, current);
2502                 tid_entry.tid = perf_counter_tid(counter, current);
2503
2504                 header.type |= PERF_SAMPLE_TID;
2505                 header.size += sizeof(tid_entry);
2506         }
2507
2508         if (sample_type & PERF_SAMPLE_TIME) {
2509                 /*
2510                  * Maybe do better on x86 and provide cpu_clock_nmi()
2511                  */
2512                 time = sched_clock();
2513
2514                 header.type |= PERF_SAMPLE_TIME;
2515                 header.size += sizeof(u64);
2516         }
2517
2518         if (sample_type & PERF_SAMPLE_ADDR) {
2519                 header.type |= PERF_SAMPLE_ADDR;
2520                 header.size += sizeof(u64);
2521         }
2522
2523         if (sample_type & PERF_SAMPLE_ID) {
2524                 header.type |= PERF_SAMPLE_ID;
2525                 header.size += sizeof(u64);
2526         }
2527
2528         if (sample_type & PERF_SAMPLE_CPU) {
2529                 header.type |= PERF_SAMPLE_CPU;
2530                 header.size += sizeof(cpu_entry);
2531
2532                 cpu_entry.cpu = raw_smp_processor_id();
2533         }
2534
2535         if (sample_type & PERF_SAMPLE_PERIOD) {
2536                 header.type |= PERF_SAMPLE_PERIOD;
2537                 header.size += sizeof(u64);
2538         }
2539
2540         if (sample_type & PERF_SAMPLE_GROUP) {
2541                 header.type |= PERF_SAMPLE_GROUP;
2542                 header.size += sizeof(u64) +
2543                         counter->nr_siblings * sizeof(group_entry);
2544         }
2545
2546         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2547                 callchain = perf_callchain(data->regs);
2548
2549                 if (callchain) {
2550                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2551
2552                         header.type |= PERF_SAMPLE_CALLCHAIN;
2553                         header.size += callchain_size;
2554                 }
2555         }
2556
2557         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2558         if (ret)
2559                 return;
2560
2561         perf_output_put(&handle, header);
2562
2563         if (sample_type & PERF_SAMPLE_IP)
2564                 perf_output_put(&handle, ip);
2565
2566         if (sample_type & PERF_SAMPLE_TID)
2567                 perf_output_put(&handle, tid_entry);
2568
2569         if (sample_type & PERF_SAMPLE_TIME)
2570                 perf_output_put(&handle, time);
2571
2572         if (sample_type & PERF_SAMPLE_ADDR)
2573                 perf_output_put(&handle, data->addr);
2574
2575         if (sample_type & PERF_SAMPLE_ID)
2576                 perf_output_put(&handle, counter->id);
2577
2578         if (sample_type & PERF_SAMPLE_CPU)
2579                 perf_output_put(&handle, cpu_entry);
2580
2581         if (sample_type & PERF_SAMPLE_PERIOD)
2582                 perf_output_put(&handle, data->period);
2583
2584         /*
2585          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2586          */
2587         if (sample_type & PERF_SAMPLE_GROUP) {
2588                 struct perf_counter *leader, *sub;
2589                 u64 nr = counter->nr_siblings;
2590
2591                 perf_output_put(&handle, nr);
2592
2593                 leader = counter->group_leader;
2594                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2595                         if (sub != counter)
2596                                 sub->pmu->read(sub);
2597
2598                         group_entry.id = sub->id;
2599                         group_entry.counter = atomic64_read(&sub->count);
2600
2601                         perf_output_put(&handle, group_entry);
2602                 }
2603         }
2604
2605         if (callchain)
2606                 perf_output_copy(&handle, callchain, callchain_size);
2607
2608         perf_output_end(&handle);
2609 }
2610
2611 /*
2612  * fork tracking
2613  */
2614
2615 struct perf_fork_event {
2616         struct task_struct      *task;
2617
2618         struct {
2619                 struct perf_event_header        header;
2620
2621                 u32                             pid;
2622                 u32                             ppid;
2623         } event;
2624 };
2625
2626 static void perf_counter_fork_output(struct perf_counter *counter,
2627                                      struct perf_fork_event *fork_event)
2628 {
2629         struct perf_output_handle handle;
2630         int size = fork_event->event.header.size;
2631         struct task_struct *task = fork_event->task;
2632         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2633
2634         if (ret)
2635                 return;
2636
2637         fork_event->event.pid = perf_counter_pid(counter, task);
2638         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2639
2640         perf_output_put(&handle, fork_event->event);
2641         perf_output_end(&handle);
2642 }
2643
2644 static int perf_counter_fork_match(struct perf_counter *counter)
2645 {
2646         if (counter->attr.comm || counter->attr.mmap)
2647                 return 1;
2648
2649         return 0;
2650 }
2651
2652 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2653                                   struct perf_fork_event *fork_event)
2654 {
2655         struct perf_counter *counter;
2656
2657         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2658                 return;
2659
2660         rcu_read_lock();
2661         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2662                 if (perf_counter_fork_match(counter))
2663                         perf_counter_fork_output(counter, fork_event);
2664         }
2665         rcu_read_unlock();
2666 }
2667
2668 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2669 {
2670         struct perf_cpu_context *cpuctx;
2671         struct perf_counter_context *ctx;
2672
2673         cpuctx = &get_cpu_var(perf_cpu_context);
2674         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2675         put_cpu_var(perf_cpu_context);
2676
2677         rcu_read_lock();
2678         /*
2679          * doesn't really matter which of the child contexts the
2680          * events ends up in.
2681          */
2682         ctx = rcu_dereference(current->perf_counter_ctxp);
2683         if (ctx)
2684                 perf_counter_fork_ctx(ctx, fork_event);
2685         rcu_read_unlock();
2686 }
2687
2688 void perf_counter_fork(struct task_struct *task)
2689 {
2690         struct perf_fork_event fork_event;
2691
2692         if (!atomic_read(&nr_comm_counters) &&
2693             !atomic_read(&nr_mmap_counters))
2694                 return;
2695
2696         fork_event = (struct perf_fork_event){
2697                 .task   = task,
2698                 .event  = {
2699                         .header = {
2700                                 .type = PERF_EVENT_FORK,
2701                                 .size = sizeof(fork_event.event),
2702                         },
2703                 },
2704         };
2705
2706         perf_counter_fork_event(&fork_event);
2707 }
2708
2709 /*
2710  * comm tracking
2711  */
2712
2713 struct perf_comm_event {
2714         struct task_struct      *task;
2715         char                    *comm;
2716         int                     comm_size;
2717
2718         struct {
2719                 struct perf_event_header        header;
2720
2721                 u32                             pid;
2722                 u32                             tid;
2723         } event;
2724 };
2725
2726 static void perf_counter_comm_output(struct perf_counter *counter,
2727                                      struct perf_comm_event *comm_event)
2728 {
2729         struct perf_output_handle handle;
2730         int size = comm_event->event.header.size;
2731         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2732
2733         if (ret)
2734                 return;
2735
2736         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2737         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2738
2739         perf_output_put(&handle, comm_event->event);
2740         perf_output_copy(&handle, comm_event->comm,
2741                                    comm_event->comm_size);
2742         perf_output_end(&handle);
2743 }
2744
2745 static int perf_counter_comm_match(struct perf_counter *counter)
2746 {
2747         if (counter->attr.comm)
2748                 return 1;
2749
2750         return 0;
2751 }
2752
2753 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2754                                   struct perf_comm_event *comm_event)
2755 {
2756         struct perf_counter *counter;
2757
2758         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2759                 return;
2760
2761         rcu_read_lock();
2762         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2763                 if (perf_counter_comm_match(counter))
2764                         perf_counter_comm_output(counter, comm_event);
2765         }
2766         rcu_read_unlock();
2767 }
2768
2769 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2770 {
2771         struct perf_cpu_context *cpuctx;
2772         struct perf_counter_context *ctx;
2773         unsigned int size;
2774         char *comm = comm_event->task->comm;
2775
2776         size = ALIGN(strlen(comm)+1, sizeof(u64));
2777
2778         comm_event->comm = comm;
2779         comm_event->comm_size = size;
2780
2781         comm_event->event.header.size = sizeof(comm_event->event) + size;
2782
2783         cpuctx = &get_cpu_var(perf_cpu_context);
2784         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2785         put_cpu_var(perf_cpu_context);
2786
2787         rcu_read_lock();
2788         /*
2789          * doesn't really matter which of the child contexts the
2790          * events ends up in.
2791          */
2792         ctx = rcu_dereference(current->perf_counter_ctxp);
2793         if (ctx)
2794                 perf_counter_comm_ctx(ctx, comm_event);
2795         rcu_read_unlock();
2796 }
2797
2798 void perf_counter_comm(struct task_struct *task)
2799 {
2800         struct perf_comm_event comm_event;
2801
2802         if (!atomic_read(&nr_comm_counters))
2803                 return;
2804
2805         comm_event = (struct perf_comm_event){
2806                 .task   = task,
2807                 .event  = {
2808                         .header = { .type = PERF_EVENT_COMM, },
2809                 },
2810         };
2811
2812         perf_counter_comm_event(&comm_event);
2813 }
2814
2815 /*
2816  * mmap tracking
2817  */
2818
2819 struct perf_mmap_event {
2820         struct vm_area_struct   *vma;
2821
2822         const char              *file_name;
2823         int                     file_size;
2824
2825         struct {
2826                 struct perf_event_header        header;
2827
2828                 u32                             pid;
2829                 u32                             tid;
2830                 u64                             start;
2831                 u64                             len;
2832                 u64                             pgoff;
2833         } event;
2834 };
2835
2836 static void perf_counter_mmap_output(struct perf_counter *counter,
2837                                      struct perf_mmap_event *mmap_event)
2838 {
2839         struct perf_output_handle handle;
2840         int size = mmap_event->event.header.size;
2841         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2842
2843         if (ret)
2844                 return;
2845
2846         mmap_event->event.pid = perf_counter_pid(counter, current);
2847         mmap_event->event.tid = perf_counter_tid(counter, current);
2848
2849         perf_output_put(&handle, mmap_event->event);
2850         perf_output_copy(&handle, mmap_event->file_name,
2851                                    mmap_event->file_size);
2852         perf_output_end(&handle);
2853 }
2854
2855 static int perf_counter_mmap_match(struct perf_counter *counter,
2856                                    struct perf_mmap_event *mmap_event)
2857 {
2858         if (counter->attr.mmap)
2859                 return 1;
2860
2861         return 0;
2862 }
2863
2864 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2865                                   struct perf_mmap_event *mmap_event)
2866 {
2867         struct perf_counter *counter;
2868
2869         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2870                 return;
2871
2872         rcu_read_lock();
2873         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2874                 if (perf_counter_mmap_match(counter, mmap_event))
2875                         perf_counter_mmap_output(counter, mmap_event);
2876         }
2877         rcu_read_unlock();
2878 }
2879
2880 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2881 {
2882         struct perf_cpu_context *cpuctx;
2883         struct perf_counter_context *ctx;
2884         struct vm_area_struct *vma = mmap_event->vma;
2885         struct file *file = vma->vm_file;
2886         unsigned int size;
2887         char tmp[16];
2888         char *buf = NULL;
2889         const char *name;
2890
2891         if (file) {
2892                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2893                 if (!buf) {
2894                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2895                         goto got_name;
2896                 }
2897                 name = d_path(&file->f_path, buf, PATH_MAX);
2898                 if (IS_ERR(name)) {
2899                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2900                         goto got_name;
2901                 }
2902         } else {
2903                 name = arch_vma_name(mmap_event->vma);
2904                 if (name)
2905                         goto got_name;
2906
2907                 if (!vma->vm_mm) {
2908                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
2909                         goto got_name;
2910                 }
2911
2912                 name = strncpy(tmp, "//anon", sizeof(tmp));
2913                 goto got_name;
2914         }
2915
2916 got_name:
2917         size = ALIGN(strlen(name)+1, sizeof(u64));
2918
2919         mmap_event->file_name = name;
2920         mmap_event->file_size = size;
2921
2922         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2923
2924         cpuctx = &get_cpu_var(perf_cpu_context);
2925         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2926         put_cpu_var(perf_cpu_context);
2927
2928         rcu_read_lock();
2929         /*
2930          * doesn't really matter which of the child contexts the
2931          * events ends up in.
2932          */
2933         ctx = rcu_dereference(current->perf_counter_ctxp);
2934         if (ctx)
2935                 perf_counter_mmap_ctx(ctx, mmap_event);
2936         rcu_read_unlock();
2937
2938         kfree(buf);
2939 }
2940
2941 void __perf_counter_mmap(struct vm_area_struct *vma)
2942 {
2943         struct perf_mmap_event mmap_event;
2944
2945         if (!atomic_read(&nr_mmap_counters))
2946                 return;
2947
2948         mmap_event = (struct perf_mmap_event){
2949                 .vma    = vma,
2950                 .event  = {
2951                         .header = { .type = PERF_EVENT_MMAP, },
2952                         .start  = vma->vm_start,
2953                         .len    = vma->vm_end - vma->vm_start,
2954                         .pgoff  = vma->vm_pgoff,
2955                 },
2956         };
2957
2958         perf_counter_mmap_event(&mmap_event);
2959 }
2960
2961 /*
2962  * Log sample_period changes so that analyzing tools can re-normalize the
2963  * event flow.
2964  */
2965
2966 struct freq_event {
2967         struct perf_event_header        header;
2968         u64                             time;
2969         u64                             id;
2970         u64                             period;
2971 };
2972
2973 static void perf_log_period(struct perf_counter *counter, u64 period)
2974 {
2975         struct perf_output_handle handle;
2976         struct freq_event event;
2977         int ret;
2978
2979         if (counter->hw.sample_period == period)
2980                 return;
2981
2982         if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
2983                 return;
2984
2985         event = (struct freq_event) {
2986                 .header = {
2987                         .type = PERF_EVENT_PERIOD,
2988                         .misc = 0,
2989                         .size = sizeof(event),
2990                 },
2991                 .time = sched_clock(),
2992                 .id = counter->id,
2993                 .period = period,
2994         };
2995
2996         ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2997         if (ret)
2998                 return;
2999
3000         perf_output_put(&handle, event);
3001         perf_output_end(&handle);
3002 }
3003
3004 /*
3005  * IRQ throttle logging
3006  */
3007
3008 static void perf_log_throttle(struct perf_counter *counter, int enable)
3009 {
3010         struct perf_output_handle handle;
3011         int ret;
3012
3013         struct {
3014                 struct perf_event_header        header;
3015                 u64                             time;
3016                 u64                             id;
3017         } throttle_event = {
3018                 .header = {
3019                         .type = PERF_EVENT_THROTTLE + 1,
3020                         .misc = 0,
3021                         .size = sizeof(throttle_event),
3022                 },
3023                 .time   = sched_clock(),
3024                 .id     = counter->id,
3025         };
3026
3027         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3028         if (ret)
3029                 return;
3030
3031         perf_output_put(&handle, throttle_event);
3032         perf_output_end(&handle);
3033 }
3034
3035 /*
3036  * Generic counter overflow handling, sampling.
3037  */
3038
3039 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3040                           struct perf_sample_data *data)
3041 {
3042         int events = atomic_read(&counter->event_limit);
3043         int throttle = counter->pmu->unthrottle != NULL;
3044         struct hw_perf_counter *hwc = &counter->hw;
3045         int ret = 0;
3046
3047         if (!throttle) {
3048                 hwc->interrupts++;
3049         } else {
3050                 if (hwc->interrupts != MAX_INTERRUPTS) {
3051                         hwc->interrupts++;
3052                         if (HZ * hwc->interrupts >
3053                                         (u64)sysctl_perf_counter_sample_rate) {
3054                                 hwc->interrupts = MAX_INTERRUPTS;
3055                                 perf_log_throttle(counter, 0);
3056                                 ret = 1;
3057                         }
3058                 } else {
3059                         /*
3060                          * Keep re-disabling counters even though on the previous
3061                          * pass we disabled it - just in case we raced with a
3062                          * sched-in and the counter got enabled again:
3063                          */
3064                         ret = 1;
3065                 }
3066         }
3067
3068         if (counter->attr.freq) {
3069                 u64 now = sched_clock();
3070                 s64 delta = now - hwc->freq_stamp;
3071
3072                 hwc->freq_stamp = now;
3073
3074                 if (delta > 0 && delta < TICK_NSEC)
3075                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3076         }
3077
3078         /*
3079          * XXX event_limit might not quite work as expected on inherited
3080          * counters
3081          */
3082
3083         counter->pending_kill = POLL_IN;
3084         if (events && atomic_dec_and_test(&counter->event_limit)) {
3085                 ret = 1;
3086                 counter->pending_kill = POLL_HUP;
3087                 if (nmi) {
3088                         counter->pending_disable = 1;
3089                         perf_pending_queue(&counter->pending,
3090                                            perf_pending_counter);
3091                 } else
3092                         perf_counter_disable(counter);
3093         }
3094
3095         perf_counter_output(counter, nmi, data);
3096         return ret;
3097 }
3098
3099 /*
3100  * Generic software counter infrastructure
3101  */
3102
3103 static void perf_swcounter_update(struct perf_counter *counter)
3104 {
3105         struct hw_perf_counter *hwc = &counter->hw;
3106         u64 prev, now;
3107         s64 delta;
3108
3109 again:
3110         prev = atomic64_read(&hwc->prev_count);
3111         now = atomic64_read(&hwc->count);
3112         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3113                 goto again;
3114
3115         delta = now - prev;
3116
3117         atomic64_add(delta, &counter->count);
3118         atomic64_sub(delta, &hwc->period_left);
3119 }
3120
3121 static void perf_swcounter_set_period(struct perf_counter *counter)
3122 {
3123         struct hw_perf_counter *hwc = &counter->hw;
3124         s64 left = atomic64_read(&hwc->period_left);
3125         s64 period = hwc->sample_period;
3126
3127         if (unlikely(left <= -period)) {
3128                 left = period;
3129                 atomic64_set(&hwc->period_left, left);
3130                 hwc->last_period = period;
3131         }
3132
3133         if (unlikely(left <= 0)) {
3134                 left += period;
3135                 atomic64_add(period, &hwc->period_left);
3136                 hwc->last_period = period;
3137         }
3138
3139         atomic64_set(&hwc->prev_count, -left);
3140         atomic64_set(&hwc->count, -left);
3141 }
3142
3143 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3144 {
3145         enum hrtimer_restart ret = HRTIMER_RESTART;
3146         struct perf_sample_data data;
3147         struct perf_counter *counter;
3148         u64 period;
3149
3150         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3151         counter->pmu->read(counter);
3152
3153         data.addr = 0;
3154         data.regs = get_irq_regs();
3155         /*
3156          * In case we exclude kernel IPs or are somehow not in interrupt
3157          * context, provide the next best thing, the user IP.
3158          */
3159         if ((counter->attr.exclude_kernel || !data.regs) &&
3160                         !counter->attr.exclude_user)
3161                 data.regs = task_pt_regs(current);
3162
3163         if (data.regs) {
3164                 if (perf_counter_overflow(counter, 0, &data))
3165                         ret = HRTIMER_NORESTART;
3166         }
3167
3168         period = max_t(u64, 10000, counter->hw.sample_period);
3169         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3170
3171         return ret;
3172 }
3173
3174 static void perf_swcounter_overflow(struct perf_counter *counter,
3175                                     int nmi, struct pt_regs *regs, u64 addr)
3176 {
3177         struct perf_sample_data data = {
3178                 .regs   = regs,
3179                 .addr   = addr,
3180                 .period = counter->hw.last_period,
3181         };
3182
3183         perf_swcounter_update(counter);
3184         perf_swcounter_set_period(counter);
3185         if (perf_counter_overflow(counter, nmi, &data))
3186                 /* soft-disable the counter */
3187                 ;
3188
3189 }
3190
3191 static int perf_swcounter_is_counting(struct perf_counter *counter)
3192 {
3193         struct perf_counter_context *ctx;
3194         unsigned long flags;
3195         int count;
3196
3197         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3198                 return 1;
3199
3200         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3201                 return 0;
3202
3203         /*
3204          * If the counter is inactive, it could be just because
3205          * its task is scheduled out, or because it's in a group
3206          * which could not go on the PMU.  We want to count in
3207          * the first case but not the second.  If the context is
3208          * currently active then an inactive software counter must
3209          * be the second case.  If it's not currently active then
3210          * we need to know whether the counter was active when the
3211          * context was last active, which we can determine by
3212          * comparing counter->tstamp_stopped with ctx->time.
3213          *
3214          * We are within an RCU read-side critical section,
3215          * which protects the existence of *ctx.
3216          */
3217         ctx = counter->ctx;
3218         spin_lock_irqsave(&ctx->lock, flags);
3219         count = 1;
3220         /* Re-check state now we have the lock */
3221         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3222             counter->ctx->is_active ||
3223             counter->tstamp_stopped < ctx->time)
3224                 count = 0;
3225         spin_unlock_irqrestore(&ctx->lock, flags);
3226         return count;
3227 }
3228
3229 static int perf_swcounter_match(struct perf_counter *counter,
3230                                 enum perf_type_id type,
3231                                 u32 event, struct pt_regs *regs)
3232 {
3233         if (!perf_swcounter_is_counting(counter))
3234                 return 0;
3235
3236         if (counter->attr.type != type)
3237                 return 0;
3238         if (counter->attr.config != event)
3239                 return 0;
3240
3241         if (regs) {
3242                 if (counter->attr.exclude_user && user_mode(regs))
3243                         return 0;
3244
3245                 if (counter->attr.exclude_kernel && !user_mode(regs))
3246                         return 0;
3247         }
3248
3249         return 1;
3250 }
3251
3252 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3253                                int nmi, struct pt_regs *regs, u64 addr)
3254 {
3255         int neg = atomic64_add_negative(nr, &counter->hw.count);
3256
3257         if (counter->hw.sample_period && !neg && regs)
3258                 perf_swcounter_overflow(counter, nmi, regs, addr);
3259 }
3260
3261 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3262                                      enum perf_type_id type, u32 event,
3263                                      u64 nr, int nmi, struct pt_regs *regs,
3264                                      u64 addr)
3265 {
3266         struct perf_counter *counter;
3267
3268         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3269                 return;
3270
3271         rcu_read_lock();
3272         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3273                 if (perf_swcounter_match(counter, type, event, regs))
3274                         perf_swcounter_add(counter, nr, nmi, regs, addr);
3275         }
3276         rcu_read_unlock();
3277 }
3278
3279 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3280 {
3281         if (in_nmi())
3282                 return &cpuctx->recursion[3];
3283
3284         if (in_irq())
3285                 return &cpuctx->recursion[2];
3286
3287         if (in_softirq())
3288                 return &cpuctx->recursion[1];
3289
3290         return &cpuctx->recursion[0];
3291 }
3292
3293 static void __perf_swcounter_event(enum perf_type_id type, u32 event,
3294                                    u64 nr, int nmi, struct pt_regs *regs,
3295                                    u64 addr)
3296 {
3297         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3298         int *recursion = perf_swcounter_recursion_context(cpuctx);
3299         struct perf_counter_context *ctx;
3300
3301         if (*recursion)
3302                 goto out;
3303
3304         (*recursion)++;
3305         barrier();
3306
3307         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3308                                  nr, nmi, regs, addr);
3309         rcu_read_lock();
3310         /*
3311          * doesn't really matter which of the child contexts the
3312          * events ends up in.
3313          */
3314         ctx = rcu_dereference(current->perf_counter_ctxp);
3315         if (ctx)
3316                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3317         rcu_read_unlock();
3318
3319         barrier();
3320         (*recursion)--;
3321
3322 out:
3323         put_cpu_var(perf_cpu_context);
3324 }
3325
3326 void
3327 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3328 {
3329         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3330 }
3331
3332 static void perf_swcounter_read(struct perf_counter *counter)
3333 {
3334         perf_swcounter_update(counter);
3335 }
3336
3337 static int perf_swcounter_enable(struct perf_counter *counter)
3338 {
3339         perf_swcounter_set_period(counter);
3340         return 0;
3341 }
3342
3343 static void perf_swcounter_disable(struct perf_counter *counter)
3344 {
3345         perf_swcounter_update(counter);
3346 }
3347
3348 static const struct pmu perf_ops_generic = {
3349         .enable         = perf_swcounter_enable,
3350         .disable        = perf_swcounter_disable,
3351         .read           = perf_swcounter_read,
3352 };
3353
3354 /*
3355  * Software counter: cpu wall time clock
3356  */
3357
3358 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3359 {
3360         int cpu = raw_smp_processor_id();
3361         s64 prev;
3362         u64 now;
3363
3364         now = cpu_clock(cpu);
3365         prev = atomic64_read(&counter->hw.prev_count);
3366         atomic64_set(&counter->hw.prev_count, now);
3367         atomic64_add(now - prev, &counter->count);
3368 }
3369
3370 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3371 {
3372         struct hw_perf_counter *hwc = &counter->hw;
3373         int cpu = raw_smp_processor_id();
3374
3375         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3376         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3377         hwc->hrtimer.function = perf_swcounter_hrtimer;
3378         if (hwc->sample_period) {
3379                 u64 period = max_t(u64, 10000, hwc->sample_period);
3380                 __hrtimer_start_range_ns(&hwc->hrtimer,
3381                                 ns_to_ktime(period), 0,
3382                                 HRTIMER_MODE_REL, 0);
3383         }
3384
3385         return 0;
3386 }
3387
3388 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3389 {
3390         if (counter->hw.sample_period)
3391                 hrtimer_cancel(&counter->hw.hrtimer);
3392         cpu_clock_perf_counter_update(counter);
3393 }
3394
3395 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3396 {
3397         cpu_clock_perf_counter_update(counter);
3398 }
3399
3400 static const struct pmu perf_ops_cpu_clock = {
3401         .enable         = cpu_clock_perf_counter_enable,
3402         .disable        = cpu_clock_perf_counter_disable,
3403         .read           = cpu_clock_perf_counter_read,
3404 };
3405
3406 /*
3407  * Software counter: task time clock
3408  */
3409
3410 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3411 {
3412         u64 prev;
3413         s64 delta;
3414
3415         prev = atomic64_xchg(&counter->hw.prev_count, now);
3416         delta = now - prev;
3417         atomic64_add(delta, &counter->count);
3418 }
3419
3420 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3421 {
3422         struct hw_perf_counter *hwc = &counter->hw;
3423         u64 now;
3424
3425         now = counter->ctx->time;
3426
3427         atomic64_set(&hwc->prev_count, now);
3428         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3429         hwc->hrtimer.function = perf_swcounter_hrtimer;
3430         if (hwc->sample_period) {
3431                 u64 period = max_t(u64, 10000, hwc->sample_period);
3432                 __hrtimer_start_range_ns(&hwc->hrtimer,
3433                                 ns_to_ktime(period), 0,
3434                                 HRTIMER_MODE_REL, 0);
3435         }
3436
3437         return 0;
3438 }
3439
3440 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3441 {
3442         if (counter->hw.sample_period)
3443                 hrtimer_cancel(&counter->hw.hrtimer);
3444         task_clock_perf_counter_update(counter, counter->ctx->time);
3445
3446 }
3447
3448 static void task_clock_perf_counter_read(struct perf_counter *counter)
3449 {
3450         u64 time;
3451
3452         if (!in_nmi()) {
3453                 update_context_time(counter->ctx);
3454                 time = counter->ctx->time;
3455         } else {
3456                 u64 now = perf_clock();
3457                 u64 delta = now - counter->ctx->timestamp;
3458                 time = counter->ctx->time + delta;
3459         }
3460
3461         task_clock_perf_counter_update(counter, time);
3462 }
3463
3464 static const struct pmu perf_ops_task_clock = {
3465         .enable         = task_clock_perf_counter_enable,
3466         .disable        = task_clock_perf_counter_disable,
3467         .read           = task_clock_perf_counter_read,
3468 };
3469
3470 #ifdef CONFIG_EVENT_PROFILE
3471 void perf_tpcounter_event(int event_id)
3472 {
3473         struct pt_regs *regs = get_irq_regs();
3474
3475         if (!regs)
3476                 regs = task_pt_regs(current);
3477
3478         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3479 }
3480 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3481
3482 extern int ftrace_profile_enable(int);
3483 extern void ftrace_profile_disable(int);
3484
3485 static void tp_perf_counter_destroy(struct perf_counter *counter)
3486 {
3487         ftrace_profile_disable(perf_event_id(&counter->attr));
3488 }
3489
3490 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3491 {
3492         int event_id = perf_event_id(&counter->attr);
3493         int ret;
3494
3495         ret = ftrace_profile_enable(event_id);
3496         if (ret)
3497                 return NULL;
3498
3499         counter->destroy = tp_perf_counter_destroy;
3500
3501         return &perf_ops_generic;
3502 }
3503 #else
3504 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3505 {
3506         return NULL;
3507 }
3508 #endif
3509
3510 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3511 {
3512         const struct pmu *pmu = NULL;
3513
3514         /*
3515          * Software counters (currently) can't in general distinguish
3516          * between user, kernel and hypervisor events.
3517          * However, context switches and cpu migrations are considered
3518          * to be kernel events, and page faults are never hypervisor
3519          * events.
3520          */
3521         switch (counter->attr.config) {
3522         case PERF_COUNT_SW_CPU_CLOCK:
3523                 pmu = &perf_ops_cpu_clock;
3524
3525                 break;
3526         case PERF_COUNT_SW_TASK_CLOCK:
3527                 /*
3528                  * If the user instantiates this as a per-cpu counter,
3529                  * use the cpu_clock counter instead.
3530                  */
3531                 if (counter->ctx->task)
3532                         pmu = &perf_ops_task_clock;
3533                 else
3534                         pmu = &perf_ops_cpu_clock;
3535
3536                 break;
3537         case PERF_COUNT_SW_PAGE_FAULTS:
3538         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3539         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3540         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3541         case PERF_COUNT_SW_CPU_MIGRATIONS:
3542                 pmu = &perf_ops_generic;
3543                 break;
3544         }
3545
3546         return pmu;
3547 }
3548
3549 /*
3550  * Allocate and initialize a counter structure
3551  */
3552 static struct perf_counter *
3553 perf_counter_alloc(struct perf_counter_attr *attr,
3554                    int cpu,
3555                    struct perf_counter_context *ctx,
3556                    struct perf_counter *group_leader,
3557                    gfp_t gfpflags)
3558 {
3559         const struct pmu *pmu;
3560         struct perf_counter *counter;
3561         struct hw_perf_counter *hwc;
3562         long err;
3563
3564         counter = kzalloc(sizeof(*counter), gfpflags);
3565         if (!counter)
3566                 return ERR_PTR(-ENOMEM);
3567
3568         /*
3569          * Single counters are their own group leaders, with an
3570          * empty sibling list:
3571          */
3572         if (!group_leader)
3573                 group_leader = counter;
3574
3575         mutex_init(&counter->child_mutex);
3576         INIT_LIST_HEAD(&counter->child_list);
3577
3578         INIT_LIST_HEAD(&counter->list_entry);
3579         INIT_LIST_HEAD(&counter->event_entry);
3580         INIT_LIST_HEAD(&counter->sibling_list);
3581         init_waitqueue_head(&counter->waitq);
3582
3583         mutex_init(&counter->mmap_mutex);
3584
3585         counter->cpu            = cpu;
3586         counter->attr           = *attr;
3587         counter->group_leader   = group_leader;
3588         counter->pmu            = NULL;
3589         counter->ctx            = ctx;
3590         counter->oncpu          = -1;
3591
3592         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3593         counter->id             = atomic64_inc_return(&perf_counter_id);
3594
3595         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3596
3597         if (attr->disabled)
3598                 counter->state = PERF_COUNTER_STATE_OFF;
3599
3600         pmu = NULL;
3601
3602         hwc = &counter->hw;
3603         hwc->sample_period = attr->sample_period;
3604         if (attr->freq && attr->sample_freq)
3605                 hwc->sample_period = 1;
3606
3607         atomic64_set(&hwc->period_left, hwc->sample_period);
3608
3609         /*
3610          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3611          */
3612         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3613                 goto done;
3614
3615         switch (attr->type) {
3616         case PERF_TYPE_RAW:
3617         case PERF_TYPE_HARDWARE:
3618         case PERF_TYPE_HW_CACHE:
3619                 pmu = hw_perf_counter_init(counter);
3620                 break;
3621
3622         case PERF_TYPE_SOFTWARE:
3623                 pmu = sw_perf_counter_init(counter);
3624                 break;
3625
3626         case PERF_TYPE_TRACEPOINT:
3627                 pmu = tp_perf_counter_init(counter);
3628                 break;
3629
3630         default:
3631                 break;
3632         }
3633 done:
3634         err = 0;
3635         if (!pmu)
3636                 err = -EINVAL;
3637         else if (IS_ERR(pmu))
3638                 err = PTR_ERR(pmu);
3639
3640         if (err) {
3641                 if (counter->ns)
3642                         put_pid_ns(counter->ns);
3643                 kfree(counter);
3644                 return ERR_PTR(err);
3645         }
3646
3647         counter->pmu = pmu;
3648
3649         atomic_inc(&nr_counters);
3650         if (counter->attr.mmap)
3651                 atomic_inc(&nr_mmap_counters);
3652         if (counter->attr.comm)
3653                 atomic_inc(&nr_comm_counters);
3654
3655         return counter;
3656 }
3657
3658 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3659                           struct perf_counter_attr *attr)
3660 {
3661         int ret;
3662         u32 size;
3663
3664         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3665                 return -EFAULT;
3666
3667         /*
3668          * zero the full structure, so that a short copy will be nice.
3669          */
3670         memset(attr, 0, sizeof(*attr));
3671
3672         ret = get_user(size, &uattr->size);
3673         if (ret)
3674                 return ret;
3675
3676         if (size > PAGE_SIZE)   /* silly large */
3677                 goto err_size;
3678
3679         if (!size)              /* abi compat */
3680                 size = PERF_ATTR_SIZE_VER0;
3681
3682         if (size < PERF_ATTR_SIZE_VER0)
3683                 goto err_size;
3684
3685         /*
3686          * If we're handed a bigger struct than we know of,
3687          * ensure all the unknown bits are 0.
3688          */
3689         if (size > sizeof(*attr)) {
3690                 unsigned long val;
3691                 unsigned long __user *addr;
3692                 unsigned long __user *end;
3693
3694                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3695                                 sizeof(unsigned long));
3696                 end  = PTR_ALIGN((void __user *)uattr + size,
3697                                 sizeof(unsigned long));
3698
3699                 for (; addr < end; addr += sizeof(unsigned long)) {
3700                         ret = get_user(val, addr);
3701                         if (ret)
3702                                 return ret;
3703                         if (val)
3704                                 goto err_size;
3705                 }
3706         }
3707
3708         ret = copy_from_user(attr, uattr, size);
3709         if (ret)
3710                 return -EFAULT;
3711
3712         /*
3713          * If the type exists, the corresponding creation will verify
3714          * the attr->config.
3715          */
3716         if (attr->type >= PERF_TYPE_MAX)
3717                 return -EINVAL;
3718
3719         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3720                 return -EINVAL;
3721
3722         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3723                 return -EINVAL;
3724
3725         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3726                 return -EINVAL;
3727
3728 out:
3729         return ret;
3730
3731 err_size:
3732         put_user(sizeof(*attr), &uattr->size);
3733         ret = -E2BIG;
3734         goto out;
3735 }
3736
3737 /**
3738  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3739  *
3740  * @attr_uptr:  event type attributes for monitoring/sampling
3741  * @pid:                target pid
3742  * @cpu:                target cpu
3743  * @group_fd:           group leader counter fd
3744  */
3745 SYSCALL_DEFINE5(perf_counter_open,
3746                 struct perf_counter_attr __user *, attr_uptr,
3747                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3748 {
3749         struct perf_counter *counter, *group_leader;
3750         struct perf_counter_attr attr;
3751         struct perf_counter_context *ctx;
3752         struct file *counter_file = NULL;
3753         struct file *group_file = NULL;
3754         int fput_needed = 0;
3755         int fput_needed2 = 0;
3756         int ret;
3757
3758         /* for future expandability... */
3759         if (flags)
3760                 return -EINVAL;
3761
3762         ret = perf_copy_attr(attr_uptr, &attr);
3763         if (ret)
3764                 return ret;
3765
3766         if (!attr.exclude_kernel) {
3767                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3768                         return -EACCES;
3769         }
3770
3771         if (attr.freq) {
3772                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3773                         return -EINVAL;
3774         }
3775
3776         /*
3777          * Get the target context (task or percpu):
3778          */
3779         ctx = find_get_context(pid, cpu);
3780         if (IS_ERR(ctx))
3781                 return PTR_ERR(ctx);
3782
3783         /*
3784          * Look up the group leader (we will attach this counter to it):
3785          */
3786         group_leader = NULL;
3787         if (group_fd != -1) {
3788                 ret = -EINVAL;
3789                 group_file = fget_light(group_fd, &fput_needed);
3790                 if (!group_file)
3791                         goto err_put_context;
3792                 if (group_file->f_op != &perf_fops)
3793                         goto err_put_context;
3794
3795                 group_leader = group_file->private_data;
3796                 /*
3797                  * Do not allow a recursive hierarchy (this new sibling
3798                  * becoming part of another group-sibling):
3799                  */
3800                 if (group_leader->group_leader != group_leader)
3801                         goto err_put_context;
3802                 /*
3803                  * Do not allow to attach to a group in a different
3804                  * task or CPU context:
3805                  */
3806                 if (group_leader->ctx != ctx)
3807                         goto err_put_context;
3808                 /*
3809                  * Only a group leader can be exclusive or pinned
3810                  */
3811                 if (attr.exclusive || attr.pinned)
3812                         goto err_put_context;
3813         }
3814
3815         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3816                                      GFP_KERNEL);
3817         ret = PTR_ERR(counter);
3818         if (IS_ERR(counter))
3819                 goto err_put_context;
3820
3821         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3822         if (ret < 0)
3823                 goto err_free_put_context;
3824
3825         counter_file = fget_light(ret, &fput_needed2);
3826         if (!counter_file)
3827                 goto err_free_put_context;
3828
3829         counter->filp = counter_file;
3830         WARN_ON_ONCE(ctx->parent_ctx);
3831         mutex_lock(&ctx->mutex);
3832         perf_install_in_context(ctx, counter, cpu);
3833         ++ctx->generation;
3834         mutex_unlock(&ctx->mutex);
3835
3836         counter->owner = current;
3837         get_task_struct(current);
3838         mutex_lock(&current->perf_counter_mutex);
3839         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3840         mutex_unlock(&current->perf_counter_mutex);
3841
3842         fput_light(counter_file, fput_needed2);
3843
3844 out_fput:
3845         fput_light(group_file, fput_needed);
3846
3847         return ret;
3848
3849 err_free_put_context:
3850         kfree(counter);
3851
3852 err_put_context:
3853         put_ctx(ctx);
3854
3855         goto out_fput;
3856 }
3857
3858 /*
3859  * inherit a counter from parent task to child task:
3860  */
3861 static struct perf_counter *
3862 inherit_counter(struct perf_counter *parent_counter,
3863               struct task_struct *parent,
3864               struct perf_counter_context *parent_ctx,
3865               struct task_struct *child,
3866               struct perf_counter *group_leader,
3867               struct perf_counter_context *child_ctx)
3868 {
3869         struct perf_counter *child_counter;
3870
3871         /*
3872          * Instead of creating recursive hierarchies of counters,
3873          * we link inherited counters back to the original parent,
3874          * which has a filp for sure, which we use as the reference
3875          * count:
3876          */
3877         if (parent_counter->parent)
3878                 parent_counter = parent_counter->parent;
3879
3880         child_counter = perf_counter_alloc(&parent_counter->attr,
3881                                            parent_counter->cpu, child_ctx,
3882                                            group_leader, GFP_KERNEL);
3883         if (IS_ERR(child_counter))
3884                 return child_counter;
3885         get_ctx(child_ctx);
3886
3887         /*
3888          * Make the child state follow the state of the parent counter,
3889          * not its attr.disabled bit.  We hold the parent's mutex,
3890          * so we won't race with perf_counter_{en, dis}able_family.
3891          */
3892         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3893                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3894         else
3895                 child_counter->state = PERF_COUNTER_STATE_OFF;
3896
3897         if (parent_counter->attr.freq)
3898                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
3899
3900         /*
3901          * Link it up in the child's context:
3902          */
3903         add_counter_to_ctx(child_counter, child_ctx);
3904
3905         child_counter->parent = parent_counter;
3906         /*
3907          * inherit into child's child as well:
3908          */
3909         child_counter->attr.inherit = 1;
3910
3911         /*
3912          * Get a reference to the parent filp - we will fput it
3913          * when the child counter exits. This is safe to do because
3914          * we are in the parent and we know that the filp still
3915          * exists and has a nonzero count:
3916          */
3917         atomic_long_inc(&parent_counter->filp->f_count);
3918
3919         /*
3920          * Link this into the parent counter's child list
3921          */
3922         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3923         mutex_lock(&parent_counter->child_mutex);
3924         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3925         mutex_unlock(&parent_counter->child_mutex);
3926
3927         return child_counter;
3928 }
3929
3930 static int inherit_group(struct perf_counter *parent_counter,
3931               struct task_struct *parent,
3932               struct perf_counter_context *parent_ctx,
3933               struct task_struct *child,
3934               struct perf_counter_context *child_ctx)
3935 {
3936         struct perf_counter *leader;
3937         struct perf_counter *sub;
3938         struct perf_counter *child_ctr;
3939
3940         leader = inherit_counter(parent_counter, parent, parent_ctx,
3941                                  child, NULL, child_ctx);
3942         if (IS_ERR(leader))
3943                 return PTR_ERR(leader);
3944         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3945                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3946                                             child, leader, child_ctx);
3947                 if (IS_ERR(child_ctr))
3948                         return PTR_ERR(child_ctr);
3949         }
3950         return 0;
3951 }
3952
3953 static void sync_child_counter(struct perf_counter *child_counter,
3954                                struct perf_counter *parent_counter)
3955 {
3956         u64 child_val;
3957
3958         child_val = atomic64_read(&child_counter->count);
3959
3960         /*
3961          * Add back the child's count to the parent's count:
3962          */
3963         atomic64_add(child_val, &parent_counter->count);
3964         atomic64_add(child_counter->total_time_enabled,
3965                      &parent_counter->child_total_time_enabled);
3966         atomic64_add(child_counter->total_time_running,
3967                      &parent_counter->child_total_time_running);
3968
3969         /*
3970          * Remove this counter from the parent's list
3971          */
3972         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3973         mutex_lock(&parent_counter->child_mutex);
3974         list_del_init(&child_counter->child_list);
3975         mutex_unlock(&parent_counter->child_mutex);
3976
3977         /*
3978          * Release the parent counter, if this was the last
3979          * reference to it.
3980          */
3981         fput(parent_counter->filp);
3982 }
3983
3984 static void
3985 __perf_counter_exit_task(struct perf_counter *child_counter,
3986                          struct perf_counter_context *child_ctx)
3987 {
3988         struct perf_counter *parent_counter;
3989
3990         update_counter_times(child_counter);
3991         perf_counter_remove_from_context(child_counter);
3992
3993         parent_counter = child_counter->parent;
3994         /*
3995          * It can happen that parent exits first, and has counters
3996          * that are still around due to the child reference. These
3997          * counters need to be zapped - but otherwise linger.
3998          */
3999         if (parent_counter) {
4000                 sync_child_counter(child_counter, parent_counter);
4001                 free_counter(child_counter);
4002         }
4003 }
4004
4005 /*
4006  * When a child task exits, feed back counter values to parent counters.
4007  */
4008 void perf_counter_exit_task(struct task_struct *child)
4009 {
4010         struct perf_counter *child_counter, *tmp;
4011         struct perf_counter_context *child_ctx;
4012         unsigned long flags;
4013
4014         if (likely(!child->perf_counter_ctxp))
4015                 return;
4016
4017         local_irq_save(flags);
4018         /*
4019          * We can't reschedule here because interrupts are disabled,
4020          * and either child is current or it is a task that can't be
4021          * scheduled, so we are now safe from rescheduling changing
4022          * our context.
4023          */
4024         child_ctx = child->perf_counter_ctxp;
4025         __perf_counter_task_sched_out(child_ctx);
4026
4027         /*
4028          * Take the context lock here so that if find_get_context is
4029          * reading child->perf_counter_ctxp, we wait until it has
4030          * incremented the context's refcount before we do put_ctx below.
4031          */
4032         spin_lock(&child_ctx->lock);
4033         child->perf_counter_ctxp = NULL;
4034         if (child_ctx->parent_ctx) {
4035                 /*
4036                  * This context is a clone; unclone it so it can't get
4037                  * swapped to another process while we're removing all
4038                  * the counters from it.
4039                  */
4040                 put_ctx(child_ctx->parent_ctx);
4041                 child_ctx->parent_ctx = NULL;
4042         }
4043         spin_unlock(&child_ctx->lock);
4044         local_irq_restore(flags);
4045
4046         /*
4047          * We can recurse on the same lock type through:
4048          *
4049          *   __perf_counter_exit_task()
4050          *     sync_child_counter()
4051          *       fput(parent_counter->filp)
4052          *         perf_release()
4053          *           mutex_lock(&ctx->mutex)
4054          *
4055          * But since its the parent context it won't be the same instance.
4056          */
4057         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4058
4059 again:
4060         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4061                                  list_entry)
4062                 __perf_counter_exit_task(child_counter, child_ctx);
4063
4064         /*
4065          * If the last counter was a group counter, it will have appended all
4066          * its siblings to the list, but we obtained 'tmp' before that which
4067          * will still point to the list head terminating the iteration.
4068          */
4069         if (!list_empty(&child_ctx->counter_list))
4070                 goto again;
4071
4072         mutex_unlock(&child_ctx->mutex);
4073
4074         put_ctx(child_ctx);
4075 }
4076
4077 /*
4078  * free an unexposed, unused context as created by inheritance by
4079  * init_task below, used by fork() in case of fail.
4080  */
4081 void perf_counter_free_task(struct task_struct *task)
4082 {
4083         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4084         struct perf_counter *counter, *tmp;
4085
4086         if (!ctx)
4087                 return;
4088
4089         mutex_lock(&ctx->mutex);
4090 again:
4091         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4092                 struct perf_counter *parent = counter->parent;
4093
4094                 if (WARN_ON_ONCE(!parent))
4095                         continue;
4096
4097                 mutex_lock(&parent->child_mutex);
4098                 list_del_init(&counter->child_list);
4099                 mutex_unlock(&parent->child_mutex);
4100
4101                 fput(parent->filp);
4102
4103                 list_del_counter(counter, ctx);
4104                 free_counter(counter);
4105         }
4106
4107         if (!list_empty(&ctx->counter_list))
4108                 goto again;
4109
4110         mutex_unlock(&ctx->mutex);
4111
4112         put_ctx(ctx);
4113 }
4114
4115 /*
4116  * Initialize the perf_counter context in task_struct
4117  */
4118 int perf_counter_init_task(struct task_struct *child)
4119 {
4120         struct perf_counter_context *child_ctx, *parent_ctx;
4121         struct perf_counter_context *cloned_ctx;
4122         struct perf_counter *counter;
4123         struct task_struct *parent = current;
4124         int inherited_all = 1;
4125         int ret = 0;
4126
4127         child->perf_counter_ctxp = NULL;
4128
4129         mutex_init(&child->perf_counter_mutex);
4130         INIT_LIST_HEAD(&child->perf_counter_list);
4131
4132         if (likely(!parent->perf_counter_ctxp))
4133                 return 0;
4134
4135         /*
4136          * This is executed from the parent task context, so inherit
4137          * counters that have been marked for cloning.
4138          * First allocate and initialize a context for the child.
4139          */
4140
4141         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4142         if (!child_ctx)
4143                 return -ENOMEM;
4144
4145         __perf_counter_init_context(child_ctx, child);
4146         child->perf_counter_ctxp = child_ctx;
4147         get_task_struct(child);
4148
4149         /*
4150          * If the parent's context is a clone, pin it so it won't get
4151          * swapped under us.
4152          */
4153         parent_ctx = perf_pin_task_context(parent);
4154
4155         /*
4156          * No need to check if parent_ctx != NULL here; since we saw
4157          * it non-NULL earlier, the only reason for it to become NULL
4158          * is if we exit, and since we're currently in the middle of
4159          * a fork we can't be exiting at the same time.
4160          */
4161
4162         /*
4163          * Lock the parent list. No need to lock the child - not PID
4164          * hashed yet and not running, so nobody can access it.
4165          */
4166         mutex_lock(&parent_ctx->mutex);
4167
4168         /*
4169          * We dont have to disable NMIs - we are only looking at
4170          * the list, not manipulating it:
4171          */
4172         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4173                 if (counter != counter->group_leader)
4174                         continue;
4175
4176                 if (!counter->attr.inherit) {
4177                         inherited_all = 0;
4178                         continue;
4179                 }
4180
4181                 ret = inherit_group(counter, parent, parent_ctx,
4182                                              child, child_ctx);
4183                 if (ret) {
4184                         inherited_all = 0;
4185                         break;
4186                 }
4187         }
4188
4189         if (inherited_all) {
4190                 /*
4191                  * Mark the child context as a clone of the parent
4192                  * context, or of whatever the parent is a clone of.
4193                  * Note that if the parent is a clone, it could get
4194                  * uncloned at any point, but that doesn't matter
4195                  * because the list of counters and the generation
4196                  * count can't have changed since we took the mutex.
4197                  */
4198                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4199                 if (cloned_ctx) {
4200                         child_ctx->parent_ctx = cloned_ctx;
4201                         child_ctx->parent_gen = parent_ctx->parent_gen;
4202                 } else {
4203                         child_ctx->parent_ctx = parent_ctx;
4204                         child_ctx->parent_gen = parent_ctx->generation;
4205                 }
4206                 get_ctx(child_ctx->parent_ctx);
4207         }
4208
4209         mutex_unlock(&parent_ctx->mutex);
4210
4211         perf_unpin_context(parent_ctx);
4212
4213         return ret;
4214 }
4215
4216 static void __cpuinit perf_counter_init_cpu(int cpu)
4217 {
4218         struct perf_cpu_context *cpuctx;
4219
4220         cpuctx = &per_cpu(perf_cpu_context, cpu);
4221         __perf_counter_init_context(&cpuctx->ctx, NULL);
4222
4223         spin_lock(&perf_resource_lock);
4224         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4225         spin_unlock(&perf_resource_lock);
4226
4227         hw_perf_counter_setup(cpu);
4228 }
4229
4230 #ifdef CONFIG_HOTPLUG_CPU
4231 static void __perf_counter_exit_cpu(void *info)
4232 {
4233         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4234         struct perf_counter_context *ctx = &cpuctx->ctx;
4235         struct perf_counter *counter, *tmp;
4236
4237         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4238                 __perf_counter_remove_from_context(counter);
4239 }
4240 static void perf_counter_exit_cpu(int cpu)
4241 {
4242         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4243         struct perf_counter_context *ctx = &cpuctx->ctx;
4244
4245         mutex_lock(&ctx->mutex);
4246         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4247         mutex_unlock(&ctx->mutex);
4248 }
4249 #else
4250 static inline void perf_counter_exit_cpu(int cpu) { }
4251 #endif
4252
4253 static int __cpuinit
4254 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4255 {
4256         unsigned int cpu = (long)hcpu;
4257
4258         switch (action) {
4259
4260         case CPU_UP_PREPARE:
4261         case CPU_UP_PREPARE_FROZEN:
4262                 perf_counter_init_cpu(cpu);
4263                 break;
4264
4265         case CPU_DOWN_PREPARE:
4266         case CPU_DOWN_PREPARE_FROZEN:
4267                 perf_counter_exit_cpu(cpu);
4268                 break;
4269
4270         default:
4271                 break;
4272         }
4273
4274         return NOTIFY_OK;
4275 }
4276
4277 /*
4278  * This has to have a higher priority than migration_notifier in sched.c.
4279  */
4280 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4281         .notifier_call          = perf_cpu_notify,
4282         .priority               = 20,
4283 };
4284
4285 void __init perf_counter_init(void)
4286 {
4287         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4288                         (void *)(long)smp_processor_id());
4289         register_cpu_notifier(&perf_cpu_nb);
4290 }
4291
4292 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4293 {
4294         return sprintf(buf, "%d\n", perf_reserved_percpu);
4295 }
4296
4297 static ssize_t
4298 perf_set_reserve_percpu(struct sysdev_class *class,
4299                         const char *buf,
4300                         size_t count)
4301 {
4302         struct perf_cpu_context *cpuctx;
4303         unsigned long val;
4304         int err, cpu, mpt;
4305
4306         err = strict_strtoul(buf, 10, &val);
4307         if (err)
4308                 return err;
4309         if (val > perf_max_counters)
4310                 return -EINVAL;
4311
4312         spin_lock(&perf_resource_lock);
4313         perf_reserved_percpu = val;
4314         for_each_online_cpu(cpu) {
4315                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4316                 spin_lock_irq(&cpuctx->ctx.lock);
4317                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4318                           perf_max_counters - perf_reserved_percpu);
4319                 cpuctx->max_pertask = mpt;
4320                 spin_unlock_irq(&cpuctx->ctx.lock);
4321         }
4322         spin_unlock(&perf_resource_lock);
4323
4324         return count;
4325 }
4326
4327 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4328 {
4329         return sprintf(buf, "%d\n", perf_overcommit);
4330 }
4331
4332 static ssize_t
4333 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4334 {
4335         unsigned long val;
4336         int err;
4337
4338         err = strict_strtoul(buf, 10, &val);
4339         if (err)
4340                 return err;
4341         if (val > 1)
4342                 return -EINVAL;
4343
4344         spin_lock(&perf_resource_lock);
4345         perf_overcommit = val;
4346         spin_unlock(&perf_resource_lock);
4347
4348         return count;
4349 }
4350
4351 static SYSDEV_CLASS_ATTR(
4352                                 reserve_percpu,
4353                                 0644,
4354                                 perf_show_reserve_percpu,
4355                                 perf_set_reserve_percpu
4356                         );
4357
4358 static SYSDEV_CLASS_ATTR(
4359                                 overcommit,
4360                                 0644,
4361                                 perf_show_overcommit,
4362                                 perf_set_overcommit
4363                         );
4364
4365 static struct attribute *perfclass_attrs[] = {
4366         &attr_reserve_percpu.attr,
4367         &attr_overcommit.attr,
4368         NULL
4369 };
4370
4371 static struct attribute_group perfclass_attr_group = {
4372         .attrs                  = perfclass_attrs,
4373         .name                   = "perf_counters",
4374 };
4375
4376 static int __init perf_counter_sysfs_init(void)
4377 {
4378         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4379                                   &perfclass_attr_group);
4380 }
4381 device_initcall(perf_counter_sysfs_init);