4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
24 * A fast way to enable or disable all ring buffers is to
25 * call tracing_on or tracing_off. Turning off the ring buffers
26 * prevents all ring buffers from being recorded to.
27 * Turning this switch on, makes it OK to write to the
28 * ring buffer, if the ring buffer is enabled itself.
30 * There's three layers that must be on in order to write
33 * 1) This global flag must be set.
34 * 2) The ring buffer must be enabled for recording.
35 * 3) The per cpu buffer must be enabled for recording.
37 * In case of an anomaly, this global flag has a bit set that
38 * will permantly disable all ring buffers.
42 * Global flag to disable all recording to ring buffers
43 * This has two bits: ON, DISABLED
47 * 0 0 : ring buffers are off
48 * 1 0 : ring buffers are on
49 * X 1 : ring buffers are permanently disabled
53 RB_BUFFERS_ON_BIT = 0,
54 RB_BUFFERS_DISABLED_BIT = 1,
58 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
59 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
62 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
65 * tracing_on - enable all tracing buffers
67 * This function enables all tracing buffers that may have been
68 * disabled with tracing_off.
72 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
74 EXPORT_SYMBOL_GPL(tracing_on);
77 * tracing_off - turn off all tracing buffers
79 * This function stops all tracing buffers from recording data.
80 * It does not disable any overhead the tracers themselves may
81 * be causing. This function simply causes all recording to
82 * the ring buffers to fail.
84 void tracing_off(void)
86 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
88 EXPORT_SYMBOL_GPL(tracing_off);
91 * tracing_off_permanent - permanently disable ring buffers
93 * This function, once called, will disable all ring buffers
96 void tracing_off_permanent(void)
98 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
102 * tracing_is_on - show state of ring buffers enabled
104 int tracing_is_on(void)
106 return ring_buffer_flags == RB_BUFFERS_ON;
108 EXPORT_SYMBOL_GPL(tracing_is_on);
112 /* Up this if you want to test the TIME_EXTENTS and normalization */
113 #define DEBUG_SHIFT 0
115 u64 ring_buffer_time_stamp(int cpu)
119 preempt_disable_notrace();
120 /* shift to debug/test normalization and TIME_EXTENTS */
121 time = trace_clock_local() << DEBUG_SHIFT;
122 preempt_enable_no_resched_notrace();
126 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
128 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
130 /* Just stupid testing the normalize function and deltas */
133 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
135 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
136 #define RB_ALIGNMENT 4U
137 #define RB_MAX_SMALL_DATA 28
140 RB_LEN_TIME_EXTEND = 8,
141 RB_LEN_TIME_STAMP = 16,
144 /* inline for ring buffer fast paths */
146 rb_event_length(struct ring_buffer_event *event)
150 switch (event->type) {
151 case RINGBUF_TYPE_PADDING:
155 case RINGBUF_TYPE_TIME_EXTEND:
156 return RB_LEN_TIME_EXTEND;
158 case RINGBUF_TYPE_TIME_STAMP:
159 return RB_LEN_TIME_STAMP;
161 case RINGBUF_TYPE_DATA:
163 length = event->len * RB_ALIGNMENT;
165 length = event->array[0];
166 return length + RB_EVNT_HDR_SIZE;
175 * ring_buffer_event_length - return the length of the event
176 * @event: the event to get the length of
178 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
180 unsigned length = rb_event_length(event);
181 if (event->type != RINGBUF_TYPE_DATA)
183 length -= RB_EVNT_HDR_SIZE;
184 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
185 length -= sizeof(event->array[0]);
188 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
190 /* inline for ring buffer fast paths */
192 rb_event_data(struct ring_buffer_event *event)
194 BUG_ON(event->type != RINGBUF_TYPE_DATA);
195 /* If length is in len field, then array[0] has the data */
197 return (void *)&event->array[0];
198 /* Otherwise length is in array[0] and array[1] has the data */
199 return (void *)&event->array[1];
203 * ring_buffer_event_data - return the data of the event
204 * @event: the event to get the data from
206 void *ring_buffer_event_data(struct ring_buffer_event *event)
208 return rb_event_data(event);
210 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
212 #define for_each_buffer_cpu(buffer, cpu) \
213 for_each_cpu(cpu, buffer->cpumask)
216 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
217 #define TS_DELTA_TEST (~TS_MASK)
219 struct buffer_data_page {
220 u64 time_stamp; /* page time stamp */
221 local_t commit; /* write committed index */
222 unsigned char data[]; /* data of buffer page */
226 local_t write; /* index for next write */
227 unsigned read; /* index for next read */
228 struct list_head list; /* list of free pages */
229 struct buffer_data_page *page; /* Actual data page */
232 static void rb_init_page(struct buffer_data_page *bpage)
234 local_set(&bpage->commit, 0);
238 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
241 static void free_buffer_page(struct buffer_page *bpage)
243 free_page((unsigned long)bpage->page);
248 * We need to fit the time_stamp delta into 27 bits.
250 static inline int test_time_stamp(u64 delta)
252 if (delta & TS_DELTA_TEST)
257 #define BUF_PAGE_SIZE (PAGE_SIZE - offsetof(struct buffer_data_page, data))
260 * head_page == tail_page && head == tail then buffer is empty.
262 struct ring_buffer_per_cpu {
264 struct ring_buffer *buffer;
265 spinlock_t reader_lock; /* serialize readers */
267 struct lock_class_key lock_key;
268 struct list_head pages;
269 struct buffer_page *head_page; /* read from head */
270 struct buffer_page *tail_page; /* write to tail */
271 struct buffer_page *commit_page; /* committed pages */
272 struct buffer_page *reader_page;
273 unsigned long overrun;
274 unsigned long entries;
277 atomic_t record_disabled;
284 atomic_t record_disabled;
285 cpumask_var_t cpumask;
289 struct ring_buffer_per_cpu **buffers;
292 struct ring_buffer_iter {
293 struct ring_buffer_per_cpu *cpu_buffer;
295 struct buffer_page *head_page;
299 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
300 #define RB_WARN_ON(buffer, cond) \
302 int _____ret = unlikely(cond); \
304 atomic_inc(&buffer->record_disabled); \
311 * check_pages - integrity check of buffer pages
312 * @cpu_buffer: CPU buffer with pages to test
314 * As a safety measure we check to make sure the data pages have not
317 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
319 struct list_head *head = &cpu_buffer->pages;
320 struct buffer_page *bpage, *tmp;
322 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
324 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
327 list_for_each_entry_safe(bpage, tmp, head, list) {
328 if (RB_WARN_ON(cpu_buffer,
329 bpage->list.next->prev != &bpage->list))
331 if (RB_WARN_ON(cpu_buffer,
332 bpage->list.prev->next != &bpage->list))
339 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
342 struct list_head *head = &cpu_buffer->pages;
343 struct buffer_page *bpage, *tmp;
348 for (i = 0; i < nr_pages; i++) {
349 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
350 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
353 list_add(&bpage->list, &pages);
355 addr = __get_free_page(GFP_KERNEL);
358 bpage->page = (void *)addr;
359 rb_init_page(bpage->page);
362 list_splice(&pages, head);
364 rb_check_pages(cpu_buffer);
369 list_for_each_entry_safe(bpage, tmp, &pages, list) {
370 list_del_init(&bpage->list);
371 free_buffer_page(bpage);
376 static struct ring_buffer_per_cpu *
377 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
379 struct ring_buffer_per_cpu *cpu_buffer;
380 struct buffer_page *bpage;
384 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
385 GFP_KERNEL, cpu_to_node(cpu));
389 cpu_buffer->cpu = cpu;
390 cpu_buffer->buffer = buffer;
391 spin_lock_init(&cpu_buffer->reader_lock);
392 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
393 INIT_LIST_HEAD(&cpu_buffer->pages);
395 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
396 GFP_KERNEL, cpu_to_node(cpu));
398 goto fail_free_buffer;
400 cpu_buffer->reader_page = bpage;
401 addr = __get_free_page(GFP_KERNEL);
403 goto fail_free_reader;
404 bpage->page = (void *)addr;
405 rb_init_page(bpage->page);
407 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
409 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
411 goto fail_free_reader;
413 cpu_buffer->head_page
414 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
415 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
420 free_buffer_page(cpu_buffer->reader_page);
427 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
429 struct list_head *head = &cpu_buffer->pages;
430 struct buffer_page *bpage, *tmp;
432 list_del_init(&cpu_buffer->reader_page->list);
433 free_buffer_page(cpu_buffer->reader_page);
435 list_for_each_entry_safe(bpage, tmp, head, list) {
436 list_del_init(&bpage->list);
437 free_buffer_page(bpage);
443 * Causes compile errors if the struct buffer_page gets bigger
444 * than the struct page.
446 extern int ring_buffer_page_too_big(void);
449 * ring_buffer_alloc - allocate a new ring_buffer
450 * @size: the size in bytes per cpu that is needed.
451 * @flags: attributes to set for the ring buffer.
453 * Currently the only flag that is available is the RB_FL_OVERWRITE
454 * flag. This flag means that the buffer will overwrite old data
455 * when the buffer wraps. If this flag is not set, the buffer will
456 * drop data when the tail hits the head.
458 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
460 struct ring_buffer *buffer;
464 /* Paranoid! Optimizes out when all is well */
465 if (sizeof(struct buffer_page) > sizeof(struct page))
466 ring_buffer_page_too_big();
469 /* keep it in its own cache line */
470 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
475 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
476 goto fail_free_buffer;
478 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
479 buffer->flags = flags;
481 /* need at least two pages */
482 if (buffer->pages == 1)
485 cpumask_copy(buffer->cpumask, cpu_possible_mask);
486 buffer->cpus = nr_cpu_ids;
488 bsize = sizeof(void *) * nr_cpu_ids;
489 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
491 if (!buffer->buffers)
492 goto fail_free_cpumask;
494 for_each_buffer_cpu(buffer, cpu) {
495 buffer->buffers[cpu] =
496 rb_allocate_cpu_buffer(buffer, cpu);
497 if (!buffer->buffers[cpu])
498 goto fail_free_buffers;
501 mutex_init(&buffer->mutex);
506 for_each_buffer_cpu(buffer, cpu) {
507 if (buffer->buffers[cpu])
508 rb_free_cpu_buffer(buffer->buffers[cpu]);
510 kfree(buffer->buffers);
513 free_cpumask_var(buffer->cpumask);
519 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
522 * ring_buffer_free - free a ring buffer.
523 * @buffer: the buffer to free.
526 ring_buffer_free(struct ring_buffer *buffer)
530 for_each_buffer_cpu(buffer, cpu)
531 rb_free_cpu_buffer(buffer->buffers[cpu]);
533 free_cpumask_var(buffer->cpumask);
537 EXPORT_SYMBOL_GPL(ring_buffer_free);
539 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
542 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
544 struct buffer_page *bpage;
548 atomic_inc(&cpu_buffer->record_disabled);
551 for (i = 0; i < nr_pages; i++) {
552 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
554 p = cpu_buffer->pages.next;
555 bpage = list_entry(p, struct buffer_page, list);
556 list_del_init(&bpage->list);
557 free_buffer_page(bpage);
559 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
562 rb_reset_cpu(cpu_buffer);
564 rb_check_pages(cpu_buffer);
566 atomic_dec(&cpu_buffer->record_disabled);
571 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
572 struct list_head *pages, unsigned nr_pages)
574 struct buffer_page *bpage;
578 atomic_inc(&cpu_buffer->record_disabled);
581 for (i = 0; i < nr_pages; i++) {
582 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
585 bpage = list_entry(p, struct buffer_page, list);
586 list_del_init(&bpage->list);
587 list_add_tail(&bpage->list, &cpu_buffer->pages);
589 rb_reset_cpu(cpu_buffer);
591 rb_check_pages(cpu_buffer);
593 atomic_dec(&cpu_buffer->record_disabled);
597 * ring_buffer_resize - resize the ring buffer
598 * @buffer: the buffer to resize.
599 * @size: the new size.
601 * The tracer is responsible for making sure that the buffer is
602 * not being used while changing the size.
603 * Note: We may be able to change the above requirement by using
604 * RCU synchronizations.
606 * Minimum size is 2 * BUF_PAGE_SIZE.
608 * Returns -1 on failure.
610 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
612 struct ring_buffer_per_cpu *cpu_buffer;
613 unsigned nr_pages, rm_pages, new_pages;
614 struct buffer_page *bpage, *tmp;
615 unsigned long buffer_size;
621 * Always succeed at resizing a non-existent buffer:
626 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
627 size *= BUF_PAGE_SIZE;
628 buffer_size = buffer->pages * BUF_PAGE_SIZE;
630 /* we need a minimum of two pages */
631 if (size < BUF_PAGE_SIZE * 2)
632 size = BUF_PAGE_SIZE * 2;
634 if (size == buffer_size)
637 mutex_lock(&buffer->mutex);
639 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
641 if (size < buffer_size) {
643 /* easy case, just free pages */
644 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
645 mutex_unlock(&buffer->mutex);
649 rm_pages = buffer->pages - nr_pages;
651 for_each_buffer_cpu(buffer, cpu) {
652 cpu_buffer = buffer->buffers[cpu];
653 rb_remove_pages(cpu_buffer, rm_pages);
659 * This is a bit more difficult. We only want to add pages
660 * when we can allocate enough for all CPUs. We do this
661 * by allocating all the pages and storing them on a local
662 * link list. If we succeed in our allocation, then we
663 * add these pages to the cpu_buffers. Otherwise we just free
664 * them all and return -ENOMEM;
666 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
667 mutex_unlock(&buffer->mutex);
671 new_pages = nr_pages - buffer->pages;
673 for_each_buffer_cpu(buffer, cpu) {
674 for (i = 0; i < new_pages; i++) {
675 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
677 GFP_KERNEL, cpu_to_node(cpu));
680 list_add(&bpage->list, &pages);
681 addr = __get_free_page(GFP_KERNEL);
684 bpage->page = (void *)addr;
685 rb_init_page(bpage->page);
689 for_each_buffer_cpu(buffer, cpu) {
690 cpu_buffer = buffer->buffers[cpu];
691 rb_insert_pages(cpu_buffer, &pages, new_pages);
694 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
695 mutex_unlock(&buffer->mutex);
700 buffer->pages = nr_pages;
701 mutex_unlock(&buffer->mutex);
706 list_for_each_entry_safe(bpage, tmp, &pages, list) {
707 list_del_init(&bpage->list);
708 free_buffer_page(bpage);
710 mutex_unlock(&buffer->mutex);
713 EXPORT_SYMBOL_GPL(ring_buffer_resize);
715 static inline int rb_null_event(struct ring_buffer_event *event)
717 return event->type == RINGBUF_TYPE_PADDING;
721 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
723 return bpage->data + index;
726 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
728 return bpage->page->data + index;
731 static inline struct ring_buffer_event *
732 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
734 return __rb_page_index(cpu_buffer->reader_page,
735 cpu_buffer->reader_page->read);
738 static inline struct ring_buffer_event *
739 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
741 return __rb_page_index(cpu_buffer->head_page,
742 cpu_buffer->head_page->read);
745 static inline struct ring_buffer_event *
746 rb_iter_head_event(struct ring_buffer_iter *iter)
748 return __rb_page_index(iter->head_page, iter->head);
751 static inline unsigned rb_page_write(struct buffer_page *bpage)
753 return local_read(&bpage->write);
756 static inline unsigned rb_page_commit(struct buffer_page *bpage)
758 return local_read(&bpage->page->commit);
761 /* Size is determined by what has been commited */
762 static inline unsigned rb_page_size(struct buffer_page *bpage)
764 return rb_page_commit(bpage);
767 static inline unsigned
768 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
770 return rb_page_commit(cpu_buffer->commit_page);
773 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
775 return rb_page_commit(cpu_buffer->head_page);
779 * When the tail hits the head and the buffer is in overwrite mode,
780 * the head jumps to the next page and all content on the previous
781 * page is discarded. But before doing so, we update the overrun
782 * variable of the buffer.
784 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
786 struct ring_buffer_event *event;
789 for (head = 0; head < rb_head_size(cpu_buffer);
790 head += rb_event_length(event)) {
792 event = __rb_page_index(cpu_buffer->head_page, head);
793 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
795 /* Only count data entries */
796 if (event->type != RINGBUF_TYPE_DATA)
798 cpu_buffer->overrun++;
799 cpu_buffer->entries--;
803 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
804 struct buffer_page **bpage)
806 struct list_head *p = (*bpage)->list.next;
808 if (p == &cpu_buffer->pages)
811 *bpage = list_entry(p, struct buffer_page, list);
814 static inline unsigned
815 rb_event_index(struct ring_buffer_event *event)
817 unsigned long addr = (unsigned long)event;
819 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
823 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
824 struct ring_buffer_event *event)
826 unsigned long addr = (unsigned long)event;
829 index = rb_event_index(event);
832 return cpu_buffer->commit_page->page == (void *)addr &&
833 rb_commit_index(cpu_buffer) == index;
837 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
838 struct ring_buffer_event *event)
840 unsigned long addr = (unsigned long)event;
843 index = rb_event_index(event);
846 while (cpu_buffer->commit_page->page != (void *)addr) {
847 if (RB_WARN_ON(cpu_buffer,
848 cpu_buffer->commit_page == cpu_buffer->tail_page))
850 cpu_buffer->commit_page->page->commit =
851 cpu_buffer->commit_page->write;
852 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
853 cpu_buffer->write_stamp =
854 cpu_buffer->commit_page->page->time_stamp;
857 /* Now set the commit to the event's index */
858 local_set(&cpu_buffer->commit_page->page->commit, index);
862 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
865 * We only race with interrupts and NMIs on this CPU.
866 * If we own the commit event, then we can commit
867 * all others that interrupted us, since the interruptions
868 * are in stack format (they finish before they come
869 * back to us). This allows us to do a simple loop to
870 * assign the commit to the tail.
873 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
874 cpu_buffer->commit_page->page->commit =
875 cpu_buffer->commit_page->write;
876 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
877 cpu_buffer->write_stamp =
878 cpu_buffer->commit_page->page->time_stamp;
879 /* add barrier to keep gcc from optimizing too much */
882 while (rb_commit_index(cpu_buffer) !=
883 rb_page_write(cpu_buffer->commit_page)) {
884 cpu_buffer->commit_page->page->commit =
885 cpu_buffer->commit_page->write;
889 /* again, keep gcc from optimizing */
893 * If an interrupt came in just after the first while loop
894 * and pushed the tail page forward, we will be left with
895 * a dangling commit that will never go forward.
897 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
901 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
903 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
904 cpu_buffer->reader_page->read = 0;
907 static void rb_inc_iter(struct ring_buffer_iter *iter)
909 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
912 * The iterator could be on the reader page (it starts there).
913 * But the head could have moved, since the reader was
914 * found. Check for this case and assign the iterator
915 * to the head page instead of next.
917 if (iter->head_page == cpu_buffer->reader_page)
918 iter->head_page = cpu_buffer->head_page;
920 rb_inc_page(cpu_buffer, &iter->head_page);
922 iter->read_stamp = iter->head_page->page->time_stamp;
927 * ring_buffer_update_event - update event type and data
928 * @event: the even to update
929 * @type: the type of event
930 * @length: the size of the event field in the ring buffer
932 * Update the type and data fields of the event. The length
933 * is the actual size that is written to the ring buffer,
934 * and with this, we can determine what to place into the
938 rb_update_event(struct ring_buffer_event *event,
939 unsigned type, unsigned length)
945 case RINGBUF_TYPE_PADDING:
948 case RINGBUF_TYPE_TIME_EXTEND:
949 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
952 case RINGBUF_TYPE_TIME_STAMP:
953 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
956 case RINGBUF_TYPE_DATA:
957 length -= RB_EVNT_HDR_SIZE;
958 if (length > RB_MAX_SMALL_DATA) {
960 event->array[0] = length;
962 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
969 static unsigned rb_calculate_event_length(unsigned length)
971 struct ring_buffer_event event; /* Used only for sizeof array */
973 /* zero length can cause confusions */
977 if (length > RB_MAX_SMALL_DATA)
978 length += sizeof(event.array[0]);
980 length += RB_EVNT_HDR_SIZE;
981 length = ALIGN(length, RB_ALIGNMENT);
986 static struct ring_buffer_event *
987 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
988 unsigned type, unsigned long length, u64 *ts)
990 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
991 unsigned long tail, write;
992 struct ring_buffer *buffer = cpu_buffer->buffer;
993 struct ring_buffer_event *event;
995 bool lock_taken = false;
997 commit_page = cpu_buffer->commit_page;
998 /* we just need to protect against interrupts */
1000 tail_page = cpu_buffer->tail_page;
1001 write = local_add_return(length, &tail_page->write);
1002 tail = write - length;
1004 /* See if we shot pass the end of this buffer page */
1005 if (write > BUF_PAGE_SIZE) {
1006 struct buffer_page *next_page = tail_page;
1008 local_irq_save(flags);
1010 * Since the write to the buffer is still not
1011 * fully lockless, we must be careful with NMIs.
1012 * The locks in the writers are taken when a write
1013 * crosses to a new page. The locks protect against
1014 * races with the readers (this will soon be fixed
1015 * with a lockless solution).
1017 * Because we can not protect against NMIs, and we
1018 * want to keep traces reentrant, we need to manage
1019 * what happens when we are in an NMI.
1021 * NMIs can happen after we take the lock.
1022 * If we are in an NMI, only take the lock
1023 * if it is not already taken. Otherwise
1026 if (unlikely(in_nmi())) {
1027 if (!__raw_spin_trylock(&cpu_buffer->lock))
1030 __raw_spin_lock(&cpu_buffer->lock);
1034 rb_inc_page(cpu_buffer, &next_page);
1036 head_page = cpu_buffer->head_page;
1037 reader_page = cpu_buffer->reader_page;
1039 /* we grabbed the lock before incrementing */
1040 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1044 * If for some reason, we had an interrupt storm that made
1045 * it all the way around the buffer, bail, and warn
1048 if (unlikely(next_page == commit_page)) {
1053 if (next_page == head_page) {
1054 if (!(buffer->flags & RB_FL_OVERWRITE))
1057 /* tail_page has not moved yet? */
1058 if (tail_page == cpu_buffer->tail_page) {
1059 /* count overflows */
1060 rb_update_overflow(cpu_buffer);
1062 rb_inc_page(cpu_buffer, &head_page);
1063 cpu_buffer->head_page = head_page;
1064 cpu_buffer->head_page->read = 0;
1069 * If the tail page is still the same as what we think
1070 * it is, then it is up to us to update the tail
1073 if (tail_page == cpu_buffer->tail_page) {
1074 local_set(&next_page->write, 0);
1075 local_set(&next_page->page->commit, 0);
1076 cpu_buffer->tail_page = next_page;
1078 /* reread the time stamp */
1079 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1080 cpu_buffer->tail_page->page->time_stamp = *ts;
1084 * The actual tail page has moved forward.
1086 if (tail < BUF_PAGE_SIZE) {
1087 /* Mark the rest of the page with padding */
1088 event = __rb_page_index(tail_page, tail);
1089 event->type = RINGBUF_TYPE_PADDING;
1092 if (tail <= BUF_PAGE_SIZE)
1093 /* Set the write back to the previous setting */
1094 local_set(&tail_page->write, tail);
1097 * If this was a commit entry that failed,
1098 * increment that too
1100 if (tail_page == cpu_buffer->commit_page &&
1101 tail == rb_commit_index(cpu_buffer)) {
1102 rb_set_commit_to_write(cpu_buffer);
1105 __raw_spin_unlock(&cpu_buffer->lock);
1106 local_irq_restore(flags);
1108 /* fail and let the caller try again */
1109 return ERR_PTR(-EAGAIN);
1112 /* We reserved something on the buffer */
1114 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1117 event = __rb_page_index(tail_page, tail);
1118 rb_update_event(event, type, length);
1121 * If this is a commit and the tail is zero, then update
1122 * this page's time stamp.
1124 if (!tail && rb_is_commit(cpu_buffer, event))
1125 cpu_buffer->commit_page->page->time_stamp = *ts;
1131 if (tail <= BUF_PAGE_SIZE)
1132 local_set(&tail_page->write, tail);
1134 if (likely(lock_taken))
1135 __raw_spin_unlock(&cpu_buffer->lock);
1136 local_irq_restore(flags);
1141 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1142 u64 *ts, u64 *delta)
1144 struct ring_buffer_event *event;
1148 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1149 printk(KERN_WARNING "Delta way too big! %llu"
1150 " ts=%llu write stamp = %llu\n",
1151 (unsigned long long)*delta,
1152 (unsigned long long)*ts,
1153 (unsigned long long)cpu_buffer->write_stamp);
1158 * The delta is too big, we to add a
1161 event = __rb_reserve_next(cpu_buffer,
1162 RINGBUF_TYPE_TIME_EXTEND,
1168 if (PTR_ERR(event) == -EAGAIN)
1171 /* Only a commited time event can update the write stamp */
1172 if (rb_is_commit(cpu_buffer, event)) {
1174 * If this is the first on the page, then we need to
1175 * update the page itself, and just put in a zero.
1177 if (rb_event_index(event)) {
1178 event->time_delta = *delta & TS_MASK;
1179 event->array[0] = *delta >> TS_SHIFT;
1181 cpu_buffer->commit_page->page->time_stamp = *ts;
1182 event->time_delta = 0;
1183 event->array[0] = 0;
1185 cpu_buffer->write_stamp = *ts;
1186 /* let the caller know this was the commit */
1189 /* Darn, this is just wasted space */
1190 event->time_delta = 0;
1191 event->array[0] = 0;
1200 static struct ring_buffer_event *
1201 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1202 unsigned type, unsigned long length)
1204 struct ring_buffer_event *event;
1211 * We allow for interrupts to reenter here and do a trace.
1212 * If one does, it will cause this original code to loop
1213 * back here. Even with heavy interrupts happening, this
1214 * should only happen a few times in a row. If this happens
1215 * 1000 times in a row, there must be either an interrupt
1216 * storm or we have something buggy.
1219 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1222 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1225 * Only the first commit can update the timestamp.
1226 * Yes there is a race here. If an interrupt comes in
1227 * just after the conditional and it traces too, then it
1228 * will also check the deltas. More than one timestamp may
1229 * also be made. But only the entry that did the actual
1230 * commit will be something other than zero.
1232 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1233 rb_page_write(cpu_buffer->tail_page) ==
1234 rb_commit_index(cpu_buffer)) {
1236 delta = ts - cpu_buffer->write_stamp;
1238 /* make sure this delta is calculated here */
1241 /* Did the write stamp get updated already? */
1242 if (unlikely(ts < cpu_buffer->write_stamp))
1245 if (test_time_stamp(delta)) {
1247 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1249 if (commit == -EBUSY)
1252 if (commit == -EAGAIN)
1255 RB_WARN_ON(cpu_buffer, commit < 0);
1258 /* Non commits have zero deltas */
1261 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1262 if (PTR_ERR(event) == -EAGAIN)
1266 if (unlikely(commit))
1268 * Ouch! We needed a timestamp and it was commited. But
1269 * we didn't get our event reserved.
1271 rb_set_commit_to_write(cpu_buffer);
1276 * If the timestamp was commited, make the commit our entry
1277 * now so that we will update it when needed.
1280 rb_set_commit_event(cpu_buffer, event);
1281 else if (!rb_is_commit(cpu_buffer, event))
1284 event->time_delta = delta;
1289 static DEFINE_PER_CPU(int, rb_need_resched);
1292 * ring_buffer_lock_reserve - reserve a part of the buffer
1293 * @buffer: the ring buffer to reserve from
1294 * @length: the length of the data to reserve (excluding event header)
1296 * Returns a reseverd event on the ring buffer to copy directly to.
1297 * The user of this interface will need to get the body to write into
1298 * and can use the ring_buffer_event_data() interface.
1300 * The length is the length of the data needed, not the event length
1301 * which also includes the event header.
1303 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1304 * If NULL is returned, then nothing has been allocated or locked.
1306 struct ring_buffer_event *
1307 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1309 struct ring_buffer_per_cpu *cpu_buffer;
1310 struct ring_buffer_event *event;
1313 if (ring_buffer_flags != RB_BUFFERS_ON)
1316 if (atomic_read(&buffer->record_disabled))
1319 /* If we are tracing schedule, we don't want to recurse */
1320 resched = ftrace_preempt_disable();
1322 cpu = raw_smp_processor_id();
1324 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1327 cpu_buffer = buffer->buffers[cpu];
1329 if (atomic_read(&cpu_buffer->record_disabled))
1332 length = rb_calculate_event_length(length);
1333 if (length > BUF_PAGE_SIZE)
1336 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1341 * Need to store resched state on this cpu.
1342 * Only the first needs to.
1345 if (preempt_count() == 1)
1346 per_cpu(rb_need_resched, cpu) = resched;
1351 ftrace_preempt_enable(resched);
1354 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1356 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1357 struct ring_buffer_event *event)
1359 cpu_buffer->entries++;
1361 /* Only process further if we own the commit */
1362 if (!rb_is_commit(cpu_buffer, event))
1365 cpu_buffer->write_stamp += event->time_delta;
1367 rb_set_commit_to_write(cpu_buffer);
1371 * ring_buffer_unlock_commit - commit a reserved
1372 * @buffer: The buffer to commit to
1373 * @event: The event pointer to commit.
1375 * This commits the data to the ring buffer, and releases any locks held.
1377 * Must be paired with ring_buffer_lock_reserve.
1379 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1380 struct ring_buffer_event *event)
1382 struct ring_buffer_per_cpu *cpu_buffer;
1383 int cpu = raw_smp_processor_id();
1385 cpu_buffer = buffer->buffers[cpu];
1387 rb_commit(cpu_buffer, event);
1390 * Only the last preempt count needs to restore preemption.
1392 if (preempt_count() == 1)
1393 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1395 preempt_enable_no_resched_notrace();
1399 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1402 * ring_buffer_write - write data to the buffer without reserving
1403 * @buffer: The ring buffer to write to.
1404 * @length: The length of the data being written (excluding the event header)
1405 * @data: The data to write to the buffer.
1407 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1408 * one function. If you already have the data to write to the buffer, it
1409 * may be easier to simply call this function.
1411 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1412 * and not the length of the event which would hold the header.
1414 int ring_buffer_write(struct ring_buffer *buffer,
1415 unsigned long length,
1418 struct ring_buffer_per_cpu *cpu_buffer;
1419 struct ring_buffer_event *event;
1420 unsigned long event_length;
1425 if (ring_buffer_flags != RB_BUFFERS_ON)
1428 if (atomic_read(&buffer->record_disabled))
1431 resched = ftrace_preempt_disable();
1433 cpu = raw_smp_processor_id();
1435 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1438 cpu_buffer = buffer->buffers[cpu];
1440 if (atomic_read(&cpu_buffer->record_disabled))
1443 event_length = rb_calculate_event_length(length);
1444 event = rb_reserve_next_event(cpu_buffer,
1445 RINGBUF_TYPE_DATA, event_length);
1449 body = rb_event_data(event);
1451 memcpy(body, data, length);
1453 rb_commit(cpu_buffer, event);
1457 ftrace_preempt_enable(resched);
1461 EXPORT_SYMBOL_GPL(ring_buffer_write);
1463 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1465 struct buffer_page *reader = cpu_buffer->reader_page;
1466 struct buffer_page *head = cpu_buffer->head_page;
1467 struct buffer_page *commit = cpu_buffer->commit_page;
1469 return reader->read == rb_page_commit(reader) &&
1470 (commit == reader ||
1472 head->read == rb_page_commit(commit)));
1476 * ring_buffer_record_disable - stop all writes into the buffer
1477 * @buffer: The ring buffer to stop writes to.
1479 * This prevents all writes to the buffer. Any attempt to write
1480 * to the buffer after this will fail and return NULL.
1482 * The caller should call synchronize_sched() after this.
1484 void ring_buffer_record_disable(struct ring_buffer *buffer)
1486 atomic_inc(&buffer->record_disabled);
1488 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1491 * ring_buffer_record_enable - enable writes to the buffer
1492 * @buffer: The ring buffer to enable writes
1494 * Note, multiple disables will need the same number of enables
1495 * to truely enable the writing (much like preempt_disable).
1497 void ring_buffer_record_enable(struct ring_buffer *buffer)
1499 atomic_dec(&buffer->record_disabled);
1501 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1504 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1505 * @buffer: The ring buffer to stop writes to.
1506 * @cpu: The CPU buffer to stop
1508 * This prevents all writes to the buffer. Any attempt to write
1509 * to the buffer after this will fail and return NULL.
1511 * The caller should call synchronize_sched() after this.
1513 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1515 struct ring_buffer_per_cpu *cpu_buffer;
1517 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1520 cpu_buffer = buffer->buffers[cpu];
1521 atomic_inc(&cpu_buffer->record_disabled);
1523 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1526 * ring_buffer_record_enable_cpu - enable writes to the buffer
1527 * @buffer: The ring buffer to enable writes
1528 * @cpu: The CPU to enable.
1530 * Note, multiple disables will need the same number of enables
1531 * to truely enable the writing (much like preempt_disable).
1533 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1535 struct ring_buffer_per_cpu *cpu_buffer;
1537 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1540 cpu_buffer = buffer->buffers[cpu];
1541 atomic_dec(&cpu_buffer->record_disabled);
1543 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1546 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1547 * @buffer: The ring buffer
1548 * @cpu: The per CPU buffer to get the entries from.
1550 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1552 struct ring_buffer_per_cpu *cpu_buffer;
1554 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1557 cpu_buffer = buffer->buffers[cpu];
1558 return cpu_buffer->entries;
1560 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1563 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1564 * @buffer: The ring buffer
1565 * @cpu: The per CPU buffer to get the number of overruns from
1567 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1569 struct ring_buffer_per_cpu *cpu_buffer;
1571 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1574 cpu_buffer = buffer->buffers[cpu];
1575 return cpu_buffer->overrun;
1577 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1580 * ring_buffer_entries - get the number of entries in a buffer
1581 * @buffer: The ring buffer
1583 * Returns the total number of entries in the ring buffer
1586 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1588 struct ring_buffer_per_cpu *cpu_buffer;
1589 unsigned long entries = 0;
1592 /* if you care about this being correct, lock the buffer */
1593 for_each_buffer_cpu(buffer, cpu) {
1594 cpu_buffer = buffer->buffers[cpu];
1595 entries += cpu_buffer->entries;
1600 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1603 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1604 * @buffer: The ring buffer
1606 * Returns the total number of overruns in the ring buffer
1609 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1611 struct ring_buffer_per_cpu *cpu_buffer;
1612 unsigned long overruns = 0;
1615 /* if you care about this being correct, lock the buffer */
1616 for_each_buffer_cpu(buffer, cpu) {
1617 cpu_buffer = buffer->buffers[cpu];
1618 overruns += cpu_buffer->overrun;
1623 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1625 static void rb_iter_reset(struct ring_buffer_iter *iter)
1627 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1629 /* Iterator usage is expected to have record disabled */
1630 if (list_empty(&cpu_buffer->reader_page->list)) {
1631 iter->head_page = cpu_buffer->head_page;
1632 iter->head = cpu_buffer->head_page->read;
1634 iter->head_page = cpu_buffer->reader_page;
1635 iter->head = cpu_buffer->reader_page->read;
1638 iter->read_stamp = cpu_buffer->read_stamp;
1640 iter->read_stamp = iter->head_page->page->time_stamp;
1644 * ring_buffer_iter_reset - reset an iterator
1645 * @iter: The iterator to reset
1647 * Resets the iterator, so that it will start from the beginning
1650 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1652 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1653 unsigned long flags;
1655 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1656 rb_iter_reset(iter);
1657 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1659 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1662 * ring_buffer_iter_empty - check if an iterator has no more to read
1663 * @iter: The iterator to check
1665 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1667 struct ring_buffer_per_cpu *cpu_buffer;
1669 cpu_buffer = iter->cpu_buffer;
1671 return iter->head_page == cpu_buffer->commit_page &&
1672 iter->head == rb_commit_index(cpu_buffer);
1674 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1677 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1678 struct ring_buffer_event *event)
1682 switch (event->type) {
1683 case RINGBUF_TYPE_PADDING:
1686 case RINGBUF_TYPE_TIME_EXTEND:
1687 delta = event->array[0];
1689 delta += event->time_delta;
1690 cpu_buffer->read_stamp += delta;
1693 case RINGBUF_TYPE_TIME_STAMP:
1694 /* FIXME: not implemented */
1697 case RINGBUF_TYPE_DATA:
1698 cpu_buffer->read_stamp += event->time_delta;
1708 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1709 struct ring_buffer_event *event)
1713 switch (event->type) {
1714 case RINGBUF_TYPE_PADDING:
1717 case RINGBUF_TYPE_TIME_EXTEND:
1718 delta = event->array[0];
1720 delta += event->time_delta;
1721 iter->read_stamp += delta;
1724 case RINGBUF_TYPE_TIME_STAMP:
1725 /* FIXME: not implemented */
1728 case RINGBUF_TYPE_DATA:
1729 iter->read_stamp += event->time_delta;
1738 static struct buffer_page *
1739 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1741 struct buffer_page *reader = NULL;
1742 unsigned long flags;
1745 local_irq_save(flags);
1746 __raw_spin_lock(&cpu_buffer->lock);
1750 * This should normally only loop twice. But because the
1751 * start of the reader inserts an empty page, it causes
1752 * a case where we will loop three times. There should be no
1753 * reason to loop four times (that I know of).
1755 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1760 reader = cpu_buffer->reader_page;
1762 /* If there's more to read, return this page */
1763 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1766 /* Never should we have an index greater than the size */
1767 if (RB_WARN_ON(cpu_buffer,
1768 cpu_buffer->reader_page->read > rb_page_size(reader)))
1771 /* check if we caught up to the tail */
1773 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1777 * Splice the empty reader page into the list around the head.
1778 * Reset the reader page to size zero.
1781 reader = cpu_buffer->head_page;
1782 cpu_buffer->reader_page->list.next = reader->list.next;
1783 cpu_buffer->reader_page->list.prev = reader->list.prev;
1785 local_set(&cpu_buffer->reader_page->write, 0);
1786 local_set(&cpu_buffer->reader_page->page->commit, 0);
1788 /* Make the reader page now replace the head */
1789 reader->list.prev->next = &cpu_buffer->reader_page->list;
1790 reader->list.next->prev = &cpu_buffer->reader_page->list;
1793 * If the tail is on the reader, then we must set the head
1794 * to the inserted page, otherwise we set it one before.
1796 cpu_buffer->head_page = cpu_buffer->reader_page;
1798 if (cpu_buffer->commit_page != reader)
1799 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1801 /* Finally update the reader page to the new head */
1802 cpu_buffer->reader_page = reader;
1803 rb_reset_reader_page(cpu_buffer);
1808 __raw_spin_unlock(&cpu_buffer->lock);
1809 local_irq_restore(flags);
1814 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1816 struct ring_buffer_event *event;
1817 struct buffer_page *reader;
1820 reader = rb_get_reader_page(cpu_buffer);
1822 /* This function should not be called when buffer is empty */
1823 if (RB_WARN_ON(cpu_buffer, !reader))
1826 event = rb_reader_event(cpu_buffer);
1828 if (event->type == RINGBUF_TYPE_DATA)
1829 cpu_buffer->entries--;
1831 rb_update_read_stamp(cpu_buffer, event);
1833 length = rb_event_length(event);
1834 cpu_buffer->reader_page->read += length;
1837 static void rb_advance_iter(struct ring_buffer_iter *iter)
1839 struct ring_buffer *buffer;
1840 struct ring_buffer_per_cpu *cpu_buffer;
1841 struct ring_buffer_event *event;
1844 cpu_buffer = iter->cpu_buffer;
1845 buffer = cpu_buffer->buffer;
1848 * Check if we are at the end of the buffer.
1850 if (iter->head >= rb_page_size(iter->head_page)) {
1851 if (RB_WARN_ON(buffer,
1852 iter->head_page == cpu_buffer->commit_page))
1858 event = rb_iter_head_event(iter);
1860 length = rb_event_length(event);
1863 * This should not be called to advance the header if we are
1864 * at the tail of the buffer.
1866 if (RB_WARN_ON(cpu_buffer,
1867 (iter->head_page == cpu_buffer->commit_page) &&
1868 (iter->head + length > rb_commit_index(cpu_buffer))))
1871 rb_update_iter_read_stamp(iter, event);
1873 iter->head += length;
1875 /* check for end of page padding */
1876 if ((iter->head >= rb_page_size(iter->head_page)) &&
1877 (iter->head_page != cpu_buffer->commit_page))
1878 rb_advance_iter(iter);
1881 static struct ring_buffer_event *
1882 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1884 struct ring_buffer_per_cpu *cpu_buffer;
1885 struct ring_buffer_event *event;
1886 struct buffer_page *reader;
1889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1892 cpu_buffer = buffer->buffers[cpu];
1896 * We repeat when a timestamp is encountered. It is possible
1897 * to get multiple timestamps from an interrupt entering just
1898 * as one timestamp is about to be written. The max times
1899 * that this can happen is the number of nested interrupts we
1900 * can have. Nesting 10 deep of interrupts is clearly
1903 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1906 reader = rb_get_reader_page(cpu_buffer);
1910 event = rb_reader_event(cpu_buffer);
1912 switch (event->type) {
1913 case RINGBUF_TYPE_PADDING:
1914 RB_WARN_ON(cpu_buffer, 1);
1915 rb_advance_reader(cpu_buffer);
1918 case RINGBUF_TYPE_TIME_EXTEND:
1919 /* Internal data, OK to advance */
1920 rb_advance_reader(cpu_buffer);
1923 case RINGBUF_TYPE_TIME_STAMP:
1924 /* FIXME: not implemented */
1925 rb_advance_reader(cpu_buffer);
1928 case RINGBUF_TYPE_DATA:
1930 *ts = cpu_buffer->read_stamp + event->time_delta;
1931 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1941 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1943 static struct ring_buffer_event *
1944 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1946 struct ring_buffer *buffer;
1947 struct ring_buffer_per_cpu *cpu_buffer;
1948 struct ring_buffer_event *event;
1951 if (ring_buffer_iter_empty(iter))
1954 cpu_buffer = iter->cpu_buffer;
1955 buffer = cpu_buffer->buffer;
1959 * We repeat when a timestamp is encountered. It is possible
1960 * to get multiple timestamps from an interrupt entering just
1961 * as one timestamp is about to be written. The max times
1962 * that this can happen is the number of nested interrupts we
1963 * can have. Nesting 10 deep of interrupts is clearly
1966 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1969 if (rb_per_cpu_empty(cpu_buffer))
1972 event = rb_iter_head_event(iter);
1974 switch (event->type) {
1975 case RINGBUF_TYPE_PADDING:
1979 case RINGBUF_TYPE_TIME_EXTEND:
1980 /* Internal data, OK to advance */
1981 rb_advance_iter(iter);
1984 case RINGBUF_TYPE_TIME_STAMP:
1985 /* FIXME: not implemented */
1986 rb_advance_iter(iter);
1989 case RINGBUF_TYPE_DATA:
1991 *ts = iter->read_stamp + event->time_delta;
1992 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2002 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2005 * ring_buffer_peek - peek at the next event to be read
2006 * @buffer: The ring buffer to read
2007 * @cpu: The cpu to peak at
2008 * @ts: The timestamp counter of this event.
2010 * This will return the event that will be read next, but does
2011 * not consume the data.
2013 struct ring_buffer_event *
2014 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2016 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2017 struct ring_buffer_event *event;
2018 unsigned long flags;
2020 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2021 event = rb_buffer_peek(buffer, cpu, ts);
2022 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2028 * ring_buffer_iter_peek - peek at the next event to be read
2029 * @iter: The ring buffer iterator
2030 * @ts: The timestamp counter of this event.
2032 * This will return the event that will be read next, but does
2033 * not increment the iterator.
2035 struct ring_buffer_event *
2036 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2038 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2039 struct ring_buffer_event *event;
2040 unsigned long flags;
2042 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2043 event = rb_iter_peek(iter, ts);
2044 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2050 * ring_buffer_consume - return an event and consume it
2051 * @buffer: The ring buffer to get the next event from
2053 * Returns the next event in the ring buffer, and that event is consumed.
2054 * Meaning, that sequential reads will keep returning a different event,
2055 * and eventually empty the ring buffer if the producer is slower.
2057 struct ring_buffer_event *
2058 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2060 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2061 struct ring_buffer_event *event;
2062 unsigned long flags;
2064 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2067 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2069 event = rb_buffer_peek(buffer, cpu, ts);
2073 rb_advance_reader(cpu_buffer);
2076 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2080 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2083 * ring_buffer_read_start - start a non consuming read of the buffer
2084 * @buffer: The ring buffer to read from
2085 * @cpu: The cpu buffer to iterate over
2087 * This starts up an iteration through the buffer. It also disables
2088 * the recording to the buffer until the reading is finished.
2089 * This prevents the reading from being corrupted. This is not
2090 * a consuming read, so a producer is not expected.
2092 * Must be paired with ring_buffer_finish.
2094 struct ring_buffer_iter *
2095 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2097 struct ring_buffer_per_cpu *cpu_buffer;
2098 struct ring_buffer_iter *iter;
2099 unsigned long flags;
2101 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2104 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2108 cpu_buffer = buffer->buffers[cpu];
2110 iter->cpu_buffer = cpu_buffer;
2112 atomic_inc(&cpu_buffer->record_disabled);
2113 synchronize_sched();
2115 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2116 __raw_spin_lock(&cpu_buffer->lock);
2117 rb_iter_reset(iter);
2118 __raw_spin_unlock(&cpu_buffer->lock);
2119 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2123 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2126 * ring_buffer_finish - finish reading the iterator of the buffer
2127 * @iter: The iterator retrieved by ring_buffer_start
2129 * This re-enables the recording to the buffer, and frees the
2133 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2137 atomic_dec(&cpu_buffer->record_disabled);
2140 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2143 * ring_buffer_read - read the next item in the ring buffer by the iterator
2144 * @iter: The ring buffer iterator
2145 * @ts: The time stamp of the event read.
2147 * This reads the next event in the ring buffer and increments the iterator.
2149 struct ring_buffer_event *
2150 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2152 struct ring_buffer_event *event;
2153 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2154 unsigned long flags;
2156 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2157 event = rb_iter_peek(iter, ts);
2161 rb_advance_iter(iter);
2163 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2167 EXPORT_SYMBOL_GPL(ring_buffer_read);
2170 * ring_buffer_size - return the size of the ring buffer (in bytes)
2171 * @buffer: The ring buffer.
2173 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2175 return BUF_PAGE_SIZE * buffer->pages;
2177 EXPORT_SYMBOL_GPL(ring_buffer_size);
2180 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2182 cpu_buffer->head_page
2183 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2184 local_set(&cpu_buffer->head_page->write, 0);
2185 local_set(&cpu_buffer->head_page->page->commit, 0);
2187 cpu_buffer->head_page->read = 0;
2189 cpu_buffer->tail_page = cpu_buffer->head_page;
2190 cpu_buffer->commit_page = cpu_buffer->head_page;
2192 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2193 local_set(&cpu_buffer->reader_page->write, 0);
2194 local_set(&cpu_buffer->reader_page->page->commit, 0);
2195 cpu_buffer->reader_page->read = 0;
2197 cpu_buffer->overrun = 0;
2198 cpu_buffer->entries = 0;
2200 cpu_buffer->write_stamp = 0;
2201 cpu_buffer->read_stamp = 0;
2205 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2206 * @buffer: The ring buffer to reset a per cpu buffer of
2207 * @cpu: The CPU buffer to be reset
2209 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2211 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2212 unsigned long flags;
2214 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2217 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2219 __raw_spin_lock(&cpu_buffer->lock);
2221 rb_reset_cpu(cpu_buffer);
2223 __raw_spin_unlock(&cpu_buffer->lock);
2225 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2227 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2230 * ring_buffer_reset - reset a ring buffer
2231 * @buffer: The ring buffer to reset all cpu buffers
2233 void ring_buffer_reset(struct ring_buffer *buffer)
2237 for_each_buffer_cpu(buffer, cpu)
2238 ring_buffer_reset_cpu(buffer, cpu);
2240 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2243 * rind_buffer_empty - is the ring buffer empty?
2244 * @buffer: The ring buffer to test
2246 int ring_buffer_empty(struct ring_buffer *buffer)
2248 struct ring_buffer_per_cpu *cpu_buffer;
2251 /* yes this is racy, but if you don't like the race, lock the buffer */
2252 for_each_buffer_cpu(buffer, cpu) {
2253 cpu_buffer = buffer->buffers[cpu];
2254 if (!rb_per_cpu_empty(cpu_buffer))
2259 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2262 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2263 * @buffer: The ring buffer
2264 * @cpu: The CPU buffer to test
2266 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2268 struct ring_buffer_per_cpu *cpu_buffer;
2270 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2273 cpu_buffer = buffer->buffers[cpu];
2274 return rb_per_cpu_empty(cpu_buffer);
2276 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2279 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2280 * @buffer_a: One buffer to swap with
2281 * @buffer_b: The other buffer to swap with
2283 * This function is useful for tracers that want to take a "snapshot"
2284 * of a CPU buffer and has another back up buffer lying around.
2285 * it is expected that the tracer handles the cpu buffer not being
2286 * used at the moment.
2288 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2289 struct ring_buffer *buffer_b, int cpu)
2291 struct ring_buffer_per_cpu *cpu_buffer_a;
2292 struct ring_buffer_per_cpu *cpu_buffer_b;
2294 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2295 !cpumask_test_cpu(cpu, buffer_b->cpumask))
2298 /* At least make sure the two buffers are somewhat the same */
2299 if (buffer_a->pages != buffer_b->pages)
2302 if (ring_buffer_flags != RB_BUFFERS_ON)
2305 if (atomic_read(&buffer_a->record_disabled))
2308 if (atomic_read(&buffer_b->record_disabled))
2311 cpu_buffer_a = buffer_a->buffers[cpu];
2312 cpu_buffer_b = buffer_b->buffers[cpu];
2314 if (atomic_read(&cpu_buffer_a->record_disabled))
2317 if (atomic_read(&cpu_buffer_b->record_disabled))
2321 * We can't do a synchronize_sched here because this
2322 * function can be called in atomic context.
2323 * Normally this will be called from the same CPU as cpu.
2324 * If not it's up to the caller to protect this.
2326 atomic_inc(&cpu_buffer_a->record_disabled);
2327 atomic_inc(&cpu_buffer_b->record_disabled);
2329 buffer_a->buffers[cpu] = cpu_buffer_b;
2330 buffer_b->buffers[cpu] = cpu_buffer_a;
2332 cpu_buffer_b->buffer = buffer_a;
2333 cpu_buffer_a->buffer = buffer_b;
2335 atomic_dec(&cpu_buffer_a->record_disabled);
2336 atomic_dec(&cpu_buffer_b->record_disabled);
2340 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2342 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2343 struct buffer_data_page *bpage,
2344 unsigned int offset)
2346 struct ring_buffer_event *event;
2349 __raw_spin_lock(&cpu_buffer->lock);
2350 for (head = offset; head < local_read(&bpage->commit);
2351 head += rb_event_length(event)) {
2353 event = __rb_data_page_index(bpage, head);
2354 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2356 /* Only count data entries */
2357 if (event->type != RINGBUF_TYPE_DATA)
2359 cpu_buffer->entries--;
2361 __raw_spin_unlock(&cpu_buffer->lock);
2365 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2366 * @buffer: the buffer to allocate for.
2368 * This function is used in conjunction with ring_buffer_read_page.
2369 * When reading a full page from the ring buffer, these functions
2370 * can be used to speed up the process. The calling function should
2371 * allocate a few pages first with this function. Then when it
2372 * needs to get pages from the ring buffer, it passes the result
2373 * of this function into ring_buffer_read_page, which will swap
2374 * the page that was allocated, with the read page of the buffer.
2377 * The page allocated, or NULL on error.
2379 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2382 struct buffer_data_page *bpage;
2384 addr = __get_free_page(GFP_KERNEL);
2388 bpage = (void *)addr;
2394 * ring_buffer_free_read_page - free an allocated read page
2395 * @buffer: the buffer the page was allocate for
2396 * @data: the page to free
2398 * Free a page allocated from ring_buffer_alloc_read_page.
2400 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2402 free_page((unsigned long)data);
2406 * ring_buffer_read_page - extract a page from the ring buffer
2407 * @buffer: buffer to extract from
2408 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2409 * @cpu: the cpu of the buffer to extract
2410 * @full: should the extraction only happen when the page is full.
2412 * This function will pull out a page from the ring buffer and consume it.
2413 * @data_page must be the address of the variable that was returned
2414 * from ring_buffer_alloc_read_page. This is because the page might be used
2415 * to swap with a page in the ring buffer.
2418 * rpage = ring_buffer_alloc_read_page(buffer);
2421 * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2423 * process_page(rpage, ret);
2425 * When @full is set, the function will not return true unless
2426 * the writer is off the reader page.
2428 * Note: it is up to the calling functions to handle sleeps and wakeups.
2429 * The ring buffer can be used anywhere in the kernel and can not
2430 * blindly call wake_up. The layer that uses the ring buffer must be
2431 * responsible for that.
2434 * >=0 if data has been transferred, returns the offset of consumed data.
2435 * <0 if no data has been transferred.
2437 int ring_buffer_read_page(struct ring_buffer *buffer,
2438 void **data_page, int cpu, int full)
2440 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2441 struct ring_buffer_event *event;
2442 struct buffer_data_page *bpage;
2443 unsigned long flags;
2454 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2457 * rb_buffer_peek will get the next ring buffer if
2458 * the current reader page is empty.
2460 event = rb_buffer_peek(buffer, cpu, NULL);
2464 /* check for data */
2465 if (!local_read(&cpu_buffer->reader_page->page->commit))
2468 read = cpu_buffer->reader_page->read;
2470 * If the writer is already off of the read page, then simply
2471 * switch the read page with the given page. Otherwise
2472 * we need to copy the data from the reader to the writer.
2474 if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2475 unsigned int commit = rb_page_commit(cpu_buffer->reader_page);
2476 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2480 /* The writer is still on the reader page, we must copy */
2481 memcpy(bpage->data + read, rpage->data + read, commit - read);
2483 /* consume what was read */
2484 cpu_buffer->reader_page->read = commit;
2487 local_set(&bpage->commit, commit);
2489 bpage->time_stamp = rpage->time_stamp;
2491 /* swap the pages */
2492 rb_init_page(bpage);
2493 bpage = cpu_buffer->reader_page->page;
2494 cpu_buffer->reader_page->page = *data_page;
2495 cpu_buffer->reader_page->read = 0;
2500 /* update the entry counter */
2501 rb_remove_entries(cpu_buffer, bpage, read);
2503 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2509 rb_simple_read(struct file *filp, char __user *ubuf,
2510 size_t cnt, loff_t *ppos)
2512 unsigned long *p = filp->private_data;
2516 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2517 r = sprintf(buf, "permanently disabled\n");
2519 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2521 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2525 rb_simple_write(struct file *filp, const char __user *ubuf,
2526 size_t cnt, loff_t *ppos)
2528 unsigned long *p = filp->private_data;
2533 if (cnt >= sizeof(buf))
2536 if (copy_from_user(&buf, ubuf, cnt))
2541 ret = strict_strtoul(buf, 10, &val);
2546 set_bit(RB_BUFFERS_ON_BIT, p);
2548 clear_bit(RB_BUFFERS_ON_BIT, p);
2555 static struct file_operations rb_simple_fops = {
2556 .open = tracing_open_generic,
2557 .read = rb_simple_read,
2558 .write = rb_simple_write,
2562 static __init int rb_init_debugfs(void)
2564 struct dentry *d_tracer;
2565 struct dentry *entry;
2567 d_tracer = tracing_init_dentry();
2569 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2570 &ring_buffer_flags, &rb_simple_fops);
2572 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2577 fs_initcall(rb_init_debugfs);