Merge branch 'tip/tracing/ftrace' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/fs.h>
20
21 #include "trace.h"
22
23 /*
24  * A fast way to enable or disable all ring buffers is to
25  * call tracing_on or tracing_off. Turning off the ring buffers
26  * prevents all ring buffers from being recorded to.
27  * Turning this switch on, makes it OK to write to the
28  * ring buffer, if the ring buffer is enabled itself.
29  *
30  * There's three layers that must be on in order to write
31  * to the ring buffer.
32  *
33  * 1) This global flag must be set.
34  * 2) The ring buffer must be enabled for recording.
35  * 3) The per cpu buffer must be enabled for recording.
36  *
37  * In case of an anomaly, this global flag has a bit set that
38  * will permantly disable all ring buffers.
39  */
40
41 /*
42  * Global flag to disable all recording to ring buffers
43  *  This has two bits: ON, DISABLED
44  *
45  *  ON   DISABLED
46  * ---- ----------
47  *   0      0        : ring buffers are off
48  *   1      0        : ring buffers are on
49  *   X      1        : ring buffers are permanently disabled
50  */
51
52 enum {
53         RB_BUFFERS_ON_BIT       = 0,
54         RB_BUFFERS_DISABLED_BIT = 1,
55 };
56
57 enum {
58         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
59         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
60 };
61
62 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
63
64 /**
65  * tracing_on - enable all tracing buffers
66  *
67  * This function enables all tracing buffers that may have been
68  * disabled with tracing_off.
69  */
70 void tracing_on(void)
71 {
72         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
73 }
74 EXPORT_SYMBOL_GPL(tracing_on);
75
76 /**
77  * tracing_off - turn off all tracing buffers
78  *
79  * This function stops all tracing buffers from recording data.
80  * It does not disable any overhead the tracers themselves may
81  * be causing. This function simply causes all recording to
82  * the ring buffers to fail.
83  */
84 void tracing_off(void)
85 {
86         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
87 }
88 EXPORT_SYMBOL_GPL(tracing_off);
89
90 /**
91  * tracing_off_permanent - permanently disable ring buffers
92  *
93  * This function, once called, will disable all ring buffers
94  * permanently.
95  */
96 void tracing_off_permanent(void)
97 {
98         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
99 }
100
101 /**
102  * tracing_is_on - show state of ring buffers enabled
103  */
104 int tracing_is_on(void)
105 {
106         return ring_buffer_flags == RB_BUFFERS_ON;
107 }
108 EXPORT_SYMBOL_GPL(tracing_is_on);
109
110 #include "trace.h"
111
112 /* Up this if you want to test the TIME_EXTENTS and normalization */
113 #define DEBUG_SHIFT 0
114
115 u64 ring_buffer_time_stamp(int cpu)
116 {
117         u64 time;
118
119         preempt_disable_notrace();
120         /* shift to debug/test normalization and TIME_EXTENTS */
121         time = trace_clock_local() << DEBUG_SHIFT;
122         preempt_enable_no_resched_notrace();
123
124         return time;
125 }
126 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
127
128 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
129 {
130         /* Just stupid testing the normalize function and deltas */
131         *ts >>= DEBUG_SHIFT;
132 }
133 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
134
135 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
136 #define RB_ALIGNMENT            4U
137 #define RB_MAX_SMALL_DATA       28
138
139 enum {
140         RB_LEN_TIME_EXTEND = 8,
141         RB_LEN_TIME_STAMP = 16,
142 };
143
144 /* inline for ring buffer fast paths */
145 static unsigned
146 rb_event_length(struct ring_buffer_event *event)
147 {
148         unsigned length;
149
150         switch (event->type) {
151         case RINGBUF_TYPE_PADDING:
152                 /* undefined */
153                 return -1;
154
155         case RINGBUF_TYPE_TIME_EXTEND:
156                 return RB_LEN_TIME_EXTEND;
157
158         case RINGBUF_TYPE_TIME_STAMP:
159                 return RB_LEN_TIME_STAMP;
160
161         case RINGBUF_TYPE_DATA:
162                 if (event->len)
163                         length = event->len * RB_ALIGNMENT;
164                 else
165                         length = event->array[0];
166                 return length + RB_EVNT_HDR_SIZE;
167         default:
168                 BUG();
169         }
170         /* not hit */
171         return 0;
172 }
173
174 /**
175  * ring_buffer_event_length - return the length of the event
176  * @event: the event to get the length of
177  */
178 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
179 {
180         unsigned length = rb_event_length(event);
181         if (event->type != RINGBUF_TYPE_DATA)
182                 return length;
183         length -= RB_EVNT_HDR_SIZE;
184         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
185                 length -= sizeof(event->array[0]);
186         return length;
187 }
188 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
189
190 /* inline for ring buffer fast paths */
191 static void *
192 rb_event_data(struct ring_buffer_event *event)
193 {
194         BUG_ON(event->type != RINGBUF_TYPE_DATA);
195         /* If length is in len field, then array[0] has the data */
196         if (event->len)
197                 return (void *)&event->array[0];
198         /* Otherwise length is in array[0] and array[1] has the data */
199         return (void *)&event->array[1];
200 }
201
202 /**
203  * ring_buffer_event_data - return the data of the event
204  * @event: the event to get the data from
205  */
206 void *ring_buffer_event_data(struct ring_buffer_event *event)
207 {
208         return rb_event_data(event);
209 }
210 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
211
212 #define for_each_buffer_cpu(buffer, cpu)                \
213         for_each_cpu(cpu, buffer->cpumask)
214
215 #define TS_SHIFT        27
216 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
217 #define TS_DELTA_TEST   (~TS_MASK)
218
219 struct buffer_data_page {
220         u64              time_stamp;    /* page time stamp */
221         local_t          commit;        /* write committed index */
222         unsigned char    data[];        /* data of buffer page */
223 };
224
225 struct buffer_page {
226         local_t          write;         /* index for next write */
227         unsigned         read;          /* index for next read */
228         struct list_head list;          /* list of free pages */
229         struct buffer_data_page *page;  /* Actual data page */
230 };
231
232 static void rb_init_page(struct buffer_data_page *bpage)
233 {
234         local_set(&bpage->commit, 0);
235 }
236
237 /*
238  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
239  * this issue out.
240  */
241 static void free_buffer_page(struct buffer_page *bpage)
242 {
243         free_page((unsigned long)bpage->page);
244         kfree(bpage);
245 }
246
247 /*
248  * We need to fit the time_stamp delta into 27 bits.
249  */
250 static inline int test_time_stamp(u64 delta)
251 {
252         if (delta & TS_DELTA_TEST)
253                 return 1;
254         return 0;
255 }
256
257 #define BUF_PAGE_SIZE (PAGE_SIZE - offsetof(struct buffer_data_page, data))
258
259 /*
260  * head_page == tail_page && head == tail then buffer is empty.
261  */
262 struct ring_buffer_per_cpu {
263         int                             cpu;
264         struct ring_buffer              *buffer;
265         spinlock_t                      reader_lock; /* serialize readers */
266         raw_spinlock_t                  lock;
267         struct lock_class_key           lock_key;
268         struct list_head                pages;
269         struct buffer_page              *head_page;     /* read from head */
270         struct buffer_page              *tail_page;     /* write to tail */
271         struct buffer_page              *commit_page;   /* committed pages */
272         struct buffer_page              *reader_page;
273         unsigned long                   overrun;
274         unsigned long                   entries;
275         u64                             write_stamp;
276         u64                             read_stamp;
277         atomic_t                        record_disabled;
278 };
279
280 struct ring_buffer {
281         unsigned                        pages;
282         unsigned                        flags;
283         int                             cpus;
284         atomic_t                        record_disabled;
285         cpumask_var_t                   cpumask;
286
287         struct mutex                    mutex;
288
289         struct ring_buffer_per_cpu      **buffers;
290 };
291
292 struct ring_buffer_iter {
293         struct ring_buffer_per_cpu      *cpu_buffer;
294         unsigned long                   head;
295         struct buffer_page              *head_page;
296         u64                             read_stamp;
297 };
298
299 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
300 #define RB_WARN_ON(buffer, cond)                                \
301         ({                                                      \
302                 int _____ret = unlikely(cond);                  \
303                 if (_____ret) {                                 \
304                         atomic_inc(&buffer->record_disabled);   \
305                         WARN_ON(1);                             \
306                 }                                               \
307                 _____ret;                                       \
308         })
309
310 /**
311  * check_pages - integrity check of buffer pages
312  * @cpu_buffer: CPU buffer with pages to test
313  *
314  * As a safety measure we check to make sure the data pages have not
315  * been corrupted.
316  */
317 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
318 {
319         struct list_head *head = &cpu_buffer->pages;
320         struct buffer_page *bpage, *tmp;
321
322         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
323                 return -1;
324         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
325                 return -1;
326
327         list_for_each_entry_safe(bpage, tmp, head, list) {
328                 if (RB_WARN_ON(cpu_buffer,
329                                bpage->list.next->prev != &bpage->list))
330                         return -1;
331                 if (RB_WARN_ON(cpu_buffer,
332                                bpage->list.prev->next != &bpage->list))
333                         return -1;
334         }
335
336         return 0;
337 }
338
339 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
340                              unsigned nr_pages)
341 {
342         struct list_head *head = &cpu_buffer->pages;
343         struct buffer_page *bpage, *tmp;
344         unsigned long addr;
345         LIST_HEAD(pages);
346         unsigned i;
347
348         for (i = 0; i < nr_pages; i++) {
349                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
350                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
351                 if (!bpage)
352                         goto free_pages;
353                 list_add(&bpage->list, &pages);
354
355                 addr = __get_free_page(GFP_KERNEL);
356                 if (!addr)
357                         goto free_pages;
358                 bpage->page = (void *)addr;
359                 rb_init_page(bpage->page);
360         }
361
362         list_splice(&pages, head);
363
364         rb_check_pages(cpu_buffer);
365
366         return 0;
367
368  free_pages:
369         list_for_each_entry_safe(bpage, tmp, &pages, list) {
370                 list_del_init(&bpage->list);
371                 free_buffer_page(bpage);
372         }
373         return -ENOMEM;
374 }
375
376 static struct ring_buffer_per_cpu *
377 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
378 {
379         struct ring_buffer_per_cpu *cpu_buffer;
380         struct buffer_page *bpage;
381         unsigned long addr;
382         int ret;
383
384         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
385                                   GFP_KERNEL, cpu_to_node(cpu));
386         if (!cpu_buffer)
387                 return NULL;
388
389         cpu_buffer->cpu = cpu;
390         cpu_buffer->buffer = buffer;
391         spin_lock_init(&cpu_buffer->reader_lock);
392         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
393         INIT_LIST_HEAD(&cpu_buffer->pages);
394
395         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
396                             GFP_KERNEL, cpu_to_node(cpu));
397         if (!bpage)
398                 goto fail_free_buffer;
399
400         cpu_buffer->reader_page = bpage;
401         addr = __get_free_page(GFP_KERNEL);
402         if (!addr)
403                 goto fail_free_reader;
404         bpage->page = (void *)addr;
405         rb_init_page(bpage->page);
406
407         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
408
409         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
410         if (ret < 0)
411                 goto fail_free_reader;
412
413         cpu_buffer->head_page
414                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
415         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
416
417         return cpu_buffer;
418
419  fail_free_reader:
420         free_buffer_page(cpu_buffer->reader_page);
421
422  fail_free_buffer:
423         kfree(cpu_buffer);
424         return NULL;
425 }
426
427 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
428 {
429         struct list_head *head = &cpu_buffer->pages;
430         struct buffer_page *bpage, *tmp;
431
432         list_del_init(&cpu_buffer->reader_page->list);
433         free_buffer_page(cpu_buffer->reader_page);
434
435         list_for_each_entry_safe(bpage, tmp, head, list) {
436                 list_del_init(&bpage->list);
437                 free_buffer_page(bpage);
438         }
439         kfree(cpu_buffer);
440 }
441
442 /*
443  * Causes compile errors if the struct buffer_page gets bigger
444  * than the struct page.
445  */
446 extern int ring_buffer_page_too_big(void);
447
448 /**
449  * ring_buffer_alloc - allocate a new ring_buffer
450  * @size: the size in bytes per cpu that is needed.
451  * @flags: attributes to set for the ring buffer.
452  *
453  * Currently the only flag that is available is the RB_FL_OVERWRITE
454  * flag. This flag means that the buffer will overwrite old data
455  * when the buffer wraps. If this flag is not set, the buffer will
456  * drop data when the tail hits the head.
457  */
458 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
459 {
460         struct ring_buffer *buffer;
461         int bsize;
462         int cpu;
463
464         /* Paranoid! Optimizes out when all is well */
465         if (sizeof(struct buffer_page) > sizeof(struct page))
466                 ring_buffer_page_too_big();
467
468
469         /* keep it in its own cache line */
470         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
471                          GFP_KERNEL);
472         if (!buffer)
473                 return NULL;
474
475         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
476                 goto fail_free_buffer;
477
478         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
479         buffer->flags = flags;
480
481         /* need at least two pages */
482         if (buffer->pages == 1)
483                 buffer->pages++;
484
485         cpumask_copy(buffer->cpumask, cpu_possible_mask);
486         buffer->cpus = nr_cpu_ids;
487
488         bsize = sizeof(void *) * nr_cpu_ids;
489         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
490                                   GFP_KERNEL);
491         if (!buffer->buffers)
492                 goto fail_free_cpumask;
493
494         for_each_buffer_cpu(buffer, cpu) {
495                 buffer->buffers[cpu] =
496                         rb_allocate_cpu_buffer(buffer, cpu);
497                 if (!buffer->buffers[cpu])
498                         goto fail_free_buffers;
499         }
500
501         mutex_init(&buffer->mutex);
502
503         return buffer;
504
505  fail_free_buffers:
506         for_each_buffer_cpu(buffer, cpu) {
507                 if (buffer->buffers[cpu])
508                         rb_free_cpu_buffer(buffer->buffers[cpu]);
509         }
510         kfree(buffer->buffers);
511
512  fail_free_cpumask:
513         free_cpumask_var(buffer->cpumask);
514
515  fail_free_buffer:
516         kfree(buffer);
517         return NULL;
518 }
519 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
520
521 /**
522  * ring_buffer_free - free a ring buffer.
523  * @buffer: the buffer to free.
524  */
525 void
526 ring_buffer_free(struct ring_buffer *buffer)
527 {
528         int cpu;
529
530         for_each_buffer_cpu(buffer, cpu)
531                 rb_free_cpu_buffer(buffer->buffers[cpu]);
532
533         free_cpumask_var(buffer->cpumask);
534
535         kfree(buffer);
536 }
537 EXPORT_SYMBOL_GPL(ring_buffer_free);
538
539 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
540
541 static void
542 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
543 {
544         struct buffer_page *bpage;
545         struct list_head *p;
546         unsigned i;
547
548         atomic_inc(&cpu_buffer->record_disabled);
549         synchronize_sched();
550
551         for (i = 0; i < nr_pages; i++) {
552                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
553                         return;
554                 p = cpu_buffer->pages.next;
555                 bpage = list_entry(p, struct buffer_page, list);
556                 list_del_init(&bpage->list);
557                 free_buffer_page(bpage);
558         }
559         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
560                 return;
561
562         rb_reset_cpu(cpu_buffer);
563
564         rb_check_pages(cpu_buffer);
565
566         atomic_dec(&cpu_buffer->record_disabled);
567
568 }
569
570 static void
571 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
572                 struct list_head *pages, unsigned nr_pages)
573 {
574         struct buffer_page *bpage;
575         struct list_head *p;
576         unsigned i;
577
578         atomic_inc(&cpu_buffer->record_disabled);
579         synchronize_sched();
580
581         for (i = 0; i < nr_pages; i++) {
582                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
583                         return;
584                 p = pages->next;
585                 bpage = list_entry(p, struct buffer_page, list);
586                 list_del_init(&bpage->list);
587                 list_add_tail(&bpage->list, &cpu_buffer->pages);
588         }
589         rb_reset_cpu(cpu_buffer);
590
591         rb_check_pages(cpu_buffer);
592
593         atomic_dec(&cpu_buffer->record_disabled);
594 }
595
596 /**
597  * ring_buffer_resize - resize the ring buffer
598  * @buffer: the buffer to resize.
599  * @size: the new size.
600  *
601  * The tracer is responsible for making sure that the buffer is
602  * not being used while changing the size.
603  * Note: We may be able to change the above requirement by using
604  *  RCU synchronizations.
605  *
606  * Minimum size is 2 * BUF_PAGE_SIZE.
607  *
608  * Returns -1 on failure.
609  */
610 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
611 {
612         struct ring_buffer_per_cpu *cpu_buffer;
613         unsigned nr_pages, rm_pages, new_pages;
614         struct buffer_page *bpage, *tmp;
615         unsigned long buffer_size;
616         unsigned long addr;
617         LIST_HEAD(pages);
618         int i, cpu;
619
620         /*
621          * Always succeed at resizing a non-existent buffer:
622          */
623         if (!buffer)
624                 return size;
625
626         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
627         size *= BUF_PAGE_SIZE;
628         buffer_size = buffer->pages * BUF_PAGE_SIZE;
629
630         /* we need a minimum of two pages */
631         if (size < BUF_PAGE_SIZE * 2)
632                 size = BUF_PAGE_SIZE * 2;
633
634         if (size == buffer_size)
635                 return size;
636
637         mutex_lock(&buffer->mutex);
638
639         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
640
641         if (size < buffer_size) {
642
643                 /* easy case, just free pages */
644                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
645                         mutex_unlock(&buffer->mutex);
646                         return -1;
647                 }
648
649                 rm_pages = buffer->pages - nr_pages;
650
651                 for_each_buffer_cpu(buffer, cpu) {
652                         cpu_buffer = buffer->buffers[cpu];
653                         rb_remove_pages(cpu_buffer, rm_pages);
654                 }
655                 goto out;
656         }
657
658         /*
659          * This is a bit more difficult. We only want to add pages
660          * when we can allocate enough for all CPUs. We do this
661          * by allocating all the pages and storing them on a local
662          * link list. If we succeed in our allocation, then we
663          * add these pages to the cpu_buffers. Otherwise we just free
664          * them all and return -ENOMEM;
665          */
666         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
667                 mutex_unlock(&buffer->mutex);
668                 return -1;
669         }
670
671         new_pages = nr_pages - buffer->pages;
672
673         for_each_buffer_cpu(buffer, cpu) {
674                 for (i = 0; i < new_pages; i++) {
675                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
676                                                   cache_line_size()),
677                                             GFP_KERNEL, cpu_to_node(cpu));
678                         if (!bpage)
679                                 goto free_pages;
680                         list_add(&bpage->list, &pages);
681                         addr = __get_free_page(GFP_KERNEL);
682                         if (!addr)
683                                 goto free_pages;
684                         bpage->page = (void *)addr;
685                         rb_init_page(bpage->page);
686                 }
687         }
688
689         for_each_buffer_cpu(buffer, cpu) {
690                 cpu_buffer = buffer->buffers[cpu];
691                 rb_insert_pages(cpu_buffer, &pages, new_pages);
692         }
693
694         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
695                 mutex_unlock(&buffer->mutex);
696                 return -1;
697         }
698
699  out:
700         buffer->pages = nr_pages;
701         mutex_unlock(&buffer->mutex);
702
703         return size;
704
705  free_pages:
706         list_for_each_entry_safe(bpage, tmp, &pages, list) {
707                 list_del_init(&bpage->list);
708                 free_buffer_page(bpage);
709         }
710         mutex_unlock(&buffer->mutex);
711         return -ENOMEM;
712 }
713 EXPORT_SYMBOL_GPL(ring_buffer_resize);
714
715 static inline int rb_null_event(struct ring_buffer_event *event)
716 {
717         return event->type == RINGBUF_TYPE_PADDING;
718 }
719
720 static inline void *
721 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
722 {
723         return bpage->data + index;
724 }
725
726 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
727 {
728         return bpage->page->data + index;
729 }
730
731 static inline struct ring_buffer_event *
732 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
733 {
734         return __rb_page_index(cpu_buffer->reader_page,
735                                cpu_buffer->reader_page->read);
736 }
737
738 static inline struct ring_buffer_event *
739 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
740 {
741         return __rb_page_index(cpu_buffer->head_page,
742                                cpu_buffer->head_page->read);
743 }
744
745 static inline struct ring_buffer_event *
746 rb_iter_head_event(struct ring_buffer_iter *iter)
747 {
748         return __rb_page_index(iter->head_page, iter->head);
749 }
750
751 static inline unsigned rb_page_write(struct buffer_page *bpage)
752 {
753         return local_read(&bpage->write);
754 }
755
756 static inline unsigned rb_page_commit(struct buffer_page *bpage)
757 {
758         return local_read(&bpage->page->commit);
759 }
760
761 /* Size is determined by what has been commited */
762 static inline unsigned rb_page_size(struct buffer_page *bpage)
763 {
764         return rb_page_commit(bpage);
765 }
766
767 static inline unsigned
768 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
769 {
770         return rb_page_commit(cpu_buffer->commit_page);
771 }
772
773 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
774 {
775         return rb_page_commit(cpu_buffer->head_page);
776 }
777
778 /*
779  * When the tail hits the head and the buffer is in overwrite mode,
780  * the head jumps to the next page and all content on the previous
781  * page is discarded. But before doing so, we update the overrun
782  * variable of the buffer.
783  */
784 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
785 {
786         struct ring_buffer_event *event;
787         unsigned long head;
788
789         for (head = 0; head < rb_head_size(cpu_buffer);
790              head += rb_event_length(event)) {
791
792                 event = __rb_page_index(cpu_buffer->head_page, head);
793                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
794                         return;
795                 /* Only count data entries */
796                 if (event->type != RINGBUF_TYPE_DATA)
797                         continue;
798                 cpu_buffer->overrun++;
799                 cpu_buffer->entries--;
800         }
801 }
802
803 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
804                                struct buffer_page **bpage)
805 {
806         struct list_head *p = (*bpage)->list.next;
807
808         if (p == &cpu_buffer->pages)
809                 p = p->next;
810
811         *bpage = list_entry(p, struct buffer_page, list);
812 }
813
814 static inline unsigned
815 rb_event_index(struct ring_buffer_event *event)
816 {
817         unsigned long addr = (unsigned long)event;
818
819         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
820 }
821
822 static int
823 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
824              struct ring_buffer_event *event)
825 {
826         unsigned long addr = (unsigned long)event;
827         unsigned long index;
828
829         index = rb_event_index(event);
830         addr &= PAGE_MASK;
831
832         return cpu_buffer->commit_page->page == (void *)addr &&
833                 rb_commit_index(cpu_buffer) == index;
834 }
835
836 static void
837 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
838                     struct ring_buffer_event *event)
839 {
840         unsigned long addr = (unsigned long)event;
841         unsigned long index;
842
843         index = rb_event_index(event);
844         addr &= PAGE_MASK;
845
846         while (cpu_buffer->commit_page->page != (void *)addr) {
847                 if (RB_WARN_ON(cpu_buffer,
848                           cpu_buffer->commit_page == cpu_buffer->tail_page))
849                         return;
850                 cpu_buffer->commit_page->page->commit =
851                         cpu_buffer->commit_page->write;
852                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
853                 cpu_buffer->write_stamp =
854                         cpu_buffer->commit_page->page->time_stamp;
855         }
856
857         /* Now set the commit to the event's index */
858         local_set(&cpu_buffer->commit_page->page->commit, index);
859 }
860
861 static void
862 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
863 {
864         /*
865          * We only race with interrupts and NMIs on this CPU.
866          * If we own the commit event, then we can commit
867          * all others that interrupted us, since the interruptions
868          * are in stack format (they finish before they come
869          * back to us). This allows us to do a simple loop to
870          * assign the commit to the tail.
871          */
872  again:
873         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
874                 cpu_buffer->commit_page->page->commit =
875                         cpu_buffer->commit_page->write;
876                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
877                 cpu_buffer->write_stamp =
878                         cpu_buffer->commit_page->page->time_stamp;
879                 /* add barrier to keep gcc from optimizing too much */
880                 barrier();
881         }
882         while (rb_commit_index(cpu_buffer) !=
883                rb_page_write(cpu_buffer->commit_page)) {
884                 cpu_buffer->commit_page->page->commit =
885                         cpu_buffer->commit_page->write;
886                 barrier();
887         }
888
889         /* again, keep gcc from optimizing */
890         barrier();
891
892         /*
893          * If an interrupt came in just after the first while loop
894          * and pushed the tail page forward, we will be left with
895          * a dangling commit that will never go forward.
896          */
897         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
898                 goto again;
899 }
900
901 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
902 {
903         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
904         cpu_buffer->reader_page->read = 0;
905 }
906
907 static void rb_inc_iter(struct ring_buffer_iter *iter)
908 {
909         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
910
911         /*
912          * The iterator could be on the reader page (it starts there).
913          * But the head could have moved, since the reader was
914          * found. Check for this case and assign the iterator
915          * to the head page instead of next.
916          */
917         if (iter->head_page == cpu_buffer->reader_page)
918                 iter->head_page = cpu_buffer->head_page;
919         else
920                 rb_inc_page(cpu_buffer, &iter->head_page);
921
922         iter->read_stamp = iter->head_page->page->time_stamp;
923         iter->head = 0;
924 }
925
926 /**
927  * ring_buffer_update_event - update event type and data
928  * @event: the even to update
929  * @type: the type of event
930  * @length: the size of the event field in the ring buffer
931  *
932  * Update the type and data fields of the event. The length
933  * is the actual size that is written to the ring buffer,
934  * and with this, we can determine what to place into the
935  * data field.
936  */
937 static void
938 rb_update_event(struct ring_buffer_event *event,
939                          unsigned type, unsigned length)
940 {
941         event->type = type;
942
943         switch (type) {
944
945         case RINGBUF_TYPE_PADDING:
946                 break;
947
948         case RINGBUF_TYPE_TIME_EXTEND:
949                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
950                 break;
951
952         case RINGBUF_TYPE_TIME_STAMP:
953                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
954                 break;
955
956         case RINGBUF_TYPE_DATA:
957                 length -= RB_EVNT_HDR_SIZE;
958                 if (length > RB_MAX_SMALL_DATA) {
959                         event->len = 0;
960                         event->array[0] = length;
961                 } else
962                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
963                 break;
964         default:
965                 BUG();
966         }
967 }
968
969 static unsigned rb_calculate_event_length(unsigned length)
970 {
971         struct ring_buffer_event event; /* Used only for sizeof array */
972
973         /* zero length can cause confusions */
974         if (!length)
975                 length = 1;
976
977         if (length > RB_MAX_SMALL_DATA)
978                 length += sizeof(event.array[0]);
979
980         length += RB_EVNT_HDR_SIZE;
981         length = ALIGN(length, RB_ALIGNMENT);
982
983         return length;
984 }
985
986 static struct ring_buffer_event *
987 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
988                   unsigned type, unsigned long length, u64 *ts)
989 {
990         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
991         unsigned long tail, write;
992         struct ring_buffer *buffer = cpu_buffer->buffer;
993         struct ring_buffer_event *event;
994         unsigned long flags;
995         bool lock_taken = false;
996
997         commit_page = cpu_buffer->commit_page;
998         /* we just need to protect against interrupts */
999         barrier();
1000         tail_page = cpu_buffer->tail_page;
1001         write = local_add_return(length, &tail_page->write);
1002         tail = write - length;
1003
1004         /* See if we shot pass the end of this buffer page */
1005         if (write > BUF_PAGE_SIZE) {
1006                 struct buffer_page *next_page = tail_page;
1007
1008                 local_irq_save(flags);
1009                 /*
1010                  * Since the write to the buffer is still not
1011                  * fully lockless, we must be careful with NMIs.
1012                  * The locks in the writers are taken when a write
1013                  * crosses to a new page. The locks protect against
1014                  * races with the readers (this will soon be fixed
1015                  * with a lockless solution).
1016                  *
1017                  * Because we can not protect against NMIs, and we
1018                  * want to keep traces reentrant, we need to manage
1019                  * what happens when we are in an NMI.
1020                  *
1021                  * NMIs can happen after we take the lock.
1022                  * If we are in an NMI, only take the lock
1023                  * if it is not already taken. Otherwise
1024                  * simply fail.
1025                  */
1026                 if (unlikely(in_nmi())) {
1027                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1028                                 goto out_reset;
1029                 } else
1030                         __raw_spin_lock(&cpu_buffer->lock);
1031
1032                 lock_taken = true;
1033
1034                 rb_inc_page(cpu_buffer, &next_page);
1035
1036                 head_page = cpu_buffer->head_page;
1037                 reader_page = cpu_buffer->reader_page;
1038
1039                 /* we grabbed the lock before incrementing */
1040                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1041                         goto out_reset;
1042
1043                 /*
1044                  * If for some reason, we had an interrupt storm that made
1045                  * it all the way around the buffer, bail, and warn
1046                  * about it.
1047                  */
1048                 if (unlikely(next_page == commit_page)) {
1049                         WARN_ON_ONCE(1);
1050                         goto out_reset;
1051                 }
1052
1053                 if (next_page == head_page) {
1054                         if (!(buffer->flags & RB_FL_OVERWRITE))
1055                                 goto out_reset;
1056
1057                         /* tail_page has not moved yet? */
1058                         if (tail_page == cpu_buffer->tail_page) {
1059                                 /* count overflows */
1060                                 rb_update_overflow(cpu_buffer);
1061
1062                                 rb_inc_page(cpu_buffer, &head_page);
1063                                 cpu_buffer->head_page = head_page;
1064                                 cpu_buffer->head_page->read = 0;
1065                         }
1066                 }
1067
1068                 /*
1069                  * If the tail page is still the same as what we think
1070                  * it is, then it is up to us to update the tail
1071                  * pointer.
1072                  */
1073                 if (tail_page == cpu_buffer->tail_page) {
1074                         local_set(&next_page->write, 0);
1075                         local_set(&next_page->page->commit, 0);
1076                         cpu_buffer->tail_page = next_page;
1077
1078                         /* reread the time stamp */
1079                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1080                         cpu_buffer->tail_page->page->time_stamp = *ts;
1081                 }
1082
1083                 /*
1084                  * The actual tail page has moved forward.
1085                  */
1086                 if (tail < BUF_PAGE_SIZE) {
1087                         /* Mark the rest of the page with padding */
1088                         event = __rb_page_index(tail_page, tail);
1089                         event->type = RINGBUF_TYPE_PADDING;
1090                 }
1091
1092                 if (tail <= BUF_PAGE_SIZE)
1093                         /* Set the write back to the previous setting */
1094                         local_set(&tail_page->write, tail);
1095
1096                 /*
1097                  * If this was a commit entry that failed,
1098                  * increment that too
1099                  */
1100                 if (tail_page == cpu_buffer->commit_page &&
1101                     tail == rb_commit_index(cpu_buffer)) {
1102                         rb_set_commit_to_write(cpu_buffer);
1103                 }
1104
1105                 __raw_spin_unlock(&cpu_buffer->lock);
1106                 local_irq_restore(flags);
1107
1108                 /* fail and let the caller try again */
1109                 return ERR_PTR(-EAGAIN);
1110         }
1111
1112         /* We reserved something on the buffer */
1113
1114         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1115                 return NULL;
1116
1117         event = __rb_page_index(tail_page, tail);
1118         rb_update_event(event, type, length);
1119
1120         /*
1121          * If this is a commit and the tail is zero, then update
1122          * this page's time stamp.
1123          */
1124         if (!tail && rb_is_commit(cpu_buffer, event))
1125                 cpu_buffer->commit_page->page->time_stamp = *ts;
1126
1127         return event;
1128
1129  out_reset:
1130         /* reset write */
1131         if (tail <= BUF_PAGE_SIZE)
1132                 local_set(&tail_page->write, tail);
1133
1134         if (likely(lock_taken))
1135                 __raw_spin_unlock(&cpu_buffer->lock);
1136         local_irq_restore(flags);
1137         return NULL;
1138 }
1139
1140 static int
1141 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1142                   u64 *ts, u64 *delta)
1143 {
1144         struct ring_buffer_event *event;
1145         static int once;
1146         int ret;
1147
1148         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1149                 printk(KERN_WARNING "Delta way too big! %llu"
1150                        " ts=%llu write stamp = %llu\n",
1151                        (unsigned long long)*delta,
1152                        (unsigned long long)*ts,
1153                        (unsigned long long)cpu_buffer->write_stamp);
1154                 WARN_ON(1);
1155         }
1156
1157         /*
1158          * The delta is too big, we to add a
1159          * new timestamp.
1160          */
1161         event = __rb_reserve_next(cpu_buffer,
1162                                   RINGBUF_TYPE_TIME_EXTEND,
1163                                   RB_LEN_TIME_EXTEND,
1164                                   ts);
1165         if (!event)
1166                 return -EBUSY;
1167
1168         if (PTR_ERR(event) == -EAGAIN)
1169                 return -EAGAIN;
1170
1171         /* Only a commited time event can update the write stamp */
1172         if (rb_is_commit(cpu_buffer, event)) {
1173                 /*
1174                  * If this is the first on the page, then we need to
1175                  * update the page itself, and just put in a zero.
1176                  */
1177                 if (rb_event_index(event)) {
1178                         event->time_delta = *delta & TS_MASK;
1179                         event->array[0] = *delta >> TS_SHIFT;
1180                 } else {
1181                         cpu_buffer->commit_page->page->time_stamp = *ts;
1182                         event->time_delta = 0;
1183                         event->array[0] = 0;
1184                 }
1185                 cpu_buffer->write_stamp = *ts;
1186                 /* let the caller know this was the commit */
1187                 ret = 1;
1188         } else {
1189                 /* Darn, this is just wasted space */
1190                 event->time_delta = 0;
1191                 event->array[0] = 0;
1192                 ret = 0;
1193         }
1194
1195         *delta = 0;
1196
1197         return ret;
1198 }
1199
1200 static struct ring_buffer_event *
1201 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1202                       unsigned type, unsigned long length)
1203 {
1204         struct ring_buffer_event *event;
1205         u64 ts, delta;
1206         int commit = 0;
1207         int nr_loops = 0;
1208
1209  again:
1210         /*
1211          * We allow for interrupts to reenter here and do a trace.
1212          * If one does, it will cause this original code to loop
1213          * back here. Even with heavy interrupts happening, this
1214          * should only happen a few times in a row. If this happens
1215          * 1000 times in a row, there must be either an interrupt
1216          * storm or we have something buggy.
1217          * Bail!
1218          */
1219         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1220                 return NULL;
1221
1222         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1223
1224         /*
1225          * Only the first commit can update the timestamp.
1226          * Yes there is a race here. If an interrupt comes in
1227          * just after the conditional and it traces too, then it
1228          * will also check the deltas. More than one timestamp may
1229          * also be made. But only the entry that did the actual
1230          * commit will be something other than zero.
1231          */
1232         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1233             rb_page_write(cpu_buffer->tail_page) ==
1234             rb_commit_index(cpu_buffer)) {
1235
1236                 delta = ts - cpu_buffer->write_stamp;
1237
1238                 /* make sure this delta is calculated here */
1239                 barrier();
1240
1241                 /* Did the write stamp get updated already? */
1242                 if (unlikely(ts < cpu_buffer->write_stamp))
1243                         delta = 0;
1244
1245                 if (test_time_stamp(delta)) {
1246
1247                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1248
1249                         if (commit == -EBUSY)
1250                                 return NULL;
1251
1252                         if (commit == -EAGAIN)
1253                                 goto again;
1254
1255                         RB_WARN_ON(cpu_buffer, commit < 0);
1256                 }
1257         } else
1258                 /* Non commits have zero deltas */
1259                 delta = 0;
1260
1261         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1262         if (PTR_ERR(event) == -EAGAIN)
1263                 goto again;
1264
1265         if (!event) {
1266                 if (unlikely(commit))
1267                         /*
1268                          * Ouch! We needed a timestamp and it was commited. But
1269                          * we didn't get our event reserved.
1270                          */
1271                         rb_set_commit_to_write(cpu_buffer);
1272                 return NULL;
1273         }
1274
1275         /*
1276          * If the timestamp was commited, make the commit our entry
1277          * now so that we will update it when needed.
1278          */
1279         if (commit)
1280                 rb_set_commit_event(cpu_buffer, event);
1281         else if (!rb_is_commit(cpu_buffer, event))
1282                 delta = 0;
1283
1284         event->time_delta = delta;
1285
1286         return event;
1287 }
1288
1289 static DEFINE_PER_CPU(int, rb_need_resched);
1290
1291 /**
1292  * ring_buffer_lock_reserve - reserve a part of the buffer
1293  * @buffer: the ring buffer to reserve from
1294  * @length: the length of the data to reserve (excluding event header)
1295  *
1296  * Returns a reseverd event on the ring buffer to copy directly to.
1297  * The user of this interface will need to get the body to write into
1298  * and can use the ring_buffer_event_data() interface.
1299  *
1300  * The length is the length of the data needed, not the event length
1301  * which also includes the event header.
1302  *
1303  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1304  * If NULL is returned, then nothing has been allocated or locked.
1305  */
1306 struct ring_buffer_event *
1307 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1308 {
1309         struct ring_buffer_per_cpu *cpu_buffer;
1310         struct ring_buffer_event *event;
1311         int cpu, resched;
1312
1313         if (ring_buffer_flags != RB_BUFFERS_ON)
1314                 return NULL;
1315
1316         if (atomic_read(&buffer->record_disabled))
1317                 return NULL;
1318
1319         /* If we are tracing schedule, we don't want to recurse */
1320         resched = ftrace_preempt_disable();
1321
1322         cpu = raw_smp_processor_id();
1323
1324         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1325                 goto out;
1326
1327         cpu_buffer = buffer->buffers[cpu];
1328
1329         if (atomic_read(&cpu_buffer->record_disabled))
1330                 goto out;
1331
1332         length = rb_calculate_event_length(length);
1333         if (length > BUF_PAGE_SIZE)
1334                 goto out;
1335
1336         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1337         if (!event)
1338                 goto out;
1339
1340         /*
1341          * Need to store resched state on this cpu.
1342          * Only the first needs to.
1343          */
1344
1345         if (preempt_count() == 1)
1346                 per_cpu(rb_need_resched, cpu) = resched;
1347
1348         return event;
1349
1350  out:
1351         ftrace_preempt_enable(resched);
1352         return NULL;
1353 }
1354 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1355
1356 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1357                       struct ring_buffer_event *event)
1358 {
1359         cpu_buffer->entries++;
1360
1361         /* Only process further if we own the commit */
1362         if (!rb_is_commit(cpu_buffer, event))
1363                 return;
1364
1365         cpu_buffer->write_stamp += event->time_delta;
1366
1367         rb_set_commit_to_write(cpu_buffer);
1368 }
1369
1370 /**
1371  * ring_buffer_unlock_commit - commit a reserved
1372  * @buffer: The buffer to commit to
1373  * @event: The event pointer to commit.
1374  *
1375  * This commits the data to the ring buffer, and releases any locks held.
1376  *
1377  * Must be paired with ring_buffer_lock_reserve.
1378  */
1379 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1380                               struct ring_buffer_event *event)
1381 {
1382         struct ring_buffer_per_cpu *cpu_buffer;
1383         int cpu = raw_smp_processor_id();
1384
1385         cpu_buffer = buffer->buffers[cpu];
1386
1387         rb_commit(cpu_buffer, event);
1388
1389         /*
1390          * Only the last preempt count needs to restore preemption.
1391          */
1392         if (preempt_count() == 1)
1393                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1394         else
1395                 preempt_enable_no_resched_notrace();
1396
1397         return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1400
1401 /**
1402  * ring_buffer_write - write data to the buffer without reserving
1403  * @buffer: The ring buffer to write to.
1404  * @length: The length of the data being written (excluding the event header)
1405  * @data: The data to write to the buffer.
1406  *
1407  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1408  * one function. If you already have the data to write to the buffer, it
1409  * may be easier to simply call this function.
1410  *
1411  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1412  * and not the length of the event which would hold the header.
1413  */
1414 int ring_buffer_write(struct ring_buffer *buffer,
1415                         unsigned long length,
1416                         void *data)
1417 {
1418         struct ring_buffer_per_cpu *cpu_buffer;
1419         struct ring_buffer_event *event;
1420         unsigned long event_length;
1421         void *body;
1422         int ret = -EBUSY;
1423         int cpu, resched;
1424
1425         if (ring_buffer_flags != RB_BUFFERS_ON)
1426                 return -EBUSY;
1427
1428         if (atomic_read(&buffer->record_disabled))
1429                 return -EBUSY;
1430
1431         resched = ftrace_preempt_disable();
1432
1433         cpu = raw_smp_processor_id();
1434
1435         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1436                 goto out;
1437
1438         cpu_buffer = buffer->buffers[cpu];
1439
1440         if (atomic_read(&cpu_buffer->record_disabled))
1441                 goto out;
1442
1443         event_length = rb_calculate_event_length(length);
1444         event = rb_reserve_next_event(cpu_buffer,
1445                                       RINGBUF_TYPE_DATA, event_length);
1446         if (!event)
1447                 goto out;
1448
1449         body = rb_event_data(event);
1450
1451         memcpy(body, data, length);
1452
1453         rb_commit(cpu_buffer, event);
1454
1455         ret = 0;
1456  out:
1457         ftrace_preempt_enable(resched);
1458
1459         return ret;
1460 }
1461 EXPORT_SYMBOL_GPL(ring_buffer_write);
1462
1463 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1464 {
1465         struct buffer_page *reader = cpu_buffer->reader_page;
1466         struct buffer_page *head = cpu_buffer->head_page;
1467         struct buffer_page *commit = cpu_buffer->commit_page;
1468
1469         return reader->read == rb_page_commit(reader) &&
1470                 (commit == reader ||
1471                  (commit == head &&
1472                   head->read == rb_page_commit(commit)));
1473 }
1474
1475 /**
1476  * ring_buffer_record_disable - stop all writes into the buffer
1477  * @buffer: The ring buffer to stop writes to.
1478  *
1479  * This prevents all writes to the buffer. Any attempt to write
1480  * to the buffer after this will fail and return NULL.
1481  *
1482  * The caller should call synchronize_sched() after this.
1483  */
1484 void ring_buffer_record_disable(struct ring_buffer *buffer)
1485 {
1486         atomic_inc(&buffer->record_disabled);
1487 }
1488 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1489
1490 /**
1491  * ring_buffer_record_enable - enable writes to the buffer
1492  * @buffer: The ring buffer to enable writes
1493  *
1494  * Note, multiple disables will need the same number of enables
1495  * to truely enable the writing (much like preempt_disable).
1496  */
1497 void ring_buffer_record_enable(struct ring_buffer *buffer)
1498 {
1499         atomic_dec(&buffer->record_disabled);
1500 }
1501 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1502
1503 /**
1504  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1505  * @buffer: The ring buffer to stop writes to.
1506  * @cpu: The CPU buffer to stop
1507  *
1508  * This prevents all writes to the buffer. Any attempt to write
1509  * to the buffer after this will fail and return NULL.
1510  *
1511  * The caller should call synchronize_sched() after this.
1512  */
1513 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1514 {
1515         struct ring_buffer_per_cpu *cpu_buffer;
1516
1517         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1518                 return;
1519
1520         cpu_buffer = buffer->buffers[cpu];
1521         atomic_inc(&cpu_buffer->record_disabled);
1522 }
1523 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1524
1525 /**
1526  * ring_buffer_record_enable_cpu - enable writes to the buffer
1527  * @buffer: The ring buffer to enable writes
1528  * @cpu: The CPU to enable.
1529  *
1530  * Note, multiple disables will need the same number of enables
1531  * to truely enable the writing (much like preempt_disable).
1532  */
1533 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1534 {
1535         struct ring_buffer_per_cpu *cpu_buffer;
1536
1537         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1538                 return;
1539
1540         cpu_buffer = buffer->buffers[cpu];
1541         atomic_dec(&cpu_buffer->record_disabled);
1542 }
1543 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1544
1545 /**
1546  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1547  * @buffer: The ring buffer
1548  * @cpu: The per CPU buffer to get the entries from.
1549  */
1550 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1551 {
1552         struct ring_buffer_per_cpu *cpu_buffer;
1553
1554         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1555                 return 0;
1556
1557         cpu_buffer = buffer->buffers[cpu];
1558         return cpu_buffer->entries;
1559 }
1560 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1561
1562 /**
1563  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1564  * @buffer: The ring buffer
1565  * @cpu: The per CPU buffer to get the number of overruns from
1566  */
1567 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1568 {
1569         struct ring_buffer_per_cpu *cpu_buffer;
1570
1571         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1572                 return 0;
1573
1574         cpu_buffer = buffer->buffers[cpu];
1575         return cpu_buffer->overrun;
1576 }
1577 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1578
1579 /**
1580  * ring_buffer_entries - get the number of entries in a buffer
1581  * @buffer: The ring buffer
1582  *
1583  * Returns the total number of entries in the ring buffer
1584  * (all CPU entries)
1585  */
1586 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1587 {
1588         struct ring_buffer_per_cpu *cpu_buffer;
1589         unsigned long entries = 0;
1590         int cpu;
1591
1592         /* if you care about this being correct, lock the buffer */
1593         for_each_buffer_cpu(buffer, cpu) {
1594                 cpu_buffer = buffer->buffers[cpu];
1595                 entries += cpu_buffer->entries;
1596         }
1597
1598         return entries;
1599 }
1600 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1601
1602 /**
1603  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1604  * @buffer: The ring buffer
1605  *
1606  * Returns the total number of overruns in the ring buffer
1607  * (all CPU entries)
1608  */
1609 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1610 {
1611         struct ring_buffer_per_cpu *cpu_buffer;
1612         unsigned long overruns = 0;
1613         int cpu;
1614
1615         /* if you care about this being correct, lock the buffer */
1616         for_each_buffer_cpu(buffer, cpu) {
1617                 cpu_buffer = buffer->buffers[cpu];
1618                 overruns += cpu_buffer->overrun;
1619         }
1620
1621         return overruns;
1622 }
1623 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1624
1625 static void rb_iter_reset(struct ring_buffer_iter *iter)
1626 {
1627         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1628
1629         /* Iterator usage is expected to have record disabled */
1630         if (list_empty(&cpu_buffer->reader_page->list)) {
1631                 iter->head_page = cpu_buffer->head_page;
1632                 iter->head = cpu_buffer->head_page->read;
1633         } else {
1634                 iter->head_page = cpu_buffer->reader_page;
1635                 iter->head = cpu_buffer->reader_page->read;
1636         }
1637         if (iter->head)
1638                 iter->read_stamp = cpu_buffer->read_stamp;
1639         else
1640                 iter->read_stamp = iter->head_page->page->time_stamp;
1641 }
1642
1643 /**
1644  * ring_buffer_iter_reset - reset an iterator
1645  * @iter: The iterator to reset
1646  *
1647  * Resets the iterator, so that it will start from the beginning
1648  * again.
1649  */
1650 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1651 {
1652         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1653         unsigned long flags;
1654
1655         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1656         rb_iter_reset(iter);
1657         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1658 }
1659 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1660
1661 /**
1662  * ring_buffer_iter_empty - check if an iterator has no more to read
1663  * @iter: The iterator to check
1664  */
1665 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1666 {
1667         struct ring_buffer_per_cpu *cpu_buffer;
1668
1669         cpu_buffer = iter->cpu_buffer;
1670
1671         return iter->head_page == cpu_buffer->commit_page &&
1672                 iter->head == rb_commit_index(cpu_buffer);
1673 }
1674 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1675
1676 static void
1677 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1678                      struct ring_buffer_event *event)
1679 {
1680         u64 delta;
1681
1682         switch (event->type) {
1683         case RINGBUF_TYPE_PADDING:
1684                 return;
1685
1686         case RINGBUF_TYPE_TIME_EXTEND:
1687                 delta = event->array[0];
1688                 delta <<= TS_SHIFT;
1689                 delta += event->time_delta;
1690                 cpu_buffer->read_stamp += delta;
1691                 return;
1692
1693         case RINGBUF_TYPE_TIME_STAMP:
1694                 /* FIXME: not implemented */
1695                 return;
1696
1697         case RINGBUF_TYPE_DATA:
1698                 cpu_buffer->read_stamp += event->time_delta;
1699                 return;
1700
1701         default:
1702                 BUG();
1703         }
1704         return;
1705 }
1706
1707 static void
1708 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1709                           struct ring_buffer_event *event)
1710 {
1711         u64 delta;
1712
1713         switch (event->type) {
1714         case RINGBUF_TYPE_PADDING:
1715                 return;
1716
1717         case RINGBUF_TYPE_TIME_EXTEND:
1718                 delta = event->array[0];
1719                 delta <<= TS_SHIFT;
1720                 delta += event->time_delta;
1721                 iter->read_stamp += delta;
1722                 return;
1723
1724         case RINGBUF_TYPE_TIME_STAMP:
1725                 /* FIXME: not implemented */
1726                 return;
1727
1728         case RINGBUF_TYPE_DATA:
1729                 iter->read_stamp += event->time_delta;
1730                 return;
1731
1732         default:
1733                 BUG();
1734         }
1735         return;
1736 }
1737
1738 static struct buffer_page *
1739 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1740 {
1741         struct buffer_page *reader = NULL;
1742         unsigned long flags;
1743         int nr_loops = 0;
1744
1745         local_irq_save(flags);
1746         __raw_spin_lock(&cpu_buffer->lock);
1747
1748  again:
1749         /*
1750          * This should normally only loop twice. But because the
1751          * start of the reader inserts an empty page, it causes
1752          * a case where we will loop three times. There should be no
1753          * reason to loop four times (that I know of).
1754          */
1755         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1756                 reader = NULL;
1757                 goto out;
1758         }
1759
1760         reader = cpu_buffer->reader_page;
1761
1762         /* If there's more to read, return this page */
1763         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1764                 goto out;
1765
1766         /* Never should we have an index greater than the size */
1767         if (RB_WARN_ON(cpu_buffer,
1768                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1769                 goto out;
1770
1771         /* check if we caught up to the tail */
1772         reader = NULL;
1773         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1774                 goto out;
1775
1776         /*
1777          * Splice the empty reader page into the list around the head.
1778          * Reset the reader page to size zero.
1779          */
1780
1781         reader = cpu_buffer->head_page;
1782         cpu_buffer->reader_page->list.next = reader->list.next;
1783         cpu_buffer->reader_page->list.prev = reader->list.prev;
1784
1785         local_set(&cpu_buffer->reader_page->write, 0);
1786         local_set(&cpu_buffer->reader_page->page->commit, 0);
1787
1788         /* Make the reader page now replace the head */
1789         reader->list.prev->next = &cpu_buffer->reader_page->list;
1790         reader->list.next->prev = &cpu_buffer->reader_page->list;
1791
1792         /*
1793          * If the tail is on the reader, then we must set the head
1794          * to the inserted page, otherwise we set it one before.
1795          */
1796         cpu_buffer->head_page = cpu_buffer->reader_page;
1797
1798         if (cpu_buffer->commit_page != reader)
1799                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1800
1801         /* Finally update the reader page to the new head */
1802         cpu_buffer->reader_page = reader;
1803         rb_reset_reader_page(cpu_buffer);
1804
1805         goto again;
1806
1807  out:
1808         __raw_spin_unlock(&cpu_buffer->lock);
1809         local_irq_restore(flags);
1810
1811         return reader;
1812 }
1813
1814 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1815 {
1816         struct ring_buffer_event *event;
1817         struct buffer_page *reader;
1818         unsigned length;
1819
1820         reader = rb_get_reader_page(cpu_buffer);
1821
1822         /* This function should not be called when buffer is empty */
1823         if (RB_WARN_ON(cpu_buffer, !reader))
1824                 return;
1825
1826         event = rb_reader_event(cpu_buffer);
1827
1828         if (event->type == RINGBUF_TYPE_DATA)
1829                 cpu_buffer->entries--;
1830
1831         rb_update_read_stamp(cpu_buffer, event);
1832
1833         length = rb_event_length(event);
1834         cpu_buffer->reader_page->read += length;
1835 }
1836
1837 static void rb_advance_iter(struct ring_buffer_iter *iter)
1838 {
1839         struct ring_buffer *buffer;
1840         struct ring_buffer_per_cpu *cpu_buffer;
1841         struct ring_buffer_event *event;
1842         unsigned length;
1843
1844         cpu_buffer = iter->cpu_buffer;
1845         buffer = cpu_buffer->buffer;
1846
1847         /*
1848          * Check if we are at the end of the buffer.
1849          */
1850         if (iter->head >= rb_page_size(iter->head_page)) {
1851                 if (RB_WARN_ON(buffer,
1852                                iter->head_page == cpu_buffer->commit_page))
1853                         return;
1854                 rb_inc_iter(iter);
1855                 return;
1856         }
1857
1858         event = rb_iter_head_event(iter);
1859
1860         length = rb_event_length(event);
1861
1862         /*
1863          * This should not be called to advance the header if we are
1864          * at the tail of the buffer.
1865          */
1866         if (RB_WARN_ON(cpu_buffer,
1867                        (iter->head_page == cpu_buffer->commit_page) &&
1868                        (iter->head + length > rb_commit_index(cpu_buffer))))
1869                 return;
1870
1871         rb_update_iter_read_stamp(iter, event);
1872
1873         iter->head += length;
1874
1875         /* check for end of page padding */
1876         if ((iter->head >= rb_page_size(iter->head_page)) &&
1877             (iter->head_page != cpu_buffer->commit_page))
1878                 rb_advance_iter(iter);
1879 }
1880
1881 static struct ring_buffer_event *
1882 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1883 {
1884         struct ring_buffer_per_cpu *cpu_buffer;
1885         struct ring_buffer_event *event;
1886         struct buffer_page *reader;
1887         int nr_loops = 0;
1888
1889         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1890                 return NULL;
1891
1892         cpu_buffer = buffer->buffers[cpu];
1893
1894  again:
1895         /*
1896          * We repeat when a timestamp is encountered. It is possible
1897          * to get multiple timestamps from an interrupt entering just
1898          * as one timestamp is about to be written. The max times
1899          * that this can happen is the number of nested interrupts we
1900          * can have.  Nesting 10 deep of interrupts is clearly
1901          * an anomaly.
1902          */
1903         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1904                 return NULL;
1905
1906         reader = rb_get_reader_page(cpu_buffer);
1907         if (!reader)
1908                 return NULL;
1909
1910         event = rb_reader_event(cpu_buffer);
1911
1912         switch (event->type) {
1913         case RINGBUF_TYPE_PADDING:
1914                 RB_WARN_ON(cpu_buffer, 1);
1915                 rb_advance_reader(cpu_buffer);
1916                 return NULL;
1917
1918         case RINGBUF_TYPE_TIME_EXTEND:
1919                 /* Internal data, OK to advance */
1920                 rb_advance_reader(cpu_buffer);
1921                 goto again;
1922
1923         case RINGBUF_TYPE_TIME_STAMP:
1924                 /* FIXME: not implemented */
1925                 rb_advance_reader(cpu_buffer);
1926                 goto again;
1927
1928         case RINGBUF_TYPE_DATA:
1929                 if (ts) {
1930                         *ts = cpu_buffer->read_stamp + event->time_delta;
1931                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1932                 }
1933                 return event;
1934
1935         default:
1936                 BUG();
1937         }
1938
1939         return NULL;
1940 }
1941 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1942
1943 static struct ring_buffer_event *
1944 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1945 {
1946         struct ring_buffer *buffer;
1947         struct ring_buffer_per_cpu *cpu_buffer;
1948         struct ring_buffer_event *event;
1949         int nr_loops = 0;
1950
1951         if (ring_buffer_iter_empty(iter))
1952                 return NULL;
1953
1954         cpu_buffer = iter->cpu_buffer;
1955         buffer = cpu_buffer->buffer;
1956
1957  again:
1958         /*
1959          * We repeat when a timestamp is encountered. It is possible
1960          * to get multiple timestamps from an interrupt entering just
1961          * as one timestamp is about to be written. The max times
1962          * that this can happen is the number of nested interrupts we
1963          * can have. Nesting 10 deep of interrupts is clearly
1964          * an anomaly.
1965          */
1966         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1967                 return NULL;
1968
1969         if (rb_per_cpu_empty(cpu_buffer))
1970                 return NULL;
1971
1972         event = rb_iter_head_event(iter);
1973
1974         switch (event->type) {
1975         case RINGBUF_TYPE_PADDING:
1976                 rb_inc_iter(iter);
1977                 goto again;
1978
1979         case RINGBUF_TYPE_TIME_EXTEND:
1980                 /* Internal data, OK to advance */
1981                 rb_advance_iter(iter);
1982                 goto again;
1983
1984         case RINGBUF_TYPE_TIME_STAMP:
1985                 /* FIXME: not implemented */
1986                 rb_advance_iter(iter);
1987                 goto again;
1988
1989         case RINGBUF_TYPE_DATA:
1990                 if (ts) {
1991                         *ts = iter->read_stamp + event->time_delta;
1992                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1993                 }
1994                 return event;
1995
1996         default:
1997                 BUG();
1998         }
1999
2000         return NULL;
2001 }
2002 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2003
2004 /**
2005  * ring_buffer_peek - peek at the next event to be read
2006  * @buffer: The ring buffer to read
2007  * @cpu: The cpu to peak at
2008  * @ts: The timestamp counter of this event.
2009  *
2010  * This will return the event that will be read next, but does
2011  * not consume the data.
2012  */
2013 struct ring_buffer_event *
2014 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2015 {
2016         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2017         struct ring_buffer_event *event;
2018         unsigned long flags;
2019
2020         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2021         event = rb_buffer_peek(buffer, cpu, ts);
2022         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2023
2024         return event;
2025 }
2026
2027 /**
2028  * ring_buffer_iter_peek - peek at the next event to be read
2029  * @iter: The ring buffer iterator
2030  * @ts: The timestamp counter of this event.
2031  *
2032  * This will return the event that will be read next, but does
2033  * not increment the iterator.
2034  */
2035 struct ring_buffer_event *
2036 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2037 {
2038         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2039         struct ring_buffer_event *event;
2040         unsigned long flags;
2041
2042         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2043         event = rb_iter_peek(iter, ts);
2044         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2045
2046         return event;
2047 }
2048
2049 /**
2050  * ring_buffer_consume - return an event and consume it
2051  * @buffer: The ring buffer to get the next event from
2052  *
2053  * Returns the next event in the ring buffer, and that event is consumed.
2054  * Meaning, that sequential reads will keep returning a different event,
2055  * and eventually empty the ring buffer if the producer is slower.
2056  */
2057 struct ring_buffer_event *
2058 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2059 {
2060         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2061         struct ring_buffer_event *event;
2062         unsigned long flags;
2063
2064         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2065                 return NULL;
2066
2067         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2068
2069         event = rb_buffer_peek(buffer, cpu, ts);
2070         if (!event)
2071                 goto out;
2072
2073         rb_advance_reader(cpu_buffer);
2074
2075  out:
2076         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2077
2078         return event;
2079 }
2080 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2081
2082 /**
2083  * ring_buffer_read_start - start a non consuming read of the buffer
2084  * @buffer: The ring buffer to read from
2085  * @cpu: The cpu buffer to iterate over
2086  *
2087  * This starts up an iteration through the buffer. It also disables
2088  * the recording to the buffer until the reading is finished.
2089  * This prevents the reading from being corrupted. This is not
2090  * a consuming read, so a producer is not expected.
2091  *
2092  * Must be paired with ring_buffer_finish.
2093  */
2094 struct ring_buffer_iter *
2095 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2096 {
2097         struct ring_buffer_per_cpu *cpu_buffer;
2098         struct ring_buffer_iter *iter;
2099         unsigned long flags;
2100
2101         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2102                 return NULL;
2103
2104         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2105         if (!iter)
2106                 return NULL;
2107
2108         cpu_buffer = buffer->buffers[cpu];
2109
2110         iter->cpu_buffer = cpu_buffer;
2111
2112         atomic_inc(&cpu_buffer->record_disabled);
2113         synchronize_sched();
2114
2115         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2116         __raw_spin_lock(&cpu_buffer->lock);
2117         rb_iter_reset(iter);
2118         __raw_spin_unlock(&cpu_buffer->lock);
2119         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2120
2121         return iter;
2122 }
2123 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2124
2125 /**
2126  * ring_buffer_finish - finish reading the iterator of the buffer
2127  * @iter: The iterator retrieved by ring_buffer_start
2128  *
2129  * This re-enables the recording to the buffer, and frees the
2130  * iterator.
2131  */
2132 void
2133 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2134 {
2135         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2136
2137         atomic_dec(&cpu_buffer->record_disabled);
2138         kfree(iter);
2139 }
2140 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2141
2142 /**
2143  * ring_buffer_read - read the next item in the ring buffer by the iterator
2144  * @iter: The ring buffer iterator
2145  * @ts: The time stamp of the event read.
2146  *
2147  * This reads the next event in the ring buffer and increments the iterator.
2148  */
2149 struct ring_buffer_event *
2150 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2151 {
2152         struct ring_buffer_event *event;
2153         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2154         unsigned long flags;
2155
2156         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2157         event = rb_iter_peek(iter, ts);
2158         if (!event)
2159                 goto out;
2160
2161         rb_advance_iter(iter);
2162  out:
2163         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2164
2165         return event;
2166 }
2167 EXPORT_SYMBOL_GPL(ring_buffer_read);
2168
2169 /**
2170  * ring_buffer_size - return the size of the ring buffer (in bytes)
2171  * @buffer: The ring buffer.
2172  */
2173 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2174 {
2175         return BUF_PAGE_SIZE * buffer->pages;
2176 }
2177 EXPORT_SYMBOL_GPL(ring_buffer_size);
2178
2179 static void
2180 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2181 {
2182         cpu_buffer->head_page
2183                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2184         local_set(&cpu_buffer->head_page->write, 0);
2185         local_set(&cpu_buffer->head_page->page->commit, 0);
2186
2187         cpu_buffer->head_page->read = 0;
2188
2189         cpu_buffer->tail_page = cpu_buffer->head_page;
2190         cpu_buffer->commit_page = cpu_buffer->head_page;
2191
2192         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2193         local_set(&cpu_buffer->reader_page->write, 0);
2194         local_set(&cpu_buffer->reader_page->page->commit, 0);
2195         cpu_buffer->reader_page->read = 0;
2196
2197         cpu_buffer->overrun = 0;
2198         cpu_buffer->entries = 0;
2199
2200         cpu_buffer->write_stamp = 0;
2201         cpu_buffer->read_stamp = 0;
2202 }
2203
2204 /**
2205  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2206  * @buffer: The ring buffer to reset a per cpu buffer of
2207  * @cpu: The CPU buffer to be reset
2208  */
2209 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2210 {
2211         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2212         unsigned long flags;
2213
2214         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2215                 return;
2216
2217         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2218
2219         __raw_spin_lock(&cpu_buffer->lock);
2220
2221         rb_reset_cpu(cpu_buffer);
2222
2223         __raw_spin_unlock(&cpu_buffer->lock);
2224
2225         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2226 }
2227 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2228
2229 /**
2230  * ring_buffer_reset - reset a ring buffer
2231  * @buffer: The ring buffer to reset all cpu buffers
2232  */
2233 void ring_buffer_reset(struct ring_buffer *buffer)
2234 {
2235         int cpu;
2236
2237         for_each_buffer_cpu(buffer, cpu)
2238                 ring_buffer_reset_cpu(buffer, cpu);
2239 }
2240 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2241
2242 /**
2243  * rind_buffer_empty - is the ring buffer empty?
2244  * @buffer: The ring buffer to test
2245  */
2246 int ring_buffer_empty(struct ring_buffer *buffer)
2247 {
2248         struct ring_buffer_per_cpu *cpu_buffer;
2249         int cpu;
2250
2251         /* yes this is racy, but if you don't like the race, lock the buffer */
2252         for_each_buffer_cpu(buffer, cpu) {
2253                 cpu_buffer = buffer->buffers[cpu];
2254                 if (!rb_per_cpu_empty(cpu_buffer))
2255                         return 0;
2256         }
2257         return 1;
2258 }
2259 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2260
2261 /**
2262  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2263  * @buffer: The ring buffer
2264  * @cpu: The CPU buffer to test
2265  */
2266 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2267 {
2268         struct ring_buffer_per_cpu *cpu_buffer;
2269
2270         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2271                 return 1;
2272
2273         cpu_buffer = buffer->buffers[cpu];
2274         return rb_per_cpu_empty(cpu_buffer);
2275 }
2276 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2277
2278 /**
2279  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2280  * @buffer_a: One buffer to swap with
2281  * @buffer_b: The other buffer to swap with
2282  *
2283  * This function is useful for tracers that want to take a "snapshot"
2284  * of a CPU buffer and has another back up buffer lying around.
2285  * it is expected that the tracer handles the cpu buffer not being
2286  * used at the moment.
2287  */
2288 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2289                          struct ring_buffer *buffer_b, int cpu)
2290 {
2291         struct ring_buffer_per_cpu *cpu_buffer_a;
2292         struct ring_buffer_per_cpu *cpu_buffer_b;
2293
2294         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2295             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2296                 return -EINVAL;
2297
2298         /* At least make sure the two buffers are somewhat the same */
2299         if (buffer_a->pages != buffer_b->pages)
2300                 return -EINVAL;
2301
2302         if (ring_buffer_flags != RB_BUFFERS_ON)
2303                 return -EAGAIN;
2304
2305         if (atomic_read(&buffer_a->record_disabled))
2306                 return -EAGAIN;
2307
2308         if (atomic_read(&buffer_b->record_disabled))
2309                 return -EAGAIN;
2310
2311         cpu_buffer_a = buffer_a->buffers[cpu];
2312         cpu_buffer_b = buffer_b->buffers[cpu];
2313
2314         if (atomic_read(&cpu_buffer_a->record_disabled))
2315                 return -EAGAIN;
2316
2317         if (atomic_read(&cpu_buffer_b->record_disabled))
2318                 return -EAGAIN;
2319
2320         /*
2321          * We can't do a synchronize_sched here because this
2322          * function can be called in atomic context.
2323          * Normally this will be called from the same CPU as cpu.
2324          * If not it's up to the caller to protect this.
2325          */
2326         atomic_inc(&cpu_buffer_a->record_disabled);
2327         atomic_inc(&cpu_buffer_b->record_disabled);
2328
2329         buffer_a->buffers[cpu] = cpu_buffer_b;
2330         buffer_b->buffers[cpu] = cpu_buffer_a;
2331
2332         cpu_buffer_b->buffer = buffer_a;
2333         cpu_buffer_a->buffer = buffer_b;
2334
2335         atomic_dec(&cpu_buffer_a->record_disabled);
2336         atomic_dec(&cpu_buffer_b->record_disabled);
2337
2338         return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2341
2342 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2343                               struct buffer_data_page *bpage,
2344                               unsigned int offset)
2345 {
2346         struct ring_buffer_event *event;
2347         unsigned long head;
2348
2349         __raw_spin_lock(&cpu_buffer->lock);
2350         for (head = offset; head < local_read(&bpage->commit);
2351              head += rb_event_length(event)) {
2352
2353                 event = __rb_data_page_index(bpage, head);
2354                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2355                         return;
2356                 /* Only count data entries */
2357                 if (event->type != RINGBUF_TYPE_DATA)
2358                         continue;
2359                 cpu_buffer->entries--;
2360         }
2361         __raw_spin_unlock(&cpu_buffer->lock);
2362 }
2363
2364 /**
2365  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2366  * @buffer: the buffer to allocate for.
2367  *
2368  * This function is used in conjunction with ring_buffer_read_page.
2369  * When reading a full page from the ring buffer, these functions
2370  * can be used to speed up the process. The calling function should
2371  * allocate a few pages first with this function. Then when it
2372  * needs to get pages from the ring buffer, it passes the result
2373  * of this function into ring_buffer_read_page, which will swap
2374  * the page that was allocated, with the read page of the buffer.
2375  *
2376  * Returns:
2377  *  The page allocated, or NULL on error.
2378  */
2379 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2380 {
2381         unsigned long addr;
2382         struct buffer_data_page *bpage;
2383
2384         addr = __get_free_page(GFP_KERNEL);
2385         if (!addr)
2386                 return NULL;
2387
2388         bpage = (void *)addr;
2389
2390         return bpage;
2391 }
2392
2393 /**
2394  * ring_buffer_free_read_page - free an allocated read page
2395  * @buffer: the buffer the page was allocate for
2396  * @data: the page to free
2397  *
2398  * Free a page allocated from ring_buffer_alloc_read_page.
2399  */
2400 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2401 {
2402         free_page((unsigned long)data);
2403 }
2404
2405 /**
2406  * ring_buffer_read_page - extract a page from the ring buffer
2407  * @buffer: buffer to extract from
2408  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2409  * @cpu: the cpu of the buffer to extract
2410  * @full: should the extraction only happen when the page is full.
2411  *
2412  * This function will pull out a page from the ring buffer and consume it.
2413  * @data_page must be the address of the variable that was returned
2414  * from ring_buffer_alloc_read_page. This is because the page might be used
2415  * to swap with a page in the ring buffer.
2416  *
2417  * for example:
2418  *      rpage = ring_buffer_alloc_read_page(buffer);
2419  *      if (!rpage)
2420  *              return error;
2421  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2422  *      if (ret >= 0)
2423  *              process_page(rpage, ret);
2424  *
2425  * When @full is set, the function will not return true unless
2426  * the writer is off the reader page.
2427  *
2428  * Note: it is up to the calling functions to handle sleeps and wakeups.
2429  *  The ring buffer can be used anywhere in the kernel and can not
2430  *  blindly call wake_up. The layer that uses the ring buffer must be
2431  *  responsible for that.
2432  *
2433  * Returns:
2434  *  >=0 if data has been transferred, returns the offset of consumed data.
2435  *  <0 if no data has been transferred.
2436  */
2437 int ring_buffer_read_page(struct ring_buffer *buffer,
2438                             void **data_page, int cpu, int full)
2439 {
2440         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2441         struct ring_buffer_event *event;
2442         struct buffer_data_page *bpage;
2443         unsigned long flags;
2444         unsigned int read;
2445         int ret = -1;
2446
2447         if (!data_page)
2448                 return 0;
2449
2450         bpage = *data_page;
2451         if (!bpage)
2452                 return 0;
2453
2454         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2455
2456         /*
2457          * rb_buffer_peek will get the next ring buffer if
2458          * the current reader page is empty.
2459          */
2460         event = rb_buffer_peek(buffer, cpu, NULL);
2461         if (!event)
2462                 goto out;
2463
2464         /* check for data */
2465         if (!local_read(&cpu_buffer->reader_page->page->commit))
2466                 goto out;
2467
2468         read = cpu_buffer->reader_page->read;
2469         /*
2470          * If the writer is already off of the read page, then simply
2471          * switch the read page with the given page. Otherwise
2472          * we need to copy the data from the reader to the writer.
2473          */
2474         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2475                 unsigned int commit = rb_page_commit(cpu_buffer->reader_page);
2476                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2477
2478                 if (full)
2479                         goto out;
2480                 /* The writer is still on the reader page, we must copy */
2481                 memcpy(bpage->data + read, rpage->data + read, commit - read);
2482
2483                 /* consume what was read */
2484                 cpu_buffer->reader_page->read = commit;
2485
2486                 /* update bpage */
2487                 local_set(&bpage->commit, commit);
2488                 if (!read)
2489                         bpage->time_stamp = rpage->time_stamp;
2490         } else {
2491                 /* swap the pages */
2492                 rb_init_page(bpage);
2493                 bpage = cpu_buffer->reader_page->page;
2494                 cpu_buffer->reader_page->page = *data_page;
2495                 cpu_buffer->reader_page->read = 0;
2496                 *data_page = bpage;
2497         }
2498         ret = read;
2499
2500         /* update the entry counter */
2501         rb_remove_entries(cpu_buffer, bpage, read);
2502  out:
2503         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2504
2505         return ret;
2506 }
2507
2508 static ssize_t
2509 rb_simple_read(struct file *filp, char __user *ubuf,
2510                size_t cnt, loff_t *ppos)
2511 {
2512         unsigned long *p = filp->private_data;
2513         char buf[64];
2514         int r;
2515
2516         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2517                 r = sprintf(buf, "permanently disabled\n");
2518         else
2519                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2520
2521         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2522 }
2523
2524 static ssize_t
2525 rb_simple_write(struct file *filp, const char __user *ubuf,
2526                 size_t cnt, loff_t *ppos)
2527 {
2528         unsigned long *p = filp->private_data;
2529         char buf[64];
2530         unsigned long val;
2531         int ret;
2532
2533         if (cnt >= sizeof(buf))
2534                 return -EINVAL;
2535
2536         if (copy_from_user(&buf, ubuf, cnt))
2537                 return -EFAULT;
2538
2539         buf[cnt] = 0;
2540
2541         ret = strict_strtoul(buf, 10, &val);
2542         if (ret < 0)
2543                 return ret;
2544
2545         if (val)
2546                 set_bit(RB_BUFFERS_ON_BIT, p);
2547         else
2548                 clear_bit(RB_BUFFERS_ON_BIT, p);
2549
2550         (*ppos)++;
2551
2552         return cnt;
2553 }
2554
2555 static struct file_operations rb_simple_fops = {
2556         .open           = tracing_open_generic,
2557         .read           = rb_simple_read,
2558         .write          = rb_simple_write,
2559 };
2560
2561
2562 static __init int rb_init_debugfs(void)
2563 {
2564         struct dentry *d_tracer;
2565         struct dentry *entry;
2566
2567         d_tracer = tracing_init_dentry();
2568
2569         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2570                                     &ring_buffer_flags, &rb_simple_fops);
2571         if (!entry)
2572                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2573
2574         return 0;
2575 }
2576
2577 fs_initcall(rb_init_debugfs);