perf_counter: add PERF_RECORD_CPU
[linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void)           { return 0; }
64 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67                struct perf_cpu_context *cpuctx,
68                struct perf_counter_context *ctx, int cpu)
69 {
70         return 0;
71 }
72
73 void __weak perf_counter_print_debug(void)      { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78         struct perf_counter *group_leader = counter->group_leader;
79
80         /*
81          * Depending on whether it is a standalone or sibling counter,
82          * add it straight to the context's counter list, or to the group
83          * leader's sibling list:
84          */
85         if (group_leader == counter)
86                 list_add_tail(&counter->list_entry, &ctx->counter_list);
87         else {
88                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89                 group_leader->nr_siblings++;
90         }
91
92         list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98         struct perf_counter *sibling, *tmp;
99
100         list_del_init(&counter->list_entry);
101         list_del_rcu(&counter->event_entry);
102
103         if (counter->group_leader != counter)
104                 counter->group_leader->nr_siblings--;
105
106         /*
107          * If this was a group counter with sibling counters then
108          * upgrade the siblings to singleton counters by adding them
109          * to the context list directly:
110          */
111         list_for_each_entry_safe(sibling, tmp,
112                                  &counter->sibling_list, list_entry) {
113
114                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115                 sibling->group_leader = sibling;
116         }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121                   struct perf_cpu_context *cpuctx,
122                   struct perf_counter_context *ctx)
123 {
124         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125                 return;
126
127         counter->state = PERF_COUNTER_STATE_INACTIVE;
128         counter->tstamp_stopped = ctx->time;
129         counter->pmu->disable(counter);
130         counter->oncpu = -1;
131
132         if (!is_software_counter(counter))
133                 cpuctx->active_oncpu--;
134         ctx->nr_active--;
135         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136                 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141                 struct perf_cpu_context *cpuctx,
142                 struct perf_counter_context *ctx)
143 {
144         struct perf_counter *counter;
145
146         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147                 return;
148
149         counter_sched_out(group_counter, cpuctx, ctx);
150
151         /*
152          * Schedule out siblings (if any):
153          */
154         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155                 counter_sched_out(counter, cpuctx, ctx);
156
157         if (group_counter->hw_event.exclusive)
158                 cpuctx->exclusive = 0;
159 }
160
161 /*
162  * Cross CPU call to remove a performance counter
163  *
164  * We disable the counter on the hardware level first. After that we
165  * remove it from the context list.
166  */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170         struct perf_counter *counter = info;
171         struct perf_counter_context *ctx = counter->ctx;
172         unsigned long flags;
173         u64 perf_flags;
174
175         /*
176          * If this is a task context, we need to check whether it is
177          * the current task context of this cpu. If not it has been
178          * scheduled out before the smp call arrived.
179          */
180         if (ctx->task && cpuctx->task_ctx != ctx)
181                 return;
182
183         spin_lock_irqsave(&ctx->lock, flags);
184
185         counter_sched_out(counter, cpuctx, ctx);
186
187         counter->task = NULL;
188         ctx->nr_counters--;
189
190         /*
191          * Protect the list operation against NMI by disabling the
192          * counters on a global level. NOP for non NMI based counters.
193          */
194         perf_flags = hw_perf_save_disable();
195         list_del_counter(counter, ctx);
196         hw_perf_restore(perf_flags);
197
198         if (!ctx->task) {
199                 /*
200                  * Allow more per task counters with respect to the
201                  * reservation:
202                  */
203                 cpuctx->max_pertask =
204                         min(perf_max_counters - ctx->nr_counters,
205                             perf_max_counters - perf_reserved_percpu);
206         }
207
208         spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213  * Remove the counter from a task's (or a CPU's) list of counters.
214  *
215  * Must be called with counter->mutex and ctx->mutex held.
216  *
217  * CPU counters are removed with a smp call. For task counters we only
218  * call when the task is on a CPU.
219  */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222         struct perf_counter_context *ctx = counter->ctx;
223         struct task_struct *task = ctx->task;
224
225         if (!task) {
226                 /*
227                  * Per cpu counters are removed via an smp call and
228                  * the removal is always sucessful.
229                  */
230                 smp_call_function_single(counter->cpu,
231                                          __perf_counter_remove_from_context,
232                                          counter, 1);
233                 return;
234         }
235
236 retry:
237         task_oncpu_function_call(task, __perf_counter_remove_from_context,
238                                  counter);
239
240         spin_lock_irq(&ctx->lock);
241         /*
242          * If the context is active we need to retry the smp call.
243          */
244         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245                 spin_unlock_irq(&ctx->lock);
246                 goto retry;
247         }
248
249         /*
250          * The lock prevents that this context is scheduled in so we
251          * can remove the counter safely, if the call above did not
252          * succeed.
253          */
254         if (!list_empty(&counter->list_entry)) {
255                 ctx->nr_counters--;
256                 list_del_counter(counter, ctx);
257                 counter->task = NULL;
258         }
259         spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264         return cpu_clock(smp_processor_id());
265 }
266
267 /*
268  * Update the record of the current time in a context.
269  */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272         u64 now = perf_clock();
273
274         ctx->time += now - ctx->timestamp;
275         ctx->timestamp = now;
276 }
277
278 /*
279  * Update the total_time_enabled and total_time_running fields for a counter.
280  */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283         struct perf_counter_context *ctx = counter->ctx;
284         u64 run_end;
285
286         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287                 return;
288
289         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292                 run_end = counter->tstamp_stopped;
293         else
294                 run_end = ctx->time;
295
296         counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300  * Update total_time_enabled and total_time_running for all counters in a group.
301  */
302 static void update_group_times(struct perf_counter *leader)
303 {
304         struct perf_counter *counter;
305
306         update_counter_times(leader);
307         list_for_each_entry(counter, &leader->sibling_list, list_entry)
308                 update_counter_times(counter);
309 }
310
311 /*
312  * Cross CPU call to disable a performance counter
313  */
314 static void __perf_counter_disable(void *info)
315 {
316         struct perf_counter *counter = info;
317         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318         struct perf_counter_context *ctx = counter->ctx;
319         unsigned long flags;
320
321         /*
322          * If this is a per-task counter, need to check whether this
323          * counter's task is the current task on this cpu.
324          */
325         if (ctx->task && cpuctx->task_ctx != ctx)
326                 return;
327
328         spin_lock_irqsave(&ctx->lock, flags);
329
330         /*
331          * If the counter is on, turn it off.
332          * If it is in error state, leave it in error state.
333          */
334         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335                 update_context_time(ctx);
336                 update_counter_times(counter);
337                 if (counter == counter->group_leader)
338                         group_sched_out(counter, cpuctx, ctx);
339                 else
340                         counter_sched_out(counter, cpuctx, ctx);
341                 counter->state = PERF_COUNTER_STATE_OFF;
342         }
343
344         spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348  * Disable a counter.
349  */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Disable the counter on the cpu that it's on
358                  */
359                 smp_call_function_single(counter->cpu, __perf_counter_disable,
360                                          counter, 1);
361                 return;
362         }
363
364  retry:
365         task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367         spin_lock_irq(&ctx->lock);
368         /*
369          * If the counter is still active, we need to retry the cross-call.
370          */
371         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372                 spin_unlock_irq(&ctx->lock);
373                 goto retry;
374         }
375
376         /*
377          * Since we have the lock this context can't be scheduled
378          * in, so we can change the state safely.
379          */
380         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381                 update_counter_times(counter);
382                 counter->state = PERF_COUNTER_STATE_OFF;
383         }
384
385         spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390                  struct perf_cpu_context *cpuctx,
391                  struct perf_counter_context *ctx,
392                  int cpu)
393 {
394         if (counter->state <= PERF_COUNTER_STATE_OFF)
395                 return 0;
396
397         counter->state = PERF_COUNTER_STATE_ACTIVE;
398         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
399         /*
400          * The new state must be visible before we turn it on in the hardware:
401          */
402         smp_wmb();
403
404         if (counter->pmu->enable(counter)) {
405                 counter->state = PERF_COUNTER_STATE_INACTIVE;
406                 counter->oncpu = -1;
407                 return -EAGAIN;
408         }
409
410         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412         if (!is_software_counter(counter))
413                 cpuctx->active_oncpu++;
414         ctx->nr_active++;
415
416         if (counter->hw_event.exclusive)
417                 cpuctx->exclusive = 1;
418
419         return 0;
420 }
421
422 /*
423  * Return 1 for a group consisting entirely of software counters,
424  * 0 if the group contains any hardware counters.
425  */
426 static int is_software_only_group(struct perf_counter *leader)
427 {
428         struct perf_counter *counter;
429
430         if (!is_software_counter(leader))
431                 return 0;
432
433         list_for_each_entry(counter, &leader->sibling_list, list_entry)
434                 if (!is_software_counter(counter))
435                         return 0;
436
437         return 1;
438 }
439
440 /*
441  * Work out whether we can put this counter group on the CPU now.
442  */
443 static int group_can_go_on(struct perf_counter *counter,
444                            struct perf_cpu_context *cpuctx,
445                            int can_add_hw)
446 {
447         /*
448          * Groups consisting entirely of software counters can always go on.
449          */
450         if (is_software_only_group(counter))
451                 return 1;
452         /*
453          * If an exclusive group is already on, no other hardware
454          * counters can go on.
455          */
456         if (cpuctx->exclusive)
457                 return 0;
458         /*
459          * If this group is exclusive and there are already
460          * counters on the CPU, it can't go on.
461          */
462         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
463                 return 0;
464         /*
465          * Otherwise, try to add it if all previous groups were able
466          * to go on.
467          */
468         return can_add_hw;
469 }
470
471 static void add_counter_to_ctx(struct perf_counter *counter,
472                                struct perf_counter_context *ctx)
473 {
474         list_add_counter(counter, ctx);
475         ctx->nr_counters++;
476         counter->prev_state = PERF_COUNTER_STATE_OFF;
477         counter->tstamp_enabled = ctx->time;
478         counter->tstamp_running = ctx->time;
479         counter->tstamp_stopped = ctx->time;
480 }
481
482 /*
483  * Cross CPU call to install and enable a performance counter
484  */
485 static void __perf_install_in_context(void *info)
486 {
487         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
488         struct perf_counter *counter = info;
489         struct perf_counter_context *ctx = counter->ctx;
490         struct perf_counter *leader = counter->group_leader;
491         int cpu = smp_processor_id();
492         unsigned long flags;
493         u64 perf_flags;
494         int err;
495
496         /*
497          * If this is a task context, we need to check whether it is
498          * the current task context of this cpu. If not it has been
499          * scheduled out before the smp call arrived.
500          */
501         if (ctx->task && cpuctx->task_ctx != ctx)
502                 return;
503
504         spin_lock_irqsave(&ctx->lock, flags);
505         update_context_time(ctx);
506
507         /*
508          * Protect the list operation against NMI by disabling the
509          * counters on a global level. NOP for non NMI based counters.
510          */
511         perf_flags = hw_perf_save_disable();
512
513         add_counter_to_ctx(counter, ctx);
514
515         /*
516          * Don't put the counter on if it is disabled or if
517          * it is in a group and the group isn't on.
518          */
519         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
520             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
521                 goto unlock;
522
523         /*
524          * An exclusive counter can't go on if there are already active
525          * hardware counters, and no hardware counter can go on if there
526          * is already an exclusive counter on.
527          */
528         if (!group_can_go_on(counter, cpuctx, 1))
529                 err = -EEXIST;
530         else
531                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
532
533         if (err) {
534                 /*
535                  * This counter couldn't go on.  If it is in a group
536                  * then we have to pull the whole group off.
537                  * If the counter group is pinned then put it in error state.
538                  */
539                 if (leader != counter)
540                         group_sched_out(leader, cpuctx, ctx);
541                 if (leader->hw_event.pinned) {
542                         update_group_times(leader);
543                         leader->state = PERF_COUNTER_STATE_ERROR;
544                 }
545         }
546
547         if (!err && !ctx->task && cpuctx->max_pertask)
548                 cpuctx->max_pertask--;
549
550  unlock:
551         hw_perf_restore(perf_flags);
552
553         spin_unlock_irqrestore(&ctx->lock, flags);
554 }
555
556 /*
557  * Attach a performance counter to a context
558  *
559  * First we add the counter to the list with the hardware enable bit
560  * in counter->hw_config cleared.
561  *
562  * If the counter is attached to a task which is on a CPU we use a smp
563  * call to enable it in the task context. The task might have been
564  * scheduled away, but we check this in the smp call again.
565  *
566  * Must be called with ctx->mutex held.
567  */
568 static void
569 perf_install_in_context(struct perf_counter_context *ctx,
570                         struct perf_counter *counter,
571                         int cpu)
572 {
573         struct task_struct *task = ctx->task;
574
575         if (!task) {
576                 /*
577                  * Per cpu counters are installed via an smp call and
578                  * the install is always sucessful.
579                  */
580                 smp_call_function_single(cpu, __perf_install_in_context,
581                                          counter, 1);
582                 return;
583         }
584
585         counter->task = task;
586 retry:
587         task_oncpu_function_call(task, __perf_install_in_context,
588                                  counter);
589
590         spin_lock_irq(&ctx->lock);
591         /*
592          * we need to retry the smp call.
593          */
594         if (ctx->is_active && list_empty(&counter->list_entry)) {
595                 spin_unlock_irq(&ctx->lock);
596                 goto retry;
597         }
598
599         /*
600          * The lock prevents that this context is scheduled in so we
601          * can add the counter safely, if it the call above did not
602          * succeed.
603          */
604         if (list_empty(&counter->list_entry))
605                 add_counter_to_ctx(counter, ctx);
606         spin_unlock_irq(&ctx->lock);
607 }
608
609 /*
610  * Cross CPU call to enable a performance counter
611  */
612 static void __perf_counter_enable(void *info)
613 {
614         struct perf_counter *counter = info;
615         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
616         struct perf_counter_context *ctx = counter->ctx;
617         struct perf_counter *leader = counter->group_leader;
618         unsigned long flags;
619         int err;
620
621         /*
622          * If this is a per-task counter, need to check whether this
623          * counter's task is the current task on this cpu.
624          */
625         if (ctx->task && cpuctx->task_ctx != ctx)
626                 return;
627
628         spin_lock_irqsave(&ctx->lock, flags);
629         update_context_time(ctx);
630
631         counter->prev_state = counter->state;
632         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
633                 goto unlock;
634         counter->state = PERF_COUNTER_STATE_INACTIVE;
635         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
636
637         /*
638          * If the counter is in a group and isn't the group leader,
639          * then don't put it on unless the group is on.
640          */
641         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
642                 goto unlock;
643
644         if (!group_can_go_on(counter, cpuctx, 1))
645                 err = -EEXIST;
646         else
647                 err = counter_sched_in(counter, cpuctx, ctx,
648                                        smp_processor_id());
649
650         if (err) {
651                 /*
652                  * If this counter can't go on and it's part of a
653                  * group, then the whole group has to come off.
654                  */
655                 if (leader != counter)
656                         group_sched_out(leader, cpuctx, ctx);
657                 if (leader->hw_event.pinned) {
658                         update_group_times(leader);
659                         leader->state = PERF_COUNTER_STATE_ERROR;
660                 }
661         }
662
663  unlock:
664         spin_unlock_irqrestore(&ctx->lock, flags);
665 }
666
667 /*
668  * Enable a counter.
669  */
670 static void perf_counter_enable(struct perf_counter *counter)
671 {
672         struct perf_counter_context *ctx = counter->ctx;
673         struct task_struct *task = ctx->task;
674
675         if (!task) {
676                 /*
677                  * Enable the counter on the cpu that it's on
678                  */
679                 smp_call_function_single(counter->cpu, __perf_counter_enable,
680                                          counter, 1);
681                 return;
682         }
683
684         spin_lock_irq(&ctx->lock);
685         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
686                 goto out;
687
688         /*
689          * If the counter is in error state, clear that first.
690          * That way, if we see the counter in error state below, we
691          * know that it has gone back into error state, as distinct
692          * from the task having been scheduled away before the
693          * cross-call arrived.
694          */
695         if (counter->state == PERF_COUNTER_STATE_ERROR)
696                 counter->state = PERF_COUNTER_STATE_OFF;
697
698  retry:
699         spin_unlock_irq(&ctx->lock);
700         task_oncpu_function_call(task, __perf_counter_enable, counter);
701
702         spin_lock_irq(&ctx->lock);
703
704         /*
705          * If the context is active and the counter is still off,
706          * we need to retry the cross-call.
707          */
708         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
709                 goto retry;
710
711         /*
712          * Since we have the lock this context can't be scheduled
713          * in, so we can change the state safely.
714          */
715         if (counter->state == PERF_COUNTER_STATE_OFF) {
716                 counter->state = PERF_COUNTER_STATE_INACTIVE;
717                 counter->tstamp_enabled =
718                         ctx->time - counter->total_time_enabled;
719         }
720  out:
721         spin_unlock_irq(&ctx->lock);
722 }
723
724 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
725 {
726         /*
727          * not supported on inherited counters
728          */
729         if (counter->hw_event.inherit)
730                 return -EINVAL;
731
732         atomic_add(refresh, &counter->event_limit);
733         perf_counter_enable(counter);
734
735         return 0;
736 }
737
738 void __perf_counter_sched_out(struct perf_counter_context *ctx,
739                               struct perf_cpu_context *cpuctx)
740 {
741         struct perf_counter *counter;
742         u64 flags;
743
744         spin_lock(&ctx->lock);
745         ctx->is_active = 0;
746         if (likely(!ctx->nr_counters))
747                 goto out;
748         update_context_time(ctx);
749
750         flags = hw_perf_save_disable();
751         if (ctx->nr_active) {
752                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
753                         group_sched_out(counter, cpuctx, ctx);
754         }
755         hw_perf_restore(flags);
756  out:
757         spin_unlock(&ctx->lock);
758 }
759
760 /*
761  * Called from scheduler to remove the counters of the current task,
762  * with interrupts disabled.
763  *
764  * We stop each counter and update the counter value in counter->count.
765  *
766  * This does not protect us against NMI, but disable()
767  * sets the disabled bit in the control field of counter _before_
768  * accessing the counter control register. If a NMI hits, then it will
769  * not restart the counter.
770  */
771 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
772 {
773         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
774         struct perf_counter_context *ctx = &task->perf_counter_ctx;
775         struct pt_regs *regs;
776
777         if (likely(!cpuctx->task_ctx))
778                 return;
779
780         update_context_time(ctx);
781
782         regs = task_pt_regs(task);
783         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
784         __perf_counter_sched_out(ctx, cpuctx);
785
786         cpuctx->task_ctx = NULL;
787 }
788
789 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
790 {
791         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
792 }
793
794 static int
795 group_sched_in(struct perf_counter *group_counter,
796                struct perf_cpu_context *cpuctx,
797                struct perf_counter_context *ctx,
798                int cpu)
799 {
800         struct perf_counter *counter, *partial_group;
801         int ret;
802
803         if (group_counter->state == PERF_COUNTER_STATE_OFF)
804                 return 0;
805
806         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
807         if (ret)
808                 return ret < 0 ? ret : 0;
809
810         group_counter->prev_state = group_counter->state;
811         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
812                 return -EAGAIN;
813
814         /*
815          * Schedule in siblings as one group (if any):
816          */
817         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
818                 counter->prev_state = counter->state;
819                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
820                         partial_group = counter;
821                         goto group_error;
822                 }
823         }
824
825         return 0;
826
827 group_error:
828         /*
829          * Groups can be scheduled in as one unit only, so undo any
830          * partial group before returning:
831          */
832         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
833                 if (counter == partial_group)
834                         break;
835                 counter_sched_out(counter, cpuctx, ctx);
836         }
837         counter_sched_out(group_counter, cpuctx, ctx);
838
839         return -EAGAIN;
840 }
841
842 static void
843 __perf_counter_sched_in(struct perf_counter_context *ctx,
844                         struct perf_cpu_context *cpuctx, int cpu)
845 {
846         struct perf_counter *counter;
847         u64 flags;
848         int can_add_hw = 1;
849
850         spin_lock(&ctx->lock);
851         ctx->is_active = 1;
852         if (likely(!ctx->nr_counters))
853                 goto out;
854
855         ctx->timestamp = perf_clock();
856
857         flags = hw_perf_save_disable();
858
859         /*
860          * First go through the list and put on any pinned groups
861          * in order to give them the best chance of going on.
862          */
863         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
864                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
865                     !counter->hw_event.pinned)
866                         continue;
867                 if (counter->cpu != -1 && counter->cpu != cpu)
868                         continue;
869
870                 if (group_can_go_on(counter, cpuctx, 1))
871                         group_sched_in(counter, cpuctx, ctx, cpu);
872
873                 /*
874                  * If this pinned group hasn't been scheduled,
875                  * put it in error state.
876                  */
877                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
878                         update_group_times(counter);
879                         counter->state = PERF_COUNTER_STATE_ERROR;
880                 }
881         }
882
883         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
884                 /*
885                  * Ignore counters in OFF or ERROR state, and
886                  * ignore pinned counters since we did them already.
887                  */
888                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
889                     counter->hw_event.pinned)
890                         continue;
891
892                 /*
893                  * Listen to the 'cpu' scheduling filter constraint
894                  * of counters:
895                  */
896                 if (counter->cpu != -1 && counter->cpu != cpu)
897                         continue;
898
899                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
900                         if (group_sched_in(counter, cpuctx, ctx, cpu))
901                                 can_add_hw = 0;
902                 }
903         }
904         hw_perf_restore(flags);
905  out:
906         spin_unlock(&ctx->lock);
907 }
908
909 /*
910  * Called from scheduler to add the counters of the current task
911  * with interrupts disabled.
912  *
913  * We restore the counter value and then enable it.
914  *
915  * This does not protect us against NMI, but enable()
916  * sets the enabled bit in the control field of counter _before_
917  * accessing the counter control register. If a NMI hits, then it will
918  * keep the counter running.
919  */
920 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
921 {
922         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923         struct perf_counter_context *ctx = &task->perf_counter_ctx;
924
925         __perf_counter_sched_in(ctx, cpuctx, cpu);
926         cpuctx->task_ctx = ctx;
927 }
928
929 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
930 {
931         struct perf_counter_context *ctx = &cpuctx->ctx;
932
933         __perf_counter_sched_in(ctx, cpuctx, cpu);
934 }
935
936 int perf_counter_task_disable(void)
937 {
938         struct task_struct *curr = current;
939         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
940         struct perf_counter *counter;
941         unsigned long flags;
942         u64 perf_flags;
943         int cpu;
944
945         if (likely(!ctx->nr_counters))
946                 return 0;
947
948         local_irq_save(flags);
949         cpu = smp_processor_id();
950
951         perf_counter_task_sched_out(curr, cpu);
952
953         spin_lock(&ctx->lock);
954
955         /*
956          * Disable all the counters:
957          */
958         perf_flags = hw_perf_save_disable();
959
960         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
961                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
962                         update_group_times(counter);
963                         counter->state = PERF_COUNTER_STATE_OFF;
964                 }
965         }
966
967         hw_perf_restore(perf_flags);
968
969         spin_unlock_irqrestore(&ctx->lock, flags);
970
971         return 0;
972 }
973
974 int perf_counter_task_enable(void)
975 {
976         struct task_struct *curr = current;
977         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
978         struct perf_counter *counter;
979         unsigned long flags;
980         u64 perf_flags;
981         int cpu;
982
983         if (likely(!ctx->nr_counters))
984                 return 0;
985
986         local_irq_save(flags);
987         cpu = smp_processor_id();
988
989         perf_counter_task_sched_out(curr, cpu);
990
991         spin_lock(&ctx->lock);
992
993         /*
994          * Disable all the counters:
995          */
996         perf_flags = hw_perf_save_disable();
997
998         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
999                 if (counter->state > PERF_COUNTER_STATE_OFF)
1000                         continue;
1001                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1002                 counter->tstamp_enabled =
1003                         ctx->time - counter->total_time_enabled;
1004                 counter->hw_event.disabled = 0;
1005         }
1006         hw_perf_restore(perf_flags);
1007
1008         spin_unlock(&ctx->lock);
1009
1010         perf_counter_task_sched_in(curr, cpu);
1011
1012         local_irq_restore(flags);
1013
1014         return 0;
1015 }
1016
1017 /*
1018  * Round-robin a context's counters:
1019  */
1020 static void rotate_ctx(struct perf_counter_context *ctx)
1021 {
1022         struct perf_counter *counter;
1023         u64 perf_flags;
1024
1025         if (!ctx->nr_counters)
1026                 return;
1027
1028         spin_lock(&ctx->lock);
1029         /*
1030          * Rotate the first entry last (works just fine for group counters too):
1031          */
1032         perf_flags = hw_perf_save_disable();
1033         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1034                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1035                 break;
1036         }
1037         hw_perf_restore(perf_flags);
1038
1039         spin_unlock(&ctx->lock);
1040 }
1041
1042 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1043 {
1044         struct perf_cpu_context *cpuctx;
1045         struct perf_counter_context *ctx;
1046
1047         if (!atomic_read(&nr_counters))
1048                 return;
1049
1050         cpuctx = &per_cpu(perf_cpu_context, cpu);
1051         ctx = &curr->perf_counter_ctx;
1052
1053         perf_counter_cpu_sched_out(cpuctx);
1054         perf_counter_task_sched_out(curr, cpu);
1055
1056         rotate_ctx(&cpuctx->ctx);
1057         rotate_ctx(ctx);
1058
1059         perf_counter_cpu_sched_in(cpuctx, cpu);
1060         perf_counter_task_sched_in(curr, cpu);
1061 }
1062
1063 /*
1064  * Cross CPU call to read the hardware counter
1065  */
1066 static void __read(void *info)
1067 {
1068         struct perf_counter *counter = info;
1069         struct perf_counter_context *ctx = counter->ctx;
1070         unsigned long flags;
1071
1072         local_irq_save(flags);
1073         if (ctx->is_active)
1074                 update_context_time(ctx);
1075         counter->pmu->read(counter);
1076         update_counter_times(counter);
1077         local_irq_restore(flags);
1078 }
1079
1080 static u64 perf_counter_read(struct perf_counter *counter)
1081 {
1082         /*
1083          * If counter is enabled and currently active on a CPU, update the
1084          * value in the counter structure:
1085          */
1086         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1087                 smp_call_function_single(counter->oncpu,
1088                                          __read, counter, 1);
1089         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1090                 update_counter_times(counter);
1091         }
1092
1093         return atomic64_read(&counter->count);
1094 }
1095
1096 static void put_context(struct perf_counter_context *ctx)
1097 {
1098         if (ctx->task)
1099                 put_task_struct(ctx->task);
1100 }
1101
1102 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1103 {
1104         struct perf_cpu_context *cpuctx;
1105         struct perf_counter_context *ctx;
1106         struct task_struct *task;
1107
1108         /*
1109          * If cpu is not a wildcard then this is a percpu counter:
1110          */
1111         if (cpu != -1) {
1112                 /* Must be root to operate on a CPU counter: */
1113                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1114                         return ERR_PTR(-EACCES);
1115
1116                 if (cpu < 0 || cpu > num_possible_cpus())
1117                         return ERR_PTR(-EINVAL);
1118
1119                 /*
1120                  * We could be clever and allow to attach a counter to an
1121                  * offline CPU and activate it when the CPU comes up, but
1122                  * that's for later.
1123                  */
1124                 if (!cpu_isset(cpu, cpu_online_map))
1125                         return ERR_PTR(-ENODEV);
1126
1127                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1128                 ctx = &cpuctx->ctx;
1129
1130                 return ctx;
1131         }
1132
1133         rcu_read_lock();
1134         if (!pid)
1135                 task = current;
1136         else
1137                 task = find_task_by_vpid(pid);
1138         if (task)
1139                 get_task_struct(task);
1140         rcu_read_unlock();
1141
1142         if (!task)
1143                 return ERR_PTR(-ESRCH);
1144
1145         ctx = &task->perf_counter_ctx;
1146         ctx->task = task;
1147
1148         /* Reuse ptrace permission checks for now. */
1149         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1150                 put_context(ctx);
1151                 return ERR_PTR(-EACCES);
1152         }
1153
1154         return ctx;
1155 }
1156
1157 static void free_counter_rcu(struct rcu_head *head)
1158 {
1159         struct perf_counter *counter;
1160
1161         counter = container_of(head, struct perf_counter, rcu_head);
1162         kfree(counter);
1163 }
1164
1165 static void perf_pending_sync(struct perf_counter *counter);
1166
1167 static void free_counter(struct perf_counter *counter)
1168 {
1169         perf_pending_sync(counter);
1170
1171         atomic_dec(&nr_counters);
1172         if (counter->hw_event.mmap)
1173                 atomic_dec(&nr_mmap_tracking);
1174         if (counter->hw_event.munmap)
1175                 atomic_dec(&nr_munmap_tracking);
1176         if (counter->hw_event.comm)
1177                 atomic_dec(&nr_comm_tracking);
1178
1179         if (counter->destroy)
1180                 counter->destroy(counter);
1181
1182         call_rcu(&counter->rcu_head, free_counter_rcu);
1183 }
1184
1185 /*
1186  * Called when the last reference to the file is gone.
1187  */
1188 static int perf_release(struct inode *inode, struct file *file)
1189 {
1190         struct perf_counter *counter = file->private_data;
1191         struct perf_counter_context *ctx = counter->ctx;
1192
1193         file->private_data = NULL;
1194
1195         mutex_lock(&ctx->mutex);
1196         mutex_lock(&counter->mutex);
1197
1198         perf_counter_remove_from_context(counter);
1199
1200         mutex_unlock(&counter->mutex);
1201         mutex_unlock(&ctx->mutex);
1202
1203         free_counter(counter);
1204         put_context(ctx);
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * Read the performance counter - simple non blocking version for now
1211  */
1212 static ssize_t
1213 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1214 {
1215         u64 values[3];
1216         int n;
1217
1218         /*
1219          * Return end-of-file for a read on a counter that is in
1220          * error state (i.e. because it was pinned but it couldn't be
1221          * scheduled on to the CPU at some point).
1222          */
1223         if (counter->state == PERF_COUNTER_STATE_ERROR)
1224                 return 0;
1225
1226         mutex_lock(&counter->mutex);
1227         values[0] = perf_counter_read(counter);
1228         n = 1;
1229         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1230                 values[n++] = counter->total_time_enabled +
1231                         atomic64_read(&counter->child_total_time_enabled);
1232         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1233                 values[n++] = counter->total_time_running +
1234                         atomic64_read(&counter->child_total_time_running);
1235         mutex_unlock(&counter->mutex);
1236
1237         if (count < n * sizeof(u64))
1238                 return -EINVAL;
1239         count = n * sizeof(u64);
1240
1241         if (copy_to_user(buf, values, count))
1242                 return -EFAULT;
1243
1244         return count;
1245 }
1246
1247 static ssize_t
1248 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1249 {
1250         struct perf_counter *counter = file->private_data;
1251
1252         return perf_read_hw(counter, buf, count);
1253 }
1254
1255 static unsigned int perf_poll(struct file *file, poll_table *wait)
1256 {
1257         struct perf_counter *counter = file->private_data;
1258         struct perf_mmap_data *data;
1259         unsigned int events = POLL_HUP;
1260
1261         rcu_read_lock();
1262         data = rcu_dereference(counter->data);
1263         if (data)
1264                 events = atomic_xchg(&data->poll, 0);
1265         rcu_read_unlock();
1266
1267         poll_wait(file, &counter->waitq, wait);
1268
1269         return events;
1270 }
1271
1272 static void perf_counter_reset(struct perf_counter *counter)
1273 {
1274         (void)perf_counter_read(counter);
1275         atomic_set(&counter->count, 0);
1276         perf_counter_update_userpage(counter);
1277 }
1278
1279 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1280                                           void (*func)(struct perf_counter *))
1281 {
1282         struct perf_counter_context *ctx = counter->ctx;
1283         struct perf_counter *sibling;
1284
1285         spin_lock_irq(&ctx->lock);
1286         counter = counter->group_leader;
1287
1288         func(counter);
1289         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1290                 func(sibling);
1291         spin_unlock_irq(&ctx->lock);
1292 }
1293
1294 static void perf_counter_for_each_child(struct perf_counter *counter,
1295                                         void (*func)(struct perf_counter *))
1296 {
1297         struct perf_counter *child;
1298
1299         mutex_lock(&counter->mutex);
1300         func(counter);
1301         list_for_each_entry(child, &counter->child_list, child_list)
1302                 func(child);
1303         mutex_unlock(&counter->mutex);
1304 }
1305
1306 static void perf_counter_for_each(struct perf_counter *counter,
1307                                   void (*func)(struct perf_counter *))
1308 {
1309         struct perf_counter *child;
1310
1311         mutex_lock(&counter->mutex);
1312         perf_counter_for_each_sibling(counter, func);
1313         list_for_each_entry(child, &counter->child_list, child_list)
1314                 perf_counter_for_each_sibling(child, func);
1315         mutex_unlock(&counter->mutex);
1316 }
1317
1318 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1319 {
1320         struct perf_counter *counter = file->private_data;
1321         void (*func)(struct perf_counter *);
1322         u32 flags = arg;
1323
1324         switch (cmd) {
1325         case PERF_COUNTER_IOC_ENABLE:
1326                 func = perf_counter_enable;
1327                 break;
1328         case PERF_COUNTER_IOC_DISABLE:
1329                 func = perf_counter_disable;
1330                 break;
1331         case PERF_COUNTER_IOC_RESET:
1332                 func = perf_counter_reset;
1333                 break;
1334
1335         case PERF_COUNTER_IOC_REFRESH:
1336                 return perf_counter_refresh(counter, arg);
1337         default:
1338                 return -ENOTTY;
1339         }
1340
1341         if (flags & PERF_IOC_FLAG_GROUP)
1342                 perf_counter_for_each(counter, func);
1343         else
1344                 perf_counter_for_each_child(counter, func);
1345
1346         return 0;
1347 }
1348
1349 /*
1350  * Callers need to ensure there can be no nesting of this function, otherwise
1351  * the seqlock logic goes bad. We can not serialize this because the arch
1352  * code calls this from NMI context.
1353  */
1354 void perf_counter_update_userpage(struct perf_counter *counter)
1355 {
1356         struct perf_mmap_data *data;
1357         struct perf_counter_mmap_page *userpg;
1358
1359         rcu_read_lock();
1360         data = rcu_dereference(counter->data);
1361         if (!data)
1362                 goto unlock;
1363
1364         userpg = data->user_page;
1365
1366         /*
1367          * Disable preemption so as to not let the corresponding user-space
1368          * spin too long if we get preempted.
1369          */
1370         preempt_disable();
1371         ++userpg->lock;
1372         barrier();
1373         userpg->index = counter->hw.idx;
1374         userpg->offset = atomic64_read(&counter->count);
1375         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1376                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1377
1378         barrier();
1379         ++userpg->lock;
1380         preempt_enable();
1381 unlock:
1382         rcu_read_unlock();
1383 }
1384
1385 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1386 {
1387         struct perf_counter *counter = vma->vm_file->private_data;
1388         struct perf_mmap_data *data;
1389         int ret = VM_FAULT_SIGBUS;
1390
1391         rcu_read_lock();
1392         data = rcu_dereference(counter->data);
1393         if (!data)
1394                 goto unlock;
1395
1396         if (vmf->pgoff == 0) {
1397                 vmf->page = virt_to_page(data->user_page);
1398         } else {
1399                 int nr = vmf->pgoff - 1;
1400
1401                 if ((unsigned)nr > data->nr_pages)
1402                         goto unlock;
1403
1404                 vmf->page = virt_to_page(data->data_pages[nr]);
1405         }
1406         get_page(vmf->page);
1407         ret = 0;
1408 unlock:
1409         rcu_read_unlock();
1410
1411         return ret;
1412 }
1413
1414 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1415 {
1416         struct perf_mmap_data *data;
1417         unsigned long size;
1418         int i;
1419
1420         WARN_ON(atomic_read(&counter->mmap_count));
1421
1422         size = sizeof(struct perf_mmap_data);
1423         size += nr_pages * sizeof(void *);
1424
1425         data = kzalloc(size, GFP_KERNEL);
1426         if (!data)
1427                 goto fail;
1428
1429         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1430         if (!data->user_page)
1431                 goto fail_user_page;
1432
1433         for (i = 0; i < nr_pages; i++) {
1434                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1435                 if (!data->data_pages[i])
1436                         goto fail_data_pages;
1437         }
1438
1439         data->nr_pages = nr_pages;
1440         atomic_set(&data->lock, -1);
1441
1442         rcu_assign_pointer(counter->data, data);
1443
1444         return 0;
1445
1446 fail_data_pages:
1447         for (i--; i >= 0; i--)
1448                 free_page((unsigned long)data->data_pages[i]);
1449
1450         free_page((unsigned long)data->user_page);
1451
1452 fail_user_page:
1453         kfree(data);
1454
1455 fail:
1456         return -ENOMEM;
1457 }
1458
1459 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1460 {
1461         struct perf_mmap_data *data = container_of(rcu_head,
1462                         struct perf_mmap_data, rcu_head);
1463         int i;
1464
1465         free_page((unsigned long)data->user_page);
1466         for (i = 0; i < data->nr_pages; i++)
1467                 free_page((unsigned long)data->data_pages[i]);
1468         kfree(data);
1469 }
1470
1471 static void perf_mmap_data_free(struct perf_counter *counter)
1472 {
1473         struct perf_mmap_data *data = counter->data;
1474
1475         WARN_ON(atomic_read(&counter->mmap_count));
1476
1477         rcu_assign_pointer(counter->data, NULL);
1478         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1479 }
1480
1481 static void perf_mmap_open(struct vm_area_struct *vma)
1482 {
1483         struct perf_counter *counter = vma->vm_file->private_data;
1484
1485         atomic_inc(&counter->mmap_count);
1486 }
1487
1488 static void perf_mmap_close(struct vm_area_struct *vma)
1489 {
1490         struct perf_counter *counter = vma->vm_file->private_data;
1491
1492         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1493                                       &counter->mmap_mutex)) {
1494                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1495                 perf_mmap_data_free(counter);
1496                 mutex_unlock(&counter->mmap_mutex);
1497         }
1498 }
1499
1500 static struct vm_operations_struct perf_mmap_vmops = {
1501         .open  = perf_mmap_open,
1502         .close = perf_mmap_close,
1503         .fault = perf_mmap_fault,
1504 };
1505
1506 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1507 {
1508         struct perf_counter *counter = file->private_data;
1509         unsigned long vma_size;
1510         unsigned long nr_pages;
1511         unsigned long locked, lock_limit;
1512         int ret = 0;
1513         long extra;
1514
1515         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1516                 return -EINVAL;
1517
1518         vma_size = vma->vm_end - vma->vm_start;
1519         nr_pages = (vma_size / PAGE_SIZE) - 1;
1520
1521         /*
1522          * If we have data pages ensure they're a power-of-two number, so we
1523          * can do bitmasks instead of modulo.
1524          */
1525         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1526                 return -EINVAL;
1527
1528         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1529                 return -EINVAL;
1530
1531         if (vma->vm_pgoff != 0)
1532                 return -EINVAL;
1533
1534         mutex_lock(&counter->mmap_mutex);
1535         if (atomic_inc_not_zero(&counter->mmap_count)) {
1536                 if (nr_pages != counter->data->nr_pages)
1537                         ret = -EINVAL;
1538                 goto unlock;
1539         }
1540
1541         extra = nr_pages /* + 1 only account the data pages */;
1542         extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1543         if (extra < 0)
1544                 extra = 0;
1545
1546         locked = vma->vm_mm->locked_vm + extra;
1547
1548         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1549         lock_limit >>= PAGE_SHIFT;
1550
1551         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1552                 ret = -EPERM;
1553                 goto unlock;
1554         }
1555
1556         WARN_ON(counter->data);
1557         ret = perf_mmap_data_alloc(counter, nr_pages);
1558         if (ret)
1559                 goto unlock;
1560
1561         atomic_set(&counter->mmap_count, 1);
1562         vma->vm_mm->locked_vm += extra;
1563         counter->data->nr_locked = extra;
1564 unlock:
1565         mutex_unlock(&counter->mmap_mutex);
1566
1567         vma->vm_flags &= ~VM_MAYWRITE;
1568         vma->vm_flags |= VM_RESERVED;
1569         vma->vm_ops = &perf_mmap_vmops;
1570
1571         return ret;
1572 }
1573
1574 static int perf_fasync(int fd, struct file *filp, int on)
1575 {
1576         struct perf_counter *counter = filp->private_data;
1577         struct inode *inode = filp->f_path.dentry->d_inode;
1578         int retval;
1579
1580         mutex_lock(&inode->i_mutex);
1581         retval = fasync_helper(fd, filp, on, &counter->fasync);
1582         mutex_unlock(&inode->i_mutex);
1583
1584         if (retval < 0)
1585                 return retval;
1586
1587         return 0;
1588 }
1589
1590 static const struct file_operations perf_fops = {
1591         .release                = perf_release,
1592         .read                   = perf_read,
1593         .poll                   = perf_poll,
1594         .unlocked_ioctl         = perf_ioctl,
1595         .compat_ioctl           = perf_ioctl,
1596         .mmap                   = perf_mmap,
1597         .fasync                 = perf_fasync,
1598 };
1599
1600 /*
1601  * Perf counter wakeup
1602  *
1603  * If there's data, ensure we set the poll() state and publish everything
1604  * to user-space before waking everybody up.
1605  */
1606
1607 void perf_counter_wakeup(struct perf_counter *counter)
1608 {
1609         wake_up_all(&counter->waitq);
1610
1611         if (counter->pending_kill) {
1612                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1613                 counter->pending_kill = 0;
1614         }
1615 }
1616
1617 /*
1618  * Pending wakeups
1619  *
1620  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1621  *
1622  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1623  * single linked list and use cmpxchg() to add entries lockless.
1624  */
1625
1626 static void perf_pending_counter(struct perf_pending_entry *entry)
1627 {
1628         struct perf_counter *counter = container_of(entry,
1629                         struct perf_counter, pending);
1630
1631         if (counter->pending_disable) {
1632                 counter->pending_disable = 0;
1633                 perf_counter_disable(counter);
1634         }
1635
1636         if (counter->pending_wakeup) {
1637                 counter->pending_wakeup = 0;
1638                 perf_counter_wakeup(counter);
1639         }
1640 }
1641
1642 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1643
1644 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1645         PENDING_TAIL,
1646 };
1647
1648 static void perf_pending_queue(struct perf_pending_entry *entry,
1649                                void (*func)(struct perf_pending_entry *))
1650 {
1651         struct perf_pending_entry **head;
1652
1653         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1654                 return;
1655
1656         entry->func = func;
1657
1658         head = &get_cpu_var(perf_pending_head);
1659
1660         do {
1661                 entry->next = *head;
1662         } while (cmpxchg(head, entry->next, entry) != entry->next);
1663
1664         set_perf_counter_pending();
1665
1666         put_cpu_var(perf_pending_head);
1667 }
1668
1669 static int __perf_pending_run(void)
1670 {
1671         struct perf_pending_entry *list;
1672         int nr = 0;
1673
1674         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1675         while (list != PENDING_TAIL) {
1676                 void (*func)(struct perf_pending_entry *);
1677                 struct perf_pending_entry *entry = list;
1678
1679                 list = list->next;
1680
1681                 func = entry->func;
1682                 entry->next = NULL;
1683                 /*
1684                  * Ensure we observe the unqueue before we issue the wakeup,
1685                  * so that we won't be waiting forever.
1686                  * -- see perf_not_pending().
1687                  */
1688                 smp_wmb();
1689
1690                 func(entry);
1691                 nr++;
1692         }
1693
1694         return nr;
1695 }
1696
1697 static inline int perf_not_pending(struct perf_counter *counter)
1698 {
1699         /*
1700          * If we flush on whatever cpu we run, there is a chance we don't
1701          * need to wait.
1702          */
1703         get_cpu();
1704         __perf_pending_run();
1705         put_cpu();
1706
1707         /*
1708          * Ensure we see the proper queue state before going to sleep
1709          * so that we do not miss the wakeup. -- see perf_pending_handle()
1710          */
1711         smp_rmb();
1712         return counter->pending.next == NULL;
1713 }
1714
1715 static void perf_pending_sync(struct perf_counter *counter)
1716 {
1717         wait_event(counter->waitq, perf_not_pending(counter));
1718 }
1719
1720 void perf_counter_do_pending(void)
1721 {
1722         __perf_pending_run();
1723 }
1724
1725 /*
1726  * Callchain support -- arch specific
1727  */
1728
1729 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1730 {
1731         return NULL;
1732 }
1733
1734 /*
1735  * Output
1736  */
1737
1738 struct perf_output_handle {
1739         struct perf_counter     *counter;
1740         struct perf_mmap_data   *data;
1741         unsigned int            offset;
1742         unsigned int            head;
1743         int                     nmi;
1744         int                     overflow;
1745         int                     locked;
1746         unsigned long           flags;
1747 };
1748
1749 static void perf_output_wakeup(struct perf_output_handle *handle)
1750 {
1751         atomic_set(&handle->data->poll, POLL_IN);
1752
1753         if (handle->nmi) {
1754                 handle->counter->pending_wakeup = 1;
1755                 perf_pending_queue(&handle->counter->pending,
1756                                    perf_pending_counter);
1757         } else
1758                 perf_counter_wakeup(handle->counter);
1759 }
1760
1761 /*
1762  * Curious locking construct.
1763  *
1764  * We need to ensure a later event doesn't publish a head when a former
1765  * event isn't done writing. However since we need to deal with NMIs we
1766  * cannot fully serialize things.
1767  *
1768  * What we do is serialize between CPUs so we only have to deal with NMI
1769  * nesting on a single CPU.
1770  *
1771  * We only publish the head (and generate a wakeup) when the outer-most
1772  * event completes.
1773  */
1774 static void perf_output_lock(struct perf_output_handle *handle)
1775 {
1776         struct perf_mmap_data *data = handle->data;
1777         int cpu;
1778
1779         handle->locked = 0;
1780
1781         local_irq_save(handle->flags);
1782         cpu = smp_processor_id();
1783
1784         if (in_nmi() && atomic_read(&data->lock) == cpu)
1785                 return;
1786
1787         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1788                 cpu_relax();
1789
1790         handle->locked = 1;
1791 }
1792
1793 static void perf_output_unlock(struct perf_output_handle *handle)
1794 {
1795         struct perf_mmap_data *data = handle->data;
1796         int head, cpu;
1797
1798         data->done_head = data->head;
1799
1800         if (!handle->locked)
1801                 goto out;
1802
1803 again:
1804         /*
1805          * The xchg implies a full barrier that ensures all writes are done
1806          * before we publish the new head, matched by a rmb() in userspace when
1807          * reading this position.
1808          */
1809         while ((head = atomic_xchg(&data->done_head, 0)))
1810                 data->user_page->data_head = head;
1811
1812         /*
1813          * NMI can happen here, which means we can miss a done_head update.
1814          */
1815
1816         cpu = atomic_xchg(&data->lock, -1);
1817         WARN_ON_ONCE(cpu != smp_processor_id());
1818
1819         /*
1820          * Therefore we have to validate we did not indeed do so.
1821          */
1822         if (unlikely(atomic_read(&data->done_head))) {
1823                 /*
1824                  * Since we had it locked, we can lock it again.
1825                  */
1826                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1827                         cpu_relax();
1828
1829                 goto again;
1830         }
1831
1832         if (atomic_xchg(&data->wakeup, 0))
1833                 perf_output_wakeup(handle);
1834 out:
1835         local_irq_restore(handle->flags);
1836 }
1837
1838 static int perf_output_begin(struct perf_output_handle *handle,
1839                              struct perf_counter *counter, unsigned int size,
1840                              int nmi, int overflow)
1841 {
1842         struct perf_mmap_data *data;
1843         unsigned int offset, head;
1844
1845         /*
1846          * For inherited counters we send all the output towards the parent.
1847          */
1848         if (counter->parent)
1849                 counter = counter->parent;
1850
1851         rcu_read_lock();
1852         data = rcu_dereference(counter->data);
1853         if (!data)
1854                 goto out;
1855
1856         handle->data     = data;
1857         handle->counter  = counter;
1858         handle->nmi      = nmi;
1859         handle->overflow = overflow;
1860
1861         if (!data->nr_pages)
1862                 goto fail;
1863
1864         perf_output_lock(handle);
1865
1866         do {
1867                 offset = head = atomic_read(&data->head);
1868                 head += size;
1869         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1870
1871         handle->offset  = offset;
1872         handle->head    = head;
1873
1874         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1875                 atomic_set(&data->wakeup, 1);
1876
1877         return 0;
1878
1879 fail:
1880         perf_output_wakeup(handle);
1881 out:
1882         rcu_read_unlock();
1883
1884         return -ENOSPC;
1885 }
1886
1887 static void perf_output_copy(struct perf_output_handle *handle,
1888                              void *buf, unsigned int len)
1889 {
1890         unsigned int pages_mask;
1891         unsigned int offset;
1892         unsigned int size;
1893         void **pages;
1894
1895         offset          = handle->offset;
1896         pages_mask      = handle->data->nr_pages - 1;
1897         pages           = handle->data->data_pages;
1898
1899         do {
1900                 unsigned int page_offset;
1901                 int nr;
1902
1903                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1904                 page_offset = offset & (PAGE_SIZE - 1);
1905                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1906
1907                 memcpy(pages[nr] + page_offset, buf, size);
1908
1909                 len         -= size;
1910                 buf         += size;
1911                 offset      += size;
1912         } while (len);
1913
1914         handle->offset = offset;
1915
1916         WARN_ON_ONCE(handle->offset > handle->head);
1917 }
1918
1919 #define perf_output_put(handle, x) \
1920         perf_output_copy((handle), &(x), sizeof(x))
1921
1922 static void perf_output_end(struct perf_output_handle *handle)
1923 {
1924         struct perf_counter *counter = handle->counter;
1925         struct perf_mmap_data *data = handle->data;
1926
1927         int wakeup_events = counter->hw_event.wakeup_events;
1928
1929         if (handle->overflow && wakeup_events) {
1930                 int events = atomic_inc_return(&data->events);
1931                 if (events >= wakeup_events) {
1932                         atomic_sub(wakeup_events, &data->events);
1933                         atomic_set(&data->wakeup, 1);
1934                 }
1935         }
1936
1937         perf_output_unlock(handle);
1938         rcu_read_unlock();
1939 }
1940
1941 static void perf_counter_output(struct perf_counter *counter,
1942                                 int nmi, struct pt_regs *regs, u64 addr)
1943 {
1944         int ret;
1945         u64 record_type = counter->hw_event.record_type;
1946         struct perf_output_handle handle;
1947         struct perf_event_header header;
1948         u64 ip;
1949         struct {
1950                 u32 pid, tid;
1951         } tid_entry;
1952         struct {
1953                 u64 event;
1954                 u64 counter;
1955         } group_entry;
1956         struct perf_callchain_entry *callchain = NULL;
1957         int callchain_size = 0;
1958         u64 time;
1959         struct {
1960                 u32 cpu, reserved;
1961         } cpu_entry;
1962
1963         header.type = 0;
1964         header.size = sizeof(header);
1965
1966         header.misc = PERF_EVENT_MISC_OVERFLOW;
1967         header.misc |= user_mode(regs) ?
1968                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1969
1970         if (record_type & PERF_RECORD_IP) {
1971                 ip = instruction_pointer(regs);
1972                 header.type |= PERF_RECORD_IP;
1973                 header.size += sizeof(ip);
1974         }
1975
1976         if (record_type & PERF_RECORD_TID) {
1977                 /* namespace issues */
1978                 tid_entry.pid = current->group_leader->pid;
1979                 tid_entry.tid = current->pid;
1980
1981                 header.type |= PERF_RECORD_TID;
1982                 header.size += sizeof(tid_entry);
1983         }
1984
1985         if (record_type & PERF_RECORD_TIME) {
1986                 /*
1987                  * Maybe do better on x86 and provide cpu_clock_nmi()
1988                  */
1989                 time = sched_clock();
1990
1991                 header.type |= PERF_RECORD_TIME;
1992                 header.size += sizeof(u64);
1993         }
1994
1995         if (record_type & PERF_RECORD_ADDR) {
1996                 header.type |= PERF_RECORD_ADDR;
1997                 header.size += sizeof(u64);
1998         }
1999
2000         if (record_type & PERF_RECORD_CONFIG) {
2001                 header.type |= PERF_RECORD_CONFIG;
2002                 header.size += sizeof(u64);
2003         }
2004
2005         if (record_type & PERF_RECORD_CPU) {
2006                 header.type |= PERF_RECORD_CPU;
2007                 header.size += sizeof(cpu_entry);
2008
2009                 cpu_entry.cpu = raw_smp_processor_id();
2010         }
2011
2012         if (record_type & PERF_RECORD_GROUP) {
2013                 header.type |= PERF_RECORD_GROUP;
2014                 header.size += sizeof(u64) +
2015                         counter->nr_siblings * sizeof(group_entry);
2016         }
2017
2018         if (record_type & PERF_RECORD_CALLCHAIN) {
2019                 callchain = perf_callchain(regs);
2020
2021                 if (callchain) {
2022                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2023
2024                         header.type |= PERF_RECORD_CALLCHAIN;
2025                         header.size += callchain_size;
2026                 }
2027         }
2028
2029         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2030         if (ret)
2031                 return;
2032
2033         perf_output_put(&handle, header);
2034
2035         if (record_type & PERF_RECORD_IP)
2036                 perf_output_put(&handle, ip);
2037
2038         if (record_type & PERF_RECORD_TID)
2039                 perf_output_put(&handle, tid_entry);
2040
2041         if (record_type & PERF_RECORD_TIME)
2042                 perf_output_put(&handle, time);
2043
2044         if (record_type & PERF_RECORD_ADDR)
2045                 perf_output_put(&handle, addr);
2046
2047         if (record_type & PERF_RECORD_CONFIG)
2048                 perf_output_put(&handle, counter->hw_event.config);
2049
2050         if (record_type & PERF_RECORD_CPU)
2051                 perf_output_put(&handle, cpu_entry);
2052
2053         /*
2054          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2055          */
2056         if (record_type & PERF_RECORD_GROUP) {
2057                 struct perf_counter *leader, *sub;
2058                 u64 nr = counter->nr_siblings;
2059
2060                 perf_output_put(&handle, nr);
2061
2062                 leader = counter->group_leader;
2063                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2064                         if (sub != counter)
2065                                 sub->pmu->read(sub);
2066
2067                         group_entry.event = sub->hw_event.config;
2068                         group_entry.counter = atomic64_read(&sub->count);
2069
2070                         perf_output_put(&handle, group_entry);
2071                 }
2072         }
2073
2074         if (callchain)
2075                 perf_output_copy(&handle, callchain, callchain_size);
2076
2077         perf_output_end(&handle);
2078 }
2079
2080 /*
2081  * comm tracking
2082  */
2083
2084 struct perf_comm_event {
2085         struct task_struct      *task;
2086         char                    *comm;
2087         int                     comm_size;
2088
2089         struct {
2090                 struct perf_event_header        header;
2091
2092                 u32                             pid;
2093                 u32                             tid;
2094         } event;
2095 };
2096
2097 static void perf_counter_comm_output(struct perf_counter *counter,
2098                                      struct perf_comm_event *comm_event)
2099 {
2100         struct perf_output_handle handle;
2101         int size = comm_event->event.header.size;
2102         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2103
2104         if (ret)
2105                 return;
2106
2107         perf_output_put(&handle, comm_event->event);
2108         perf_output_copy(&handle, comm_event->comm,
2109                                    comm_event->comm_size);
2110         perf_output_end(&handle);
2111 }
2112
2113 static int perf_counter_comm_match(struct perf_counter *counter,
2114                                    struct perf_comm_event *comm_event)
2115 {
2116         if (counter->hw_event.comm &&
2117             comm_event->event.header.type == PERF_EVENT_COMM)
2118                 return 1;
2119
2120         return 0;
2121 }
2122
2123 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2124                                   struct perf_comm_event *comm_event)
2125 {
2126         struct perf_counter *counter;
2127
2128         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2129                 return;
2130
2131         rcu_read_lock();
2132         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2133                 if (perf_counter_comm_match(counter, comm_event))
2134                         perf_counter_comm_output(counter, comm_event);
2135         }
2136         rcu_read_unlock();
2137 }
2138
2139 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2140 {
2141         struct perf_cpu_context *cpuctx;
2142         unsigned int size;
2143         char *comm = comm_event->task->comm;
2144
2145         size = ALIGN(strlen(comm)+1, sizeof(u64));
2146
2147         comm_event->comm = comm;
2148         comm_event->comm_size = size;
2149
2150         comm_event->event.header.size = sizeof(comm_event->event) + size;
2151
2152         cpuctx = &get_cpu_var(perf_cpu_context);
2153         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2154         put_cpu_var(perf_cpu_context);
2155
2156         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2157 }
2158
2159 void perf_counter_comm(struct task_struct *task)
2160 {
2161         struct perf_comm_event comm_event;
2162
2163         if (!atomic_read(&nr_comm_tracking))
2164                 return;
2165        
2166         comm_event = (struct perf_comm_event){
2167                 .task   = task,
2168                 .event  = {
2169                         .header = { .type = PERF_EVENT_COMM, },
2170                         .pid    = task->group_leader->pid,
2171                         .tid    = task->pid,
2172                 },
2173         };
2174
2175         perf_counter_comm_event(&comm_event);
2176 }
2177
2178 /*
2179  * mmap tracking
2180  */
2181
2182 struct perf_mmap_event {
2183         struct file     *file;
2184         char            *file_name;
2185         int             file_size;
2186
2187         struct {
2188                 struct perf_event_header        header;
2189
2190                 u32                             pid;
2191                 u32                             tid;
2192                 u64                             start;
2193                 u64                             len;
2194                 u64                             pgoff;
2195         } event;
2196 };
2197
2198 static void perf_counter_mmap_output(struct perf_counter *counter,
2199                                      struct perf_mmap_event *mmap_event)
2200 {
2201         struct perf_output_handle handle;
2202         int size = mmap_event->event.header.size;
2203         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2204
2205         if (ret)
2206                 return;
2207
2208         perf_output_put(&handle, mmap_event->event);
2209         perf_output_copy(&handle, mmap_event->file_name,
2210                                    mmap_event->file_size);
2211         perf_output_end(&handle);
2212 }
2213
2214 static int perf_counter_mmap_match(struct perf_counter *counter,
2215                                    struct perf_mmap_event *mmap_event)
2216 {
2217         if (counter->hw_event.mmap &&
2218             mmap_event->event.header.type == PERF_EVENT_MMAP)
2219                 return 1;
2220
2221         if (counter->hw_event.munmap &&
2222             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2223                 return 1;
2224
2225         return 0;
2226 }
2227
2228 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2229                                   struct perf_mmap_event *mmap_event)
2230 {
2231         struct perf_counter *counter;
2232
2233         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2234                 return;
2235
2236         rcu_read_lock();
2237         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2238                 if (perf_counter_mmap_match(counter, mmap_event))
2239                         perf_counter_mmap_output(counter, mmap_event);
2240         }
2241         rcu_read_unlock();
2242 }
2243
2244 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2245 {
2246         struct perf_cpu_context *cpuctx;
2247         struct file *file = mmap_event->file;
2248         unsigned int size;
2249         char tmp[16];
2250         char *buf = NULL;
2251         char *name;
2252
2253         if (file) {
2254                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2255                 if (!buf) {
2256                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2257                         goto got_name;
2258                 }
2259                 name = d_path(&file->f_path, buf, PATH_MAX);
2260                 if (IS_ERR(name)) {
2261                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2262                         goto got_name;
2263                 }
2264         } else {
2265                 name = strncpy(tmp, "//anon", sizeof(tmp));
2266                 goto got_name;
2267         }
2268
2269 got_name:
2270         size = ALIGN(strlen(name)+1, sizeof(u64));
2271
2272         mmap_event->file_name = name;
2273         mmap_event->file_size = size;
2274
2275         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2276
2277         cpuctx = &get_cpu_var(perf_cpu_context);
2278         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2279         put_cpu_var(perf_cpu_context);
2280
2281         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2282
2283         kfree(buf);
2284 }
2285
2286 void perf_counter_mmap(unsigned long addr, unsigned long len,
2287                        unsigned long pgoff, struct file *file)
2288 {
2289         struct perf_mmap_event mmap_event;
2290
2291         if (!atomic_read(&nr_mmap_tracking))
2292                 return;
2293
2294         mmap_event = (struct perf_mmap_event){
2295                 .file   = file,
2296                 .event  = {
2297                         .header = { .type = PERF_EVENT_MMAP, },
2298                         .pid    = current->group_leader->pid,
2299                         .tid    = current->pid,
2300                         .start  = addr,
2301                         .len    = len,
2302                         .pgoff  = pgoff,
2303                 },
2304         };
2305
2306         perf_counter_mmap_event(&mmap_event);
2307 }
2308
2309 void perf_counter_munmap(unsigned long addr, unsigned long len,
2310                          unsigned long pgoff, struct file *file)
2311 {
2312         struct perf_mmap_event mmap_event;
2313
2314         if (!atomic_read(&nr_munmap_tracking))
2315                 return;
2316
2317         mmap_event = (struct perf_mmap_event){
2318                 .file   = file,
2319                 .event  = {
2320                         .header = { .type = PERF_EVENT_MUNMAP, },
2321                         .pid    = current->group_leader->pid,
2322                         .tid    = current->pid,
2323                         .start  = addr,
2324                         .len    = len,
2325                         .pgoff  = pgoff,
2326                 },
2327         };
2328
2329         perf_counter_mmap_event(&mmap_event);
2330 }
2331
2332 /*
2333  * Generic counter overflow handling.
2334  */
2335
2336 int perf_counter_overflow(struct perf_counter *counter,
2337                           int nmi, struct pt_regs *regs, u64 addr)
2338 {
2339         int events = atomic_read(&counter->event_limit);
2340         int ret = 0;
2341
2342         /*
2343          * XXX event_limit might not quite work as expected on inherited
2344          * counters
2345          */
2346
2347         counter->pending_kill = POLL_IN;
2348         if (events && atomic_dec_and_test(&counter->event_limit)) {
2349                 ret = 1;
2350                 counter->pending_kill = POLL_HUP;
2351                 if (nmi) {
2352                         counter->pending_disable = 1;
2353                         perf_pending_queue(&counter->pending,
2354                                            perf_pending_counter);
2355                 } else
2356                         perf_counter_disable(counter);
2357         }
2358
2359         perf_counter_output(counter, nmi, regs, addr);
2360         return ret;
2361 }
2362
2363 /*
2364  * Generic software counter infrastructure
2365  */
2366
2367 static void perf_swcounter_update(struct perf_counter *counter)
2368 {
2369         struct hw_perf_counter *hwc = &counter->hw;
2370         u64 prev, now;
2371         s64 delta;
2372
2373 again:
2374         prev = atomic64_read(&hwc->prev_count);
2375         now = atomic64_read(&hwc->count);
2376         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2377                 goto again;
2378
2379         delta = now - prev;
2380
2381         atomic64_add(delta, &counter->count);
2382         atomic64_sub(delta, &hwc->period_left);
2383 }
2384
2385 static void perf_swcounter_set_period(struct perf_counter *counter)
2386 {
2387         struct hw_perf_counter *hwc = &counter->hw;
2388         s64 left = atomic64_read(&hwc->period_left);
2389         s64 period = hwc->irq_period;
2390
2391         if (unlikely(left <= -period)) {
2392                 left = period;
2393                 atomic64_set(&hwc->period_left, left);
2394         }
2395
2396         if (unlikely(left <= 0)) {
2397                 left += period;
2398                 atomic64_add(period, &hwc->period_left);
2399         }
2400
2401         atomic64_set(&hwc->prev_count, -left);
2402         atomic64_set(&hwc->count, -left);
2403 }
2404
2405 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2406 {
2407         enum hrtimer_restart ret = HRTIMER_RESTART;
2408         struct perf_counter *counter;
2409         struct pt_regs *regs;
2410
2411         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2412         counter->pmu->read(counter);
2413
2414         regs = get_irq_regs();
2415         /*
2416          * In case we exclude kernel IPs or are somehow not in interrupt
2417          * context, provide the next best thing, the user IP.
2418          */
2419         if ((counter->hw_event.exclude_kernel || !regs) &&
2420                         !counter->hw_event.exclude_user)
2421                 regs = task_pt_regs(current);
2422
2423         if (regs) {
2424                 if (perf_counter_overflow(counter, 0, regs, 0))
2425                         ret = HRTIMER_NORESTART;
2426         }
2427
2428         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2429
2430         return ret;
2431 }
2432
2433 static void perf_swcounter_overflow(struct perf_counter *counter,
2434                                     int nmi, struct pt_regs *regs, u64 addr)
2435 {
2436         perf_swcounter_update(counter);
2437         perf_swcounter_set_period(counter);
2438         if (perf_counter_overflow(counter, nmi, regs, addr))
2439                 /* soft-disable the counter */
2440                 ;
2441
2442 }
2443
2444 static int perf_swcounter_match(struct perf_counter *counter,
2445                                 enum perf_event_types type,
2446                                 u32 event, struct pt_regs *regs)
2447 {
2448         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2449                 return 0;
2450
2451         if (perf_event_raw(&counter->hw_event))
2452                 return 0;
2453
2454         if (perf_event_type(&counter->hw_event) != type)
2455                 return 0;
2456
2457         if (perf_event_id(&counter->hw_event) != event)
2458                 return 0;
2459
2460         if (counter->hw_event.exclude_user && user_mode(regs))
2461                 return 0;
2462
2463         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2464                 return 0;
2465
2466         return 1;
2467 }
2468
2469 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2470                                int nmi, struct pt_regs *regs, u64 addr)
2471 {
2472         int neg = atomic64_add_negative(nr, &counter->hw.count);
2473         if (counter->hw.irq_period && !neg)
2474                 perf_swcounter_overflow(counter, nmi, regs, addr);
2475 }
2476
2477 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2478                                      enum perf_event_types type, u32 event,
2479                                      u64 nr, int nmi, struct pt_regs *regs,
2480                                      u64 addr)
2481 {
2482         struct perf_counter *counter;
2483
2484         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2485                 return;
2486
2487         rcu_read_lock();
2488         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2489                 if (perf_swcounter_match(counter, type, event, regs))
2490                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2491         }
2492         rcu_read_unlock();
2493 }
2494
2495 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2496 {
2497         if (in_nmi())
2498                 return &cpuctx->recursion[3];
2499
2500         if (in_irq())
2501                 return &cpuctx->recursion[2];
2502
2503         if (in_softirq())
2504                 return &cpuctx->recursion[1];
2505
2506         return &cpuctx->recursion[0];
2507 }
2508
2509 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2510                                    u64 nr, int nmi, struct pt_regs *regs,
2511                                    u64 addr)
2512 {
2513         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2514         int *recursion = perf_swcounter_recursion_context(cpuctx);
2515
2516         if (*recursion)
2517                 goto out;
2518
2519         (*recursion)++;
2520         barrier();
2521
2522         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2523                                  nr, nmi, regs, addr);
2524         if (cpuctx->task_ctx) {
2525                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2526                                          nr, nmi, regs, addr);
2527         }
2528
2529         barrier();
2530         (*recursion)--;
2531
2532 out:
2533         put_cpu_var(perf_cpu_context);
2534 }
2535
2536 void
2537 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2538 {
2539         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2540 }
2541
2542 static void perf_swcounter_read(struct perf_counter *counter)
2543 {
2544         perf_swcounter_update(counter);
2545 }
2546
2547 static int perf_swcounter_enable(struct perf_counter *counter)
2548 {
2549         perf_swcounter_set_period(counter);
2550         return 0;
2551 }
2552
2553 static void perf_swcounter_disable(struct perf_counter *counter)
2554 {
2555         perf_swcounter_update(counter);
2556 }
2557
2558 static const struct pmu perf_ops_generic = {
2559         .enable         = perf_swcounter_enable,
2560         .disable        = perf_swcounter_disable,
2561         .read           = perf_swcounter_read,
2562 };
2563
2564 /*
2565  * Software counter: cpu wall time clock
2566  */
2567
2568 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2569 {
2570         int cpu = raw_smp_processor_id();
2571         s64 prev;
2572         u64 now;
2573
2574         now = cpu_clock(cpu);
2575         prev = atomic64_read(&counter->hw.prev_count);
2576         atomic64_set(&counter->hw.prev_count, now);
2577         atomic64_add(now - prev, &counter->count);
2578 }
2579
2580 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2581 {
2582         struct hw_perf_counter *hwc = &counter->hw;
2583         int cpu = raw_smp_processor_id();
2584
2585         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2586         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2587         hwc->hrtimer.function = perf_swcounter_hrtimer;
2588         if (hwc->irq_period) {
2589                 __hrtimer_start_range_ns(&hwc->hrtimer,
2590                                 ns_to_ktime(hwc->irq_period), 0,
2591                                 HRTIMER_MODE_REL, 0);
2592         }
2593
2594         return 0;
2595 }
2596
2597 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2598 {
2599         hrtimer_cancel(&counter->hw.hrtimer);
2600         cpu_clock_perf_counter_update(counter);
2601 }
2602
2603 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2604 {
2605         cpu_clock_perf_counter_update(counter);
2606 }
2607
2608 static const struct pmu perf_ops_cpu_clock = {
2609         .enable         = cpu_clock_perf_counter_enable,
2610         .disable        = cpu_clock_perf_counter_disable,
2611         .read           = cpu_clock_perf_counter_read,
2612 };
2613
2614 /*
2615  * Software counter: task time clock
2616  */
2617
2618 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2619 {
2620         u64 prev;
2621         s64 delta;
2622
2623         prev = atomic64_xchg(&counter->hw.prev_count, now);
2624         delta = now - prev;
2625         atomic64_add(delta, &counter->count);
2626 }
2627
2628 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2629 {
2630         struct hw_perf_counter *hwc = &counter->hw;
2631         u64 now;
2632
2633         now = counter->ctx->time;
2634
2635         atomic64_set(&hwc->prev_count, now);
2636         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2637         hwc->hrtimer.function = perf_swcounter_hrtimer;
2638         if (hwc->irq_period) {
2639                 __hrtimer_start_range_ns(&hwc->hrtimer,
2640                                 ns_to_ktime(hwc->irq_period), 0,
2641                                 HRTIMER_MODE_REL, 0);
2642         }
2643
2644         return 0;
2645 }
2646
2647 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2648 {
2649         hrtimer_cancel(&counter->hw.hrtimer);
2650         task_clock_perf_counter_update(counter, counter->ctx->time);
2651
2652 }
2653
2654 static void task_clock_perf_counter_read(struct perf_counter *counter)
2655 {
2656         u64 time;
2657
2658         if (!in_nmi()) {
2659                 update_context_time(counter->ctx);
2660                 time = counter->ctx->time;
2661         } else {
2662                 u64 now = perf_clock();
2663                 u64 delta = now - counter->ctx->timestamp;
2664                 time = counter->ctx->time + delta;
2665         }
2666
2667         task_clock_perf_counter_update(counter, time);
2668 }
2669
2670 static const struct pmu perf_ops_task_clock = {
2671         .enable         = task_clock_perf_counter_enable,
2672         .disable        = task_clock_perf_counter_disable,
2673         .read           = task_clock_perf_counter_read,
2674 };
2675
2676 /*
2677  * Software counter: cpu migrations
2678  */
2679
2680 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2681 {
2682         struct task_struct *curr = counter->ctx->task;
2683
2684         if (curr)
2685                 return curr->se.nr_migrations;
2686         return cpu_nr_migrations(smp_processor_id());
2687 }
2688
2689 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2690 {
2691         u64 prev, now;
2692         s64 delta;
2693
2694         prev = atomic64_read(&counter->hw.prev_count);
2695         now = get_cpu_migrations(counter);
2696
2697         atomic64_set(&counter->hw.prev_count, now);
2698
2699         delta = now - prev;
2700
2701         atomic64_add(delta, &counter->count);
2702 }
2703
2704 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2705 {
2706         cpu_migrations_perf_counter_update(counter);
2707 }
2708
2709 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2710 {
2711         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2712                 atomic64_set(&counter->hw.prev_count,
2713                              get_cpu_migrations(counter));
2714         return 0;
2715 }
2716
2717 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2718 {
2719         cpu_migrations_perf_counter_update(counter);
2720 }
2721
2722 static const struct pmu perf_ops_cpu_migrations = {
2723         .enable         = cpu_migrations_perf_counter_enable,
2724         .disable        = cpu_migrations_perf_counter_disable,
2725         .read           = cpu_migrations_perf_counter_read,
2726 };
2727
2728 #ifdef CONFIG_EVENT_PROFILE
2729 void perf_tpcounter_event(int event_id)
2730 {
2731         struct pt_regs *regs = get_irq_regs();
2732
2733         if (!regs)
2734                 regs = task_pt_regs(current);
2735
2736         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2737 }
2738 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2739
2740 extern int ftrace_profile_enable(int);
2741 extern void ftrace_profile_disable(int);
2742
2743 static void tp_perf_counter_destroy(struct perf_counter *counter)
2744 {
2745         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2746 }
2747
2748 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2749 {
2750         int event_id = perf_event_id(&counter->hw_event);
2751         int ret;
2752
2753         ret = ftrace_profile_enable(event_id);
2754         if (ret)
2755                 return NULL;
2756
2757         counter->destroy = tp_perf_counter_destroy;
2758         counter->hw.irq_period = counter->hw_event.irq_period;
2759
2760         return &perf_ops_generic;
2761 }
2762 #else
2763 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2764 {
2765         return NULL;
2766 }
2767 #endif
2768
2769 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2770 {
2771         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2772         const struct pmu *pmu = NULL;
2773         struct hw_perf_counter *hwc = &counter->hw;
2774
2775         /*
2776          * Software counters (currently) can't in general distinguish
2777          * between user, kernel and hypervisor events.
2778          * However, context switches and cpu migrations are considered
2779          * to be kernel events, and page faults are never hypervisor
2780          * events.
2781          */
2782         switch (perf_event_id(&counter->hw_event)) {
2783         case PERF_COUNT_CPU_CLOCK:
2784                 pmu = &perf_ops_cpu_clock;
2785
2786                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2787                         hw_event->irq_period = 10000;
2788                 break;
2789         case PERF_COUNT_TASK_CLOCK:
2790                 /*
2791                  * If the user instantiates this as a per-cpu counter,
2792                  * use the cpu_clock counter instead.
2793                  */
2794                 if (counter->ctx->task)
2795                         pmu = &perf_ops_task_clock;
2796                 else
2797                         pmu = &perf_ops_cpu_clock;
2798
2799                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2800                         hw_event->irq_period = 10000;
2801                 break;
2802         case PERF_COUNT_PAGE_FAULTS:
2803         case PERF_COUNT_PAGE_FAULTS_MIN:
2804         case PERF_COUNT_PAGE_FAULTS_MAJ:
2805         case PERF_COUNT_CONTEXT_SWITCHES:
2806                 pmu = &perf_ops_generic;
2807                 break;
2808         case PERF_COUNT_CPU_MIGRATIONS:
2809                 if (!counter->hw_event.exclude_kernel)
2810                         pmu = &perf_ops_cpu_migrations;
2811                 break;
2812         }
2813
2814         if (pmu)
2815                 hwc->irq_period = hw_event->irq_period;
2816
2817         return pmu;
2818 }
2819
2820 /*
2821  * Allocate and initialize a counter structure
2822  */
2823 static struct perf_counter *
2824 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2825                    int cpu,
2826                    struct perf_counter_context *ctx,
2827                    struct perf_counter *group_leader,
2828                    gfp_t gfpflags)
2829 {
2830         const struct pmu *pmu;
2831         struct perf_counter *counter;
2832         long err;
2833
2834         counter = kzalloc(sizeof(*counter), gfpflags);
2835         if (!counter)
2836                 return ERR_PTR(-ENOMEM);
2837
2838         /*
2839          * Single counters are their own group leaders, with an
2840          * empty sibling list:
2841          */
2842         if (!group_leader)
2843                 group_leader = counter;
2844
2845         mutex_init(&counter->mutex);
2846         INIT_LIST_HEAD(&counter->list_entry);
2847         INIT_LIST_HEAD(&counter->event_entry);
2848         INIT_LIST_HEAD(&counter->sibling_list);
2849         init_waitqueue_head(&counter->waitq);
2850
2851         mutex_init(&counter->mmap_mutex);
2852
2853         INIT_LIST_HEAD(&counter->child_list);
2854
2855         counter->cpu                    = cpu;
2856         counter->hw_event               = *hw_event;
2857         counter->group_leader           = group_leader;
2858         counter->pmu                    = NULL;
2859         counter->ctx                    = ctx;
2860
2861         counter->state = PERF_COUNTER_STATE_INACTIVE;
2862         if (hw_event->disabled)
2863                 counter->state = PERF_COUNTER_STATE_OFF;
2864
2865         pmu = NULL;
2866
2867         /*
2868          * we currently do not support PERF_RECORD_GROUP on inherited counters
2869          */
2870         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2871                 goto done;
2872
2873         if (perf_event_raw(hw_event)) {
2874                 pmu = hw_perf_counter_init(counter);
2875                 goto done;
2876         }
2877
2878         switch (perf_event_type(hw_event)) {
2879         case PERF_TYPE_HARDWARE:
2880                 pmu = hw_perf_counter_init(counter);
2881                 break;
2882
2883         case PERF_TYPE_SOFTWARE:
2884                 pmu = sw_perf_counter_init(counter);
2885                 break;
2886
2887         case PERF_TYPE_TRACEPOINT:
2888                 pmu = tp_perf_counter_init(counter);
2889                 break;
2890         }
2891 done:
2892         err = 0;
2893         if (!pmu)
2894                 err = -EINVAL;
2895         else if (IS_ERR(pmu))
2896                 err = PTR_ERR(pmu);
2897
2898         if (err) {
2899                 kfree(counter);
2900                 return ERR_PTR(err);
2901         }
2902
2903         counter->pmu = pmu;
2904
2905         atomic_inc(&nr_counters);
2906         if (counter->hw_event.mmap)
2907                 atomic_inc(&nr_mmap_tracking);
2908         if (counter->hw_event.munmap)
2909                 atomic_inc(&nr_munmap_tracking);
2910         if (counter->hw_event.comm)
2911                 atomic_inc(&nr_comm_tracking);
2912
2913         return counter;
2914 }
2915
2916 /**
2917  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2918  *
2919  * @hw_event_uptr:      event type attributes for monitoring/sampling
2920  * @pid:                target pid
2921  * @cpu:                target cpu
2922  * @group_fd:           group leader counter fd
2923  */
2924 SYSCALL_DEFINE5(perf_counter_open,
2925                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2926                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2927 {
2928         struct perf_counter *counter, *group_leader;
2929         struct perf_counter_hw_event hw_event;
2930         struct perf_counter_context *ctx;
2931         struct file *counter_file = NULL;
2932         struct file *group_file = NULL;
2933         int fput_needed = 0;
2934         int fput_needed2 = 0;
2935         int ret;
2936
2937         /* for future expandability... */
2938         if (flags)
2939                 return -EINVAL;
2940
2941         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2942                 return -EFAULT;
2943
2944         /*
2945          * Get the target context (task or percpu):
2946          */
2947         ctx = find_get_context(pid, cpu);
2948         if (IS_ERR(ctx))
2949                 return PTR_ERR(ctx);
2950
2951         /*
2952          * Look up the group leader (we will attach this counter to it):
2953          */
2954         group_leader = NULL;
2955         if (group_fd != -1) {
2956                 ret = -EINVAL;
2957                 group_file = fget_light(group_fd, &fput_needed);
2958                 if (!group_file)
2959                         goto err_put_context;
2960                 if (group_file->f_op != &perf_fops)
2961                         goto err_put_context;
2962
2963                 group_leader = group_file->private_data;
2964                 /*
2965                  * Do not allow a recursive hierarchy (this new sibling
2966                  * becoming part of another group-sibling):
2967                  */
2968                 if (group_leader->group_leader != group_leader)
2969                         goto err_put_context;
2970                 /*
2971                  * Do not allow to attach to a group in a different
2972                  * task or CPU context:
2973                  */
2974                 if (group_leader->ctx != ctx)
2975                         goto err_put_context;
2976                 /*
2977                  * Only a group leader can be exclusive or pinned
2978                  */
2979                 if (hw_event.exclusive || hw_event.pinned)
2980                         goto err_put_context;
2981         }
2982
2983         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2984                                      GFP_KERNEL);
2985         ret = PTR_ERR(counter);
2986         if (IS_ERR(counter))
2987                 goto err_put_context;
2988
2989         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2990         if (ret < 0)
2991                 goto err_free_put_context;
2992
2993         counter_file = fget_light(ret, &fput_needed2);
2994         if (!counter_file)
2995                 goto err_free_put_context;
2996
2997         counter->filp = counter_file;
2998         mutex_lock(&ctx->mutex);
2999         perf_install_in_context(ctx, counter, cpu);
3000         mutex_unlock(&ctx->mutex);
3001
3002         fput_light(counter_file, fput_needed2);
3003
3004 out_fput:
3005         fput_light(group_file, fput_needed);
3006
3007         return ret;
3008
3009 err_free_put_context:
3010         kfree(counter);
3011
3012 err_put_context:
3013         put_context(ctx);
3014
3015         goto out_fput;
3016 }
3017
3018 /*
3019  * Initialize the perf_counter context in a task_struct:
3020  */
3021 static void
3022 __perf_counter_init_context(struct perf_counter_context *ctx,
3023                             struct task_struct *task)
3024 {
3025         memset(ctx, 0, sizeof(*ctx));
3026         spin_lock_init(&ctx->lock);
3027         mutex_init(&ctx->mutex);
3028         INIT_LIST_HEAD(&ctx->counter_list);
3029         INIT_LIST_HEAD(&ctx->event_list);
3030         ctx->task = task;
3031 }
3032
3033 /*
3034  * inherit a counter from parent task to child task:
3035  */
3036 static struct perf_counter *
3037 inherit_counter(struct perf_counter *parent_counter,
3038               struct task_struct *parent,
3039               struct perf_counter_context *parent_ctx,
3040               struct task_struct *child,
3041               struct perf_counter *group_leader,
3042               struct perf_counter_context *child_ctx)
3043 {
3044         struct perf_counter *child_counter;
3045
3046         /*
3047          * Instead of creating recursive hierarchies of counters,
3048          * we link inherited counters back to the original parent,
3049          * which has a filp for sure, which we use as the reference
3050          * count:
3051          */
3052         if (parent_counter->parent)
3053                 parent_counter = parent_counter->parent;
3054
3055         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3056                                            parent_counter->cpu, child_ctx,
3057                                            group_leader, GFP_KERNEL);
3058         if (IS_ERR(child_counter))
3059                 return child_counter;
3060
3061         /*
3062          * Link it up in the child's context:
3063          */
3064         child_counter->task = child;
3065         add_counter_to_ctx(child_counter, child_ctx);
3066
3067         child_counter->parent = parent_counter;
3068         /*
3069          * inherit into child's child as well:
3070          */
3071         child_counter->hw_event.inherit = 1;
3072
3073         /*
3074          * Get a reference to the parent filp - we will fput it
3075          * when the child counter exits. This is safe to do because
3076          * we are in the parent and we know that the filp still
3077          * exists and has a nonzero count:
3078          */
3079         atomic_long_inc(&parent_counter->filp->f_count);
3080
3081         /*
3082          * Link this into the parent counter's child list
3083          */
3084         mutex_lock(&parent_counter->mutex);
3085         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3086
3087         /*
3088          * Make the child state follow the state of the parent counter,
3089          * not its hw_event.disabled bit.  We hold the parent's mutex,
3090          * so we won't race with perf_counter_{en,dis}able_family.
3091          */
3092         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3093                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3094         else
3095                 child_counter->state = PERF_COUNTER_STATE_OFF;
3096
3097         mutex_unlock(&parent_counter->mutex);
3098
3099         return child_counter;
3100 }
3101
3102 static int inherit_group(struct perf_counter *parent_counter,
3103               struct task_struct *parent,
3104               struct perf_counter_context *parent_ctx,
3105               struct task_struct *child,
3106               struct perf_counter_context *child_ctx)
3107 {
3108         struct perf_counter *leader;
3109         struct perf_counter *sub;
3110         struct perf_counter *child_ctr;
3111
3112         leader = inherit_counter(parent_counter, parent, parent_ctx,
3113                                  child, NULL, child_ctx);
3114         if (IS_ERR(leader))
3115                 return PTR_ERR(leader);
3116         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3117                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3118                                             child, leader, child_ctx);
3119                 if (IS_ERR(child_ctr))
3120                         return PTR_ERR(child_ctr);
3121         }
3122         return 0;
3123 }
3124
3125 static void sync_child_counter(struct perf_counter *child_counter,
3126                                struct perf_counter *parent_counter)
3127 {
3128         u64 parent_val, child_val;
3129
3130         parent_val = atomic64_read(&parent_counter->count);
3131         child_val = atomic64_read(&child_counter->count);
3132
3133         /*
3134          * Add back the child's count to the parent's count:
3135          */
3136         atomic64_add(child_val, &parent_counter->count);
3137         atomic64_add(child_counter->total_time_enabled,
3138                      &parent_counter->child_total_time_enabled);
3139         atomic64_add(child_counter->total_time_running,
3140                      &parent_counter->child_total_time_running);
3141
3142         /*
3143          * Remove this counter from the parent's list
3144          */
3145         mutex_lock(&parent_counter->mutex);
3146         list_del_init(&child_counter->child_list);
3147         mutex_unlock(&parent_counter->mutex);
3148
3149         /*
3150          * Release the parent counter, if this was the last
3151          * reference to it.
3152          */
3153         fput(parent_counter->filp);
3154 }
3155
3156 static void
3157 __perf_counter_exit_task(struct task_struct *child,
3158                          struct perf_counter *child_counter,
3159                          struct perf_counter_context *child_ctx)
3160 {
3161         struct perf_counter *parent_counter;
3162         struct perf_counter *sub, *tmp;
3163
3164         /*
3165          * If we do not self-reap then we have to wait for the
3166          * child task to unschedule (it will happen for sure),
3167          * so that its counter is at its final count. (This
3168          * condition triggers rarely - child tasks usually get
3169          * off their CPU before the parent has a chance to
3170          * get this far into the reaping action)
3171          */
3172         if (child != current) {
3173                 wait_task_inactive(child, 0);
3174                 list_del_init(&child_counter->list_entry);
3175                 update_counter_times(child_counter);
3176         } else {
3177                 struct perf_cpu_context *cpuctx;
3178                 unsigned long flags;
3179                 u64 perf_flags;
3180
3181                 /*
3182                  * Disable and unlink this counter.
3183                  *
3184                  * Be careful about zapping the list - IRQ/NMI context
3185                  * could still be processing it:
3186                  */
3187                 local_irq_save(flags);
3188                 perf_flags = hw_perf_save_disable();
3189
3190                 cpuctx = &__get_cpu_var(perf_cpu_context);
3191
3192                 group_sched_out(child_counter, cpuctx, child_ctx);
3193                 update_counter_times(child_counter);
3194
3195                 list_del_init(&child_counter->list_entry);
3196
3197                 child_ctx->nr_counters--;
3198
3199                 hw_perf_restore(perf_flags);
3200                 local_irq_restore(flags);
3201         }
3202
3203         parent_counter = child_counter->parent;
3204         /*
3205          * It can happen that parent exits first, and has counters
3206          * that are still around due to the child reference. These
3207          * counters need to be zapped - but otherwise linger.
3208          */
3209         if (parent_counter) {
3210                 sync_child_counter(child_counter, parent_counter);
3211                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3212                                          list_entry) {
3213                         if (sub->parent) {
3214                                 sync_child_counter(sub, sub->parent);
3215                                 free_counter(sub);
3216                         }
3217                 }
3218                 free_counter(child_counter);
3219         }
3220 }
3221
3222 /*
3223  * When a child task exits, feed back counter values to parent counters.
3224  *
3225  * Note: we may be running in child context, but the PID is not hashed
3226  * anymore so new counters will not be added.
3227  */
3228 void perf_counter_exit_task(struct task_struct *child)
3229 {
3230         struct perf_counter *child_counter, *tmp;
3231         struct perf_counter_context *child_ctx;
3232
3233         child_ctx = &child->perf_counter_ctx;
3234
3235         if (likely(!child_ctx->nr_counters))
3236                 return;
3237
3238         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3239                                  list_entry)
3240                 __perf_counter_exit_task(child, child_counter, child_ctx);
3241 }
3242
3243 /*
3244  * Initialize the perf_counter context in task_struct
3245  */
3246 void perf_counter_init_task(struct task_struct *child)
3247 {
3248         struct perf_counter_context *child_ctx, *parent_ctx;
3249         struct perf_counter *counter;
3250         struct task_struct *parent = current;
3251
3252         child_ctx  =  &child->perf_counter_ctx;
3253         parent_ctx = &parent->perf_counter_ctx;
3254
3255         __perf_counter_init_context(child_ctx, child);
3256
3257         /*
3258          * This is executed from the parent task context, so inherit
3259          * counters that have been marked for cloning:
3260          */
3261
3262         if (likely(!parent_ctx->nr_counters))
3263                 return;
3264
3265         /*
3266          * Lock the parent list. No need to lock the child - not PID
3267          * hashed yet and not running, so nobody can access it.
3268          */
3269         mutex_lock(&parent_ctx->mutex);
3270
3271         /*
3272          * We dont have to disable NMIs - we are only looking at
3273          * the list, not manipulating it:
3274          */
3275         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3276                 if (!counter->hw_event.inherit)
3277                         continue;
3278
3279                 if (inherit_group(counter, parent,
3280                                   parent_ctx, child, child_ctx))
3281                         break;
3282         }
3283
3284         mutex_unlock(&parent_ctx->mutex);
3285 }
3286
3287 static void __cpuinit perf_counter_init_cpu(int cpu)
3288 {
3289         struct perf_cpu_context *cpuctx;
3290
3291         cpuctx = &per_cpu(perf_cpu_context, cpu);
3292         __perf_counter_init_context(&cpuctx->ctx, NULL);
3293
3294         spin_lock(&perf_resource_lock);
3295         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3296         spin_unlock(&perf_resource_lock);
3297
3298         hw_perf_counter_setup(cpu);
3299 }
3300
3301 #ifdef CONFIG_HOTPLUG_CPU
3302 static void __perf_counter_exit_cpu(void *info)
3303 {
3304         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3305         struct perf_counter_context *ctx = &cpuctx->ctx;
3306         struct perf_counter *counter, *tmp;
3307
3308         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3309                 __perf_counter_remove_from_context(counter);
3310 }
3311 static void perf_counter_exit_cpu(int cpu)
3312 {
3313         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3314         struct perf_counter_context *ctx = &cpuctx->ctx;
3315
3316         mutex_lock(&ctx->mutex);
3317         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3318         mutex_unlock(&ctx->mutex);
3319 }
3320 #else
3321 static inline void perf_counter_exit_cpu(int cpu) { }
3322 #endif
3323
3324 static int __cpuinit
3325 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3326 {
3327         unsigned int cpu = (long)hcpu;
3328
3329         switch (action) {
3330
3331         case CPU_UP_PREPARE:
3332         case CPU_UP_PREPARE_FROZEN:
3333                 perf_counter_init_cpu(cpu);
3334                 break;
3335
3336         case CPU_DOWN_PREPARE:
3337         case CPU_DOWN_PREPARE_FROZEN:
3338                 perf_counter_exit_cpu(cpu);
3339                 break;
3340
3341         default:
3342                 break;
3343         }
3344
3345         return NOTIFY_OK;
3346 }
3347
3348 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3349         .notifier_call          = perf_cpu_notify,
3350 };
3351
3352 void __init perf_counter_init(void)
3353 {
3354         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3355                         (void *)(long)smp_processor_id());
3356         register_cpu_notifier(&perf_cpu_nb);
3357 }
3358
3359 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3360 {
3361         return sprintf(buf, "%d\n", perf_reserved_percpu);
3362 }
3363
3364 static ssize_t
3365 perf_set_reserve_percpu(struct sysdev_class *class,
3366                         const char *buf,
3367                         size_t count)
3368 {
3369         struct perf_cpu_context *cpuctx;
3370         unsigned long val;
3371         int err, cpu, mpt;
3372
3373         err = strict_strtoul(buf, 10, &val);
3374         if (err)
3375                 return err;
3376         if (val > perf_max_counters)
3377                 return -EINVAL;
3378
3379         spin_lock(&perf_resource_lock);
3380         perf_reserved_percpu = val;
3381         for_each_online_cpu(cpu) {
3382                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3383                 spin_lock_irq(&cpuctx->ctx.lock);
3384                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3385                           perf_max_counters - perf_reserved_percpu);
3386                 cpuctx->max_pertask = mpt;
3387                 spin_unlock_irq(&cpuctx->ctx.lock);
3388         }
3389         spin_unlock(&perf_resource_lock);
3390
3391         return count;
3392 }
3393
3394 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3395 {
3396         return sprintf(buf, "%d\n", perf_overcommit);
3397 }
3398
3399 static ssize_t
3400 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3401 {
3402         unsigned long val;
3403         int err;
3404
3405         err = strict_strtoul(buf, 10, &val);
3406         if (err)
3407                 return err;
3408         if (val > 1)
3409                 return -EINVAL;
3410
3411         spin_lock(&perf_resource_lock);
3412         perf_overcommit = val;
3413         spin_unlock(&perf_resource_lock);
3414
3415         return count;
3416 }
3417
3418 static SYSDEV_CLASS_ATTR(
3419                                 reserve_percpu,
3420                                 0644,
3421                                 perf_show_reserve_percpu,
3422                                 perf_set_reserve_percpu
3423                         );
3424
3425 static SYSDEV_CLASS_ATTR(
3426                                 overcommit,
3427                                 0644,
3428                                 perf_show_overcommit,
3429                                 perf_set_overcommit
3430                         );
3431
3432 static struct attribute *perfclass_attrs[] = {
3433         &attr_reserve_percpu.attr,
3434         &attr_overcommit.attr,
3435         NULL
3436 };
3437
3438 static struct attribute_group perfclass_attr_group = {
3439         .attrs                  = perfclass_attrs,
3440         .name                   = "perf_counters",
3441 };
3442
3443 static int __init perf_counter_sysfs_init(void)
3444 {
3445         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3446                                   &perfclass_attr_group);
3447 }
3448 device_initcall(perf_counter_sysfs_init);