3 % Copyright 2008 Taco Hoekwater.
5 % This program is free software: you can redistribute it and/or modify
6 % it under the terms of the GNU General Public License as published by
7 % the Free Software Foundation, either version 2 of the License, or
8 % (at your option) any later version.
10 % This program is distributed in the hope that it will be useful,
11 % but WITHOUT ANY WARRANTY; without even the implied warranty of
12 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 % GNU General Public License for more details.
15 % You should have received a copy of the GNU General Public License
16 % along with this program. If not, see <http://www.gnu.org/licenses/>.
18 % TeX is a trademark of the American Mathematical Society.
19 % METAFONT is a trademark of Addison-Wesley Publishing Company.
20 % PostScript is a trademark of Adobe Systems Incorporated.
22 % Here is TeX material that gets inserted after \input webmac
23 \def\hang{\hangindent 3em\noindent\ignorespaces}
24 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
26 \def\psqrt#1{\sqrt{\mathstrut#1}}
28 \def\pct!{{\char`\%}} % percent sign in ordinary text
29 \font\tenlogo=logo10 % font used for the METAFONT logo
31 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
32 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
33 \def\[#1]{\ignorespaces} % left over from pascal web
34 \def\<#1>{$\langle#1\rangle$}
35 \def\section{\mathhexbox278}
36 \let\swap=\leftrightarrow
37 \def\round{\mathop{\rm round}\nolimits}
38 \mathchardef\vb="026A % synonym for `\|'
40 \def\(#1){} % this is used to make section names sort themselves better
41 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
48 This is \MP\ by John Hobby, a graphics-language processor based on D. E. Knuth's \MF.
50 Much of the original Pascal version of this program was copied with
51 permission from MF.web Version 1.9. It interprets a language very
52 similar to D.E. Knuth's METAFONT, but with changes designed to make it
53 more suitable for PostScript output.
55 The main purpose of the following program is to explain the algorithms of \MP\
56 as clearly as possible. However, the program has been written so that it
57 can be tuned to run efficiently in a wide variety of operating environments
58 by making comparatively few changes. Such flexibility is possible because
59 the documentation that follows is written in the \.{WEB} language, which is
60 at a higher level than C.
62 A large piece of software like \MP\ has inherent complexity that cannot
63 be reduced below a certain level of difficulty, although each individual
64 part is fairly simple by itself. The \.{WEB} language is intended to make
65 the algorithms as readable as possible, by reflecting the way the
66 individual program pieces fit together and by providing the
67 cross-references that connect different parts. Detailed comments about
68 what is going on, and about why things were done in certain ways, have
69 been liberally sprinkled throughout the program. These comments explain
70 features of the implementation, but they rarely attempt to explain the
71 \MP\ language itself, since the reader is supposed to be familiar with
72 {\sl The {\logos METAFONT\/}book} as well as the manual
74 @:METAFONTbook}{\sl The {\logos METAFONT\/}book}@>
75 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
76 AT\AM T Bell Laboratories.
78 @ The present implementation is a preliminary version, but the possibilities
79 for new features are limited by the desire to remain as nearly compatible
80 with \MF\ as possible.
82 On the other hand, the \.{WEB} description can be extended without changing
83 the core of the program, and it has been designed so that such
84 extensions are not extremely difficult to make.
85 The |banner| string defined here should be changed whenever \MP\
86 undergoes any modifications, so that it will be clear which version of
87 \MP\ might be the guilty party when a problem arises.
89 @^system dependencies@>
91 @d default_banner "This is MetaPost, Version 1.080" /* printed when \MP\ starts */
92 @d metapost_version "1.080"
97 @ The external library header for \MP\ is |mplib.h|. It contains a
98 few typedefs and the header defintions for the externally used
101 The most important of the typedefs is the definition of the structure
102 |MP_options|, that acts as a small, configurable front-end to the fairly
103 large |MP_instance| structure.
106 typedef struct MP_instance * MP;
108 typedef struct MP_options {
111 @<Exported function headers@>
113 @ The internal header file is much longer: it not only lists the complete
114 |MP_instance|, but also a lot of functions that have to be available to
115 the \ps\ backend, that is defined in a separate \.{WEB} file.
117 The variables from |MP_options| are included inside the |MP_instance|
122 typedef struct psout_data_struct * psout_data;
130 @<Types in the outer block@>
131 @<Constants in the outer block@>
132 # ifndef LIBAVL_ALLOCATOR
133 # define LIBAVL_ALLOCATOR
134 struct libavl_allocator {
135 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
136 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
139 typedef struct MP_instance {
143 @<Internal library declarations@>
153 #include <unistd.h> /* for access() */
155 #include <time.h> /* for struct tm \& co */
157 #include "psout.h" /* external header */
158 #include "mpmp.h" /* internal header */
159 #include "mppsout.h" /* internal header */
162 @<Basic printing procedures@>
163 @<Error handling procedures@>
165 @ Here are the functions that set up the \MP\ instance.
168 @<Declare |mp_reallocate| functions@>
169 MP_options *mp_options (void);
170 MP mp_initialize (MP_options *opt);
173 MP_options *mp_options (void) {
175 size_t l = sizeof(MP_options);
179 opt->ini_version = true;
184 @ The whole instance structure is initialized with zeroes,
185 this greatly reduces the number of statements needed in
186 the |Allocate or initialize variables| block.
188 @d set_callback_option(A) do { mp->A = mp_##A;
189 if (opt->A!=NULL) mp->A = opt->A;
194 mp_do_new (jmp_buf *buf) {
195 MP mp = malloc(sizeof(MP_instance));
198 memset(mp,0,sizeof(MP_instance));
204 static void mp_free (MP mp) {
205 int k; /* loop variable */
206 @<Dealloc variables@>
207 if (mp->noninteractive) {
208 @<Finish non-interactive use@>;
214 void mp_do_initialize ( MP mp) {
215 @<Local variables for initialization@>
216 @<Set initial values of key variables@>
219 @ This procedure gets things started properly.
221 MP mp_initialize (MP_options *opt) {
224 @<Setup the non-local jump buffer in |mp_new|@>;
225 mp = mp_do_new(&buf);
228 mp->userdata=opt->userdata;
229 @<Set |ini_version|@>;
230 mp->noninteractive=opt->noninteractive;
231 set_callback_option(find_file);
232 set_callback_option(open_file);
233 set_callback_option(read_ascii_file);
234 set_callback_option(read_binary_file);
235 set_callback_option(close_file);
236 set_callback_option(eof_file);
237 set_callback_option(flush_file);
238 set_callback_option(write_ascii_file);
239 set_callback_option(write_binary_file);
240 set_callback_option(shipout_backend);
241 if (opt->banner && *(opt->banner)) {
242 mp->banner = xstrdup(opt->banner);
244 mp->banner = xstrdup(default_banner);
246 if (opt->command_line && *(opt->command_line))
247 mp->command_line = xstrdup(opt->command_line);
248 if (mp->noninteractive) {
249 @<Prepare function pointers for non-interactive use@>;
251 /* open the terminal for output */
253 @<Find constant sizes@>;
254 @<Allocate or initialize variables@>
255 mp_reallocate_memory(mp,mp->mem_max);
256 mp_reallocate_paths(mp,1000);
257 mp_reallocate_fonts(mp,8);
258 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
259 @<Check the ``constant'' values...@>;
262 mp_snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
263 "---case %i",(int)mp->bad);
264 do_fprintf(mp->err_out,(char *)ss);
268 mp_do_initialize(mp); /* erase preloaded mem */
269 if (mp->ini_version) {
270 @<Run inimpost commands@>;
272 if (!mp->noninteractive) {
273 @<Initialize the output routines@>;
274 @<Get the first line of input and prepare to start@>;
275 @<Initializations after first line is read@>;
277 mp->history=mp_spotless;
282 @ @<Initializations after first line is read@>=
284 mp_init_map_file(mp, mp->troff_mode);
285 mp->history=mp_spotless; /* ready to go! */
286 if (mp->troff_mode) {
287 mp->internal[mp_gtroffmode]=unity;
288 mp->internal[mp_prologues]=unity;
290 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
291 mp->cur_sym=mp->start_sym; mp_back_input(mp);
294 @ @<Exported function headers@>=
295 extern MP_options *mp_options (void);
296 extern MP mp_initialize (MP_options *opt) ;
297 extern int mp_status(MP mp);
298 extern void *mp_userdata(MP mp);
301 int mp_status(MP mp) { return mp->history; }
304 void *mp_userdata(MP mp) { return mp->userdata; }
306 @ The overall \MP\ program begins with the heading just shown, after which
307 comes a bunch of procedure declarations and function declarations.
308 Finally we will get to the main program, which begins with the
309 comment `|start_here|'. If you want to skip down to the
310 main program now, you can look up `|start_here|' in the index.
311 But the author suggests that the best way to understand this program
312 is to follow pretty much the order of \MP's components as they appear in the
313 \.{WEB} description you are now reading, since the present ordering is
314 intended to combine the advantages of the ``bottom up'' and ``top down''
315 approaches to the problem of understanding a somewhat complicated system.
317 @ Some of the code below is intended to be used only when diagnosing the
318 strange behavior that sometimes occurs when \MP\ is being installed or
319 when system wizards are fooling around with \MP\ without quite knowing
320 what they are doing. Such code will not normally be compiled; it is
321 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
323 @ This program has two important variations: (1) There is a long and slow
324 version called \.{INIMP}, which does the extra calculations needed to
326 initialize \MP's internal tables; and (2)~there is a shorter and faster
327 production version, which cuts the initialization to a bare minimum.
329 Which is which is decided at runtime.
331 @ The following parameters can be changed at compile time to extend or
332 reduce \MP's capacity. They may have different values in \.{INIMP} and
333 in production versions of \MP.
335 @^system dependencies@>
338 #define file_name_size 255 /* file names shouldn't be longer than this */
339 #define bistack_size 1500 /* size of stack for bisection algorithms;
340 should probably be left at this value */
342 @ Like the preceding parameters, the following quantities can be changed
343 to extend or reduce \MP's capacity. But if they are changed,
344 it is necessary to rerun the initialization program \.{INIMP}
346 to generate new tables for the production \MP\ program.
347 One can't simply make helter-skelter changes to the following constants,
348 since certain rather complex initialization
349 numbers are computed from them.
352 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
353 int pool_size; /* maximum number of characters in strings, including all
354 error messages and help texts, and the names of all identifiers */
355 int mem_max; /* greatest index in \MP's internal |mem| array;
356 must be strictly less than |max_halfword|;
357 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
358 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
359 must not be greater than |mem_max| */
360 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
362 @ @<Option variables@>=
363 int error_line; /* width of context lines on terminal error messages */
364 int half_error_line; /* width of first lines of contexts in terminal
365 error messages; should be between 30 and |error_line-15| */
366 int max_print_line; /* width of longest text lines output; should be at least 60 */
367 unsigned hash_size; /* maximum number of symbolic tokens,
368 must be less than |max_halfword-3*param_size| */
369 int param_size; /* maximum number of simultaneous macro parameters */
370 int max_in_open; /* maximum number of input files and error insertions that
371 can be going on simultaneously */
372 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
373 void *userdata; /* this allows the calling application to setup local */
374 char *banner; /* the banner that is printed to the screen and log */
376 @ @<Dealloc variables@>=
380 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
385 set_value(mp->error_line,opt->error_line,79);
386 set_value(mp->half_error_line,opt->half_error_line,50);
387 if (mp->half_error_line>mp->error_line-15 )
388 mp->half_error_line = mp->error_line-15;
389 set_value(mp->max_print_line,opt->max_print_line,100);
391 @ In case somebody has inadvertently made bad settings of the ``constants,''
392 \MP\ checks them using a global variable called |bad|.
394 This is the second of many sections of \MP\ where global variables are
398 integer bad; /* is some ``constant'' wrong? */
400 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
401 or something similar. (We can't do that until |max_halfword| has been defined.)
403 In case you are wondering about the non-consequtive values of |bad|: some
404 of the things that used to be WEB constants are now runtime variables
405 with checking at assignment time.
407 @<Check the ``constant'' values for consistency@>=
409 if ( mp->mem_top<=1100 ) mp->bad=4;
411 @ Some |goto| labels are used by the following definitions. The label
412 `|restart|' is occasionally used at the very beginning of a procedure; and
413 the label `|reswitch|' is occasionally used just prior to a |case|
414 statement in which some cases change the conditions and we wish to branch
415 to the newly applicable case. Loops that are set up with the |loop|
416 construction defined below are commonly exited by going to `|done|' or to
417 `|found|' or to `|not_found|', and they are sometimes repeated by going to
418 `|continue|'. If two or more parts of a subroutine start differently but
419 end up the same, the shared code may be gathered together at
422 @ Here are some macros for common programming idioms.
424 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
425 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
426 @d negate(A) (A)=-(A) /* change the sign of a variable */
427 @d double(A) (A)=(A)+(A)
429 @d do_nothing /* empty statement */
431 @* \[2] The character set.
432 In order to make \MP\ readily portable to a wide variety of
433 computers, all of its input text is converted to an internal eight-bit
434 code that includes standard ASCII, the ``American Standard Code for
435 Information Interchange.'' This conversion is done immediately when each
436 character is read in. Conversely, characters are converted from ASCII to
437 the user's external representation just before they are output to a
441 Such an internal code is relevant to users of \MP\ only with respect to
442 the \&{char} and \&{ASCII} operations, and the comparison of strings.
444 @ Characters of text that have been converted to \MP's internal form
445 are said to be of type |ASCII_code|, which is a subrange of the integers.
448 typedef unsigned char ASCII_code; /* eight-bit numbers */
450 @ The present specification of \MP\ has been written under the assumption
451 that the character set contains at least the letters and symbols associated
452 with ASCII codes 040 through 0176; all of these characters are now
453 available on most computer terminals.
456 typedef unsigned char text_char; /* the data type of characters in text files */
458 @ @<Local variables for init...@>=
461 @ The \MP\ processor converts between ASCII code and
462 the user's external character set by means of arrays |xord| and |xchr|
463 that are analogous to Pascal's |ord| and |chr| functions.
465 @d xchr(A) mp->xchr[(A)]
466 @d xord(A) mp->xord[(A)]
469 ASCII_code xord[256]; /* specifies conversion of input characters */
470 text_char xchr[256]; /* specifies conversion of output characters */
472 @ The core system assumes all 8-bit is acceptable. If it is not,
473 a change file has to alter the below section.
474 @^system dependencies@>
476 Additionally, people with extended character sets can
477 assign codes arbitrarily, giving an |xchr| equivalent to whatever
478 characters the users of \MP\ are allowed to have in their input files.
479 Appropriate changes to \MP's |char_class| table should then be made.
480 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
481 codes, called the |char_class|.) Such changes make portability of programs
482 more difficult, so they should be introduced cautiously if at all.
483 @^character set dependencies@>
484 @^system dependencies@>
487 for (i=0;i<=0377;i++) { xchr(i)=(text_char)i; }
489 @ The following system-independent code makes the |xord| array contain a
490 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
491 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
492 |j| or more; hence, standard ASCII code numbers will be used instead of
493 codes below 040 in case there is a coincidence.
496 for (i=0;i<=255;i++) {
499 for (i=0200;i<=0377;i++) { xord(xchr(i))=(ASCII_code)i;}
500 for (i=0;i<=0176;i++) { xord(xchr(i))=(ASCII_code)i;}
502 @* \[3] Input and output.
503 The bane of portability is the fact that different operating systems treat
504 input and output quite differently, perhaps because computer scientists
505 have not given sufficient attention to this problem. People have felt somehow
506 that input and output are not part of ``real'' programming. Well, it is true
507 that some kinds of programming are more fun than others. With existing
508 input/output conventions being so diverse and so messy, the only sources of
509 joy in such parts of the code are the rare occasions when one can find a
510 way to make the program a little less bad than it might have been. We have
511 two choices, either to attack I/O now and get it over with, or to postpone
512 I/O until near the end. Neither prospect is very attractive, so let's
515 The basic operations we need to do are (1)~inputting and outputting of
516 text, to or from a file or the user's terminal; (2)~inputting and
517 outputting of eight-bit bytes, to or from a file; (3)~instructing the
518 operating system to initiate (``open'') or to terminate (``close'') input or
519 output from a specified file; (4)~testing whether the end of an input
520 file has been reached; (5)~display of bits on the user's screen.
521 The bit-display operation will be discussed in a later section; we shall
522 deal here only with more traditional kinds of I/O.
524 @ Finding files happens in a slightly roundabout fashion: the \MP\
525 instance object contains a field that holds a function pointer that finds a
526 file, and returns its name, or NULL. For this, it receives three
527 parameters: the non-qualified name |fname|, the intended |fopen|
528 operation type |fmode|, and the type of the file |ftype|.
530 The file types that are passed on in |ftype| can be used to
531 differentiate file searches if a library like kpathsea is used,
532 the fopen mode is passed along for the same reason.
535 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
537 @ @<Exported types@>=
539 mp_filetype_terminal = 0, /* the terminal */
540 mp_filetype_error, /* the terminal */
541 mp_filetype_program , /* \MP\ language input */
542 mp_filetype_log, /* the log file */
543 mp_filetype_postscript, /* the postscript output */
544 mp_filetype_memfile, /* memory dumps */
545 mp_filetype_metrics, /* TeX font metric files */
546 mp_filetype_fontmap, /* PostScript font mapping files */
547 mp_filetype_font, /* PostScript type1 font programs */
548 mp_filetype_encoding, /* PostScript font encoding files */
549 mp_filetype_text /* first text file for readfrom and writeto primitives */
551 typedef char *(*mp_file_finder)(MP, const char *, const char *, int);
552 typedef void *(*mp_file_opener)(MP, const char *, const char *, int);
553 typedef char *(*mp_file_reader)(MP, void *, size_t *);
554 typedef void (*mp_binfile_reader)(MP, void *, void **, size_t *);
555 typedef void (*mp_file_closer)(MP, void *);
556 typedef int (*mp_file_eoftest)(MP, void *);
557 typedef void (*mp_file_flush)(MP, void *);
558 typedef void (*mp_file_writer)(MP, void *, const char *);
559 typedef void (*mp_binfile_writer)(MP, void *, void *, size_t);
561 @ @<Option variables@>=
562 mp_file_finder find_file;
563 mp_file_opener open_file;
564 mp_file_reader read_ascii_file;
565 mp_binfile_reader read_binary_file;
566 mp_file_closer close_file;
567 mp_file_eoftest eof_file;
568 mp_file_flush flush_file;
569 mp_file_writer write_ascii_file;
570 mp_binfile_writer write_binary_file;
572 @ The default function for finding files is |mp_find_file|. It is
573 pretty stupid: it will only find files in the current directory.
575 This function may disappear altogether, it is currently only
576 used for the default font map file.
579 char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) {
581 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
582 return strdup(fname);
587 @ Because |mp_find_file| is used so early, it has to be in the helpers
591 char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) ;
592 void *mp_open_file (MP mp , const char *fname, const char *fmode, int ftype) ;
593 char *mp_read_ascii_file (MP mp, void *f, size_t *size) ;
594 void mp_read_binary_file (MP mp, void *f, void **d, size_t *size) ;
595 void mp_close_file (MP mp, void *f) ;
596 int mp_eof_file (MP mp, void *f) ;
597 void mp_flush_file (MP mp, void *f) ;
598 void mp_write_ascii_file (MP mp, void *f, const char *s) ;
599 void mp_write_binary_file (MP mp, void *f, void *s, size_t t) ;
601 @ The function to open files can now be very short.
604 void *mp_open_file(MP mp, const char *fname, const char *fmode, int ftype) {
607 realmode[0] = *fmode;
610 if (ftype==mp_filetype_terminal) {
611 return (fmode[0] == 'r' ? stdin : stdout);
612 } else if (ftype==mp_filetype_error) {
614 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
615 return (void *)fopen(fname, realmode);
620 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
623 char name_of_file[file_name_size+1]; /* the name of a system file */
624 int name_length;/* this many characters are actually
625 relevant in |name_of_file| (the rest are blank) */
627 @ @<Option variables@>=
628 int print_found_names; /* configuration parameter */
630 @ If this parameter is true, the terminal and log will report the found
631 file names for input files instead of the requested ones.
632 It is off by default because it creates an extra filename lookup.
634 @<Allocate or initialize ...@>=
635 mp->print_found_names = (opt->print_found_names>0 ? true : false);
637 @ \MP's file-opening procedures return |false| if no file identified by
638 |name_of_file| could be opened.
640 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
641 It is not used for opening a mem file for read, because that file name
645 if (mp->print_found_names) {
646 char *s = (mp->find_file)(mp,mp->name_of_file,A,ftype);
648 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
649 strncpy(mp->name_of_file,s,file_name_size);
655 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
658 return (*f ? true : false)
661 boolean mp_a_open_in (MP mp, void **f, int ftype) {
662 /* open a text file for input */
666 boolean mp_w_open_in (MP mp, void **f) {
667 /* open a word file for input */
668 *f = (mp->open_file)(mp,mp->name_of_file,"r",mp_filetype_memfile);
669 return (*f ? true : false);
672 boolean mp_a_open_out (MP mp, void **f, int ftype) {
673 /* open a text file for output */
677 boolean mp_b_open_out (MP mp, void **f, int ftype) {
678 /* open a binary file for output */
682 boolean mp_w_open_out (MP mp, void **f) {
683 /* open a word file for output */
684 int ftype = mp_filetype_memfile;
689 char *mp_read_ascii_file (MP mp, void *ff, size_t *size) {
691 size_t len = 0, lim = 128;
693 FILE *f = (FILE *)ff;
695 (void) mp; /* for -Wunused */
702 if (s==NULL) return NULL;
703 while (c!=EOF && c!='\n' && c!='\r') {
705 s =realloc(s, (lim+(lim>>2)));
706 if (s==NULL) return NULL;
714 if (c!=EOF && c!='\n')
723 void mp_write_ascii_file (MP mp, void *f, const char *s) {
731 void mp_read_binary_file (MP mp, void *f, void **data, size_t *size) {
735 len = fread(*data,1,*size,(FILE *)f);
740 void mp_write_binary_file (MP mp, void *f, void *s, size_t size) {
743 (void)fwrite(s,size,1,(FILE *)f);
748 void mp_close_file (MP mp, void *f) {
755 int mp_eof_file (MP mp, void *f) {
758 return feof((FILE *)f);
764 void mp_flush_file (MP mp, void *f) {
770 @ Input from text files is read one line at a time, using a routine called
771 |input_ln|. This function is defined in terms of global variables called
772 |buffer|, |first|, and |last| that will be described in detail later; for
773 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
774 values, and that |first| and |last| are indices into this array
775 representing the beginning and ending of a line of text.
778 size_t buf_size; /* maximum number of characters simultaneously present in
779 current lines of open files */
780 ASCII_code *buffer; /* lines of characters being read */
781 size_t first; /* the first unused position in |buffer| */
782 size_t last; /* end of the line just input to |buffer| */
783 size_t max_buf_stack; /* largest index used in |buffer| */
785 @ @<Allocate or initialize ...@>=
787 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
789 @ @<Dealloc variables@>=
793 void mp_reallocate_buffer(MP mp, size_t l) {
795 if (l>max_halfword) {
796 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
798 buffer = xmalloc((l+1),sizeof(ASCII_code));
799 memcpy(buffer,mp->buffer,(mp->buf_size+1));
801 mp->buffer = buffer ;
805 @ The |input_ln| function brings the next line of input from the specified
806 field into available positions of the buffer array and returns the value
807 |true|, unless the file has already been entirely read, in which case it
808 returns |false| and sets |last:=first|. In general, the |ASCII_code|
809 numbers that represent the next line of the file are input into
810 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
811 global variable |last| is set equal to |first| plus the length of the
812 line. Trailing blanks are removed from the line; thus, either |last=first|
813 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
816 The variable |max_buf_stack|, which is used to keep track of how large
817 the |buf_size| parameter must be to accommodate the present job, is
818 also kept up to date by |input_ln|.
821 boolean mp_input_ln (MP mp, void *f ) {
822 /* inputs the next line or returns |false| */
825 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
826 s = (mp->read_ascii_file)(mp,f, &size);
830 mp->last = mp->first+size;
831 if ( mp->last>=mp->max_buf_stack ) {
832 mp->max_buf_stack=mp->last+1;
833 while ( mp->max_buf_stack>=mp->buf_size ) {
834 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
837 memcpy((mp->buffer+mp->first),s,size);
838 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
844 @ The user's terminal acts essentially like other files of text, except
845 that it is used both for input and for output. When the terminal is
846 considered an input file, the file variable is called |term_in|, and when it
847 is considered an output file the file variable is |term_out|.
848 @^system dependencies@>
851 void * term_in; /* the terminal as an input file */
852 void * term_out; /* the terminal as an output file */
853 void * err_out; /* the terminal as an output file */
855 @ Here is how to open the terminal files. In the default configuration,
856 nothing happens except that the command line (if there is one) is copied
857 to the input buffer. The variable |command_line| will be filled by the
858 |main| procedure. The copying can not be done earlier in the program
859 logic because in the |INI| version, the |buffer| is also used for primitive
862 @d t_open_out do {/* open the terminal for text output */
863 mp->term_out = (mp->open_file)(mp,"terminal", "w", mp_filetype_terminal);
864 mp->err_out = (mp->open_file)(mp,"error", "w", mp_filetype_error);
866 @d t_open_in do { /* open the terminal for text input */
867 mp->term_in = (mp->open_file)(mp,"terminal", "r", mp_filetype_terminal);
868 if (mp->command_line!=NULL) {
869 mp->last = strlen(mp->command_line);
870 strncpy((char *)mp->buffer,mp->command_line,mp->last);
871 xfree(mp->command_line);
877 @<Option variables@>=
880 @ Sometimes it is necessary to synchronize the input/output mixture that
881 happens on the user's terminal, and three system-dependent
882 procedures are used for this
883 purpose. The first of these, |update_terminal|, is called when we want
884 to make sure that everything we have output to the terminal so far has
885 actually left the computer's internal buffers and been sent.
886 The second, |clear_terminal|, is called when we wish to cancel any
887 input that the user may have typed ahead (since we are about to
888 issue an unexpected error message). The third, |wake_up_terminal|,
889 is supposed to revive the terminal if the user has disabled it by
890 some instruction to the operating system. The following macros show how
891 these operations can be specified:
892 @^system dependencies@>
894 @d update_terminal (mp->flush_file)(mp,mp->term_out) /* empty the terminal output buffer */
895 @d clear_terminal do_nothing /* clear the terminal input buffer */
896 @d wake_up_terminal (mp->flush_file)(mp,mp->term_out)
897 /* cancel the user's cancellation of output */
899 @ We need a special routine to read the first line of \MP\ input from
900 the user's terminal. This line is different because it is read before we
901 have opened the transcript file; there is sort of a ``chicken and
902 egg'' problem here. If the user types `\.{input cmr10}' on the first
903 line, or if some macro invoked by that line does such an \.{input},
904 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
905 commands are performed during the first line of terminal input, the transcript
906 file will acquire its default name `\.{mpout.log}'. (The transcript file
907 will not contain error messages generated by the first line before the
908 first \.{input} command.)
910 The first line is even more special. It's nice to let the user start
911 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
912 such a case, \MP\ will operate as if the first line of input were
913 `\.{cmr10}', i.e., the first line will consist of the remainder of the
914 command line, after the part that invoked \MP.
916 @ Different systems have different ways to get started. But regardless of
917 what conventions are adopted, the routine that initializes the terminal
918 should satisfy the following specifications:
920 \yskip\textindent{1)}It should open file |term_in| for input from the
921 terminal. (The file |term_out| will already be open for output to the
924 \textindent{2)}If the user has given a command line, this line should be
925 considered the first line of terminal input. Otherwise the
926 user should be prompted with `\.{**}', and the first line of input
927 should be whatever is typed in response.
929 \textindent{3)}The first line of input, which might or might not be a
930 command line, should appear in locations |first| to |last-1| of the
933 \textindent{4)}The global variable |loc| should be set so that the
934 character to be read next by \MP\ is in |buffer[loc]|. This
935 character should not be blank, and we should have |loc<last|.
937 \yskip\noindent(It may be necessary to prompt the user several times
938 before a non-blank line comes in. The prompt is `\.{**}' instead of the
939 later `\.*' because the meaning is slightly different: `\.{input}' need
940 not be typed immediately after~`\.{**}'.)
942 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
945 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
948 loc = 0; mp->first = 0;
952 if (!mp->noninteractive) {
953 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
956 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
957 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
958 @.End of file on the terminal@>
961 loc=(halfword)mp->first;
962 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
964 if ( loc<(int)mp->last ) {
965 return true; /* return unless the line was all blank */
967 if (!mp->noninteractive) {
968 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
974 boolean mp_init_terminal (MP mp) ;
977 @* \[4] String handling.
978 Symbolic token names and diagnostic messages are variable-length strings
979 of eight-bit characters. Many strings \MP\ uses are simply literals
980 in the compiled source, like the error messages and the names of the
981 internal parameters. Other strings are used or defined from the \MP\ input
982 language, and these have to be interned.
984 \MP\ uses strings more extensively than \MF\ does, but the necessary
985 operations can still be handled with a fairly simple data structure.
986 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
987 of the strings, and the array |str_start| contains indices of the starting
988 points of each string. Strings are referred to by integer numbers, so that
989 string number |s| comprises the characters |str_pool[j]| for
990 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
991 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
992 location. The first string number not currently in use is |str_ptr|
993 and |next_str[str_ptr]| begins a list of free string numbers. String
994 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
995 string currently being constructed.
997 String numbers 0 to 255 are reserved for strings that correspond to single
998 ASCII characters. This is in accordance with the conventions of \.{WEB},
1000 which converts single-character strings into the ASCII code number of the
1001 single character involved, while it converts other strings into integers
1002 and builds a string pool file. Thus, when the string constant \.{"."} appears
1003 in the program below, \.{WEB} converts it into the integer 46, which is the
1004 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1005 into some integer greater than~255. String number 46 will presumably be the
1006 single character `\..'\thinspace; but some ASCII codes have no standard visible
1007 representation, and \MP\ may need to be able to print an arbitrary
1008 ASCII character, so the first 256 strings are used to specify exactly what
1009 should be printed for each of the 256 possibilities.
1012 typedef int pool_pointer; /* for variables that point into |str_pool| */
1013 typedef int str_number; /* for variables that point into |str_start| */
1016 ASCII_code *str_pool; /* the characters */
1017 pool_pointer *str_start; /* the starting pointers */
1018 str_number *next_str; /* for linking strings in order */
1019 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1020 str_number str_ptr; /* number of the current string being created */
1021 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1022 str_number init_str_use; /* the initial number of strings in use */
1023 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1024 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1026 @ @<Allocate or initialize ...@>=
1027 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1028 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1029 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1031 @ @<Dealloc variables@>=
1032 xfree(mp->str_pool);
1033 xfree(mp->str_start);
1034 xfree(mp->next_str);
1036 @ Most printing is done from |char *|s, but sometimes not. Here are
1037 functions that convert an internal string into a |char *| for use
1038 by the printing routines, and vice versa.
1040 @d str(A) mp_str(mp,A)
1041 @d rts(A) mp_rts(mp,A)
1045 int mp_xstrcmp (const char *a, const char *b);
1046 char * mp_str (MP mp, str_number s);
1049 str_number mp_rts (MP mp, const char *s);
1050 str_number mp_make_string (MP mp);
1053 int mp_xstrcmp (const char *a, const char *b) {
1054 if (a==NULL && b==NULL)
1063 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1064 very good: it does not handle nesting over more than one level.
1067 char * mp_str (MP mp, str_number ss) {
1070 if (ss==mp->str_ptr) {
1073 len = (size_t)length(ss);
1074 s = xmalloc(len+1,sizeof(char));
1075 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1080 str_number mp_rts (MP mp, const char *s) {
1081 int r; /* the new string */
1082 int old; /* a possible string in progress */
1086 } else if (strlen(s)==1) {
1090 str_room((integer)strlen(s));
1091 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1092 old = mp_make_string(mp);
1097 r = mp_make_string(mp);
1099 str_room(length(old));
1100 while (i<length(old)) {
1101 append_char((mp->str_start[old]+i));
1103 mp_flush_string(mp,old);
1109 @ Except for |strs_used_up|, the following string statistics are only
1110 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1114 integer strs_used_up; /* strings in use or unused but not reclaimed */
1115 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1116 integer strs_in_use; /* total number of strings actually in use */
1117 integer max_pl_used; /* maximum |pool_in_use| so far */
1118 integer max_strs_used; /* maximum |strs_in_use| so far */
1120 @ Several of the elementary string operations are performed using \.{WEB}
1121 macros instead of functions, because many of the
1122 operations are done quite frequently and we want to avoid the
1123 overhead of procedure calls. For example, here is
1124 a simple macro that computes the length of a string.
1127 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string \# */
1128 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1130 @ The length of the current string is called |cur_length|. If we decide that
1131 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1132 |cur_length| becomes zero.
1134 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1135 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1137 @ Strings are created by appending character codes to |str_pool|.
1138 The |append_char| macro, defined here, does not check to see if the
1139 value of |pool_ptr| has gotten too high; this test is supposed to be
1140 made before |append_char| is used.
1142 To test if there is room to append |l| more characters to |str_pool|,
1143 we shall write |str_room(l)|, which tries to make sure there is enough room
1144 by compacting the string pool if necessary. If this does not work,
1145 |do_compaction| aborts \MP\ and gives an apologetic error message.
1147 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1148 { mp->str_pool[mp->pool_ptr]=(ASCII_code)(A); incr(mp->pool_ptr);
1150 @d str_room(A) /* make sure that the pool hasn't overflowed */
1151 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1152 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1153 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1156 @ The following routine is similar to |str_room(1)| but it uses the
1157 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1158 string space is exhausted.
1160 @<Declare the procedure called |unit_str_room|@>=
1161 void mp_unit_str_room (MP mp);
1164 void mp_unit_str_room (MP mp) {
1165 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1166 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1169 @ \MP's string expressions are implemented in a brute-force way: Every
1170 new string or substring that is needed is simply copied into the string pool.
1171 Space is eventually reclaimed by a procedure called |do_compaction| with
1172 the aid of a simple system system of reference counts.
1173 @^reference counts@>
1175 The number of references to string number |s| will be |str_ref[s]|. The
1176 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1177 positive number of references; such strings will never be recycled. If
1178 a string is ever referred to more than 126 times, simultaneously, we
1179 put it in this category. Hence a single byte suffices to store each |str_ref|.
1181 @d max_str_ref 127 /* ``infinite'' number of references */
1182 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]); }
1187 @ @<Allocate or initialize ...@>=
1188 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1190 @ @<Dealloc variables@>=
1193 @ Here's what we do when a string reference disappears:
1195 @d delete_str_ref(A) {
1196 if ( mp->str_ref[(A)]<max_str_ref ) {
1197 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1198 else mp_flush_string(mp, (A));
1202 @<Declare the procedure called |flush_string|@>=
1203 void mp_flush_string (MP mp,str_number s) ;
1206 @ We can't flush the first set of static strings at all, so there
1207 is no point in trying
1210 void mp_flush_string (MP mp,str_number s) {
1212 mp->pool_in_use=mp->pool_in_use-length(s);
1213 decr(mp->strs_in_use);
1214 if ( mp->next_str[s]!=mp->str_ptr ) {
1218 decr(mp->strs_used_up);
1220 mp->pool_ptr=mp->str_start[mp->str_ptr];
1224 @ C literals cannot be simply added, they need to be set so they can't
1227 @d intern(A) mp_intern(mp,(A))
1230 str_number mp_intern (MP mp, const char *s) {
1233 mp->str_ref[r] = max_str_ref;
1238 str_number mp_intern (MP mp, const char *s);
1241 @ Once a sequence of characters has been appended to |str_pool|, it
1242 officially becomes a string when the function |make_string| is called.
1243 This function returns the identification number of the new string as its
1246 When getting the next unused string number from the linked list, we pretend
1248 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1249 are linked sequentially even though the |next_str| entries have not been
1250 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1251 |do_compaction| is responsible for making sure of this.
1254 @<Declare the procedure called |do_compaction|@>
1255 @<Declare the procedure called |unit_str_room|@>
1256 str_number mp_make_string (MP mp);
1259 str_number mp_make_string (MP mp) { /* current string enters the pool */
1260 str_number s; /* the new string */
1263 mp->str_ptr=mp->next_str[s];
1264 if ( mp->str_ptr>mp->max_str_ptr ) {
1265 if ( mp->str_ptr==mp->max_strings ) {
1267 mp_do_compaction(mp, 0);
1270 mp->max_str_ptr=mp->str_ptr;
1271 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1275 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1276 incr(mp->strs_used_up);
1277 incr(mp->strs_in_use);
1278 mp->pool_in_use=mp->pool_in_use+length(s);
1279 if ( mp->pool_in_use>mp->max_pl_used )
1280 mp->max_pl_used=mp->pool_in_use;
1281 if ( mp->strs_in_use>mp->max_strs_used )
1282 mp->max_strs_used=mp->strs_in_use;
1286 @ The most interesting string operation is string pool compaction. The idea
1287 is to recover unused space in the |str_pool| array by recopying the strings
1288 to close the gaps created when some strings become unused. All string
1289 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1290 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1291 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1292 with |needed=mp->pool_size| supresses all overflow tests.
1294 The compaction process starts with |last_fixed_str| because all lower numbered
1295 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1298 str_number last_fixed_str; /* last permanently allocated string */
1299 str_number fixed_str_use; /* number of permanently allocated strings */
1301 @ @<Declare the procedure called |do_compaction|@>=
1302 void mp_do_compaction (MP mp, pool_pointer needed) ;
1305 void mp_do_compaction (MP mp, pool_pointer needed) {
1306 str_number str_use; /* a count of strings in use */
1307 str_number r,s,t; /* strings being manipulated */
1308 pool_pointer p,q; /* destination and source for copying string characters */
1309 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1310 r=mp->last_fixed_str;
1313 while ( s!=mp->str_ptr ) {
1314 while ( mp->str_ref[s]==0 ) {
1315 @<Advance |s| and add the old |s| to the list of free string numbers;
1316 then |break| if |s=str_ptr|@>;
1318 r=s; s=mp->next_str[s];
1320 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1321 after the end of the string@>;
1324 @<Move the current string back so that it starts at |p|@>;
1325 if ( needed<mp->pool_size ) {
1326 @<Make sure that there is room for another string with |needed| characters@>;
1328 @<Account for the compaction and make sure the statistics agree with the
1330 mp->strs_used_up=str_use;
1333 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1334 t=mp->next_str[mp->last_fixed_str];
1335 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1336 incr(mp->fixed_str_use);
1337 mp->last_fixed_str=t;
1340 str_use=mp->fixed_str_use
1342 @ Because of the way |flush_string| has been written, it should never be
1343 necessary to |break| here. The extra line of code seems worthwhile to
1344 preserve the generality of |do_compaction|.
1346 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1351 mp->next_str[t]=mp->next_str[mp->str_ptr];
1352 mp->next_str[mp->str_ptr]=t;
1353 if ( s==mp->str_ptr ) goto DONE;
1356 @ The string currently starts at |str_start[r]| and ends just before
1357 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1358 to locate the next string.
1360 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1363 while ( q<mp->str_start[s] ) {
1364 mp->str_pool[p]=mp->str_pool[q];
1368 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1369 we do this, anything between them should be moved.
1371 @ @<Move the current string back so that it starts at |p|@>=
1372 q=mp->str_start[mp->str_ptr];
1373 mp->str_start[mp->str_ptr]=p;
1374 while ( q<mp->pool_ptr ) {
1375 mp->str_pool[p]=mp->str_pool[q];
1380 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1382 @<Make sure that there is room for another string with |needed| char...@>=
1383 if ( str_use>=mp->max_strings-1 )
1384 mp_reallocate_strings (mp,str_use);
1385 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1386 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1387 mp->max_pool_ptr=mp->pool_ptr+needed;
1391 void mp_reallocate_strings (MP mp, str_number str_use) ;
1392 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1395 void mp_reallocate_strings (MP mp, str_number str_use) {
1396 while ( str_use>=mp->max_strings-1 ) {
1397 int l = mp->max_strings + (mp->max_strings/4);
1398 XREALLOC (mp->str_ref, l, int);
1399 XREALLOC (mp->str_start, l, pool_pointer);
1400 XREALLOC (mp->next_str, l, str_number);
1401 mp->max_strings = l;
1404 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1405 while ( needed>mp->pool_size ) {
1406 int l = mp->pool_size + (mp->pool_size/4);
1407 XREALLOC (mp->str_pool, l, ASCII_code);
1412 @ @<Account for the compaction and make sure the statistics agree with...@>=
1413 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1414 mp_confusion(mp, "string");
1415 @:this can't happen string}{\quad string@>
1416 incr(mp->pact_count);
1417 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1418 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1420 @ A few more global variables are needed to keep track of statistics when
1421 |stat| $\ldots$ |tats| blocks are not commented out.
1424 integer pact_count; /* number of string pool compactions so far */
1425 integer pact_chars; /* total number of characters moved during compactions */
1426 integer pact_strs; /* total number of strings moved during compactions */
1428 @ @<Initialize compaction statistics@>=
1433 @ The following subroutine compares string |s| with another string of the
1434 same length that appears in |buffer| starting at position |k|;
1435 the result is |true| if and only if the strings are equal.
1438 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1439 /* test equality of strings */
1440 pool_pointer j; /* running index */
1442 while ( j<str_stop(s) ) {
1443 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1449 @ Here is a similar routine, but it compares two strings in the string pool,
1450 and it does not assume that they have the same length. If the first string
1451 is lexicographically greater than, less than, or equal to the second,
1452 the result is respectively positive, negative, or zero.
1455 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1456 /* test equality of strings */
1457 pool_pointer j,k; /* running indices */
1458 integer ls,lt; /* lengths */
1459 integer l; /* length remaining to test */
1460 ls=length(s); lt=length(t);
1461 if ( ls<=lt ) l=ls; else l=lt;
1462 j=mp->str_start[s]; k=mp->str_start[t];
1464 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1465 return (mp->str_pool[j]-mp->str_pool[k]);
1472 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1473 and |str_ptr| are computed by the \.{INIMP} program, based in part
1474 on the information that \.{WEB} has output while processing \MP.
1479 void mp_get_strings_started (MP mp) {
1480 /* initializes the string pool,
1481 but returns |false| if something goes wrong */
1482 int k; /* small indices or counters */
1483 str_number g; /* a new string */
1484 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1487 mp->pool_in_use=0; mp->strs_in_use=0;
1488 mp->max_pl_used=0; mp->max_strs_used=0;
1489 @<Initialize compaction statistics@>;
1491 @<Make the first 256 strings@>;
1492 g=mp_make_string(mp); /* string 256 == "" */
1493 mp->str_ref[g]=max_str_ref;
1494 mp->last_fixed_str=mp->str_ptr-1;
1495 mp->fixed_str_use=mp->str_ptr;
1500 void mp_get_strings_started (MP mp);
1502 @ The first 256 strings will consist of a single character only.
1504 @<Make the first 256...@>=
1505 for (k=0;k<=255;k++) {
1507 g=mp_make_string(mp);
1508 mp->str_ref[g]=max_str_ref;
1511 @ The first 128 strings will contain 95 standard ASCII characters, and the
1512 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1513 unless a system-dependent change is made here. Installations that have
1514 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1515 would like string 032 to be printed as the single character 032 instead
1516 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1517 even people with an extended character set will want to represent string
1518 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1519 to produce visible strings instead of tabs or line-feeds or carriage-returns
1520 or bell-rings or characters that are treated anomalously in text files.
1522 The boolean expression defined here should be |true| unless \MP\ internal
1523 code number~|k| corresponds to a non-troublesome visible symbol in the
1524 local character set.
1525 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1526 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1528 @^character set dependencies@>
1529 @^system dependencies@>
1531 @<Character |k| cannot be printed@>=
1534 @* \[5] On-line and off-line printing.
1535 Messages that are sent to a user's terminal and to the transcript-log file
1536 are produced by several `|print|' procedures. These procedures will
1537 direct their output to a variety of places, based on the setting of
1538 the global variable |selector|, which has the following possible
1542 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1545 \hang |log_only|, prints only on the transcript file.
1547 \hang |term_only|, prints only on the terminal.
1549 \hang |no_print|, doesn't print at all. This is used only in rare cases
1550 before the transcript file is open.
1552 \hang |pseudo|, puts output into a cyclic buffer that is used
1553 by the |show_context| routine; when we get to that routine we shall discuss
1554 the reasoning behind this curious mode.
1556 \hang |new_string|, appends the output to the current string in the
1559 \hang |>=write_file| prints on one of the files used for the \&{write}
1560 @:write_}{\&{write} primitive@>
1564 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1565 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1566 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1567 relations are not used when |selector| could be |pseudo|, or |new_string|.
1568 We need not check for unprintable characters when |selector<pseudo|.
1570 Three additional global variables, |tally|, |term_offset| and |file_offset|
1571 record the number of characters that have been printed
1572 since they were most recently cleared to zero. We use |tally| to record
1573 the length of (possibly very long) stretches of printing; |term_offset|,
1574 and |file_offset|, on the other hand, keep track of how many
1575 characters have appeared so far on the current line that has been output
1576 to the terminal, the transcript file, or the \ps\ output file, respectively.
1578 @d new_string 0 /* printing is deflected to the string pool */
1579 @d pseudo 2 /* special |selector| setting for |show_context| */
1580 @d no_print 3 /* |selector| setting that makes data disappear */
1581 @d term_only 4 /* printing is destined for the terminal only */
1582 @d log_only 5 /* printing is destined for the transcript file only */
1583 @d term_and_log 6 /* normal |selector| setting */
1584 @d write_file 7 /* first write file selector */
1587 void * log_file; /* transcript of \MP\ session */
1588 void * ps_file; /* the generic font output goes here */
1589 unsigned int selector; /* where to print a message */
1590 unsigned char dig[23]; /* digits in a number, for rounding */
1591 integer tally; /* the number of characters recently printed */
1592 unsigned int term_offset;
1593 /* the number of characters on the current terminal line */
1594 unsigned int file_offset;
1595 /* the number of characters on the current file line */
1596 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1597 integer trick_count; /* threshold for pseudoprinting, explained later */
1598 integer first_count; /* another variable for pseudoprinting */
1600 @ @<Allocate or initialize ...@>=
1601 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1603 @ @<Dealloc variables@>=
1604 xfree(mp->trick_buf);
1606 @ @<Initialize the output routines@>=
1607 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1609 @ Macro abbreviations for output to the terminal and to the log file are
1610 defined here for convenience. Some systems need special conventions
1611 for terminal output, and it is possible to adhere to those conventions
1612 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1613 @^system dependencies@>
1615 @d do_fprintf(f,b) (mp->write_ascii_file)(mp,f,b)
1616 @d wterm(A) do_fprintf(mp->term_out,(A))
1617 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]='\0';
1618 do_fprintf(mp->term_out,(char *)ss); }
1619 @d wterm_cr do_fprintf(mp->term_out,"\n")
1620 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1621 @d wlog(A) do_fprintf(mp->log_file,(A))
1622 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]='\0';
1623 do_fprintf(mp->log_file,(char *)ss); }
1624 @d wlog_cr do_fprintf(mp->log_file, "\n")
1625 @d wlog_ln(A) { wlog_cr; do_fprintf(mp->log_file,(A)); }
1628 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1629 use an array |wr_file| that will be declared later.
1631 @d mp_print_text(A) mp_print_str(mp,text((A)))
1634 void mp_print_ln (MP mp);
1635 void mp_print_visible_char (MP mp, ASCII_code s);
1636 void mp_print_char (MP mp, ASCII_code k);
1637 void mp_print (MP mp, const char *s);
1638 void mp_print_str (MP mp, str_number s);
1639 void mp_print_nl (MP mp, const char *s);
1640 void mp_print_two (MP mp,scaled x, scaled y) ;
1641 void mp_print_scaled (MP mp,scaled s);
1643 @ @<Basic print...@>=
1644 void mp_print_ln (MP mp) { /* prints an end-of-line */
1645 switch (mp->selector) {
1648 mp->term_offset=0; mp->file_offset=0;
1651 wlog_cr; mp->file_offset=0;
1654 wterm_cr; mp->term_offset=0;
1661 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1663 } /* note that |tally| is not affected */
1665 @ The |print_visible_char| procedure sends one character to the desired
1666 destination, using the |xchr| array to map it into an external character
1667 compatible with |input_ln|. (It assumes that it is always called with
1668 a visible ASCII character.) All printing comes through |print_ln| or
1669 |print_char|, which ultimately calls |print_visible_char|, hence these
1670 routines are the ones that limit lines to at most |max_print_line| characters.
1671 But we must make an exception for the \ps\ output file since it is not safe
1672 to cut up lines arbitrarily in \ps.
1674 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1675 |do_compaction| and |do_compaction| can call the error routines. Actually,
1676 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1678 @<Basic printing...@>=
1679 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1680 switch (mp->selector) {
1682 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1683 incr(mp->term_offset); incr(mp->file_offset);
1684 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1685 wterm_cr; mp->term_offset=0;
1687 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1688 wlog_cr; mp->file_offset=0;
1692 wlog_chr(xchr(s)); incr(mp->file_offset);
1693 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1696 wterm_chr(xchr(s)); incr(mp->term_offset);
1697 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1702 if ( mp->tally<mp->trick_count )
1703 mp->trick_buf[mp->tally % mp->error_line]=s;
1706 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1707 mp_unit_str_room(mp);
1708 if ( mp->pool_ptr>=mp->pool_size )
1709 goto DONE; /* drop characters if string space is full */
1714 { text_char ss[2]; ss[0] = xchr(s); ss[1]=0;
1715 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1722 @ The |print_char| procedure sends one character to the desired destination.
1723 File names and string expressions might contain |ASCII_code| values that
1724 can't be printed using |print_visible_char|. These characters will be
1725 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1726 (This procedure assumes that it is safe to bypass all checks for unprintable
1727 characters when |selector| is in the range |0..max_write_files-1|.
1728 The user might want to write unprintable characters.
1730 @<Basic printing...@>=
1731 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1732 if ( mp->selector<pseudo || mp->selector>=write_file) {
1733 mp_print_visible_char(mp, k);
1734 } else if ( @<Character |k| cannot be printed@> ) {
1737 mp_print_visible_char(mp, k+0100);
1738 } else if ( k<0200 ) {
1739 mp_print_visible_char(mp, k-0100);
1741 int l; /* small index or counter */
1743 mp_print_visible_char(mp, xord(l<10 ? l+'0' : l-10+'a'));
1745 mp_print_visible_char(mp, xord(l<10 ? l+'0' : l-10+'a'));
1748 mp_print_visible_char(mp, k);
1752 @ An entire string is output by calling |print|. Note that if we are outputting
1753 the single standard ASCII character \.c, we could call |print("c")|, since
1754 |"c"=99| is the number of a single-character string, as explained above. But
1755 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1756 routine when it knows that this is safe. (The present implementation
1757 assumes that it is always safe to print a visible ASCII character.)
1758 @^system dependencies@>
1761 void mp_do_print (MP mp, const char *ss, size_t len) { /* prints string |s| */
1764 mp_print_char(mp, xord((int)ss[j])); incr(j);
1770 void mp_print (MP mp, const char *ss) {
1771 if (ss==NULL) return;
1772 mp_do_print(mp, ss,strlen(ss));
1774 void mp_print_str (MP mp, str_number s) {
1775 pool_pointer j; /* current character code position */
1776 if ( (s<0)||(s>mp->max_str_ptr) ) {
1777 mp_do_print(mp,"???",3); /* this can't happen */
1781 mp_do_print(mp, (char *)(mp->str_pool+j), (size_t)(str_stop(s)-j));
1785 @ Here is the very first thing that \MP\ prints: a headline that identifies
1786 the version number and base name. The |term_offset| variable is temporarily
1787 incorrect, but the discrepancy is not serious since we assume that the banner
1788 and mem identifier together will occupy at most |max_print_line|
1789 character positions.
1791 @<Initialize the output...@>=
1793 if (mp->mem_ident!=NULL)
1794 mp_print(mp,mp->mem_ident);
1798 @ The procedure |print_nl| is like |print|, but it makes sure that the
1799 string appears at the beginning of a new line.
1802 void mp_print_nl (MP mp, const char *s) { /* prints string |s| at beginning of line */
1803 switch(mp->selector) {
1805 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1808 if ( mp->file_offset>0 ) mp_print_ln(mp);
1811 if ( mp->term_offset>0 ) mp_print_ln(mp);
1817 } /* there are no other cases */
1821 @ The following procedure, which prints out the decimal representation of a
1822 given integer |n|, assumes that all integers fit nicely into a |int|.
1823 @^system dependencies@>
1826 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1828 mp_snprintf(s,12,"%d", (int)n);
1833 void mp_print_int (MP mp,integer n);
1835 @ \MP\ also makes use of a trivial procedure to print two digits. The
1836 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1839 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1841 mp_print_char(mp, xord('0'+(n / 10)));
1842 mp_print_char(mp, xord('0'+(n % 10)));
1847 void mp_print_dd (MP mp,integer n);
1849 @ Here is a procedure that asks the user to type a line of input,
1850 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1851 The input is placed into locations |first| through |last-1| of the
1852 |buffer| array, and echoed on the transcript file if appropriate.
1854 This procedure is never called when |interaction<mp_scroll_mode|.
1856 @d prompt_input(A) do {
1857 if (!mp->noninteractive) {
1858 wake_up_terminal; mp_print(mp, (A));
1861 } while (0) /* prints a string and gets a line of input */
1864 void mp_term_input (MP mp) { /* gets a line from the terminal */
1865 size_t k; /* index into |buffer| */
1866 if (mp->noninteractive) {
1867 if (!mp_input_ln(mp, mp->term_in ))
1868 longjmp(*(mp->jump_buf),1); /* chunk finished */
1869 mp->buffer[mp->last]=xord('%');
1871 update_terminal; /* Now the user sees the prompt for sure */
1872 if (!mp_input_ln(mp, mp->term_in )) {
1873 mp_fatal_error(mp, "End of file on the terminal!");
1874 @.End of file on the terminal@>
1876 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1877 decr(mp->selector); /* prepare to echo the input */
1878 if ( mp->last!=mp->first ) {
1879 for (k=mp->first;k<=mp->last-1;k++) {
1880 mp_print_char(mp, mp->buffer[k]);
1884 mp->buffer[mp->last]=xord('%');
1885 incr(mp->selector); /* restore previous status */
1889 @* \[6] Reporting errors.
1890 When something anomalous is detected, \MP\ typically does something like this:
1891 $$\vbox{\halign{#\hfil\cr
1892 |print_err("Something anomalous has been detected");|\cr
1893 |help3("This is the first line of my offer to help.")|\cr
1894 |("This is the second line. I'm trying to")|\cr
1895 |("explain the best way for you to proceed.");|\cr
1897 A two-line help message would be given using |help2|, etc.; these informal
1898 helps should use simple vocabulary that complements the words used in the
1899 official error message that was printed. (Outside the U.S.A., the help
1900 messages should preferably be translated into the local vernacular. Each
1901 line of help is at most 60 characters long, in the present implementation,
1902 so that |max_print_line| will not be exceeded.)
1904 The |print_err| procedure supplies a `\.!' before the official message,
1905 and makes sure that the terminal is awake if a stop is going to occur.
1906 The |error| procedure supplies a `\..' after the official message, then it
1907 shows the location of the error; and if |interaction=error_stop_mode|,
1908 it also enters into a dialog with the user, during which time the help
1909 message may be printed.
1910 @^system dependencies@>
1912 @ The global variable |interaction| has four settings, representing increasing
1913 amounts of user interaction:
1916 enum mp_interaction_mode {
1917 mp_unspecified_mode=0, /* extra value for command-line switch */
1918 mp_batch_mode, /* omits all stops and omits terminal output */
1919 mp_nonstop_mode, /* omits all stops */
1920 mp_scroll_mode, /* omits error stops */
1921 mp_error_stop_mode /* stops at every opportunity to interact */
1924 @ @<Option variables@>=
1925 int interaction; /* current level of interaction */
1926 int noninteractive; /* do we have a terminal? */
1928 @ Set it here so it can be overwritten by the commandline
1930 @<Allocate or initialize ...@>=
1931 mp->interaction=opt->interaction;
1932 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1933 mp->interaction=mp_error_stop_mode;
1934 if (mp->interaction<mp_unspecified_mode)
1935 mp->interaction=mp_batch_mode;
1939 @d print_err(A) mp_print_err(mp,(A))
1942 void mp_print_err(MP mp, const char * A);
1945 void mp_print_err(MP mp, const char * A) {
1946 if ( mp->interaction==mp_error_stop_mode )
1948 mp_print_nl(mp, "! ");
1954 @ \MP\ is careful not to call |error| when the print |selector| setting
1955 might be unusual. The only possible values of |selector| at the time of
1958 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1959 and |log_file| not yet open);
1961 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1963 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1965 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1967 @<Initialize the print |selector| based on |interaction|@>=
1968 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1970 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1971 routine is active when |error| is called; this ensures that |get_next|
1972 will never be called recursively.
1975 The global variable |history| records the worst level of error that
1976 has been detected. It has four possible values: |spotless|, |warning_issued|,
1977 |error_message_issued|, and |fatal_error_stop|.
1979 Another global variable, |error_count|, is increased by one when an
1980 |error| occurs without an interactive dialog, and it is reset to zero at
1981 the end of every statement. If |error_count| reaches 100, \MP\ decides
1982 that there is no point in continuing further.
1985 enum mp_history_states {
1986 mp_spotless=0, /* |history| value when nothing has been amiss yet */
1987 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
1988 mp_error_message_issued, /* |history| value when |error| has been called */
1989 mp_fatal_error_stop, /* |history| value when termination was premature */
1990 mp_system_error_stop /* |history| value when termination was due to disaster */
1994 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
1995 int history; /* has the source input been clean so far? */
1996 int error_count; /* the number of scrolled errors since the last statement ended */
1998 @ The value of |history| is initially |fatal_error_stop|, but it will
1999 be changed to |spotless| if \MP\ survives the initialization process.
2001 @<Allocate or ...@>=
2002 mp->deletions_allowed=true; /* |history| is initialized elsewhere */
2004 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2005 error procedures near the beginning of the program. But the error procedures
2006 in turn use some other procedures, which need to be declared |forward|
2007 before we get to |error| itself.
2009 It is possible for |error| to be called recursively if some error arises
2010 when |get_next| is being used to delete a token, and/or if some fatal error
2011 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2013 is never more than two levels deep.
2016 void mp_get_next (MP mp);
2017 void mp_term_input (MP mp);
2018 void mp_show_context (MP mp);
2019 void mp_begin_file_reading (MP mp);
2020 void mp_open_log_file (MP mp);
2021 void mp_clear_for_error_prompt (MP mp);
2022 @<Declare the procedure called |flush_string|@>
2025 void mp_normalize_selector (MP mp);
2027 @ Individual lines of help are recorded in the array |help_line|, which
2028 contains entries in positions |0..(help_ptr-1)|. They should be printed
2029 in reverse order, i.e., with |help_line[0]| appearing last.
2031 @d hlp1(A) mp->help_line[0]=A; }
2032 @d hlp2(A,B) mp->help_line[1]=A; hlp1(B)
2033 @d hlp3(A,B,C) mp->help_line[2]=A; hlp2(B,C)
2034 @d hlp4(A,B,C,D) mp->help_line[3]=A; hlp3(B,C,D)
2035 @d hlp5(A,B,C,D,E) mp->help_line[4]=A; hlp4(B,C,D,E)
2036 @d hlp6(A,B,C,D,E,F) mp->help_line[5]=A; hlp5(B,C,D,E,F)
2037 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2038 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2039 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2040 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2041 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2042 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2043 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2046 const char * help_line[6]; /* helps for the next |error| */
2047 unsigned int help_ptr; /* the number of help lines present */
2048 boolean use_err_help; /* should the |err_help| string be shown? */
2049 str_number err_help; /* a string set up by \&{errhelp} */
2050 str_number filename_template; /* a string set up by \&{filenametemplate} */
2052 @ @<Allocate or ...@>=
2053 mp->use_err_help=false;
2055 @ The |jump_out| procedure just cuts across all active procedure levels and
2056 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2057 whole program. It is used when there is no recovery from a particular error.
2059 The program uses a |jump_buf| to handle this, this is initialized at three
2060 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2061 of |mp_run|. Those are the only library enty points.
2063 @^system dependencies@>
2068 @ @<Install and test the non-local jump buffer@>=
2069 mp->jump_buf = &buf;
2070 if (setjmp(*(mp->jump_buf)) != 0) { return mp->history; }
2072 @ @<Setup the non-local jump buffer in |mp_new|@>=
2073 if (setjmp(buf) != 0) { return NULL; }
2076 @ If the array of internals is still |NULL| when |jump_out| is called, a
2077 crash occured during initialization, and it is not safe to run the normal
2081 void mp_jump_out (MP mp) {
2082 if (mp->internal!=NULL && mp->history < mp_system_error_stop)
2083 mp_close_files_and_terminate(mp);
2084 longjmp(*(mp->jump_buf),1);
2087 @ Here now is the general |error| routine.
2090 void mp_error (MP mp) { /* completes the job of error reporting */
2091 ASCII_code c; /* what the user types */
2092 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2093 pool_pointer j; /* character position being printed */
2094 if ( mp->history<mp_error_message_issued )
2095 mp->history=mp_error_message_issued;
2096 mp_print_char(mp, xord('.')); mp_show_context(mp);
2097 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2098 @<Get user's advice and |return|@>;
2100 incr(mp->error_count);
2101 if ( mp->error_count==100 ) {
2102 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2103 @.That makes 100 errors...@>
2104 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2106 @<Put help message on the transcript file@>;
2108 void mp_warn (MP mp, const char *msg) {
2109 unsigned saved_selector = mp->selector;
2110 mp_normalize_selector(mp);
2111 mp_print_nl(mp,"Warning: ");
2114 mp->selector = saved_selector;
2117 @ @<Exported function ...@>=
2118 void mp_error (MP mp);
2119 void mp_warn (MP mp, const char *msg);
2122 @ @<Get user's advice...@>=
2125 mp_clear_for_error_prompt(mp); prompt_input("? ");
2127 if ( mp->last==mp->first ) return;
2128 c=mp->buffer[mp->first];
2129 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2130 @<Interpret code |c| and |return| if done@>;
2133 @ It is desirable to provide an `\.E' option here that gives the user
2134 an easy way to return from \MP\ to the system editor, with the offending
2135 line ready to be edited. But such an extension requires some system
2136 wizardry, so the present implementation simply types out the name of the
2138 edited and the relevant line number.
2139 @^system dependencies@>
2142 typedef void (*mp_run_editor_command)(MP, char *, int);
2144 @ @<Option variables@>=
2145 mp_run_editor_command run_editor;
2147 @ @<Allocate or initialize ...@>=
2148 set_callback_option(run_editor);
2151 void mp_run_editor (MP mp, char *fname, int fline);
2153 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2154 mp_print_nl(mp, "You want to edit file ");
2155 @.You want to edit file x@>
2156 mp_print(mp, fname);
2157 mp_print(mp, " at line ");
2158 mp_print_int(mp, fline);
2159 mp->interaction=mp_scroll_mode;
2164 There is a secret `\.D' option available when the debugging routines haven't
2168 @<Interpret code |c| and |return| if done@>=
2170 case '0': case '1': case '2': case '3': case '4':
2171 case '5': case '6': case '7': case '8': case '9':
2172 if ( mp->deletions_allowed ) {
2173 @<Delete |c-"0"| tokens and |continue|@>;
2177 if ( mp->file_ptr>0 ){
2178 (mp->run_editor)(mp,
2179 str(mp->input_stack[mp->file_ptr].name_field),
2184 @<Print the help information and |continue|@>;
2187 @<Introduce new material from the terminal and |return|@>;
2189 case 'Q': case 'R': case 'S':
2190 @<Change the interaction level and |return|@>;
2193 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2198 @<Print the menu of available options@>
2200 @ @<Print the menu...@>=
2202 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2203 @.Type <return> to proceed...@>
2204 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2205 mp_print_nl(mp, "I to insert something, ");
2206 if ( mp->file_ptr>0 )
2207 mp_print(mp, "E to edit your file,");
2208 if ( mp->deletions_allowed )
2209 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2210 mp_print_nl(mp, "H for help, X to quit.");
2213 @ Here the author of \MP\ apologizes for making use of the numerical
2214 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2215 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2216 @^Knuth, Donald Ervin@>
2218 @<Change the interaction...@>=
2220 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2221 mp_print(mp, "OK, entering ");
2223 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2224 case 'R': mp_print(mp, "nonstopmode"); break;
2225 case 'S': mp_print(mp, "scrollmode"); break;
2226 } /* there are no other cases */
2227 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2230 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2231 contain the material inserted by the user; otherwise another prompt will
2232 be given. In order to understand this part of the program fully, you need
2233 to be familiar with \MP's input stacks.
2235 @<Introduce new material...@>=
2237 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2238 if ( mp->last>mp->first+1 ) {
2239 loc=(halfword)(mp->first+1); mp->buffer[mp->first]=xord(' ');
2241 prompt_input("insert>"); loc=(halfword)mp->first;
2244 mp->first=mp->last+1; mp->cur_input.limit_field=(halfword)mp->last; return;
2247 @ We allow deletion of up to 99 tokens at a time.
2249 @<Delete |c-"0"| tokens...@>=
2251 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2252 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2253 c=xord(c*10+mp->buffer[mp->first+1]-'0'*11);
2257 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2258 @<Decrease the string reference count, if the current token is a string@>;
2261 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2262 help2("I have just deleted some text, as you asked.",
2263 "You can now delete more, or insert, or whatever.");
2264 mp_show_context(mp);
2268 @ @<Print the help info...@>=
2270 if ( mp->use_err_help ) {
2271 @<Print the string |err_help|, possibly on several lines@>;
2272 mp->use_err_help=false;
2274 if ( mp->help_ptr==0 ) {
2275 help2("Sorry, I don't know how to help in this situation.",
2276 "Maybe you should try asking a human?");
2279 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2280 } while (mp->help_ptr!=0);
2282 help4("Sorry, I already gave what help I could...",
2283 "Maybe you should try asking a human?",
2284 "An error might have occurred before I noticed any problems.",
2285 "``If all else fails, read the instructions.''");
2289 @ @<Print the string |err_help|, possibly on several lines@>=
2290 j=mp->str_start[mp->err_help];
2291 while ( j<str_stop(mp->err_help) ) {
2292 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2293 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2294 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2295 else { incr(j); mp_print_char(mp, xord('%')); };
2299 @ @<Put help message on the transcript file@>=
2300 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2301 if ( mp->use_err_help ) {
2302 mp_print_nl(mp, "");
2303 @<Print the string |err_help|, possibly on several lines@>;
2305 while ( mp->help_ptr>0 ){
2306 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2310 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2313 @ In anomalous cases, the print selector might be in an unknown state;
2314 the following subroutine is called to fix things just enough to keep
2315 running a bit longer.
2318 void mp_normalize_selector (MP mp) {
2319 if ( mp->log_opened ) mp->selector=term_and_log;
2320 else mp->selector=term_only;
2321 if ( mp->job_name==NULL) mp_open_log_file(mp);
2322 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2325 @ The following procedure prints \MP's last words before dying.
2327 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2328 mp->interaction=mp_scroll_mode; /* no more interaction */
2329 if ( mp->log_opened ) mp_error(mp);
2330 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2334 void mp_fatal_error (MP mp, const char *s) { /* prints |s|, and that's it */
2335 mp_normalize_selector(mp);
2336 print_err("Emergency stop"); help1(s); succumb;
2340 @ @<Exported function ...@>=
2341 void mp_fatal_error (MP mp, const char *s);
2344 @ Here is the most dreaded error message.
2347 void mp_overflow (MP mp, const char *s, integer n) { /* stop due to finiteness */
2349 mp_normalize_selector(mp);
2350 mp_snprintf(msg, 256, "MetaPost capacity exceeded, sorry [%s=%d]",s,(int)n);
2351 @.MetaPost capacity exceeded ...@>
2353 help2("If you really absolutely need more capacity,",
2354 "you can ask a wizard to enlarge me.");
2358 @ @<Internal library declarations@>=
2359 void mp_overflow (MP mp, const char *s, integer n);
2361 @ The program might sometime run completely amok, at which point there is
2362 no choice but to stop. If no previous error has been detected, that's bad
2363 news; a message is printed that is really intended for the \MP\
2364 maintenance person instead of the user (unless the user has been
2365 particularly diabolical). The index entries for `this can't happen' may
2366 help to pinpoint the problem.
2369 @<Internal library ...@>=
2370 void mp_confusion (MP mp, const char *s);
2372 @ Consistency check violated; |s| tells where.
2374 void mp_confusion (MP mp, const char *s) {
2376 mp_normalize_selector(mp);
2377 if ( mp->history<mp_error_message_issued ) {
2378 mp_snprintf(msg, 256, "This can't happen (%s)",s);
2379 @.This can't happen@>
2381 help1("I'm broken. Please show this to someone who can fix can fix");
2383 print_err("I can\'t go on meeting you like this");
2384 @.I can't go on...@>
2385 help2("One of your faux pas seems to have wounded me deeply...",
2386 "in fact, I'm barely conscious. Please fix it and try again.");
2391 @ Users occasionally want to interrupt \MP\ while it's running.
2392 If the runtime system allows this, one can implement
2393 a routine that sets the global variable |interrupt| to some nonzero value
2394 when such an interrupt is signaled. Otherwise there is probably at least
2395 a way to make |interrupt| nonzero using the C debugger.
2396 @^system dependencies@>
2399 @d check_interrupt { if ( mp->interrupt!=0 )
2400 mp_pause_for_instructions(mp); }
2403 integer interrupt; /* should \MP\ pause for instructions? */
2404 boolean OK_to_interrupt; /* should interrupts be observed? */
2405 integer run_state; /* are we processing input ?*/
2406 boolean finished; /* set true by |close_files_and_terminate| */
2408 @ @<Allocate or ...@>=
2409 mp->OK_to_interrupt=true;
2412 @ When an interrupt has been detected, the program goes into its
2413 highest interaction level and lets the user have the full flexibility of
2414 the |error| routine. \MP\ checks for interrupts only at times when it is
2418 void mp_pause_for_instructions (MP mp) {
2419 if ( mp->OK_to_interrupt ) {
2420 mp->interaction=mp_error_stop_mode;
2421 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2423 print_err("Interruption");
2426 "Try to insert some instructions for me (e.g.,`I show x'),",
2427 "unless you just want to quit by typing `X'.");
2428 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2433 @ Many of \MP's error messages state that a missing token has been
2434 inserted behind the scenes. We can save string space and program space
2435 by putting this common code into a subroutine.
2438 void mp_missing_err (MP mp, const char *s) {
2440 mp_snprintf(msg, 256, "Missing `%s' has been inserted", s);
2441 @.Missing...inserted@>
2445 @* \[7] Arithmetic with scaled numbers.
2446 The principal computations performed by \MP\ are done entirely in terms of
2447 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2448 program can be carried out in exactly the same way on a wide variety of
2449 computers, including some small ones.
2452 But C does not rigidly define the |/| operation in the case of negative
2453 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2454 computers and |-n| on others (is this true ?). There are two principal
2455 types of arithmetic: ``translation-preserving,'' in which the identity
2456 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2457 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2458 different results, although the differences should be negligible when the
2459 language is being used properly. The \TeX\ processor has been defined
2460 carefully so that both varieties of arithmetic will produce identical
2461 output, but it would be too inefficient to constrain \MP\ in a similar way.
2463 @d el_gordo 0x7fffffff /* $2^{31}-1$, the largest value that \MP\ likes */
2466 @ One of \MP's most common operations is the calculation of
2467 $\lfloor{a+b\over2}\rfloor$,
2468 the midpoint of two given integers |a| and~|b|. The most decent way to do
2469 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2470 to calculate `|(a+b)>>1|'.
2472 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2473 in this program. If \MP\ is being implemented with languages that permit
2474 binary shifting, the |half| macro should be changed to make this operation
2475 as efficient as possible. Since some systems have shift operators that can
2476 only be trusted to work on positive numbers, there is also a macro |halfp|
2477 that is used only when the quantity being halved is known to be positive
2480 @d half(A) ((A) / 2)
2481 @d halfp(A) ((unsigned)(A) >> 1)
2483 @ A single computation might use several subroutine calls, and it is
2484 desirable to avoid producing multiple error messages in case of arithmetic
2485 overflow. So the routines below set the global variable |arith_error| to |true|
2486 instead of reporting errors directly to the user.
2487 @^overflow in arithmetic@>
2490 boolean arith_error; /* has arithmetic overflow occurred recently? */
2492 @ @<Allocate or ...@>=
2493 mp->arith_error=false;
2495 @ At crucial points the program will say |check_arith|, to test if
2496 an arithmetic error has been detected.
2498 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2501 void mp_clear_arith (MP mp) {
2502 print_err("Arithmetic overflow");
2503 @.Arithmetic overflow@>
2504 help4("Uh, oh. A little while ago one of the quantities that I was",
2505 "computing got too large, so I'm afraid your answers will be",
2506 "somewhat askew. You'll probably have to adopt different",
2507 "tactics next time. But I shall try to carry on anyway.");
2509 mp->arith_error=false;
2512 @ Addition is not always checked to make sure that it doesn't overflow,
2513 but in places where overflow isn't too unlikely the |slow_add| routine
2516 @c integer mp_slow_add (MP mp,integer x, integer y) {
2518 if ( y<=el_gordo-x ) {
2521 mp->arith_error=true;
2524 } else if ( -y<=el_gordo+x ) {
2527 mp->arith_error=true;
2532 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2533 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2534 positions from the right end of a binary computer word.
2536 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2537 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2538 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2539 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2540 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2541 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2544 typedef integer scaled; /* this type is used for scaled integers */
2546 @ The following function is used to create a scaled integer from a given decimal
2547 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2548 given in |dig[i]|, and the calculation produces a correctly rounded result.
2551 scaled mp_round_decimals (MP mp,quarterword k) {
2552 /* converts a decimal fraction */
2553 unsigned a = 0; /* the accumulator */
2555 a=(a+mp->dig[k]*two) / 10;
2560 @ Conversely, here is a procedure analogous to |print_int|. If the output
2561 of this procedure is subsequently read by \MP\ and converted by the
2562 |round_decimals| routine above, it turns out that the original value will
2563 be reproduced exactly. A decimal point is printed only if the value is
2564 not an integer. If there is more than one way to print the result with
2565 the optimum number of digits following the decimal point, the closest
2566 possible value is given.
2568 The invariant relation in the \&{repeat} loop is that a sequence of
2569 decimal digits yet to be printed will yield the original number if and only if
2570 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2571 We can stop if and only if $f=0$ satisfies this condition; the loop will
2572 terminate before $s$ can possibly become zero.
2574 @<Basic printing...@>=
2575 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2576 scaled delta; /* amount of allowable inaccuracy */
2578 mp_print_char(mp, xord('-'));
2579 negate(s); /* print the sign, if negative */
2581 mp_print_int(mp, s / unity); /* print the integer part */
2585 mp_print_char(mp, xord('.'));
2588 s=s+0100000-(delta / 2); /* round the final digit */
2589 mp_print_char(mp, xord('0'+(s / unity)));
2596 @ We often want to print two scaled quantities in parentheses,
2597 separated by a comma.
2599 @<Basic printing...@>=
2600 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2601 mp_print_char(mp, xord('('));
2602 mp_print_scaled(mp, x);
2603 mp_print_char(mp, xord(','));
2604 mp_print_scaled(mp, y);
2605 mp_print_char(mp, xord(')'));
2608 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2609 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2610 arithmetic with 28~significant bits of precision. A |fraction| denotes
2611 a scaled integer whose binary point is assumed to be 28 bit positions
2614 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2615 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2616 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2617 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2618 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2621 typedef integer fraction; /* this type is used for scaled fractions */
2623 @ In fact, the two sorts of scaling discussed above aren't quite
2624 sufficient; \MP\ has yet another, used internally to keep track of angles
2625 in units of $2^{-20}$ degrees.
2627 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2628 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2629 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2630 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2633 typedef integer angle; /* this type is used for scaled angles */
2635 @ The |make_fraction| routine produces the |fraction| equivalent of
2636 |p/q|, given integers |p| and~|q|; it computes the integer
2637 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2638 positive. If |p| and |q| are both of the same scaled type |t|,
2639 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2640 and it's also possible to use the subroutine ``backwards,'' using
2641 the relation |make_fraction(t,fraction)=t| between scaled types.
2643 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2644 sets |arith_error:=true|. Most of \MP's internal computations have
2645 been designed to avoid this sort of error.
2647 If this subroutine were programmed in assembly language on a typical
2648 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2649 double-precision product can often be input to a fixed-point division
2650 instruction. But when we are restricted to int-eger arithmetic it
2651 is necessary either to resort to multiple-precision maneuvering
2652 or to use a simple but slow iteration. The multiple-precision technique
2653 would be about three times faster than the code adopted here, but it
2654 would be comparatively long and tricky, involving about sixteen
2655 additional multiplications and divisions.
2657 This operation is part of \MP's ``inner loop''; indeed, it will
2658 consume nearly 10\pct! of the running time (exclusive of input and output)
2659 if the code below is left unchanged. A machine-dependent recoding
2660 will therefore make \MP\ run faster. The present implementation
2661 is highly portable, but slow; it avoids multiplication and division
2662 except in the initial stage. System wizards should be careful to
2663 replace it with a routine that is guaranteed to produce identical
2664 results in all cases.
2665 @^system dependencies@>
2667 As noted below, a few more routines should also be replaced by machine-dependent
2668 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2669 such changes aren't advisable; simplicity and robustness are
2670 preferable to trickery, unless the cost is too high.
2674 fraction mp_make_fraction (MP mp,integer p, integer q);
2675 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2677 @ If FIXPT is not defined, we need these preprocessor values
2679 @d TWEXP31 2147483648.0
2680 @d TWEXP28 268435456.0
2682 @d TWEXP_16 (1.0/65536.0)
2683 @d TWEXP_28 (1.0/268435456.0)
2687 fraction mp_make_fraction (MP mp,integer p, integer q) {
2689 if ( q==0 ) mp_confusion(mp, "/");
2690 @:this can't happen /}{\quad \./@>
2693 integer f; /* the fraction bits, with a leading 1 bit */
2694 integer n; /* the integer part of $\vert p/q\vert$ */
2695 boolean negative = false; /* should the result be negated? */
2697 negate(p); negative=true;
2700 negate(q); negative = ! negative;
2704 mp->arith_error=true;
2705 i= ( negative ? -el_gordo : el_gordo);
2707 n=(n-1)*fraction_one;
2708 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2709 i = (negative ? (-(f+n)) : (f+n));
2715 d = TWEXP28 * (double)p /(double)q;
2718 if (d>=TWEXP31) {mp->arith_error=true; return el_gordo;}
2720 if (d==(double)i && ( ((q>0 ? -q : q)&077777)
2721 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2724 if (d<= -TWEXP31) {mp->arith_error=true; return -el_gordo;}
2726 if (d==(double)i && ( ((q>0 ? q : -q)&077777)
2727 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2734 @ The |repeat| loop here preserves the following invariant relations
2735 between |f|, |p|, and~|q|:
2736 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2737 $p_0$ is the original value of~$p$.
2739 Notice that the computation specifies
2740 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2741 Let us hope that optimizing compilers do not miss this point; a
2742 special variable |be_careful| is used to emphasize the necessary
2743 order of computation. Optimizing compilers should keep |be_careful|
2744 in a register, not store it in memory.
2747 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2749 integer be_careful; /* disables certain compiler optimizations */
2752 be_careful=p-q; p=be_careful+p;
2758 } while (f<fraction_one);
2760 if ( be_careful+p>=0 ) incr(f);
2763 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2764 given integer~|q| by a fraction~|f|. When the operands are positive, it
2765 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2768 This routine is even more ``inner loopy'' than |make_fraction|;
2769 the present implementation consumes almost 20\pct! of \MP's computation
2770 time during typical jobs, so a machine-language substitute is advisable.
2771 @^inner loop@> @^system dependencies@>
2774 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2778 integer mp_take_fraction (MP mp,integer q, fraction f) {
2779 integer p; /* the fraction so far */
2780 boolean negative; /* should the result be negated? */
2781 integer n; /* additional multiple of $q$ */
2782 integer be_careful; /* disables certain compiler optimizations */
2783 @<Reduce to the case that |f>=0| and |q>=0|@>;
2784 if ( f<fraction_one ) {
2787 n=f / fraction_one; f=f % fraction_one;
2788 if ( q<=el_gordo / n ) {
2791 mp->arith_error=true; n=el_gordo;
2795 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2796 be_careful=n-el_gordo;
2797 if ( be_careful+p>0 ){
2798 mp->arith_error=true; n=el_gordo-p;
2805 integer mp_take_fraction (MP mp,integer p, fraction q) {
2808 d = (double)p * (double)q * TWEXP_28;
2812 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2813 mp->arith_error = true;
2817 if (d==(double)i && (((p&077777)*(q&077777))&040000)!=0) --i;
2821 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2822 mp->arith_error = true;
2826 if (d==(double)i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2832 @ @<Reduce to the case that |f>=0| and |q>=0|@>=
2836 negate( f); negative=true;
2839 negate(q); negative=! negative;
2842 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2843 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2844 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2847 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2848 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2849 if ( q<fraction_four ) {
2851 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2856 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2862 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2863 analogous to |take_fraction| but with a different scaling.
2864 Given positive operands, |take_scaled|
2865 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2867 Once again it is a good idea to use a machine-language replacement if
2868 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2869 when the Computer Modern fonts are being generated.
2874 integer mp_take_scaled (MP mp,integer q, scaled f) {
2875 integer p; /* the fraction so far */
2876 boolean negative; /* should the result be negated? */
2877 integer n; /* additional multiple of $q$ */
2878 integer be_careful; /* disables certain compiler optimizations */
2879 @<Reduce to the case that |f>=0| and |q>=0|@>;
2883 n=f / unity; f=f % unity;
2884 if ( q<=el_gordo / n ) {
2887 mp->arith_error=true; n=el_gordo;
2891 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2892 be_careful=n-el_gordo;
2893 if ( be_careful+p>0 ) {
2894 mp->arith_error=true; n=el_gordo-p;
2896 return ( negative ?(-(n+p)) :(n+p));
2898 integer mp_take_scaled (MP mp,integer p, scaled q) {
2901 d = (double)p * (double)q * TWEXP_16;
2905 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2906 mp->arith_error = true;
2910 if (d==(double)i && (((p&077777)*(q&077777))&040000)!=0) --i;
2914 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2915 mp->arith_error = true;
2919 if (d==(double)i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2925 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2926 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2928 if ( q<fraction_four ) {
2930 p = (odd(f) ? halfp(p+q) : halfp(p));
2935 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2940 @ For completeness, there's also |make_scaled|, which computes a
2941 quotient as a |scaled| number instead of as a |fraction|.
2942 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2943 operands are positive. \ (This procedure is not used especially often,
2944 so it is not part of \MP's inner loop.)
2946 @<Internal library ...@>=
2947 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2950 scaled mp_make_scaled (MP mp,integer p, integer q) {
2952 if ( q==0 ) mp_confusion(mp, "/");
2953 @:this can't happen /}{\quad \./@>
2956 integer f; /* the fraction bits, with a leading 1 bit */
2957 integer n; /* the integer part of $\vert p/q\vert$ */
2958 boolean negative; /* should the result be negated? */
2959 integer be_careful; /* disables certain compiler optimizations */
2960 if ( p>=0 ) negative=false;
2961 else { negate(p); negative=true; };
2963 negate(q); negative=! negative;
2967 mp->arith_error=true;
2968 return (negative ? (-el_gordo) : el_gordo);
2971 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2972 i = (negative ? (-(f+n)) :(f+n));
2976 d = TWEXP16 * (double)p /(double)q;
2979 if (d>=TWEXP31) {mp->arith_error=true; return el_gordo;}
2981 if (d==(double)i && ( ((q>0 ? -q : q)&077777)
2982 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2985 if (d<= -TWEXP31) {mp->arith_error=true; return -el_gordo;}
2987 if (d==(double)i && ( ((q>0 ? q : -q)&077777)
2988 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2995 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
2998 be_careful=p-q; p=be_careful+p;
2999 if ( p>=0 ) f=f+f+1;
3000 else { f+=f; p=p+q; };
3003 if ( be_careful+p>=0 ) incr(f)
3005 @ Here is a typical example of how the routines above can be used.
3006 It computes the function
3007 $${1\over3\tau}f(\theta,\phi)=
3008 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3009 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3010 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3011 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3012 fudge factor for placing the first control point of a curve that starts
3013 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3014 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3016 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3017 (It's a sum of eight terms whose absolute values can be bounded using
3018 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3019 is positive; and since the tension $\tau$ is constrained to be at least
3020 $3\over4$, the numerator is less than $16\over3$. The denominator is
3021 nonnegative and at most~6. Hence the fixed-point calculations below
3022 are guaranteed to stay within the bounds of a 32-bit computer word.
3024 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3025 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3026 $\sin\phi$, and $\cos\phi$, respectively.
3029 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3030 fraction cf, scaled t) {
3031 integer acc,num,denom; /* registers for intermediate calculations */
3032 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3033 acc=mp_take_fraction(mp, acc,ct-cf);
3034 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3035 /* $2^{28}\sqrt2\approx379625062.497$ */
3036 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3037 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3038 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3039 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3040 /* |make_scaled(fraction,scaled)=fraction| */
3041 if ( num / 4>=denom )
3042 return fraction_four;
3044 return mp_make_fraction(mp, num, denom);
3047 @ The following somewhat different subroutine tests rigorously if $ab$ is
3048 greater than, equal to, or less than~$cd$,
3049 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3050 The result is $+1$, 0, or~$-1$ in the three respective cases.
3052 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3055 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3056 integer q,r; /* temporary registers */
3057 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3059 q = a / d; r = c / b;
3061 return ( q>r ? 1 : -1);
3062 q = a % d; r = c % b;
3065 if ( q==0 ) return -1;
3067 } /* now |a>d>0| and |c>b>0| */
3070 @ @<Reduce to the case that |a...@>=
3071 if ( a<0 ) { negate(a); negate(b); };
3072 if ( c<0 ) { negate(c); negate(d); };
3075 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3079 return ( a==0 ? 0 : -1);
3080 q=a; a=c; c=q; q=-b; b=-d; d=q;
3081 } else if ( b<=0 ) {
3082 if ( b<0 ) if ( a>0 ) return -1;
3083 return (c==0 ? 0 : -1);
3086 @ We conclude this set of elementary routines with some simple rounding
3087 and truncation operations.
3089 @<Internal library declarations@>=
3090 #define mp_floor_scaled(M,i) ((i)&(-65536))
3091 #define mp_round_unscaled(M,i) (((i/32768)+1)/2)
3092 #define mp_round_fraction(M,i) (((i/2048)+1)/2)
3095 @* \[8] Algebraic and transcendental functions.
3096 \MP\ computes all of the necessary special functions from scratch, without
3097 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3099 @ To get the square root of a |scaled| number |x|, we want to calculate
3100 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3101 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3102 determines $s$ by an iterative method that maintains the invariant
3103 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3104 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3105 might, however, be zero at the start of the first iteration.
3108 scaled mp_square_rt (MP mp,scaled x) ;
3111 scaled mp_square_rt (MP mp,scaled x) {
3112 quarterword k; /* iteration control counter */
3113 integer y; /* register for intermediate calculations */
3114 unsigned q; /* register for intermediate calculations */
3116 @<Handle square root of zero or negative argument@>;
3119 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3122 if ( x<fraction_four ) y=0;
3123 else { x=x-fraction_four; y=1; };
3125 @<Decrease |k| by 1, maintaining the invariant
3126 relations between |x|, |y|, and~|q|@>;
3132 @ @<Handle square root of zero...@>=
3135 print_err("Square root of ");
3136 @.Square root...replaced by 0@>
3137 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3138 help2("Since I don't take square roots of negative numbers,",
3139 "I'm zeroing this one. Proceed, with fingers crossed.");
3145 @ @<Decrease |k| by 1, maintaining...@>=
3147 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3148 x=x-fraction_four; incr(y);
3150 x+=x; y=y+y-q; q+=q;
3151 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3152 if ( y>(int)q ){ y=y-q; q=q+2; }
3153 else if ( y<=0 ) { q=q-2; y=y+q; };
3156 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3157 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3158 @^Moler, Cleve Barry@>
3159 @^Morrison, Donald Ross@>
3160 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3161 in such a way that their Pythagorean sum remains invariant, while the
3162 smaller argument decreases.
3164 @<Internal library ...@>=
3165 integer mp_pyth_add (MP mp,integer a, integer b);
3169 integer mp_pyth_add (MP mp,integer a, integer b) {
3170 fraction r; /* register used to transform |a| and |b| */
3171 boolean big; /* is the result dangerously near $2^{31}$? */
3173 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3175 if ( a<fraction_two ) {
3178 a=a / 4; b=b / 4; big=true;
3179 }; /* we reduced the precision to avoid arithmetic overflow */
3180 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3182 if ( a<fraction_two ) {
3185 mp->arith_error=true; a=el_gordo;
3192 @ The key idea here is to reflect the vector $(a,b)$ about the
3193 line through $(a,b/2)$.
3195 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3197 r=mp_make_fraction(mp, b,a);
3198 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3200 r=mp_make_fraction(mp, r,fraction_four+r);
3201 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3205 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3206 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3209 integer mp_pyth_sub (MP mp,integer a, integer b) {
3210 fraction r; /* register used to transform |a| and |b| */
3211 boolean big; /* is the input dangerously near $2^{31}$? */
3214 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3216 if ( a<fraction_four ) {
3219 a=halfp(a); b=halfp(b); big=true;
3221 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3222 if ( big ) double(a);
3227 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3229 r=mp_make_fraction(mp, b,a);
3230 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3232 r=mp_make_fraction(mp, r,fraction_four-r);
3233 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3236 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3239 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3240 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3241 mp_print(mp, " has been replaced by 0");
3243 help2("Since I don't take square roots of negative numbers,",
3244 "I'm zeroing this one. Proceed, with fingers crossed.");
3250 @ The subroutines for logarithm and exponential involve two tables.
3251 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3252 a bit more calculation, which the author claims to have done correctly:
3253 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3254 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3257 @d two_to_the(A) (1<<(unsigned)(A))
3260 static const integer spec_log[29] = { 0, /* special logarithms */
3261 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3262 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3263 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3265 @ @<Local variables for initialization@>=
3266 integer k; /* all-purpose loop index */
3269 @ Here is the routine that calculates $2^8$ times the natural logarithm
3270 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3271 when |x| is a given positive integer.
3273 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3274 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3275 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3276 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3277 during the calculation, and sixteen auxiliary bits to extend |y| are
3278 kept in~|z| during the initial argument reduction. (We add
3279 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3280 not become negative; also, the actual amount subtracted from~|y| is~96,
3281 not~100, because we want to add~4 for rounding before the final division by~8.)
3284 scaled mp_m_log (MP mp,scaled x) {
3285 integer y,z; /* auxiliary registers */
3286 integer k; /* iteration counter */
3288 @<Handle non-positive logarithm@>;
3290 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3291 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3292 while ( x<fraction_four ) {
3293 double(x); y-=93032639; z-=48782;
3294 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3295 y=y+(z / unity); k=2;
3296 while ( x>fraction_four+4 ) {
3297 @<Increase |k| until |x| can be multiplied by a
3298 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3304 @ @<Increase |k| until |x| can...@>=
3306 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3307 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3308 y+=spec_log[k]; x-=z;
3311 @ @<Handle non-positive logarithm@>=
3313 print_err("Logarithm of ");
3314 @.Logarithm...replaced by 0@>
3315 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3316 help2("Since I don't take logs of non-positive numbers,",
3317 "I'm zeroing this one. Proceed, with fingers crossed.");
3322 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3323 when |x| is |scaled|. The result is an integer approximation to
3324 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3327 scaled mp_m_exp (MP mp,scaled x) {
3328 quarterword k; /* loop control index */
3329 integer y,z; /* auxiliary registers */
3330 if ( x>174436200 ) {
3331 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3332 mp->arith_error=true;
3334 } else if ( x<-197694359 ) {
3335 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3339 z=-8*x; y=04000000; /* $y=2^{20}$ */
3341 if ( x<=127919879 ) {
3343 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3345 z=8*(174436200-x); /* |z| is always nonnegative */
3349 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3351 return ((y+8) / 16);
3357 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3358 to multiplying |y| by $1-2^{-k}$.
3360 A subtle point (which had to be checked) was that if $x=127919879$, the
3361 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3362 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3363 and by~16 when |k=27|.
3365 @<Multiply |y| by...@>=
3368 while ( z>=spec_log[k] ) {
3370 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3375 @ The trigonometric subroutines use an auxiliary table such that
3376 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3377 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3380 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3381 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3382 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3384 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3385 returns the |angle| whose tangent points in the direction $(x,y)$.
3386 This subroutine first determines the correct octant, then solves the
3387 problem for |0<=y<=x|, then converts the result appropriately to
3388 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3389 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3390 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3392 The octants are represented in a ``Gray code,'' since that turns out
3393 to be computationally simplest.
3399 @d second_octant (first_octant+switch_x_and_y)
3400 @d third_octant (first_octant+switch_x_and_y+negate_x)
3401 @d fourth_octant (first_octant+negate_x)
3402 @d fifth_octant (first_octant+negate_x+negate_y)
3403 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3404 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3405 @d eighth_octant (first_octant+negate_y)
3408 angle mp_n_arg (MP mp,integer x, integer y) {
3409 angle z; /* auxiliary register */
3410 integer t; /* temporary storage */
3411 quarterword k; /* loop counter */
3412 int octant; /* octant code */
3414 octant=first_octant;
3416 negate(x); octant=first_octant+negate_x;
3419 negate(y); octant=octant+negate_y;
3422 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3425 @<Handle undefined arg@>;
3427 @<Set variable |z| to the arg of $(x,y)$@>;
3428 @<Return an appropriate answer based on |z| and |octant|@>;
3432 @ @<Handle undefined arg@>=
3434 print_err("angle(0,0) is taken as zero");
3435 @.angle(0,0)...zero@>
3436 help2("The `angle' between two identical points is undefined.",
3437 "I'm zeroing this one. Proceed, with fingers crossed.");
3442 @ @<Return an appropriate answer...@>=
3444 case first_octant: return z;
3445 case second_octant: return (ninety_deg-z);
3446 case third_octant: return (ninety_deg+z);
3447 case fourth_octant: return (one_eighty_deg-z);
3448 case fifth_octant: return (z-one_eighty_deg);
3449 case sixth_octant: return (-z-ninety_deg);
3450 case seventh_octant: return (z-ninety_deg);
3451 case eighth_octant: return (-z);
3452 }; /* there are no other cases */
3455 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3456 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3459 @<Set variable |z| to the arg...@>=
3460 while ( x>=fraction_two ) {
3461 x=halfp(x); y=halfp(y);
3465 while ( x<fraction_one ) {
3468 @<Increase |z| to the arg of $(x,y)$@>;
3471 @ During the calculations of this section, variables |x| and~|y|
3472 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3473 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3474 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3475 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3476 coordinates whose angle has decreased by~$\phi$; in the special case
3477 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3478 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3479 @^Meggitt, John E.@>
3480 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3482 The initial value of |x| will be multiplied by at most
3483 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3484 there is no chance of integer overflow.
3486 @<Increase |z|...@>=
3491 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3496 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3499 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3500 and cosine of that angle. The results of this routine are
3501 stored in global integer variables |n_sin| and |n_cos|.
3504 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3506 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3507 the purpose of |n_sin_cos(z)| is to set
3508 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3509 for some rather large number~|r|. The maximum of |x| and |y|
3510 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3511 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3514 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3516 quarterword k; /* loop control variable */
3517 int q; /* specifies the quadrant */
3518 fraction r; /* magnitude of |(x,y)| */
3519 integer x,y,t; /* temporary registers */
3520 while ( z<0 ) z=z+three_sixty_deg;
3521 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3522 q=z / forty_five_deg; z=z % forty_five_deg;
3523 x=fraction_one; y=x;
3524 if ( ! odd(q) ) z=forty_five_deg-z;
3525 @<Subtract angle |z| from |(x,y)|@>;
3526 @<Convert |(x,y)| to the octant determined by~|q|@>;
3527 r=mp_pyth_add(mp, x,y);
3528 mp->n_cos=mp_make_fraction(mp, x,r);
3529 mp->n_sin=mp_make_fraction(mp, y,r);
3532 @ In this case the octants are numbered sequentially.
3534 @<Convert |(x,...@>=
3537 case 1: t=x; x=y; y=t; break;
3538 case 2: t=x; x=-y; y=t; break;
3539 case 3: negate(x); break;
3540 case 4: negate(x); negate(y); break;
3541 case 5: t=x; x=-y; y=-t; break;
3542 case 6: t=x; x=y; y=-t; break;
3543 case 7: negate(y); break;
3544 } /* there are no other cases */
3546 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3547 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3548 that this loop is guaranteed to terminate before the (nonexistent) value
3549 |spec_atan[27]| would be required.
3551 @<Subtract angle |z|...@>=
3554 if ( z>=spec_atan[k] ) {
3555 z=z-spec_atan[k]; t=x;
3556 x=t+y / two_to_the(k);
3557 y=y-t / two_to_the(k);
3561 if ( y<0 ) y=0 /* this precaution may never be needed */
3563 @ And now let's complete our collection of numeric utility routines
3564 by considering random number generation.
3565 \MP\ generates pseudo-random numbers with the additive scheme recommended
3566 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3567 results are random fractions between 0 and |fraction_one-1|, inclusive.
3569 There's an auxiliary array |randoms| that contains 55 pseudo-random
3570 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3571 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3572 The global variable |j_random| tells which element has most recently
3574 The global variable |random_seed| was introduced in version 0.9,
3575 for the sole reason of stressing the fact that the initial value of the
3576 random seed is system-dependant. The initialization code below will initialize
3577 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3578 is not good enough on modern fast machines that are capable of running
3579 multiple MetaPost processes within the same second.
3580 @^system dependencies@>
3583 fraction randoms[55]; /* the last 55 random values generated */
3584 int j_random; /* the number of unused |randoms| */
3586 @ @<Option variables@>=
3587 int random_seed; /* the default random seed */
3589 @ @<Allocate or initialize ...@>=
3590 mp->random_seed = (scaled)opt->random_seed;
3592 @ To consume a random fraction, the program below will say `|next_random|'
3593 and then it will fetch |randoms[j_random]|.
3595 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3596 else decr(mp->j_random); }
3599 void mp_new_randoms (MP mp) {
3600 int k; /* index into |randoms| */
3601 fraction x; /* accumulator */
3602 for (k=0;k<=23;k++) {
3603 x=mp->randoms[k]-mp->randoms[k+31];
3604 if ( x<0 ) x=x+fraction_one;
3607 for (k=24;k<= 54;k++){
3608 x=mp->randoms[k]-mp->randoms[k-24];
3609 if ( x<0 ) x=x+fraction_one;
3616 void mp_init_randoms (MP mp,scaled seed);
3618 @ To initialize the |randoms| table, we call the following routine.
3621 void mp_init_randoms (MP mp,scaled seed) {
3622 fraction j,jj,k; /* more or less random integers */
3623 int i; /* index into |randoms| */
3625 while ( j>=fraction_one ) j=halfp(j);
3627 for (i=0;i<=54;i++ ){
3629 if ( k<0 ) k=k+fraction_one;
3630 mp->randoms[(i*21)% 55]=j;
3634 mp_new_randoms(mp); /* ``warm up'' the array */
3637 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3638 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3640 Note that the call of |take_fraction| will produce the values 0 and~|x|
3641 with about half the probability that it will produce any other particular
3642 values between 0 and~|x|, because it rounds its answers.
3645 scaled mp_unif_rand (MP mp,scaled x) {
3646 scaled y; /* trial value */
3647 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3648 if ( y==abs(x) ) return 0;
3649 else if ( x>0 ) return y;
3653 @ Finally, a normal deviate with mean zero and unit standard deviation
3654 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3655 {\sl The Art of Computer Programming\/}).
3658 scaled mp_norm_rand (MP mp) {
3659 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3663 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3664 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3665 next_random; u=mp->randoms[mp->j_random];
3666 } while (abs(x)>=u);
3667 x=mp_make_fraction(mp, x,u);
3668 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3669 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3673 @* \[9] Packed data.
3674 In order to make efficient use of storage space, \MP\ bases its major data
3675 structures on a |memory_word|, which contains either a (signed) integer,
3676 possibly scaled, or a small number of fields that are one half or one
3677 quarter of the size used for storing integers.
3679 If |x| is a variable of type |memory_word|, it contains up to four
3680 fields that can be referred to as follows:
3681 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3682 |x|&.|int|&(an |integer|)\cr
3683 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3684 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3685 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3687 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3688 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3689 This is somewhat cumbersome to write, and not very readable either, but
3690 macros will be used to make the notation shorter and more transparent.
3691 The code below gives a formal definition of |memory_word| and
3692 its subsidiary types, using packed variant records. \MP\ makes no
3693 assumptions about the relative positions of the fields within a word.
3695 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3696 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3698 @ Here are the inequalities that the quarterword and halfword values
3699 must satisfy (or rather, the inequalities that they mustn't satisfy):
3701 @<Check the ``constant''...@>=
3702 if (mp->ini_version) {
3703 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3705 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3707 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3708 if ( mp->max_strings>max_halfword ) mp->bad=13;
3710 @ The macros |qi| and |qo| are used for input to and output
3711 from quarterwords. These are legacy macros.
3712 @^system dependencies@>
3714 @d qo(A) (A) /* to read eight bits from a quarterword */
3715 @d qi(A) (quarterword)(A) /* to store eight bits in a quarterword */
3717 @ The reader should study the following definitions closely:
3718 @^system dependencies@>
3720 @d sc cint /* |scaled| data is equivalent to |integer| */
3723 typedef short quarterword; /* 1/4 of a word */
3724 typedef int halfword; /* 1/2 of a word */
3729 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3736 quarterword B2, B3, B0, B1;
3751 @ When debugging, we may want to print a |memory_word| without knowing
3752 what type it is; so we print it in all modes.
3756 void mp_print_word (MP mp,memory_word w) {
3757 /* prints |w| in all ways */
3758 mp_print_int(mp, w.cint); mp_print_char(mp, xord(' '));
3759 mp_print_scaled(mp, w.sc); mp_print_char(mp, xord(' '));
3760 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3761 mp_print_int(mp, w.hh.lh); mp_print_char(mp, xord('='));
3762 mp_print_int(mp, w.hh.b0); mp_print_char(mp, xord(':'));
3763 mp_print_int(mp, w.hh.b1); mp_print_char(mp, xord(';'));
3764 mp_print_int(mp, w.hh.rh); mp_print_char(mp, xord(' '));
3765 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, xord(':'));
3766 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, xord(':'));
3767 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, xord(':'));
3768 mp_print_int(mp, w.qqqq.b3);
3772 @* \[10] Dynamic memory allocation.
3774 The \MP\ system does nearly all of its own memory allocation, so that it
3775 can readily be transported into environments that do not have automatic
3776 facilities for strings, garbage collection, etc., and so that it can be in
3777 control of what error messages the user receives. The dynamic storage
3778 requirements of \MP\ are handled by providing a large array |mem| in
3779 which consecutive blocks of words are used as nodes by the \MP\ routines.
3781 Pointer variables are indices into this array, or into another array
3782 called |eqtb| that will be explained later. A pointer variable might
3783 also be a special flag that lies outside the bounds of |mem|, so we
3784 allow pointers to assume any |halfword| value. The minimum memory
3785 index represents a null pointer.
3787 @d null 0 /* the null pointer */
3788 @d mp_void (null+1) /* a null pointer different from |null| */
3792 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3794 @ The |mem| array is divided into two regions that are allocated separately,
3795 but the dividing line between these two regions is not fixed; they grow
3796 together until finding their ``natural'' size in a particular job.
3797 Locations less than or equal to |lo_mem_max| are used for storing
3798 variable-length records consisting of two or more words each. This region
3799 is maintained using an algorithm similar to the one described in exercise
3800 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3801 appears in the allocated nodes; the program is responsible for knowing the
3802 relevant size when a node is freed. Locations greater than or equal to
3803 |hi_mem_min| are used for storing one-word records; a conventional
3804 \.{AVAIL} stack is used for allocation in this region.
3806 Locations of |mem| between |0| and |mem_top| may be dumped as part
3807 of preloaded mem files, by the \.{INIMP} preprocessor.
3809 Production versions of \MP\ may extend the memory at the top end in order to
3810 provide more space; these locations, between |mem_top| and |mem_max|,
3811 are always used for single-word nodes.
3813 The key pointers that govern |mem| allocation have a prescribed order:
3814 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3817 memory_word *mem; /* the big dynamic storage area */
3818 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3819 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3823 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3824 @d xrealloc(P,A,B) mp_xrealloc(mp,P,(size_t)A,B)
3825 @d xmalloc(A,B) mp_xmalloc(mp,(size_t)A,B)
3826 @d xstrdup(A) mp_xstrdup(mp,A)
3827 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3829 @<Declare helpers@>=
3830 void mp_xfree (void *x);
3831 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3832 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3833 char *mp_xstrdup(MP mp, const char *s);
3834 void mp_do_snprintf(char *str, int size, const char *fmt, ...);
3836 @ The |max_size_test| guards against overflow, on the assumption that
3837 |size_t| is at least 31bits wide.
3839 @d max_size_test 0x7FFFFFFF
3842 void mp_xfree (void *x) {
3843 if (x!=NULL) free(x);
3845 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3847 if ((max_size_test/size)<nmem) {
3848 do_fprintf(mp->err_out,"Memory size overflow!\n");
3849 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3851 w = realloc (p,(nmem*size));
3853 do_fprintf(mp->err_out,"Out of memory!\n");
3854 mp->history =mp_system_error_stop; mp_jump_out(mp);
3858 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3860 if ((max_size_test/size)<nmem) {
3861 do_fprintf(mp->err_out,"Memory size overflow!\n");
3862 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3864 w = malloc (nmem*size);
3866 do_fprintf(mp->err_out,"Out of memory!\n");
3867 mp->history =mp_system_error_stop; mp_jump_out(mp);
3871 char *mp_xstrdup(MP mp, const char *s) {
3877 do_fprintf(mp->err_out,"Out of memory!\n");
3878 mp->history =mp_system_error_stop; mp_jump_out(mp);
3883 @ @<Internal library declarations@>=
3884 #ifdef HAVE_SNPRINTF
3885 #define mp_snprintf (void)snprintf
3887 #define mp_snprintf mp_do_snprintf
3890 @ This internal version is rather stupid, but good enough for its purpose.
3893 void mp_do_snprintf (char *str, int size, const char *format, ...) {
3898 work = (char *)workbuf;
3899 va_start(ap, format);
3901 for (fmt=format;*fmt!='\0';fmt++) {
3907 char *s = va_arg(ap, char *);
3910 if (size-->0) res++;
3917 sprintf(work,"%i",va_arg(ap, int));
3920 if (size-->0) res++;
3926 sprintf(work,"%g",va_arg(ap, double));
3929 if (size-->0) res++;
3935 if (size-->0) res++;
3939 if (size-->0) res++;
3941 if (size-->0) res++;
3946 if (size-->0) res++;
3954 @<Allocate or initialize ...@>=
3955 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3956 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3958 @ @<Dealloc variables@>=
3961 @ Users who wish to study the memory requirements of particular applications can
3962 can use optional special features that keep track of current and
3963 maximum memory usage. When code between the delimiters |stat| $\ldots$
3964 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3965 report these statistics when |mp_tracing_stats| is positive.
3968 integer var_used; integer dyn_used; /* how much memory is in use */
3970 @ Let's consider the one-word memory region first, since it's the
3971 simplest. The pointer variable |mem_end| holds the highest-numbered location
3972 of |mem| that has ever been used. The free locations of |mem| that
3973 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3974 |two_halves|, and we write |info(p)| and |mp_link(p)| for the |lh|
3975 and |rh| fields of |mem[p]| when it is of this type. The single-word
3976 free locations form a linked list
3977 $$|avail|,\;\hbox{|mp_link(avail)|},\;\hbox{|mp_link(mp_link(avail))|},\;\ldots$$
3978 terminated by |null|.
3980 @d mp_link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3981 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3984 pointer avail; /* head of the list of available one-word nodes */
3985 pointer mem_end; /* the last one-word node used in |mem| */
3987 @ If one-word memory is exhausted, it might mean that the user has forgotten
3988 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3989 later that try to help pinpoint the trouble.
3992 @<Declare the procedure called |show_token_list|@>
3993 @<Declare the procedure called |runaway|@>
3995 @ The function |get_avail| returns a pointer to a new one-word node whose
3996 |link| field is null. However, \MP\ will halt if there is no more room left.
4000 pointer mp_get_avail (MP mp) { /* single-word node allocation */
4001 pointer p; /* the new node being got */
4002 p=mp->avail; /* get top location in the |avail| stack */
4004 mp->avail=mp_link(mp->avail); /* and pop it off */
4005 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4006 incr(mp->mem_end); p=mp->mem_end;
4008 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4009 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4010 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4011 mp_overflow(mp, "main memory size",mp->mem_max);
4012 /* quit; all one-word nodes are busy */
4013 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4016 mp_link(p)=null; /* provide an oft-desired initialization of the new node */
4017 incr(mp->dyn_used);/* maintain statistics */
4021 @ Conversely, a one-word node is recycled by calling |free_avail|.
4023 @d free_avail(A) /* single-word node liberation */
4024 { mp_link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4026 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4027 overhead at the expense of extra programming. This macro is used in
4028 the places that would otherwise account for the most calls of |get_avail|.
4031 @d fast_get_avail(A) {
4032 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4033 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4034 else { mp->avail=mp_link((A)); mp_link((A))=null; incr(mp->dyn_used); }
4037 @ The available-space list that keeps track of the variable-size portion
4038 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4039 pointed to by the roving pointer |rover|.
4041 Each empty node has size 2 or more; the first word contains the special
4042 value |max_halfword| in its |link| field and the size in its |info| field;
4043 the second word contains the two pointers for double linking.
4045 Each nonempty node also has size 2 or more. Its first word is of type
4046 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4047 Otherwise there is complete flexibility with respect to the contents
4048 of its other fields and its other words.
4050 (We require |mem_max<max_halfword| because terrible things can happen
4051 when |max_halfword| appears in the |link| field of a nonempty node.)
4053 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4054 @d is_empty(A) (mp_link((A))==empty_flag) /* tests for empty node */
4055 @d node_size info /* the size field in empty variable-size nodes */
4056 @d lmp_link(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4057 @d rmp_link(A) mp_link((A)+1) /* right link in doubly-linked list of empty nodes */
4060 pointer rover; /* points to some node in the list of empties */
4062 @ A call to |get_node| with argument |s| returns a pointer to a new node
4063 of size~|s|, which must be 2~or more. The |link| field of the first word
4064 of this new node is set to null. An overflow stop occurs if no suitable
4067 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4068 areas and returns the value |max_halfword|.
4070 @<Internal library declarations@>=
4071 pointer mp_get_node (MP mp,integer s) ;
4074 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4075 pointer p; /* the node currently under inspection */
4076 pointer q; /* the node physically after node |p| */
4077 integer r; /* the newly allocated node, or a candidate for this honor */
4078 integer t,tt; /* temporary registers */
4081 p=mp->rover; /* start at some free node in the ring */
4083 @<Try to allocate within node |p| and its physical successors,
4084 and |goto found| if allocation was possible@>;
4085 if (rmp_link(p)==null || (rmp_link(p)==p && p!=mp->rover)) {
4086 print_err("Free list garbled");
4087 help3("I found an entry in the list of free nodes that links",
4088 "badly. I will try to ignore the broken link, but something",
4089 "is seriously amiss. It is wise to warn the maintainers.")
4091 rmp_link(p)=mp->rover;
4093 p=rmp_link(p); /* move to the next node in the ring */
4094 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4095 if ( s==010000000000 ) {
4096 return max_halfword;
4098 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4099 if ( mp->lo_mem_max+2<=max_halfword ) {
4100 @<Grow more variable-size memory and |goto restart|@>;
4103 mp_overflow(mp, "main memory size",mp->mem_max);
4104 /* sorry, nothing satisfactory is left */
4105 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4107 mp_link(r)=null; /* this node is now nonempty */
4108 mp->var_used+=s; /* maintain usage statistics */
4112 @ The lower part of |mem| grows by 1000 words at a time, unless
4113 we are very close to going under. When it grows, we simply link
4114 a new node into the available-space list. This method of controlled
4115 growth helps to keep the |mem| usage consecutive when \MP\ is
4116 implemented on ``virtual memory'' systems.
4119 @<Grow more variable-size memory and |goto restart|@>=
4121 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4122 t=mp->lo_mem_max+1000;
4124 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4125 /* |lo_mem_max+2<=t<hi_mem_min| */
4127 if ( t>max_halfword ) t=max_halfword;
4128 p=lmp_link(mp->rover); q=mp->lo_mem_max; rmp_link(p)=q; lmp_link(mp->rover)=q;
4129 rmp_link(q)=mp->rover; lmp_link(q)=p; mp_link(q)=empty_flag;
4130 node_size(q)=t-mp->lo_mem_max;
4131 mp->lo_mem_max=t; mp_link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4136 @ @<Try to allocate...@>=
4137 q=p+node_size(p); /* find the physical successor */
4138 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4139 t=rmp_link(q); tt=lmp_link(q);
4141 if ( q==mp->rover ) mp->rover=t;
4142 lmp_link(t)=tt; rmp_link(tt)=t;
4147 @<Allocate from the top of node |p| and |goto found|@>;
4150 if ( rmp_link(p)!=p ) {
4151 @<Allocate entire node |p| and |goto found|@>;
4154 node_size(p)=q-p /* reset the size in case it grew */
4156 @ @<Allocate from the top...@>=
4158 node_size(p)=r-p; /* store the remaining size */
4159 mp->rover=p; /* start searching here next time */
4163 @ Here we delete node |p| from the ring, and let |rover| rove around.
4165 @<Allocate entire...@>=
4167 mp->rover=rmp_link(p); t=lmp_link(p);
4168 lmp_link(mp->rover)=t; rmp_link(t)=mp->rover;
4172 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4173 the operation |free_node(p,s)| will make its words available, by inserting
4174 |p| as a new empty node just before where |rover| now points.
4176 @<Internal library declarations@>=
4177 void mp_free_node (MP mp, pointer p, halfword s) ;
4180 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4182 pointer q; /* |lmp_link(rover)| */
4183 node_size(p)=s; mp_link(p)=empty_flag;
4185 q=lmp_link(mp->rover); lmp_link(p)=q; rmp_link(p)=mp->rover; /* set both links */
4186 lmp_link(mp->rover)=p; rmp_link(q)=p; /* insert |p| into the ring */
4187 mp->var_used-=s; /* maintain statistics */
4190 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4191 available space list. The list is probably very short at such times, so a
4192 simple insertion sort is used. The smallest available location will be
4193 pointed to by |rover|, the next-smallest by |rmp_link(rover)|, etc.
4196 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4198 pointer p,q,r; /* indices into |mem| */
4199 pointer old_rover; /* initial |rover| setting */
4200 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4201 p=rmp_link(mp->rover); rmp_link(mp->rover)=max_halfword; old_rover=mp->rover;
4202 while ( p!=old_rover ) {
4203 @<Sort |p| into the list starting at |rover|
4204 and advance |p| to |rmp_link(p)|@>;
4207 while ( rmp_link(p)!=max_halfword ) {
4208 lmp_link(rmp_link(p))=p; p=rmp_link(p);
4210 rmp_link(p)=mp->rover; lmp_link(mp->rover)=p;
4213 @ The following |while| loop is guaranteed to
4214 terminate, since the list that starts at
4215 |rover| ends with |max_halfword| during the sorting procedure.
4218 if ( p<mp->rover ) {
4219 q=p; p=rmp_link(q); rmp_link(q)=mp->rover; mp->rover=q;
4222 while ( rmp_link(q)<p ) q=rmp_link(q);
4223 r=rmp_link(p); rmp_link(p)=rmp_link(q); rmp_link(q)=p; p=r;
4226 @* \[11] Memory layout.
4227 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4228 more efficient than dynamic allocation when we can get away with it. For
4229 example, locations |0| to |1| are always used to store a
4230 two-word dummy token whose second word is zero.
4231 The following macro definitions accomplish the static allocation by giving
4232 symbolic names to the fixed positions. Static variable-size nodes appear
4233 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4234 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4236 @d null_dash (2) /* the first two words are reserved for a null value */
4237 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4238 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4239 @d temp_val (zero_val+2) /* two words for a temporary value node */
4240 @d end_attr temp_val /* we use |end_attr+2| only */
4241 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4242 @d test_pen (inf_val+2)
4243 /* nine words for a pen used when testing the turning number */
4244 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4245 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4246 allocated word in the variable-size |mem| */
4248 @d sentinel mp->mem_top /* end of sorted lists */
4249 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4250 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4251 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4252 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4253 the one-word |mem| */
4255 @ The following code gets the dynamic part of |mem| off to a good start,
4256 when \MP\ is initializing itself the slow way.
4258 @<Initialize table entries (done by \.{INIMP} only)@>=
4259 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4260 mp_link(mp->rover)=empty_flag;
4261 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4262 lmp_link(mp->rover)=mp->rover; rmp_link(mp->rover)=mp->rover;
4263 mp->lo_mem_max=mp->rover+1000;
4264 mp_link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4265 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4266 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4268 mp->avail=null; mp->mem_end=mp->mem_top;
4269 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4270 mp->var_used=lo_mem_stat_max+1;
4271 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4272 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4274 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4275 nodes that starts at a given position, until coming to |sentinel| or a
4276 pointer that is not in the one-word region. Another procedure,
4277 |flush_node_list|, frees an entire linked list of one-word and two-word
4278 nodes, until coming to a |null| pointer.
4282 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4283 pointer q,r; /* list traversers */
4284 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4289 if ( r<mp->hi_mem_min ) break;
4290 } while (r!=sentinel);
4291 /* now |q| is the last node on the list */
4292 mp_link(q)=mp->avail; mp->avail=p;
4296 void mp_flush_node_list (MP mp,pointer p) {
4297 pointer q; /* the node being recycled */
4300 if ( q<mp->hi_mem_min )
4301 mp_free_node(mp, q,2);
4307 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4308 For example, some pointers might be wrong, or some ``dead'' nodes might not
4309 have been freed when the last reference to them disappeared. Procedures
4310 |check_mem| and |search_mem| are available to help diagnose such
4311 problems. These procedures make use of two arrays called |free| and
4312 |was_free| that are present only if \MP's debugging routines have
4313 been included. (You may want to decrease the size of |mem| while you
4317 Because |boolean|s are typedef-d as ints, it is better to use
4318 unsigned chars here.
4321 unsigned char *free; /* free cells */
4322 unsigned char *was_free; /* previously free cells */
4323 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4324 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4325 boolean panicking; /* do we want to check memory constantly? */
4327 @ @<Allocate or initialize ...@>=
4328 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4329 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4331 @ @<Dealloc variables@>=
4333 xfree(mp->was_free);
4335 @ @<Allocate or ...@>=
4336 mp->was_hi_min=mp->mem_max;
4337 mp->panicking=false;
4339 @ @<Declare |mp_reallocate| functions@>=
4340 void mp_reallocate_memory(MP mp, int l) ;
4343 void mp_reallocate_memory(MP mp, int l) {
4344 XREALLOC(mp->free, l, unsigned char);
4345 XREALLOC(mp->was_free, l, unsigned char);
4347 int newarea = l-mp->mem_max;
4348 XREALLOC(mp->mem, l, memory_word);
4349 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4351 XREALLOC(mp->mem, l, memory_word);
4352 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4355 if (mp->ini_version)
4361 @ Procedure |check_mem| makes sure that the available space lists of
4362 |mem| are well formed, and it optionally prints out all locations
4363 that are reserved now but were free the last time this procedure was called.
4366 void mp_check_mem (MP mp,boolean print_locs ) {
4367 pointer p,q,r; /* current locations of interest in |mem| */
4368 boolean clobbered; /* is something amiss? */
4369 for (p=0;p<=mp->lo_mem_max;p++) {
4370 mp->free[p]=false; /* you can probably do this faster */
4372 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4373 mp->free[p]=false; /* ditto */
4375 @<Check single-word |avail| list@>;
4376 @<Check variable-size |avail| list@>;
4377 @<Check flags of unavailable nodes@>;
4378 @<Check the list of linear dependencies@>;
4380 @<Print newly busy locations@>;
4382 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4383 mp->was_mem_end=mp->mem_end;
4384 mp->was_lo_max=mp->lo_mem_max;
4385 mp->was_hi_min=mp->hi_mem_min;
4388 @ @<Check single-word...@>=
4389 p=mp->avail; q=null; clobbered=false;
4391 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4392 else if ( mp->free[p] ) clobbered=true;
4394 mp_print_nl(mp, "AVAIL list clobbered at ");
4395 @.AVAIL list clobbered...@>
4396 mp_print_int(mp, q); break;
4398 mp->free[p]=true; q=p; p=mp_link(q);
4401 @ @<Check variable-size...@>=
4402 p=mp->rover; q=null; clobbered=false;
4404 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4405 else if ( (rmp_link(p)>=mp->lo_mem_max)||(rmp_link(p)<0) ) clobbered=true;
4406 else if ( !(is_empty(p))||(node_size(p)<2)||
4407 (p+node_size(p)>mp->lo_mem_max)|| (lmp_link(rmp_link(p))!=p) ) clobbered=true;
4409 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4410 @.Double-AVAIL list clobbered...@>
4411 mp_print_int(mp, q); break;
4413 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4414 if ( mp->free[q] ) {
4415 mp_print_nl(mp, "Doubly free location at ");
4416 @.Doubly free location...@>
4417 mp_print_int(mp, q); break;
4422 } while (p!=mp->rover)
4425 @ @<Check flags...@>=
4427 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4428 if ( is_empty(p) ) {
4429 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4432 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4433 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4436 @ @<Print newly busy...@>=
4438 @<Do intialization required before printing new busy locations@>;
4439 mp_print_nl(mp, "New busy locs:");
4441 for (p=0;p<= mp->lo_mem_max;p++ ) {
4442 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4443 @<Indicate that |p| is a new busy location@>;
4446 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4447 if ( ! mp->free[p] &&
4448 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4449 @<Indicate that |p| is a new busy location@>;
4452 @<Finish printing new busy locations@>;
4455 @ There might be many new busy locations so we are careful to print contiguous
4456 blocks compactly. During this operation |q| is the last new busy location and
4457 |r| is the start of the block containing |q|.
4459 @<Indicate that |p| is a new busy location@>=
4463 mp_print(mp, ".."); mp_print_int(mp, q);
4465 mp_print_char(mp, xord(' ')); mp_print_int(mp, p);
4471 @ @<Do intialization required before printing new busy locations@>=
4472 q=mp->mem_max; r=mp->mem_max
4474 @ @<Finish printing new busy locations@>=
4476 mp_print(mp, ".."); mp_print_int(mp, q);
4479 @ The |search_mem| procedure attempts to answer the question ``Who points
4480 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4481 that might not be of type |two_halves|. Strictly speaking, this is
4482 undefined, and it can lead to ``false drops'' (words that seem to
4483 point to |p| purely by coincidence). But for debugging purposes, we want
4484 to rule out the places that do {\sl not\/} point to |p|, so a few false
4485 drops are tolerable.
4488 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4489 integer q; /* current position being searched */
4490 for (q=0;q<=mp->lo_mem_max;q++) {
4491 if ( mp_link(q)==p ){
4492 mp_print_nl(mp, "MP_LINK("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4495 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4498 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4499 if ( mp_link(q)==p ) {
4500 mp_print_nl(mp, "MP_LINK("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4503 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4506 @<Search |eqtb| for equivalents equal to |p|@>;
4509 @* \[12] The command codes.
4510 Before we can go much further, we need to define symbolic names for the internal
4511 code numbers that represent the various commands obeyed by \MP. These codes
4512 are somewhat arbitrary, but not completely so. For example,
4513 some codes have been made adjacent so that |case| statements in the
4514 program need not consider cases that are widely spaced, or so that |case|
4515 statements can be replaced by |if| statements. A command can begin an
4516 expression if and only if its code lies between |min_primary_command| and
4517 |max_primary_command|, inclusive. The first token of a statement that doesn't
4518 begin with an expression has a command code between |min_command| and
4519 |max_statement_command|, inclusive. Anything less than |min_command| is
4520 eliminated during macro expansions, and anything no more than |max_pre_command|
4521 is eliminated when expanding \TeX\ material. Ranges such as
4522 |min_secondary_command..max_secondary_command| are used when parsing
4523 expressions, but the relative ordering within such a range is generally not
4526 The ordering of the highest-numbered commands
4527 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4528 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4529 for the smallest two commands. The ordering is also important in the ranges
4530 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4532 At any rate, here is the list, for future reference.
4534 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4535 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4536 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4537 @d max_pre_command mpx_break
4538 @d if_test 4 /* conditional text (\&{if}) */
4539 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}) */
4540 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4541 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4542 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4543 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4544 @d relax 10 /* do nothing (\.{\char`\\}) */
4545 @d scan_tokens 11 /* put a string into the input buffer */
4546 @d expand_after 12 /* look ahead one token */
4547 @d defined_macro 13 /* a macro defined by the user */
4548 @d min_command (defined_macro+1)
4549 @d save_command 14 /* save a list of tokens (\&{save}) */
4550 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4551 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4552 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4553 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4554 @d ship_out_command 19 /* output a character (\&{shipout}) */
4555 @d add_to_command 20 /* add to edges (\&{addto}) */
4556 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4557 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4558 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4559 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4560 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4561 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4562 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4563 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4564 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4565 @d special_command 30 /* output special info (\&{special})
4566 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4567 @d write_command 31 /* write text to a file (\&{write}) */
4568 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc.) */
4569 @d max_statement_command type_name
4570 @d min_primary_command type_name
4571 @d left_delimiter 33 /* the left delimiter of a matching pair */
4572 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4573 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4574 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4575 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4576 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4577 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4578 @d capsule_token 40 /* a value that has been put into a token list */
4579 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4580 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4581 @d min_suffix_token internal_quantity
4582 @d tag_token 43 /* a symbolic token without a primitive meaning */
4583 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4584 @d max_suffix_token numeric_token
4585 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4586 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4587 @d min_tertiary_command plus_or_minus
4588 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4589 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4590 @d max_tertiary_command tertiary_binary
4591 @d left_brace 48 /* the operator `\.{\char`\{}' */
4592 @d min_expression_command left_brace
4593 @d path_join 49 /* the operator `\.{..}' */
4594 @d ampersand 50 /* the operator `\.\&' */
4595 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4596 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4597 @d equals 53 /* the operator `\.=' */
4598 @d max_expression_command equals
4599 @d and_command 54 /* the operator `\&{and}' */
4600 @d min_secondary_command and_command
4601 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4602 @d slash 56 /* the operator `\./' */
4603 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4604 @d max_secondary_command secondary_binary
4605 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4606 @d controls 59 /* specify control points explicitly (\&{controls}) */
4607 @d tension 60 /* specify tension between knots (\&{tension}) */
4608 @d at_least 61 /* bounded tension value (\&{atleast}) */
4609 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4610 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4611 @d right_delimiter 64 /* the right delimiter of a matching pair */
4612 @d left_bracket 65 /* the operator `\.[' */
4613 @d right_bracket 66 /* the operator `\.]' */
4614 @d right_brace 67 /* the operator `\.{\char`\}}' */
4615 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4617 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4618 @d of_token 70 /* the operator `\&{of}' */
4619 @d to_token 71 /* the operator `\&{to}' */
4620 @d step_token 72 /* the operator `\&{step}' */
4621 @d until_token 73 /* the operator `\&{until}' */
4622 @d within_token 74 /* the operator `\&{within}' */
4623 @d lig_kern_token 75
4624 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}', etc. */
4625 @d assignment 76 /* the operator `\.{:=}' */
4626 @d skip_to 77 /* the operation `\&{skipto}' */
4627 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4628 @d double_colon 79 /* the operator `\.{::}' */
4629 @d colon 80 /* the operator `\.:' */
4631 @d comma 81 /* the operator `\.,', must be |colon+1| */
4632 @d end_of_statement (mp->cur_cmd>comma)
4633 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4634 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4635 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4636 @d max_command_code stop
4637 @d outer_tag (max_command_code+1) /* protection code added to command code */
4640 typedef int command_code;
4642 @ Variables and capsules in \MP\ have a variety of ``types,''
4643 distinguished by the code numbers defined here. These numbers are also
4644 not completely arbitrary. Things that get expanded must have types
4645 |>mp_independent|; a type remaining after expansion is numeric if and only if
4646 its code number is at least |numeric_type|; objects containing numeric
4647 parts must have types between |transform_type| and |pair_type|;
4648 all other types must be smaller than |transform_type|; and among the types
4649 that are not unknown or vacuous, the smallest two must be |boolean_type|
4650 and |string_type| in that order.
4652 @d undefined 0 /* no type has been declared */
4653 @d unknown_tag 1 /* this constant is added to certain type codes below */
4654 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4655 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4658 enum mp_variable_type {
4659 mp_vacuous=1, /* no expression was present */
4660 mp_boolean_type, /* \&{boolean} with a known value */
4662 mp_string_type, /* \&{string} with a known value */
4664 mp_pen_type, /* \&{pen} with a known value */
4666 mp_path_type, /* \&{path} with a known value */
4668 mp_picture_type, /* \&{picture} with a known value */
4670 mp_transform_type, /* \&{transform} variable or capsule */
4671 mp_color_type, /* \&{color} variable or capsule */
4672 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4673 mp_pair_type, /* \&{pair} variable or capsule */
4674 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4675 mp_known, /* \&{numeric} with a known value */
4676 mp_dependent, /* a linear combination with |fraction| coefficients */
4677 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4678 mp_independent, /* \&{numeric} with unknown value */
4679 mp_token_list, /* variable name or suffix argument or text argument */
4680 mp_structured, /* variable with subscripts and attributes */
4681 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4682 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4686 void mp_print_type (MP mp,quarterword t) ;
4688 @ @<Basic printing procedures@>=
4689 void mp_print_type (MP mp,quarterword t) {
4691 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4692 case mp_boolean_type:mp_print(mp, "boolean"); break;
4693 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4694 case mp_string_type:mp_print(mp, "string"); break;
4695 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4696 case mp_pen_type:mp_print(mp, "pen"); break;
4697 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4698 case mp_path_type:mp_print(mp, "path"); break;
4699 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4700 case mp_picture_type:mp_print(mp, "picture"); break;
4701 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4702 case mp_transform_type:mp_print(mp, "transform"); break;
4703 case mp_color_type:mp_print(mp, "color"); break;
4704 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4705 case mp_pair_type:mp_print(mp, "pair"); break;
4706 case mp_known:mp_print(mp, "known numeric"); break;
4707 case mp_dependent:mp_print(mp, "dependent"); break;
4708 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4709 case mp_numeric_type:mp_print(mp, "numeric"); break;
4710 case mp_independent:mp_print(mp, "independent"); break;
4711 case mp_token_list:mp_print(mp, "token list"); break;
4712 case mp_structured:mp_print(mp, "mp_structured"); break;
4713 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4714 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4715 default: mp_print(mp, "undefined"); break;
4719 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4720 as well as a |type|. The possibilities for |name_type| are defined
4721 here; they will be explained in more detail later.
4725 mp_root=0, /* |name_type| at the top level of a variable */
4726 mp_saved_root, /* same, when the variable has been saved */
4727 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4728 mp_subscr, /* |name_type| in a subscript node */
4729 mp_attr, /* |name_type| in an attribute node */
4730 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4731 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4732 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4733 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4734 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4735 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4736 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4737 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4738 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4739 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4740 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4741 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4742 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4743 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4744 mp_capsule, /* |name_type| in stashed-away subexpressions */
4745 mp_token /* |name_type| in a numeric token or string token */
4748 @ Primitive operations that produce values have a secondary identification
4749 code in addition to their command code; it's something like genera and species.
4750 For example, `\.*' has the command code |primary_binary|, and its
4751 secondary identification is |times|. The secondary codes start at 30 so that
4752 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4753 are used as operators as well as type identifications. The relative values
4754 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4755 and |filled_op..bounded_op|. The restrictions are that
4756 |and_op-false_code=or_op-true_code|, that the ordering of
4757 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4758 and the ordering of |filled_op..bounded_op| must match that of the code
4759 values they test for.
4761 @d true_code 30 /* operation code for \.{true} */
4762 @d false_code 31 /* operation code for \.{false} */
4763 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4764 @d null_pen_code 33 /* operation code for \.{nullpen} */
4765 @d job_name_op 34 /* operation code for \.{jobname} */
4766 @d read_string_op 35 /* operation code for \.{readstring} */
4767 @d pen_circle 36 /* operation code for \.{pencircle} */
4768 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4769 @d read_from_op 38 /* operation code for \.{readfrom} */
4770 @d close_from_op 39 /* operation code for \.{closefrom} */
4771 @d odd_op 40 /* operation code for \.{odd} */
4772 @d known_op 41 /* operation code for \.{known} */
4773 @d unknown_op 42 /* operation code for \.{unknown} */
4774 @d not_op 43 /* operation code for \.{not} */
4775 @d decimal 44 /* operation code for \.{decimal} */
4776 @d reverse 45 /* operation code for \.{reverse} */
4777 @d make_path_op 46 /* operation code for \.{makepath} */
4778 @d make_pen_op 47 /* operation code for \.{makepen} */
4779 @d oct_op 48 /* operation code for \.{oct} */
4780 @d hex_op 49 /* operation code for \.{hex} */
4781 @d ASCII_op 50 /* operation code for \.{ASCII} */
4782 @d char_op 51 /* operation code for \.{char} */
4783 @d length_op 52 /* operation code for \.{length} */
4784 @d turning_op 53 /* operation code for \.{turningnumber} */
4785 @d color_model_part 54 /* operation code for \.{colormodel} */
4786 @d x_part 55 /* operation code for \.{xpart} */
4787 @d y_part 56 /* operation code for \.{ypart} */
4788 @d xx_part 57 /* operation code for \.{xxpart} */
4789 @d xy_part 58 /* operation code for \.{xypart} */
4790 @d yx_part 59 /* operation code for \.{yxpart} */
4791 @d yy_part 60 /* operation code for \.{yypart} */
4792 @d red_part 61 /* operation code for \.{redpart} */
4793 @d green_part 62 /* operation code for \.{greenpart} */
4794 @d blue_part 63 /* operation code for \.{bluepart} */
4795 @d cyan_part 64 /* operation code for \.{cyanpart} */
4796 @d magenta_part 65 /* operation code for \.{magentapart} */
4797 @d yellow_part 66 /* operation code for \.{yellowpart} */
4798 @d black_part 67 /* operation code for \.{blackpart} */
4799 @d grey_part 68 /* operation code for \.{greypart} */
4800 @d font_part 69 /* operation code for \.{fontpart} */
4801 @d text_part 70 /* operation code for \.{textpart} */
4802 @d path_part 71 /* operation code for \.{pathpart} */
4803 @d pen_part 72 /* operation code for \.{penpart} */
4804 @d dash_part 73 /* operation code for \.{dashpart} */
4805 @d sqrt_op 74 /* operation code for \.{sqrt} */
4806 @d mp_m_exp_op 75 /* operation code for \.{mexp} */
4807 @d mp_m_log_op 76 /* operation code for \.{mlog} */
4808 @d sin_d_op 77 /* operation code for \.{sind} */
4809 @d cos_d_op 78 /* operation code for \.{cosd} */
4810 @d floor_op 79 /* operation code for \.{floor} */
4811 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4812 @d char_exists_op 81 /* operation code for \.{charexists} */
4813 @d font_size 82 /* operation code for \.{fontsize} */
4814 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4815 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4816 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4817 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4818 @d arc_length 87 /* operation code for \.{arclength} */
4819 @d angle_op 88 /* operation code for \.{angle} */
4820 @d cycle_op 89 /* operation code for \.{cycle} */
4821 @d filled_op 90 /* operation code for \.{filled} */
4822 @d stroked_op 91 /* operation code for \.{stroked} */
4823 @d textual_op 92 /* operation code for \.{textual} */
4824 @d clipped_op 93 /* operation code for \.{clipped} */
4825 @d bounded_op 94 /* operation code for \.{bounded} */
4826 @d plus 95 /* operation code for \.+ */
4827 @d minus 96 /* operation code for \.- */
4828 @d times 97 /* operation code for \.* */
4829 @d over 98 /* operation code for \./ */
4830 @d pythag_add 99 /* operation code for \.{++} */
4831 @d pythag_sub 100 /* operation code for \.{+-+} */
4832 @d or_op 101 /* operation code for \.{or} */
4833 @d and_op 102 /* operation code for \.{and} */
4834 @d less_than 103 /* operation code for \.< */
4835 @d less_or_equal 104 /* operation code for \.{<=} */
4836 @d greater_than 105 /* operation code for \.> */
4837 @d greater_or_equal 106 /* operation code for \.{>=} */
4838 @d equal_to 107 /* operation code for \.= */
4839 @d unequal_to 108 /* operation code for \.{<>} */
4840 @d concatenate 109 /* operation code for \.\& */
4841 @d rotated_by 110 /* operation code for \.{rotated} */
4842 @d slanted_by 111 /* operation code for \.{slanted} */
4843 @d scaled_by 112 /* operation code for \.{scaled} */
4844 @d shifted_by 113 /* operation code for \.{shifted} */
4845 @d transformed_by 114 /* operation code for \.{transformed} */
4846 @d x_scaled 115 /* operation code for \.{xscaled} */
4847 @d y_scaled 116 /* operation code for \.{yscaled} */
4848 @d z_scaled 117 /* operation code for \.{zscaled} */
4849 @d in_font 118 /* operation code for \.{infont} */
4850 @d intersect 119 /* operation code for \.{intersectiontimes} */
4851 @d double_dot 120 /* operation code for improper \.{..} */
4852 @d substring_of 121 /* operation code for \.{substring} */
4853 @d min_of substring_of
4854 @d subpath_of 122 /* operation code for \.{subpath} */
4855 @d direction_time_of 123 /* operation code for \.{directiontime} */
4856 @d point_of 124 /* operation code for \.{point} */
4857 @d precontrol_of 125 /* operation code for \.{precontrol} */
4858 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4859 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4860 @d arc_time_of 128 /* operation code for \.{arctime} */
4861 @d mp_version 129 /* operation code for \.{mpversion} */
4862 @d envelope_of 130 /* operation code for \.{envelope} */
4864 @c void mp_print_op (MP mp,quarterword c) {
4865 if (c<=mp_numeric_type ) {
4866 mp_print_type(mp, c);
4869 case true_code:mp_print(mp, "true"); break;
4870 case false_code:mp_print(mp, "false"); break;
4871 case null_picture_code:mp_print(mp, "nullpicture"); break;
4872 case null_pen_code:mp_print(mp, "nullpen"); break;
4873 case job_name_op:mp_print(mp, "jobname"); break;
4874 case read_string_op:mp_print(mp, "readstring"); break;
4875 case pen_circle:mp_print(mp, "pencircle"); break;
4876 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4877 case read_from_op:mp_print(mp, "readfrom"); break;
4878 case close_from_op:mp_print(mp, "closefrom"); break;
4879 case odd_op:mp_print(mp, "odd"); break;
4880 case known_op:mp_print(mp, "known"); break;
4881 case unknown_op:mp_print(mp, "unknown"); break;
4882 case not_op:mp_print(mp, "not"); break;
4883 case decimal:mp_print(mp, "decimal"); break;
4884 case reverse:mp_print(mp, "reverse"); break;
4885 case make_path_op:mp_print(mp, "makepath"); break;
4886 case make_pen_op:mp_print(mp, "makepen"); break;
4887 case oct_op:mp_print(mp, "oct"); break;
4888 case hex_op:mp_print(mp, "hex"); break;
4889 case ASCII_op:mp_print(mp, "ASCII"); break;
4890 case char_op:mp_print(mp, "char"); break;
4891 case length_op:mp_print(mp, "length"); break;
4892 case turning_op:mp_print(mp, "turningnumber"); break;
4893 case x_part:mp_print(mp, "xpart"); break;
4894 case y_part:mp_print(mp, "ypart"); break;
4895 case xx_part:mp_print(mp, "xxpart"); break;
4896 case xy_part:mp_print(mp, "xypart"); break;
4897 case yx_part:mp_print(mp, "yxpart"); break;
4898 case yy_part:mp_print(mp, "yypart"); break;
4899 case red_part:mp_print(mp, "redpart"); break;
4900 case green_part:mp_print(mp, "greenpart"); break;
4901 case blue_part:mp_print(mp, "bluepart"); break;
4902 case cyan_part:mp_print(mp, "cyanpart"); break;
4903 case magenta_part:mp_print(mp, "magentapart"); break;
4904 case yellow_part:mp_print(mp, "yellowpart"); break;
4905 case black_part:mp_print(mp, "blackpart"); break;
4906 case grey_part:mp_print(mp, "greypart"); break;
4907 case color_model_part:mp_print(mp, "colormodel"); break;
4908 case font_part:mp_print(mp, "fontpart"); break;
4909 case text_part:mp_print(mp, "textpart"); break;
4910 case path_part:mp_print(mp, "pathpart"); break;
4911 case pen_part:mp_print(mp, "penpart"); break;
4912 case dash_part:mp_print(mp, "dashpart"); break;
4913 case sqrt_op:mp_print(mp, "sqrt"); break;
4914 case mp_m_exp_op:mp_print(mp, "mexp"); break;
4915 case mp_m_log_op:mp_print(mp, "mlog"); break;
4916 case sin_d_op:mp_print(mp, "sind"); break;
4917 case cos_d_op:mp_print(mp, "cosd"); break;
4918 case floor_op:mp_print(mp, "floor"); break;
4919 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4920 case char_exists_op:mp_print(mp, "charexists"); break;
4921 case font_size:mp_print(mp, "fontsize"); break;
4922 case ll_corner_op:mp_print(mp, "llcorner"); break;
4923 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4924 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4925 case ur_corner_op:mp_print(mp, "urcorner"); break;
4926 case arc_length:mp_print(mp, "arclength"); break;
4927 case angle_op:mp_print(mp, "angle"); break;
4928 case cycle_op:mp_print(mp, "cycle"); break;
4929 case filled_op:mp_print(mp, "filled"); break;
4930 case stroked_op:mp_print(mp, "stroked"); break;
4931 case textual_op:mp_print(mp, "textual"); break;
4932 case clipped_op:mp_print(mp, "clipped"); break;
4933 case bounded_op:mp_print(mp, "bounded"); break;
4934 case plus:mp_print_char(mp, xord('+')); break;
4935 case minus:mp_print_char(mp, xord('-')); break;
4936 case times:mp_print_char(mp, xord('*')); break;
4937 case over:mp_print_char(mp, xord('/')); break;
4938 case pythag_add:mp_print(mp, "++"); break;
4939 case pythag_sub:mp_print(mp, "+-+"); break;
4940 case or_op:mp_print(mp, "or"); break;
4941 case and_op:mp_print(mp, "and"); break;
4942 case less_than:mp_print_char(mp, xord('<')); break;
4943 case less_or_equal:mp_print(mp, "<="); break;
4944 case greater_than:mp_print_char(mp, xord('>')); break;
4945 case greater_or_equal:mp_print(mp, ">="); break;
4946 case equal_to:mp_print_char(mp, xord('=')); break;
4947 case unequal_to:mp_print(mp, "<>"); break;
4948 case concatenate:mp_print(mp, "&"); break;
4949 case rotated_by:mp_print(mp, "rotated"); break;
4950 case slanted_by:mp_print(mp, "slanted"); break;
4951 case scaled_by:mp_print(mp, "scaled"); break;
4952 case shifted_by:mp_print(mp, "shifted"); break;
4953 case transformed_by:mp_print(mp, "transformed"); break;
4954 case x_scaled:mp_print(mp, "xscaled"); break;
4955 case y_scaled:mp_print(mp, "yscaled"); break;
4956 case z_scaled:mp_print(mp, "zscaled"); break;
4957 case in_font:mp_print(mp, "infont"); break;
4958 case intersect:mp_print(mp, "intersectiontimes"); break;
4959 case substring_of:mp_print(mp, "substring"); break;
4960 case subpath_of:mp_print(mp, "subpath"); break;
4961 case direction_time_of:mp_print(mp, "directiontime"); break;
4962 case point_of:mp_print(mp, "point"); break;
4963 case precontrol_of:mp_print(mp, "precontrol"); break;
4964 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4965 case pen_offset_of:mp_print(mp, "penoffset"); break;
4966 case arc_time_of:mp_print(mp, "arctime"); break;
4967 case mp_version:mp_print(mp, "mpversion"); break;
4968 case envelope_of:mp_print(mp, "envelope"); break;
4969 default: mp_print(mp, ".."); break;
4974 @ \MP\ also has a bunch of internal parameters that a user might want to
4975 fuss with. Every such parameter has an identifying code number, defined here.
4978 enum mp_given_internal {
4979 mp_tracing_titles=1, /* show titles online when they appear */
4980 mp_tracing_equations, /* show each variable when it becomes known */
4981 mp_tracing_capsules, /* show capsules too */
4982 mp_tracing_choices, /* show the control points chosen for paths */
4983 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4984 mp_tracing_commands, /* show commands and operations before they are performed */
4985 mp_tracing_restores, /* show when a variable or internal is restored */
4986 mp_tracing_macros, /* show macros before they are expanded */
4987 mp_tracing_output, /* show digitized edges as they are output */
4988 mp_tracing_stats, /* show memory usage at end of job */
4989 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4990 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4991 mp_year, /* the current year (e.g., 1984) */
4992 mp_month, /* the current month (e.g., 3 $\equiv$ March) */
4993 mp_day, /* the current day of the month */
4994 mp_time, /* the number of minutes past midnight when this job started */
4995 mp_char_code, /* the number of the next character to be output */
4996 mp_char_ext, /* the extension code of the next character to be output */
4997 mp_char_wd, /* the width of the next character to be output */
4998 mp_char_ht, /* the height of the next character to be output */
4999 mp_char_dp, /* the depth of the next character to be output */
5000 mp_char_ic, /* the italic correction of the next character to be output */
5001 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5002 mp_pausing, /* positive to display lines on the terminal before they are read */
5003 mp_showstopping, /* positive to stop after each \&{show} command */
5004 mp_fontmaking, /* positive if font metric output is to be produced */
5005 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5006 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5007 mp_miterlimit, /* controls miter length as in \ps */
5008 mp_warning_check, /* controls error message when variable value is large */
5009 mp_boundary_char, /* the right boundary character for ligatures */
5010 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5011 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5012 mp_default_color_model, /* the default color model for unspecified items */
5013 mp_restore_clip_color,
5014 mp_procset, /* wether or not create PostScript command shortcuts */
5015 mp_gtroffmode /* whether the user specified |-troff| on the command line */
5020 @d max_given_internal mp_gtroffmode
5023 scaled *internal; /* the values of internal quantities */
5024 char **int_name; /* their names */
5025 int int_ptr; /* the maximum internal quantity defined so far */
5026 int max_internal; /* current maximum number of internal quantities */
5028 @ @<Option variables@>=
5031 @ @<Allocate or initialize ...@>=
5032 mp->max_internal=2*max_given_internal;
5033 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5034 memset(mp->internal,0,(mp->max_internal+1)* sizeof(scaled));
5035 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5036 memset(mp->int_name,0,(mp->max_internal+1) * sizeof(char *));
5037 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5039 @ @<Exported function ...@>=
5040 int mp_troff_mode(MP mp);
5043 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5045 @ @<Set initial ...@>=
5046 mp->int_ptr=max_given_internal;
5048 @ The symbolic names for internal quantities are put into \MP's hash table
5049 by using a routine called |primitive|, which will be defined later. Let us
5050 enter them now, so that we don't have to list all those names again
5053 @<Put each of \MP's primitives into the hash table@>=
5054 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5055 @:tracingtitles_}{\&{tracingtitles} primitive@>
5056 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5057 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5058 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5059 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5060 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5061 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5062 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5063 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5064 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5065 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5066 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5067 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5068 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5069 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5070 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5071 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5072 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5073 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5074 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5075 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5076 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5077 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5078 mp_primitive(mp, "year",internal_quantity,mp_year);
5079 @:mp_year_}{\&{year} primitive@>
5080 mp_primitive(mp, "month",internal_quantity,mp_month);
5081 @:mp_month_}{\&{month} primitive@>
5082 mp_primitive(mp, "day",internal_quantity,mp_day);
5083 @:mp_day_}{\&{day} primitive@>
5084 mp_primitive(mp, "time",internal_quantity,mp_time);
5085 @:time_}{\&{time} primitive@>
5086 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5087 @:mp_char_code_}{\&{charcode} primitive@>
5088 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5089 @:mp_char_ext_}{\&{charext} primitive@>
5090 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5091 @:mp_char_wd_}{\&{charwd} primitive@>
5092 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5093 @:mp_char_ht_}{\&{charht} primitive@>
5094 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5095 @:mp_char_dp_}{\&{chardp} primitive@>
5096 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5097 @:mp_char_ic_}{\&{charic} primitive@>
5098 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5099 @:mp_design_size_}{\&{designsize} primitive@>
5100 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5101 @:mp_pausing_}{\&{pausing} primitive@>
5102 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5103 @:mp_showstopping_}{\&{showstopping} primitive@>
5104 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5105 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5106 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5107 @:mp_linejoin_}{\&{linejoin} primitive@>
5108 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5109 @:mp_linecap_}{\&{linecap} primitive@>
5110 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5111 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5112 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5113 @:mp_warning_check_}{\&{warningcheck} primitive@>
5114 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5115 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5116 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5117 @:mp_prologues_}{\&{prologues} primitive@>
5118 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5119 @:mp_true_corners_}{\&{truecorners} primitive@>
5120 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5121 @:mp_procset_}{\&{mpprocset} primitive@>
5122 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5123 @:troffmode_}{\&{troffmode} primitive@>
5124 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5125 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5126 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5127 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5129 @ Colors can be specified in four color models. In the special
5130 case of |no_model|, MetaPost does not output any color operator to
5131 the postscript output.
5133 Note: these values are passed directly on to |with_option|. This only
5134 works because the other possible values passed to |with_option| are
5135 8 and 10 respectively (from |with_pen| and |with_picture|).
5137 There is a first state, that is only used for |gs_colormodel|. It flags
5138 the fact that there has not been any kind of color specification by
5139 the user so far in the game.
5142 enum mp_color_model {
5147 mp_uninitialized_model=9
5151 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5152 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5153 mp->internal[mp_restore_clip_color]=unity;
5155 @ Well, we do have to list the names one more time, for use in symbolic
5158 @<Initialize table...@>=
5159 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5160 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5161 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5162 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5163 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5164 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5165 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5166 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5167 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5168 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5169 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5170 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5171 mp->int_name[mp_year]=xstrdup("year");
5172 mp->int_name[mp_month]=xstrdup("month");
5173 mp->int_name[mp_day]=xstrdup("day");
5174 mp->int_name[mp_time]=xstrdup("time");
5175 mp->int_name[mp_char_code]=xstrdup("charcode");
5176 mp->int_name[mp_char_ext]=xstrdup("charext");
5177 mp->int_name[mp_char_wd]=xstrdup("charwd");
5178 mp->int_name[mp_char_ht]=xstrdup("charht");
5179 mp->int_name[mp_char_dp]=xstrdup("chardp");
5180 mp->int_name[mp_char_ic]=xstrdup("charic");
5181 mp->int_name[mp_design_size]=xstrdup("designsize");
5182 mp->int_name[mp_pausing]=xstrdup("pausing");
5183 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5184 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5185 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5186 mp->int_name[mp_linecap]=xstrdup("linecap");
5187 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5188 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5189 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5190 mp->int_name[mp_prologues]=xstrdup("prologues");
5191 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5192 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5193 mp->int_name[mp_procset]=xstrdup("mpprocset");
5194 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5195 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5197 @ The following procedure, which is called just before \MP\ initializes its
5198 input and output, establishes the initial values of the date and time.
5199 @^system dependencies@>
5201 Note that the values are |scaled| integers. Hence \MP\ can no longer
5202 be used after the year 32767.
5205 void mp_fix_date_and_time (MP mp) {
5206 time_t aclock = time ((time_t *) 0);
5207 struct tm *tmptr = localtime (&aclock);
5208 mp->internal[mp_time]=
5209 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5210 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5211 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5212 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5216 void mp_fix_date_and_time (MP mp) ;
5218 @ \MP\ is occasionally supposed to print diagnostic information that
5219 goes only into the transcript file, unless |mp_tracing_online| is positive.
5220 Now that we have defined |mp_tracing_online| we can define
5221 two routines that adjust the destination of print commands:
5224 void mp_begin_diagnostic (MP mp) ;
5225 void mp_end_diagnostic (MP mp,boolean blank_line);
5226 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) ;
5228 @ @<Basic printing...@>=
5229 @<Declare a function called |true_line|@>
5230 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5231 mp->old_setting=mp->selector;
5232 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5234 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5238 void mp_end_diagnostic (MP mp,boolean blank_line) {
5239 /* restore proper conditions after tracing */
5240 mp_print_nl(mp, "");
5241 if ( blank_line ) mp_print_ln(mp);
5242 mp->selector=mp->old_setting;
5248 unsigned int old_setting;
5250 @ We will occasionally use |begin_diagnostic| in connection with line-number
5251 printing, as follows. (The parameter |s| is typically |"Path"| or
5252 |"Cycle spec"|, etc.)
5254 @<Basic printing...@>=
5255 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) {
5256 mp_begin_diagnostic(mp);
5257 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5258 mp_print(mp, " at line ");
5259 mp_print_int(mp, mp_true_line(mp));
5260 mp_print(mp, t); mp_print_char(mp, xord(':'));
5263 @ The 256 |ASCII_code| characters are grouped into classes by means of
5264 the |char_class| table. Individual class numbers have no semantic
5265 or syntactic significance, except in a few instances defined here.
5266 There's also |max_class|, which can be used as a basis for additional
5267 class numbers in nonstandard extensions of \MP.
5269 @d digit_class 0 /* the class number of \.{0123456789} */
5270 @d period_class 1 /* the class number of `\..' */
5271 @d space_class 2 /* the class number of spaces and nonstandard characters */
5272 @d percent_class 3 /* the class number of `\.\%' */
5273 @d string_class 4 /* the class number of `\."' */
5274 @d right_paren_class 8 /* the class number of `\.)' */
5275 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5276 @d letter_class 9 /* letters and the underline character */
5277 @d left_bracket_class 17 /* `\.[' */
5278 @d right_bracket_class 18 /* `\.]' */
5279 @d invalid_class 20 /* bad character in the input */
5280 @d max_class 20 /* the largest class number */
5283 int char_class[256]; /* the class numbers */
5285 @ If changes are made to accommodate non-ASCII character sets, they should
5286 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5287 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5288 @^system dependencies@>
5290 @<Set initial ...@>=
5291 for (k='0';k<='9';k++)
5292 mp->char_class[k]=digit_class;
5293 mp->char_class['.']=period_class;
5294 mp->char_class[' ']=space_class;
5295 mp->char_class['%']=percent_class;
5296 mp->char_class['"']=string_class;
5297 mp->char_class[',']=5;
5298 mp->char_class[';']=6;
5299 mp->char_class['(']=7;
5300 mp->char_class[')']=right_paren_class;
5301 for (k='A';k<= 'Z';k++ )
5302 mp->char_class[k]=letter_class;
5303 for (k='a';k<='z';k++)
5304 mp->char_class[k]=letter_class;
5305 mp->char_class['_']=letter_class;
5306 mp->char_class['<']=10;
5307 mp->char_class['=']=10;
5308 mp->char_class['>']=10;
5309 mp->char_class[':']=10;
5310 mp->char_class['|']=10;
5311 mp->char_class['`']=11;
5312 mp->char_class['\'']=11;
5313 mp->char_class['+']=12;
5314 mp->char_class['-']=12;
5315 mp->char_class['/']=13;
5316 mp->char_class['*']=13;
5317 mp->char_class['\\']=13;
5318 mp->char_class['!']=14;
5319 mp->char_class['?']=14;
5320 mp->char_class['#']=15;
5321 mp->char_class['&']=15;
5322 mp->char_class['@@']=15;
5323 mp->char_class['$']=15;
5324 mp->char_class['^']=16;
5325 mp->char_class['~']=16;
5326 mp->char_class['[']=left_bracket_class;
5327 mp->char_class[']']=right_bracket_class;
5328 mp->char_class['{']=19;
5329 mp->char_class['}']=19;
5331 mp->char_class[k]=invalid_class;
5332 mp->char_class['\t']=space_class;
5333 mp->char_class['\f']=space_class;
5334 for (k=127;k<=255;k++)
5335 mp->char_class[k]=invalid_class;
5337 @* \[13] The hash table.
5338 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5339 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5340 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5341 table, it is never removed.
5343 The actual sequence of characters forming a symbolic token is
5344 stored in the |str_pool| array together with all the other strings. An
5345 auxiliary array |hash| consists of items with two halfword fields per
5346 word. The first of these, called |next(p)|, points to the next identifier
5347 belonging to the same coalesced list as the identifier corresponding to~|p|;
5348 and the other, called |text(p)|, points to the |str_start| entry for
5349 |p|'s identifier. If position~|p| of the hash table is empty, we have
5350 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5351 hash list, we have |next(p)=0|.
5353 An auxiliary pointer variable called |hash_used| is maintained in such a
5354 way that all locations |p>=hash_used| are nonempty. The global variable
5355 |st_count| tells how many symbolic tokens have been defined, if statistics
5358 The first 256 locations of |hash| are reserved for symbols of length one.
5360 There's a parallel array called |eqtb| that contains the current equivalent
5361 values of each symbolic token. The entries of this array consist of
5362 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5363 piece of information that qualifies the |eq_type|).
5365 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5366 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5367 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5368 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5369 @d hash_base 257 /* hashing actually starts here */
5370 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5373 pointer hash_used; /* allocation pointer for |hash| */
5374 integer st_count; /* total number of known identifiers */
5376 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5377 since they are used in error recovery.
5379 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5380 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5381 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5382 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5383 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5384 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5385 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5386 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5387 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5388 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5389 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5390 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5391 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5392 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5393 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5394 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5395 @d hash_end (integer)(hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5398 two_halves *hash; /* the hash table */
5399 two_halves *eqtb; /* the equivalents */
5401 @ @<Allocate or initialize ...@>=
5402 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5403 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5405 @ @<Dealloc variables@>=
5410 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5411 for (k=2;k<=hash_end;k++) {
5412 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5415 @ @<Initialize table entries...@>=
5416 mp->hash_used=frozen_inaccessible; /* nothing is used */
5418 text(frozen_bad_vardef)=intern("a bad variable");
5419 text(frozen_etex)=intern("etex");
5420 text(frozen_mpx_break)=intern("mpxbreak");
5421 text(frozen_fi)=intern("fi");
5422 text(frozen_end_group)=intern("endgroup");
5423 text(frozen_end_def)=intern("enddef");
5424 text(frozen_end_for)=intern("endfor");
5425 text(frozen_semicolon)=intern(";");
5426 text(frozen_colon)=intern(":");
5427 text(frozen_slash)=intern("/");
5428 text(frozen_left_bracket)=intern("[");
5429 text(frozen_right_delimiter)=intern(")");
5430 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5431 eq_type(frozen_right_delimiter)=right_delimiter;
5433 @ @<Check the ``constant'' values...@>=
5434 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5436 @ Here is the subroutine that searches the hash table for an identifier
5437 that matches a given string of length~|l| appearing in |buffer[j..
5438 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5439 will always be found, and the corresponding hash table address
5443 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5444 integer h; /* hash code */
5445 pointer p; /* index in |hash| array */
5446 pointer k; /* index in |buffer| array */
5448 @<Treat special case of length 1 and |break|@>;
5450 @<Compute the hash code |h|@>;
5451 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5453 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5456 @<Insert a new symbolic token after |p|, then
5457 make |p| point to it and |break|@>;
5464 @ @<Treat special case of length 1...@>=
5465 p=mp->buffer[j]+1; text(p)=p-1; return p;
5468 @ @<Insert a new symbolic...@>=
5473 mp_overflow(mp, "hash size",mp->hash_size);
5474 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5475 decr(mp->hash_used);
5476 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5477 next(p)=mp->hash_used;
5481 for (k=j;k<=j+l-1;k++) {
5482 append_char(mp->buffer[k]);
5484 text(p)=mp_make_string(mp);
5485 mp->str_ref[text(p)]=max_str_ref;
5491 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5492 should be a prime number. The theory of hashing tells us to expect fewer
5493 than two table probes, on the average, when the search is successful.
5494 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5495 @^Vitter, Jeffrey Scott@>
5497 @<Compute the hash code |h|@>=
5499 for (k=j+1;k<=j+l-1;k++){
5500 h=h+h+mp->buffer[k];
5501 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5504 @ @<Search |eqtb| for equivalents equal to |p|@>=
5505 for (q=1;q<=hash_end;q++) {
5506 if ( equiv(q)==p ) {
5507 mp_print_nl(mp, "EQUIV(");
5508 mp_print_int(mp, q);
5509 mp_print_char(mp, xord(')'));
5513 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5514 table, together with their command code (which will be the |eq_type|)
5515 and an operand (which will be the |equiv|). The |primitive| procedure
5516 does this, in a way that no \MP\ user can. The global value |cur_sym|
5517 contains the new |eqtb| pointer after |primitive| has acted.
5520 void mp_primitive (MP mp, const char *ss, halfword c, halfword o) {
5521 pool_pointer k; /* index into |str_pool| */
5522 quarterword j; /* index into |buffer| */
5523 quarterword l; /* length of the string */
5526 k=mp->str_start[s]; l=str_stop(s)-k;
5527 /* we will move |s| into the (empty) |buffer| */
5528 for (j=0;j<=l-1;j++) {
5529 mp->buffer[j]=mp->str_pool[k+j];
5531 mp->cur_sym=mp_id_lookup(mp, 0,l);
5532 if ( s>=256 ) { /* we don't want to have the string twice */
5533 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5535 eq_type(mp->cur_sym)=c;
5536 equiv(mp->cur_sym)=o;
5540 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5541 by their |eq_type| alone. These primitives are loaded into the hash table
5544 @<Put each of \MP's primitives into the hash table@>=
5545 mp_primitive(mp, "..",path_join,0);
5546 @:.._}{\.{..} primitive@>
5547 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5548 @:[ }{\.{[} primitive@>
5549 mp_primitive(mp, "]",right_bracket,0);
5550 @:] }{\.{]} primitive@>
5551 mp_primitive(mp, "}",right_brace,0);
5552 @:]]}{\.{\char`\}} primitive@>
5553 mp_primitive(mp, "{",left_brace,0);
5554 @:][}{\.{\char`\{} primitive@>
5555 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5556 @:: }{\.{:} primitive@>
5557 mp_primitive(mp, "::",double_colon,0);
5558 @::: }{\.{::} primitive@>
5559 mp_primitive(mp, "||:",bchar_label,0);
5560 @:::: }{\.{\char'174\char'174:} primitive@>
5561 mp_primitive(mp, ":=",assignment,0);
5562 @::=_}{\.{:=} primitive@>
5563 mp_primitive(mp, ",",comma,0);
5564 @:, }{\., primitive@>
5565 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5566 @:; }{\.; primitive@>
5567 mp_primitive(mp, "\\",relax,0);
5568 @:]]\\}{\.{\char`\\} primitive@>
5570 mp_primitive(mp, "addto",add_to_command,0);
5571 @:add_to_}{\&{addto} primitive@>
5572 mp_primitive(mp, "atleast",at_least,0);
5573 @:at_least_}{\&{atleast} primitive@>
5574 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5575 @:begin_group_}{\&{begingroup} primitive@>
5576 mp_primitive(mp, "controls",controls,0);
5577 @:controls_}{\&{controls} primitive@>
5578 mp_primitive(mp, "curl",curl_command,0);
5579 @:curl_}{\&{curl} primitive@>
5580 mp_primitive(mp, "delimiters",delimiters,0);
5581 @:delimiters_}{\&{delimiters} primitive@>
5582 mp_primitive(mp, "endgroup",end_group,0);
5583 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5584 @:endgroup_}{\&{endgroup} primitive@>
5585 mp_primitive(mp, "everyjob",every_job_command,0);
5586 @:every_job_}{\&{everyjob} primitive@>
5587 mp_primitive(mp, "exitif",exit_test,0);
5588 @:exit_if_}{\&{exitif} primitive@>
5589 mp_primitive(mp, "expandafter",expand_after,0);
5590 @:expand_after_}{\&{expandafter} primitive@>
5591 mp_primitive(mp, "interim",interim_command,0);
5592 @:interim_}{\&{interim} primitive@>
5593 mp_primitive(mp, "let",let_command,0);
5594 @:let_}{\&{let} primitive@>
5595 mp_primitive(mp, "newinternal",new_internal,0);
5596 @:new_internal_}{\&{newinternal} primitive@>
5597 mp_primitive(mp, "of",of_token,0);
5598 @:of_}{\&{of} primitive@>
5599 mp_primitive(mp, "randomseed",mp_random_seed,0);
5600 @:mp_random_seed_}{\&{randomseed} primitive@>
5601 mp_primitive(mp, "save",save_command,0);
5602 @:save_}{\&{save} primitive@>
5603 mp_primitive(mp, "scantokens",scan_tokens,0);
5604 @:scan_tokens_}{\&{scantokens} primitive@>
5605 mp_primitive(mp, "shipout",ship_out_command,0);
5606 @:ship_out_}{\&{shipout} primitive@>
5607 mp_primitive(mp, "skipto",skip_to,0);
5608 @:skip_to_}{\&{skipto} primitive@>
5609 mp_primitive(mp, "special",special_command,0);
5610 @:special}{\&{special} primitive@>
5611 mp_primitive(mp, "fontmapfile",special_command,1);
5612 @:fontmapfile}{\&{fontmapfile} primitive@>
5613 mp_primitive(mp, "fontmapline",special_command,2);
5614 @:fontmapline}{\&{fontmapline} primitive@>
5615 mp_primitive(mp, "step",step_token,0);
5616 @:step_}{\&{step} primitive@>
5617 mp_primitive(mp, "str",str_op,0);
5618 @:str_}{\&{str} primitive@>
5619 mp_primitive(mp, "tension",tension,0);
5620 @:tension_}{\&{tension} primitive@>
5621 mp_primitive(mp, "to",to_token,0);
5622 @:to_}{\&{to} primitive@>
5623 mp_primitive(mp, "until",until_token,0);
5624 @:until_}{\&{until} primitive@>
5625 mp_primitive(mp, "within",within_token,0);
5626 @:within_}{\&{within} primitive@>
5627 mp_primitive(mp, "write",write_command,0);
5628 @:write_}{\&{write} primitive@>
5630 @ Each primitive has a corresponding inverse, so that it is possible to
5631 display the cryptic numeric contents of |eqtb| in symbolic form.
5632 Every call of |primitive| in this program is therefore accompanied by some
5633 straightforward code that forms part of the |print_cmd_mod| routine
5636 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5637 case add_to_command:mp_print(mp, "addto"); break;
5638 case assignment:mp_print(mp, ":="); break;
5639 case at_least:mp_print(mp, "atleast"); break;
5640 case bchar_label:mp_print(mp, "||:"); break;
5641 case begin_group:mp_print(mp, "begingroup"); break;
5642 case colon:mp_print(mp, ":"); break;
5643 case comma:mp_print(mp, ","); break;
5644 case controls:mp_print(mp, "controls"); break;
5645 case curl_command:mp_print(mp, "curl"); break;
5646 case delimiters:mp_print(mp, "delimiters"); break;
5647 case double_colon:mp_print(mp, "::"); break;
5648 case end_group:mp_print(mp, "endgroup"); break;
5649 case every_job_command:mp_print(mp, "everyjob"); break;
5650 case exit_test:mp_print(mp, "exitif"); break;
5651 case expand_after:mp_print(mp, "expandafter"); break;
5652 case interim_command:mp_print(mp, "interim"); break;
5653 case left_brace:mp_print(mp, "{"); break;
5654 case left_bracket:mp_print(mp, "["); break;
5655 case let_command:mp_print(mp, "let"); break;
5656 case new_internal:mp_print(mp, "newinternal"); break;
5657 case of_token:mp_print(mp, "of"); break;
5658 case path_join:mp_print(mp, ".."); break;
5659 case mp_random_seed:mp_print(mp, "randomseed"); break;
5660 case relax:mp_print_char(mp, xord('\\')); break;
5661 case right_brace:mp_print_char(mp, xord('}')); break;
5662 case right_bracket:mp_print_char(mp, xord(']')); break;
5663 case save_command:mp_print(mp, "save"); break;
5664 case scan_tokens:mp_print(mp, "scantokens"); break;
5665 case semicolon:mp_print_char(mp, xord(';')); break;
5666 case ship_out_command:mp_print(mp, "shipout"); break;
5667 case skip_to:mp_print(mp, "skipto"); break;
5668 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5669 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5670 mp_print(mp, "special"); break;
5671 case step_token:mp_print(mp, "step"); break;
5672 case str_op:mp_print(mp, "str"); break;
5673 case tension:mp_print(mp, "tension"); break;
5674 case to_token:mp_print(mp, "to"); break;
5675 case until_token:mp_print(mp, "until"); break;
5676 case within_token:mp_print(mp, "within"); break;
5677 case write_command:mp_print(mp, "write"); break;
5679 @ We will deal with the other primitives later, at some point in the program
5680 where their |eq_type| and |equiv| values are more meaningful. For example,
5681 the primitives for macro definitions will be loaded when we consider the
5682 routines that define macros.
5683 It is easy to find where each particular
5684 primitive was treated by looking in the index at the end; for example, the
5685 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5687 @* \[14] Token lists.
5688 A \MP\ token is either symbolic or numeric or a string, or it denotes
5689 a macro parameter or capsule; so there are five corresponding ways to encode it
5691 internally: (1)~A symbolic token whose hash code is~|p|
5692 is represented by the number |p|, in the |info| field of a single-word
5693 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5694 represented in a two-word node of~|mem|; the |type| field is |known|,
5695 the |name_type| field is |token|, and the |value| field holds~|v|.
5696 The fact that this token appears in a two-word node rather than a
5697 one-word node is, of course, clear from the node address.
5698 (3)~A string token is also represented in a two-word node; the |type|
5699 field is |mp_string_type|, the |name_type| field is |token|, and the
5700 |value| field holds the corresponding |str_number|. (4)~Capsules have
5701 |name_type=capsule|, and their |type| and |value| fields represent
5702 arbitrary values (in ways to be explained later). (5)~Macro parameters
5703 are like symbolic tokens in that they appear in |info| fields of
5704 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5705 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5706 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5707 Actual values of these parameters are kept in a separate stack, as we will
5708 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5709 of course, chosen so that there will be no confusion between symbolic
5710 tokens and parameters of various types.
5713 the `\\{type}' field of a node has nothing to do with ``type'' in a
5714 printer's sense. It's curious that the same word is used in such different ways.
5716 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5717 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5718 @d token_node_size 2 /* the number of words in a large token node */
5719 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5720 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5721 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5722 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5723 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5725 @<Check the ``constant''...@>=
5726 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5728 @ We have set aside a two word node beginning at |null| so that we can have
5729 |value(null)=0|. We will make use of this coincidence later.
5731 @<Initialize table entries...@>=
5732 mp_link(null)=null; value(null)=0;
5734 @ A numeric token is created by the following trivial routine.
5737 pointer mp_new_num_tok (MP mp,scaled v) {
5738 pointer p; /* the new node */
5739 p=mp_get_node(mp, token_node_size); value(p)=v;
5740 type(p)=mp_known; name_type(p)=mp_token;
5744 @ A token list is a singly linked list of nodes in |mem|, where
5745 each node contains a token and a link. Here's a subroutine that gets rid
5746 of a token list when it is no longer needed.
5748 @c void mp_flush_token_list (MP mp,pointer p) {
5749 pointer q; /* the node being recycled */
5752 if ( q>=mp->hi_mem_min ) {
5756 case mp_vacuous: case mp_boolean_type: case mp_known:
5758 case mp_string_type:
5759 delete_str_ref(value(q));
5761 case unknown_types: case mp_pen_type: case mp_path_type:
5762 case mp_picture_type: case mp_pair_type: case mp_color_type:
5763 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5764 case mp_proto_dependent: case mp_independent:
5765 mp_recycle_value(mp,q);
5767 default: mp_confusion(mp, "token");
5768 @:this can't happen token}{\quad token@>
5770 mp_free_node(mp, q,token_node_size);
5775 @ The procedure |show_token_list|, which prints a symbolic form of
5776 the token list that starts at a given node |p|, illustrates these
5777 conventions. The token list being displayed should not begin with a reference
5778 count. However, the procedure is intended to be fairly robust, so that if the
5779 memory links are awry or if |p| is not really a pointer to a token list,
5780 almost nothing catastrophic can happen.
5782 An additional parameter |q| is also given; this parameter is either null
5783 or it points to a node in the token list where a certain magic computation
5784 takes place that will be explained later. (Basically, |q| is non-null when
5785 we are printing the two-line context information at the time of an error
5786 message; |q| marks the place corresponding to where the second line
5789 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5790 of printing exceeds a given limit~|l|; the length of printing upon entry is
5791 assumed to be a given amount called |null_tally|. (Note that
5792 |show_token_list| sometimes uses itself recursively to print
5793 variable names within a capsule.)
5796 Unusual entries are printed in the form of all-caps tokens
5797 preceded by a space, e.g., `\.{\char`\ BAD}'.
5799 @<Declare the procedure called |show_token_list|@>=
5800 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5801 integer null_tally) ;
5804 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5805 integer null_tally) {
5806 quarterword class,c; /* the |char_class| of previous and new tokens */
5807 integer r,v; /* temporary registers */
5808 class=percent_class;
5809 mp->tally=null_tally;
5810 while ( (p!=null) && (mp->tally<l) ) {
5812 @<Do magic computation@>;
5813 @<Display token |p| and set |c| to its class;
5814 but |return| if there are problems@>;
5815 class=c; p=mp_link(p);
5818 mp_print(mp, " ETC.");
5823 @ @<Display token |p| and set |c| to its class...@>=
5824 c=letter_class; /* the default */
5825 if ( (p<0)||(p>mp->mem_end) ) {
5826 mp_print(mp, " CLOBBERED"); return;
5829 if ( p<mp->hi_mem_min ) {
5830 @<Display two-word token@>;
5833 if ( r>=expr_base ) {
5834 @<Display a parameter token@>;
5838 @<Display a collective subscript@>
5840 mp_print(mp, " IMPOSSIBLE");
5845 if ( (r<0)||(r>mp->max_str_ptr) ) {
5846 mp_print(mp, " NONEXISTENT");
5849 @<Print string |r| as a symbolic token
5850 and set |c| to its class@>;
5856 @ @<Display two-word token@>=
5857 if ( name_type(p)==mp_token ) {
5858 if ( type(p)==mp_known ) {
5859 @<Display a numeric token@>;
5860 } else if ( type(p)!=mp_string_type ) {
5861 mp_print(mp, " BAD");
5864 mp_print_char(mp, xord('"')); mp_print_str(mp, value(p)); mp_print_char(mp, xord('"'));
5867 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5868 mp_print(mp, " BAD");
5870 mp_print_capsule(mp,p); c=right_paren_class;
5873 @ @<Display a numeric token@>=
5874 if ( class==digit_class )
5875 mp_print_char(mp, xord(' '));
5878 if ( class==left_bracket_class )
5879 mp_print_char(mp, xord(' '));
5880 mp_print_char(mp, xord('[')); mp_print_scaled(mp, v); mp_print_char(mp, xord(']'));
5881 c=right_bracket_class;
5883 mp_print_scaled(mp, v); c=digit_class;
5887 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5888 But we will see later (in the |print_variable_name| routine) that
5889 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5891 @<Display a collective subscript@>=
5893 if ( class==left_bracket_class )
5894 mp_print_char(mp, xord(' '));
5895 mp_print(mp, "[]"); c=right_bracket_class;
5898 @ @<Display a parameter token@>=
5900 if ( r<suffix_base ) {
5901 mp_print(mp, "(EXPR"); r=r-(expr_base);
5903 } else if ( r<text_base ) {
5904 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5907 mp_print(mp, "(TEXT"); r=r-(text_base);
5910 mp_print_int(mp, r); mp_print_char(mp, xord(')')); c=right_paren_class;
5914 @ @<Print string |r| as a symbolic token...@>=
5916 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5919 case letter_class:mp_print_char(mp, xord('.')); break;
5920 case isolated_classes: break;
5921 default: mp_print_char(mp, xord(' ')); break;
5924 mp_print_str(mp, r);
5928 void mp_print_capsule (MP mp, pointer p);
5930 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5931 void mp_print_capsule (MP mp, pointer p) {
5932 mp_print_char(mp, xord('(')); mp_print_exp(mp,p,0); mp_print_char(mp, xord(')'));
5935 @ Macro definitions are kept in \MP's memory in the form of token lists
5936 that have a few extra one-word nodes at the beginning.
5938 The first node contains a reference count that is used to tell when the
5939 list is no longer needed. To emphasize the fact that a reference count is
5940 present, we shall refer to the |info| field of this special node as the
5942 @^reference counts@>
5944 The next node or nodes after the reference count serve to describe the
5945 formal parameters. They consist of zero or more parameter tokens followed
5946 by a code for the type of macro.
5949 /* reference count preceding a macro definition or picture header */
5950 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5951 @d general_macro 0 /* preface to a macro defined with a parameter list */
5952 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5953 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5954 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5955 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5956 @d of_macro 5 /* preface to a macro with
5957 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5958 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5959 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5962 void mp_delete_mac_ref (MP mp,pointer p) {
5963 /* |p| points to the reference count of a macro list that is
5964 losing one reference */
5965 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5966 else decr(ref_count(p));
5969 @ The following subroutine displays a macro, given a pointer to its
5973 @<Declare the procedure called |print_cmd_mod|@>
5974 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5975 pointer r; /* temporary storage */
5976 p=mp_link(p); /* bypass the reference count */
5977 while ( info(p)>text_macro ){
5978 r=mp_link(p); mp_link(p)=null;
5979 mp_show_token_list(mp, p,null,l,0); mp_link(p)=r; p=r;
5980 if ( l>0 ) l=l-mp->tally; else return;
5981 } /* control printing of `\.{ETC.}' */
5985 case general_macro:mp_print(mp, "->"); break;
5987 case primary_macro: case secondary_macro: case tertiary_macro:
5988 mp_print_char(mp, xord('<'));
5989 mp_print_cmd_mod(mp, param_type,info(p));
5990 mp_print(mp, ">->");
5992 case expr_macro:mp_print(mp, "<expr>->"); break;
5993 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5994 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5995 case text_macro:mp_print(mp, "<text>->"); break;
5996 } /* there are no other cases */
5997 mp_show_token_list(mp, mp_link(p),q,l-mp->tally,0);
6000 @* \[15] Data structures for variables.
6001 The variables of \MP\ programs can be simple, like `\.x', or they can
6002 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6003 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6004 example, `\.{boolean} \.{x[]a.b}'. It's time for us to study how such
6005 things are represented inside of the computer.
6007 Each variable value occupies two consecutive words, either in a two-word
6008 node called a value node, or as a two-word subfield of a larger node. One
6009 of those two words is called the |value| field; it is an integer,
6010 containing either a |scaled| numeric value or the representation of some
6011 other type of quantity. (It might also be subdivided into halfwords, in
6012 which case it is referred to by other names instead of |value|.) The other
6013 word is broken into subfields called |type|, |name_type|, and |link|. The
6014 |type| field is a quarterword that specifies the variable's type, and
6015 |name_type| is a quarterword from which \MP\ can reconstruct the
6016 variable's name (sometimes by using the |link| field as well). Thus, only
6017 1.25 words are actually devoted to the value itself; the other
6018 three-quarters of a word are overhead, but they aren't wasted because they
6019 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6021 In this section we shall be concerned only with the structural aspects of
6022 variables, not their values. Later parts of the program will change the
6023 |type| and |value| fields, but we shall treat those fields as black boxes
6024 whose contents should not be touched.
6026 However, if the |type| field is |mp_structured|, there is no |value| field,
6027 and the second word is broken into two pointer fields called |attr_head|
6028 and |subscr_head|. Those fields point to additional nodes that
6029 contain structural information, as we shall see.
6031 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6032 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6033 @d subscr_head(A) mp_link(subscr_head_loc((A))) /* pointer to subscript info */
6034 @d value_node_size 2 /* the number of words in a value node */
6036 @ An attribute node is three words long. Two of these words contain |type|
6037 and |value| fields as described above, and the third word contains
6038 additional information: There is an |attr_loc| field, which contains the
6039 hash address of the token that names this attribute; and there's also a
6040 |parent| field, which points to the value node of |mp_structured| type at the
6041 next higher level (i.e., at the level to which this attribute is
6042 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6043 |link| field points to the next attribute with the same parent; these are
6044 arranged in increasing order, so that |attr_loc(mp_link(p))>attr_loc(p)|. The
6045 final attribute node links to the constant |end_attr|, whose |attr_loc|
6046 field is greater than any legal hash address. The |attr_head| in the
6047 parent points to a node whose |name_type| is |mp_structured_root|; this
6048 node represents the null attribute, i.e., the variable that is relevant
6049 when no attributes are attached to the parent. The |attr_head| node
6050 has the fields of either
6051 a value node, a subscript node, or an attribute node, depending on what
6052 the parent would be if it were not structured; but the subscript and
6053 attribute fields are ignored, so it effectively contains only the data of
6054 a value node. The |link| field in this special node points to an attribute
6055 node whose |attr_loc| field is zero; the latter node represents a collective
6056 subscript `\.{[]}' attached to the parent, and its |link| field points to
6057 the first non-special attribute node (or to |end_attr| if there are none).
6059 A subscript node likewise occupies three words, with |type| and |value| fields
6060 plus extra information; its |name_type| is |subscr|. In this case the
6061 third word is called the |subscript| field, which is a |scaled| integer.
6062 The |link| field points to the subscript node with the next larger
6063 subscript, if any; otherwise the |link| points to the attribute node
6064 for collective subscripts at this level. We have seen that the latter node
6065 contains an upward pointer, so that the parent can be deduced.
6067 The |name_type| in a parent-less value node is |root|, and the |link|
6068 is the hash address of the token that names this value.
6070 In other words, variables have a hierarchical structure that includes
6071 enough threads running around so that the program is able to move easily
6072 between siblings, parents, and children. An example should be helpful:
6073 (The reader is advised to draw a picture while reading the following
6074 description, since that will help to firm up the ideas.)
6075 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6076 and `\.{x20b}' have been mentioned in a user's program, where
6077 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6078 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6079 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6080 node with |name_type(p)=root| and |mp_link(p)=h(x)|. We have |type(p)=mp_structured|,
6081 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6082 node and |r| to a subscript node. (Are you still following this? Use
6083 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6084 |type(q)| and |value(q)|; furthermore
6085 |name_type(q)=mp_structured_root| and |mp_link(q)=q1|, where |q1| points
6086 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6087 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6088 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6089 |qq| is a three-word ``attribute-as-value'' node with |type(qq)=numeric_type|
6090 (assuming that \.{x5} is numeric, because |qq| represents `\.{x[]}'
6091 with no further attributes), |name_type(qq)=structured_root|,
6092 |attr_loc(qq)=0|, |parent(qq)=p|, and
6093 |mp_link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6094 an attribute node representing `\.{x[][]}', which has never yet
6095 occurred; its |type| field is |undefined|, and its |value| field is
6096 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6097 |parent(qq1)=q1|, and |mp_link(qq1)=qq2|. Since |qq2| represents
6098 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6099 |parent(qq2)=q1|, |name_type(qq2)=attr|, |mp_link(qq2)=end_attr|.
6100 (Maybe colored lines will help untangle your picture.)
6101 Node |r| is a subscript node with |type| and |value|
6102 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6103 and |mp_link(r)=r1| is another subscript node. To complete the picture,
6104 see if you can guess what |mp_link(r1)| is; give up? It's~|q1|.
6105 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6106 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6107 and we finish things off with three more nodes
6108 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6109 with a larger sheet of paper.) The value of variable \.{x20b}
6110 appears in node~|qqq2|, as you can well imagine.
6112 If the example in the previous paragraph doesn't make things crystal
6113 clear, a glance at some of the simpler subroutines below will reveal how
6114 things work out in practice.
6116 The only really unusual thing about these conventions is the use of
6117 collective subscript attributes. The idea is to avoid repeating a lot of
6118 type information when many elements of an array are identical macros
6119 (for which distinct values need not be stored) or when they don't have
6120 all of the possible attributes. Branches of the structure below collective
6121 subscript attributes do not carry actual values except for macro identifiers;
6122 branches of the structure below subscript nodes do not carry significant
6123 information in their collective subscript attributes.
6125 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6126 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6127 @d parent(A) mp_link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6128 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6129 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6130 @d attr_node_size 3 /* the number of words in an attribute node */
6131 @d subscr_node_size 3 /* the number of words in a subscript node */
6132 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6134 @<Initialize table...@>=
6135 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6137 @ Variables of type \&{pair} will have values that point to four-word
6138 nodes containing two numeric values. The first of these values has
6139 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6140 the |link| in the first points back to the node whose |value| points
6141 to this four-word node.
6143 Variables of type \&{transform} are similar, but in this case their
6144 |value| points to a 12-word node containing six values, identified by
6145 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6146 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6147 Finally, variables of type \&{color} have 3~values in 6~words
6148 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6150 When an entire structured variable is saved, the |root| indication
6151 is temporarily replaced by |saved_root|.
6153 Some variables have no name; they just are used for temporary storage
6154 while expressions are being evaluated. We call them {\sl capsules}.
6156 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6157 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6158 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6159 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6160 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6161 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6162 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6163 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6164 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6165 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6166 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6167 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6168 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6169 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6171 @d pair_node_size 4 /* the number of words in a pair node */
6172 @d transform_node_size 12 /* the number of words in a transform node */
6173 @d color_node_size 6 /* the number of words in a color node */
6174 @d cmykcolor_node_size 8 /* the number of words in a color node */
6177 quarterword big_node_size[mp_pair_type+1];
6178 quarterword sector0[mp_pair_type+1];
6179 quarterword sector_offset[mp_black_part_sector+1];
6181 @ The |sector0| array gives for each big node type, |name_type| values
6182 for its first subfield; the |sector_offset| array gives for each
6183 |name_type| value, the offset from the first subfield in words;
6184 and the |big_node_size| array gives the size in words for each type of
6188 mp->big_node_size[mp_transform_type]=transform_node_size;
6189 mp->big_node_size[mp_pair_type]=pair_node_size;
6190 mp->big_node_size[mp_color_type]=color_node_size;
6191 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6192 mp->sector0[mp_transform_type]=mp_x_part_sector;
6193 mp->sector0[mp_pair_type]=mp_x_part_sector;
6194 mp->sector0[mp_color_type]=mp_red_part_sector;
6195 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6196 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6197 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6199 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6200 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6202 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6203 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6206 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6207 procedure call |init_big_node(p)| will allocate a pair or transform node
6208 for~|p|. The individual parts of such nodes are initially of type
6212 void mp_init_big_node (MP mp,pointer p) {
6213 pointer q; /* the new node */
6214 quarterword s; /* its size */
6215 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6218 @<Make variable |q+s| newly independent@>;
6219 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6222 mp_link(q)=p; value(p)=q;
6225 @ The |id_transform| function creates a capsule for the
6226 identity transformation.
6229 pointer mp_id_transform (MP mp) {
6230 pointer p,q,r; /* list manipulation registers */
6231 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6232 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6233 r=q+transform_node_size;
6236 type(r)=mp_known; value(r)=0;
6238 value(xx_part_loc(q))=unity;
6239 value(yy_part_loc(q))=unity;
6243 @ Tokens are of type |tag_token| when they first appear, but they point
6244 to |null| until they are first used as the root of a variable.
6245 The following subroutine establishes the root node on such grand occasions.
6248 void mp_new_root (MP mp,pointer x) {
6249 pointer p; /* the new node */
6250 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6251 mp_link(p)=x; equiv(x)=p;
6254 @ These conventions for variable representation are illustrated by the
6255 |print_variable_name| routine, which displays the full name of a
6256 variable given only a pointer to its two-word value packet.
6259 void mp_print_variable_name (MP mp, pointer p);
6262 void mp_print_variable_name (MP mp, pointer p) {
6263 pointer q; /* a token list that will name the variable's suffix */
6264 pointer r; /* temporary for token list creation */
6265 while ( name_type(p)>=mp_x_part_sector ) {
6266 @<Preface the output with a part specifier; |return| in the
6267 case of a capsule@>;
6270 while ( name_type(p)>mp_saved_root ) {
6271 @<Ascend one level, pushing a token onto list |q|
6272 and replacing |p| by its parent@>;
6274 r=mp_get_avail(mp); info(r)=mp_link(p); mp_link(r)=q;
6275 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6277 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6278 mp_flush_token_list(mp, r);
6281 @ @<Ascend one level, pushing a token onto list |q|...@>=
6283 if ( name_type(p)==mp_subscr ) {
6284 r=mp_new_num_tok(mp, subscript(p));
6287 } while (name_type(p)!=mp_attr);
6288 } else if ( name_type(p)==mp_structured_root ) {
6289 p=mp_link(p); goto FOUND;
6291 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6292 @:this can't happen var}{\quad var@>
6293 r=mp_get_avail(mp); info(r)=attr_loc(p);
6300 @ @<Preface the output with a part specifier...@>=
6301 { switch (name_type(p)) {
6302 case mp_x_part_sector: mp_print_char(mp, xord('x')); break;
6303 case mp_y_part_sector: mp_print_char(mp, xord('y')); break;
6304 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6305 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6306 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6307 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6308 case mp_red_part_sector: mp_print(mp, "red"); break;
6309 case mp_green_part_sector: mp_print(mp, "green"); break;
6310 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6311 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6312 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6313 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6314 case mp_black_part_sector: mp_print(mp, "black"); break;
6315 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6317 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6320 } /* there are no other cases */
6321 mp_print(mp, "part ");
6322 p=mp_link(p-mp->sector_offset[name_type(p)]);
6325 @ The |interesting| function returns |true| if a given variable is not
6326 in a capsule, or if the user wants to trace capsules.
6329 boolean mp_interesting (MP mp,pointer p) {
6330 quarterword t; /* a |name_type| */
6331 if ( mp->internal[mp_tracing_capsules]>0 ) {
6335 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6336 t=name_type(mp_link(p-mp->sector_offset[t]));
6337 return (t!=mp_capsule);
6341 @ Now here is a subroutine that converts an unstructured type into an
6342 equivalent structured type, by inserting a |mp_structured| node that is
6343 capable of growing. This operation is done only when |name_type(p)=root|,
6344 |subscr|, or |attr|.
6346 The procedure returns a pointer to the new node that has taken node~|p|'s
6347 place in the structure. Node~|p| itself does not move, nor are its
6348 |value| or |type| fields changed in any way.
6351 pointer mp_new_structure (MP mp,pointer p) {
6352 pointer q,r=0; /* list manipulation registers */
6353 switch (name_type(p)) {
6355 q=mp_link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6358 @<Link a new subscript node |r| in place of node |p|@>;
6361 @<Link a new attribute node |r| in place of node |p|@>;
6364 mp_confusion(mp, "struct");
6365 @:this can't happen struct}{\quad struct@>
6368 mp_link(r)=mp_link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6369 attr_head(r)=p; name_type(p)=mp_structured_root;
6370 q=mp_get_node(mp, attr_node_size); mp_link(p)=q; subscr_head(r)=q;
6371 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; mp_link(q)=end_attr;
6372 attr_loc(q)=collective_subscript;
6376 @ @<Link a new subscript node |r| in place of node |p|@>=
6381 } while (name_type(q)!=mp_attr);
6382 q=parent(q); r=subscr_head_loc(q); /* |mp_link(r)=subscr_head(q)| */
6386 r=mp_get_node(mp, subscr_node_size);
6387 mp_link(q)=r; subscript(r)=subscript(p);
6390 @ If the attribute is |collective_subscript|, there are two pointers to
6391 node~|p|, so we must change both of them.
6393 @<Link a new attribute node |r| in place of node |p|@>=
6395 q=parent(p); r=attr_head(q);
6399 r=mp_get_node(mp, attr_node_size); mp_link(q)=r;
6400 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6401 if ( attr_loc(p)==collective_subscript ) {
6402 q=subscr_head_loc(parent(p));
6403 while ( mp_link(q)!=p ) q=mp_link(q);
6408 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6409 list of suffixes; it returns a pointer to the corresponding two-word
6410 value. For example, if |t| points to token \.x followed by a numeric
6411 token containing the value~7, |find_variable| finds where the value of
6412 \.{x7} is stored in memory. This may seem a simple task, and it
6413 usually is, except when \.{x7} has never been referenced before.
6414 Indeed, \.x may never have even been subscripted before; complexities
6415 arise with respect to updating the collective subscript information.
6417 If a macro type is detected anywhere along path~|t|, or if the first
6418 item on |t| isn't a |tag_token|, the value |null| is returned.
6419 Otherwise |p| will be a non-null pointer to a node such that
6420 |undefined<type(p)<mp_structured|.
6422 @d abort_find { return null; }
6425 pointer mp_find_variable (MP mp,pointer t) {
6426 pointer p,q,r,s; /* nodes in the ``value'' line */
6427 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6428 integer n; /* subscript or attribute */
6429 memory_word save_word; /* temporary storage for a word of |mem| */
6431 p=info(t); t=mp_link(t);
6432 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6433 if ( equiv(p)==null ) mp_new_root(mp, p);
6436 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6437 if ( t<mp->hi_mem_min ) {
6438 @<Descend one level for the subscript |value(t)|@>
6440 @<Descend one level for the attribute |info(t)|@>;
6444 if ( type(pp)>=mp_structured ) {
6445 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6447 if ( type(p)==mp_structured ) p=attr_head(p);
6448 if ( type(p)==undefined ) {
6449 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6450 type(p)=type(pp); value(p)=null;
6455 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6456 |pp|~stays in the collective line while |p|~goes through actual subscript
6459 @<Make sure that both nodes |p| and |pp|...@>=
6460 if ( type(pp)!=mp_structured ) {
6461 if ( type(pp)>mp_structured ) abort_find;
6462 ss=mp_new_structure(mp, pp);
6465 }; /* now |type(pp)=mp_structured| */
6466 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6467 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6469 @ We want this part of the program to be reasonably fast, in case there are
6471 lots of subscripts at the same level of the data structure. Therefore
6472 we store an ``infinite'' value in the word that appears at the end of the
6473 subscript list, even though that word isn't part of a subscript node.
6475 @<Descend one level for the subscript |value(t)|@>=
6478 pp=mp_link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6479 q=mp_link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6480 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |mp_link(s)=subscr_head(p)| */
6483 } while (n>subscript(s));
6484 if ( n==subscript(s) ) {
6487 p=mp_get_node(mp, subscr_node_size); mp_link(r)=p; mp_link(p)=s;
6488 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6490 mp->mem[subscript_loc(q)]=save_word;
6493 @ @<Descend one level for the attribute |info(t)|@>=
6498 rr=ss; ss=mp_link(ss);
6499 } while (n>attr_loc(ss));
6500 if ( n<attr_loc(ss) ) {
6501 qq=mp_get_node(mp, attr_node_size); mp_link(rr)=qq; mp_link(qq)=ss;
6502 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6503 parent(qq)=pp; ss=qq;
6508 pp=ss; s=attr_head(p);
6511 } while (n>attr_loc(s));
6512 if ( n==attr_loc(s) ) {
6515 q=mp_get_node(mp, attr_node_size); mp_link(r)=q; mp_link(q)=s;
6516 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6522 @ Variables lose their former values when they appear in a type declaration,
6523 or when they are defined to be macros or \&{let} equal to something else.
6524 A subroutine will be defined later that recycles the storage associated
6525 with any particular |type| or |value|; our goal now is to study a higher
6526 level process called |flush_variable|, which selectively frees parts of a
6529 This routine has some complexity because of examples such as
6530 `\hbox{\tt numeric x[]a[]b}'
6531 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6532 `\hbox{\tt vardef x[]a[]=...}'
6533 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6534 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6535 to handle such examples is to use recursion; so that's what we~do.
6538 Parameter |p| points to the root information of the variable;
6539 parameter |t| points to a list of one-word nodes that represent
6540 suffixes, with |info=collective_subscript| for subscripts.
6543 @<Declare subroutines for printing expressions@>
6544 @<Declare basic dependency-list subroutines@>
6545 @<Declare the recycling subroutines@>
6546 void mp_flush_cur_exp (MP mp,scaled v) ;
6547 @<Declare the procedure called |flush_below_variable|@>
6550 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6551 pointer q,r; /* list manipulation */
6552 halfword n; /* attribute to match */
6554 if ( type(p)!=mp_structured ) return;
6555 n=info(t); t=mp_link(t);
6556 if ( n==collective_subscript ) {
6557 r=subscr_head_loc(p); q=mp_link(r); /* |q=subscr_head(p)| */
6558 while ( name_type(q)==mp_subscr ){
6559 mp_flush_variable(mp, q,t,discard_suffixes);
6561 if ( type(q)==mp_structured ) r=q;
6562 else { mp_link(r)=mp_link(q); mp_free_node(mp, q,subscr_node_size); }
6572 } while (attr_loc(p)<n);
6573 if ( attr_loc(p)!=n ) return;
6575 if ( discard_suffixes ) {
6576 mp_flush_below_variable(mp, p);
6578 if ( type(p)==mp_structured ) p=attr_head(p);
6579 mp_recycle_value(mp, p);
6583 @ The next procedure is simpler; it wipes out everything but |p| itself,
6584 which becomes undefined.
6586 @<Declare the procedure called |flush_below_variable|@>=
6587 void mp_flush_below_variable (MP mp, pointer p);
6590 void mp_flush_below_variable (MP mp,pointer p) {
6591 pointer q,r; /* list manipulation registers */
6592 if ( type(p)!=mp_structured ) {
6593 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6596 while ( name_type(q)==mp_subscr ) {
6597 mp_flush_below_variable(mp, q); r=q; q=mp_link(q);
6598 mp_free_node(mp, r,subscr_node_size);
6600 r=attr_head(p); q=mp_link(r); mp_recycle_value(mp, r);
6601 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6602 else mp_free_node(mp, r,subscr_node_size);
6603 /* we assume that |subscr_node_size=attr_node_size| */
6605 mp_flush_below_variable(mp, q); r=q; q=mp_link(q); mp_free_node(mp, r,attr_node_size);
6606 } while (q!=end_attr);
6611 @ Just before assigning a new value to a variable, we will recycle the
6612 old value and make the old value undefined. The |und_type| routine
6613 determines what type of undefined value should be given, based on
6614 the current type before recycling.
6617 quarterword mp_und_type (MP mp,pointer p) {
6619 case undefined: case mp_vacuous:
6621 case mp_boolean_type: case mp_unknown_boolean:
6622 return mp_unknown_boolean;
6623 case mp_string_type: case mp_unknown_string:
6624 return mp_unknown_string;
6625 case mp_pen_type: case mp_unknown_pen:
6626 return mp_unknown_pen;
6627 case mp_path_type: case mp_unknown_path:
6628 return mp_unknown_path;
6629 case mp_picture_type: case mp_unknown_picture:
6630 return mp_unknown_picture;
6631 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6632 case mp_pair_type: case mp_numeric_type:
6634 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6635 return mp_numeric_type;
6636 } /* there are no other cases */
6640 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6641 of a symbolic token. It must remove any variable structure or macro
6642 definition that is currently attached to that symbol. If the |saving|
6643 parameter is true, a subsidiary structure is saved instead of destroyed.
6646 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6647 pointer q; /* |equiv(p)| */
6649 switch (eq_type(p) % outer_tag) {
6651 case secondary_primary_macro:
6652 case tertiary_secondary_macro:
6653 case expression_tertiary_macro:
6654 if ( ! saving ) mp_delete_mac_ref(mp, q);
6659 name_type(q)=mp_saved_root;
6661 mp_flush_below_variable(mp, q);
6662 mp_free_node(mp,q,value_node_size);
6669 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6672 @* \[16] Saving and restoring equivalents.
6673 The nested structure given by \&{begingroup} and \&{endgroup}
6674 allows |eqtb| entries to be saved and restored, so that temporary changes
6675 can be made without difficulty. When the user requests a current value to
6676 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6677 \&{endgroup} ultimately causes the old values to be removed from the save
6678 stack and put back in their former places.
6680 The save stack is a linked list containing three kinds of entries,
6681 distinguished by their |info| fields. If |p| points to a saved item,
6685 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6686 such an item to the save stack and each \&{endgroup} cuts back the stack
6687 until the most recent such entry has been removed.
6690 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6691 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6695 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6696 integer to be restored to internal parameter number~|q|. Such entries
6697 are generated by \&{interim} commands.
6700 The global variable |save_ptr| points to the top item on the save stack.
6702 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6703 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6704 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6705 mp_link((A))=mp->save_ptr; mp->save_ptr=(A);
6709 pointer save_ptr; /* the most recently saved item */
6711 @ @<Set init...@>=mp->save_ptr=null;
6713 @ The |save_variable| routine is given a hash address |q|; it salts this
6714 address in the save stack, together with its current equivalent,
6715 then makes token~|q| behave as though it were brand new.
6717 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6718 things from the stack when the program is not inside a group, so there's
6719 no point in wasting the space.
6721 @c void mp_save_variable (MP mp,pointer q) {
6722 pointer p; /* temporary register */
6723 if ( mp->save_ptr!=null ){
6724 p=mp_get_node(mp, save_node_size); info(p)=q; mp_link(p)=mp->save_ptr;
6725 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6727 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6730 @ Similarly, |save_internal| is given the location |q| of an internal
6731 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6734 @c void mp_save_internal (MP mp,halfword q) {
6735 pointer p; /* new item for the save stack */
6736 if ( mp->save_ptr!=null ){
6737 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6738 mp_link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6742 @ At the end of a group, the |unsave| routine restores all of the saved
6743 equivalents in reverse order. This routine will be called only when there
6744 is at least one boundary item on the save stack.
6747 void mp_unsave (MP mp) {
6748 pointer q; /* index to saved item */
6749 pointer p; /* temporary register */
6750 while ( info(mp->save_ptr)!=0 ) {
6751 q=info(mp->save_ptr);
6753 if ( mp->internal[mp_tracing_restores]>0 ) {
6754 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6755 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, xord('='));
6756 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, xord('}'));
6757 mp_end_diagnostic(mp, false);
6759 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6761 if ( mp->internal[mp_tracing_restores]>0 ) {
6762 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6763 mp_print_text(q); mp_print_char(mp, xord('}'));
6764 mp_end_diagnostic(mp, false);
6766 mp_clear_symbol(mp, q,false);
6767 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6768 if ( eq_type(q) % outer_tag==tag_token ) {
6770 if ( p!=null ) name_type(p)=mp_root;
6773 p=mp_link(mp->save_ptr);
6774 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6776 p=mp_link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6779 @* \[17] Data structures for paths.
6780 When a \MP\ user specifies a path, \MP\ will create a list of knots
6781 and control points for the associated cubic spline curves. If the
6782 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6783 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6784 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6785 @:Bezier}{B\'ezier, Pierre Etienne@>
6786 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6787 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6790 There is a 8-word node for each knot $z_k$, containing one word of
6791 control information and six words for the |x| and |y| coordinates of
6792 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6793 |left_type| and |right_type| fields, which each occupy a quarter of
6794 the first word in the node; they specify properties of the curve as it
6795 enters and leaves the knot. There's also a halfword |link| field,
6796 which points to the following knot, and a final supplementary word (of
6797 which only a quarter is used).
6799 If the path is a closed contour, knots 0 and |n| are identical;
6800 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6801 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6802 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6803 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6805 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6806 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6807 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6808 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6809 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6810 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6811 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6812 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6813 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6814 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6815 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6816 @d left_coord(A) mp->mem[(A)+2].sc
6817 /* coordinate of previous control point given |x_loc| or |y_loc| */
6818 @d right_coord(A) mp->mem[(A)+4].sc
6819 /* coordinate of next control point given |x_loc| or |y_loc| */
6820 @d knot_node_size 8 /* number of words in a knot node */
6824 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6825 mp_explicit, /* |left_type| or |right_type| when control points are known */
6826 mp_given, /* |left_type| or |right_type| when a direction is given */
6827 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6828 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6832 @ Before the B\'ezier control points have been calculated, the memory
6833 space they will ultimately occupy is taken up by information that can be
6834 used to compute them. There are four cases:
6837 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6838 the knot in the same direction it entered; \MP\ will figure out a
6842 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6843 knot in a direction depending on the angle at which it enters the next
6844 knot and on the curl parameter stored in |right_curl|.
6847 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6848 knot in a nonzero direction stored as an |angle| in |right_given|.
6851 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6852 point for leaving this knot has already been computed; it is in the
6853 |right_x| and |right_y| fields.
6856 The rules for |left_type| are similar, but they refer to the curve entering
6857 the knot, and to \\{left} fields instead of \\{right} fields.
6859 Non-|explicit| control points will be chosen based on ``tension'' parameters
6860 in the |left_tension| and |right_tension| fields. The
6861 `\&{atleast}' option is represented by negative tension values.
6862 @:at_least_}{\&{atleast} primitive@>
6864 For example, the \MP\ path specification
6865 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6867 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6869 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6870 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6871 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6873 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6874 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6875 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6876 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6877 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6878 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6879 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6880 Of course, this example is more complicated than anything a normal user
6883 These types must satisfy certain restrictions because of the form of \MP's
6885 (i)~|open| type never appears in the same node together with |endpoint|,
6887 (ii)~The |right_type| of a node is |explicit| if and only if the
6888 |left_type| of the following node is |explicit|.
6889 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6891 @d left_curl left_x /* curl information when entering this knot */
6892 @d left_given left_x /* given direction when entering this knot */
6893 @d left_tension left_y /* tension information when entering this knot */
6894 @d right_curl right_x /* curl information when leaving this knot */
6895 @d right_given right_x /* given direction when leaving this knot */
6896 @d right_tension right_y /* tension information when leaving this knot */
6898 @ Knots can be user-supplied, or they can be created by program code,
6899 like the |split_cubic| function, or |copy_path|. The distinction is
6900 needed for the cleanup routine that runs after |split_cubic|, because
6901 it should only delete knots it has previously inserted, and never
6902 anything that was user-supplied. In order to be able to differentiate
6903 one knot from another, we will set |originator(p):=mp_metapost_user| when
6904 it appeared in the actual metapost program, and
6905 |originator(p):=mp_program_code| in all other cases.
6907 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6911 mp_program_code=0, /* not created by a user */
6912 mp_metapost_user /* created by a user */
6915 @ Here is a routine that prints a given knot list
6916 in symbolic form. It illustrates the conventions discussed above,
6917 and checks for anomalies that might arise while \MP\ is being debugged.
6919 @<Declare subroutines for printing expressions@>=
6920 void mp_pr_path (MP mp,pointer h);
6923 void mp_pr_path (MP mp,pointer h) {
6924 pointer p,q; /* for list traversal */
6928 if ( (p==null)||(q==null) ) {
6929 mp_print_nl(mp, "???"); return; /* this won't happen */
6932 @<Print information for adjacent knots |p| and |q|@>;
6935 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6936 @<Print two dots, followed by |given| or |curl| if present@>;
6939 if ( left_type(h)!=mp_endpoint )
6940 mp_print(mp, "cycle");
6943 @ @<Print information for adjacent knots...@>=
6944 mp_print_two(mp, x_coord(p),y_coord(p));
6945 switch (right_type(p)) {
6947 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6949 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6953 @<Print control points between |p| and |q|, then |goto done1|@>;
6956 @<Print information for a curve that begins |open|@>;
6960 @<Print information for a curve that begins |curl| or |given|@>;
6963 mp_print(mp, "???"); /* can't happen */
6967 if ( left_type(q)<=mp_explicit ) {
6968 mp_print(mp, "..control?"); /* can't happen */
6970 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6971 @<Print tension between |p| and |q|@>;
6974 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6975 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6977 @<Print two dots...@>=
6979 mp_print_nl(mp, " ..");
6980 if ( left_type(p)==mp_given ) {
6981 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, xord('{'));
6982 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, xord(','));
6983 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, xord('}'));
6984 } else if ( left_type(p)==mp_curl ){
6985 mp_print(mp, "{curl ");
6986 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, xord('}'));
6990 @ @<Print tension between |p| and |q|@>=
6992 mp_print(mp, "..tension ");
6993 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6994 mp_print_scaled(mp, abs(right_tension(p)));
6995 if ( right_tension(p)!=left_tension(q) ){
6996 mp_print(mp, " and ");
6997 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6998 mp_print_scaled(mp, abs(left_tension(q)));
7002 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7004 mp_print(mp, "..controls ");
7005 mp_print_two(mp, right_x(p),right_y(p));
7006 mp_print(mp, " and ");
7007 if ( left_type(q)!=mp_explicit ) {
7008 mp_print(mp, "??"); /* can't happen */
7011 mp_print_two(mp, left_x(q),left_y(q));
7016 @ @<Print information for a curve that begins |open|@>=
7017 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7018 mp_print(mp, "{open?}"); /* can't happen */
7022 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7023 \MP's default curl is present.
7025 @<Print information for a curve that begins |curl|...@>=
7027 if ( left_type(p)==mp_open )
7028 mp_print(mp, "??"); /* can't happen */
7030 if ( right_type(p)==mp_curl ) {
7031 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7033 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, xord('{'));
7034 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, xord(','));
7035 mp_print_scaled(mp, mp->n_sin);
7037 mp_print_char(mp, xord('}'));
7040 @ It is convenient to have another version of |pr_path| that prints the path
7041 as a diagnostic message.
7043 @<Declare subroutines for printing expressions@>=
7044 void mp_print_path (MP mp,pointer h, const char *s, boolean nuline) {
7045 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7048 mp_end_diagnostic(mp, true);
7051 @ If we want to duplicate a knot node, we can say |copy_knot|:
7054 pointer mp_copy_knot (MP mp,pointer p) {
7055 pointer q; /* the copy */
7056 int k; /* runs through the words of a knot node */
7057 q=mp_get_node(mp, knot_node_size);
7058 for (k=0;k<knot_node_size;k++) {
7059 mp->mem[q+k]=mp->mem[p+k];
7061 originator(q)=originator(p);
7065 @ The |copy_path| routine makes a clone of a given path.
7068 pointer mp_copy_path (MP mp, pointer p) {
7069 pointer q,pp,qq; /* for list manipulation */
7070 q=mp_copy_knot(mp, p);
7071 qq=q; pp=mp_link(p);
7073 mp_link(qq)=mp_copy_knot(mp, pp);
7082 @ Just before |ship_out|, knot lists are exported for printing.
7084 The |gr_XXXX| macros are defined in |mppsout.h|.
7087 mp_knot *mp_export_knot (MP mp,pointer p) {
7088 mp_knot *q; /* the copy */
7091 q = xmalloc(1, sizeof (mp_knot));
7092 memset(q,0,sizeof (mp_knot));
7093 gr_left_type(q) = (unsigned short)left_type(p);
7094 gr_right_type(q) = (unsigned short)right_type(p);
7095 gr_x_coord(q) = x_coord(p);
7096 gr_y_coord(q) = y_coord(p);
7097 gr_left_x(q) = left_x(p);
7098 gr_left_y(q) = left_y(p);
7099 gr_right_x(q) = right_x(p);
7100 gr_right_y(q) = right_y(p);
7101 gr_originator(q) = (unsigned char)originator(p);
7105 @ The |export_knot_list| routine therefore also makes a clone
7109 mp_knot *mp_export_knot_list (MP mp, pointer p) {
7110 mp_knot *q, *qq; /* for list manipulation */
7111 pointer pp; /* for list manipulation */
7114 q=mp_export_knot(mp, p);
7115 qq=q; pp=mp_link(p);
7117 gr_next_knot(qq)=mp_export_knot(mp, pp);
7118 qq=gr_next_knot(qq);
7126 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7127 returns a pointer to the first node of the copy, if the path is a cycle,
7128 but to the final node of a non-cyclic copy. The global
7129 variable |path_tail| will point to the final node of the original path;
7130 this trick makes it easier to implement `\&{doublepath}'.
7132 All node types are assumed to be |endpoint| or |explicit| only.
7135 pointer mp_htap_ypoc (MP mp,pointer p) {
7136 pointer q,pp,qq,rr; /* for list manipulation */
7137 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7140 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7141 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7142 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7143 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7144 originator(qq)=originator(pp);
7145 if ( mp_link(pp)==p ) {
7146 mp_link(q)=qq; mp->path_tail=pp; return q;
7148 rr=mp_get_node(mp, knot_node_size); mp_link(rr)=qq; qq=rr; pp=mp_link(pp);
7153 pointer path_tail; /* the node that links to the beginning of a path */
7155 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7156 calling the following subroutine.
7158 @<Declare the recycling subroutines@>=
7159 void mp_toss_knot_list (MP mp,pointer p) ;
7162 void mp_toss_knot_list (MP mp,pointer p) {
7163 pointer q; /* the node being freed */
7164 pointer r; /* the next node */
7168 mp_free_node(mp, q,knot_node_size); q=r;
7172 @* \[18] Choosing control points.
7173 Now we must actually delve into one of \MP's more difficult routines,
7174 the |make_choices| procedure that chooses angles and control points for
7175 the splines of a curve when the user has not specified them explicitly.
7176 The parameter to |make_choices| points to a list of knots and
7177 path information, as described above.
7179 A path decomposes into independent segments at ``breakpoint'' knots,
7180 which are knots whose left and right angles are both prespecified in
7181 some way (i.e., their |left_type| and |right_type| aren't both open).
7184 @<Declare the procedure called |solve_choices|@>
7185 void mp_make_choices (MP mp,pointer knots) {
7186 pointer h; /* the first breakpoint */
7187 pointer p,q; /* consecutive breakpoints being processed */
7188 @<Other local variables for |make_choices|@>;
7189 check_arith; /* make sure that |arith_error=false| */
7190 if ( mp->internal[mp_tracing_choices]>0 )
7191 mp_print_path(mp, knots,", before choices",true);
7192 @<If consecutive knots are equal, join them explicitly@>;
7193 @<Find the first breakpoint, |h|, on the path;
7194 insert an artificial breakpoint if the path is an unbroken cycle@>;
7197 @<Fill in the control points between |p| and the next breakpoint,
7198 then advance |p| to that breakpoint@>;
7200 if ( mp->internal[mp_tracing_choices]>0 )
7201 mp_print_path(mp, knots,", after choices",true);
7202 if ( mp->arith_error ) {
7203 @<Report an unexpected problem during the choice-making@>;
7207 @ @<Report an unexpected problem during the choice...@>=
7209 print_err("Some number got too big");
7210 @.Some number got too big@>
7211 help2("The path that I just computed is out of range.",
7212 "So it will probably look funny. Proceed, for a laugh.");
7213 mp_put_get_error(mp); mp->arith_error=false;
7216 @ Two knots in a row with the same coordinates will always be joined
7217 by an explicit ``curve'' whose control points are identical with the
7220 @<If consecutive knots are equal, join them explicitly@>=
7224 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7225 right_type(p)=mp_explicit;
7226 if ( left_type(p)==mp_open ) {
7227 left_type(p)=mp_curl; left_curl(p)=unity;
7229 left_type(q)=mp_explicit;
7230 if ( right_type(q)==mp_open ) {
7231 right_type(q)=mp_curl; right_curl(q)=unity;
7233 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7234 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7239 @ If there are no breakpoints, it is necessary to compute the direction
7240 angles around an entire cycle. In this case the |left_type| of the first
7241 node is temporarily changed to |end_cycle|.
7243 @<Find the first breakpoint, |h|, on the path...@>=
7246 if ( left_type(h)!=mp_open ) break;
7247 if ( right_type(h)!=mp_open ) break;
7250 left_type(h)=mp_end_cycle; break;
7254 @ If |right_type(p)<given| and |q=mp_link(p)|, we must have
7255 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7257 @<Fill in the control points between |p| and the next breakpoint...@>=
7259 if ( right_type(p)>=mp_given ) {
7260 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=mp_link(q);
7261 @<Fill in the control information between
7262 consecutive breakpoints |p| and |q|@>;
7263 } else if ( right_type(p)==mp_endpoint ) {
7264 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7268 @ This step makes it possible to transform an explicitly computed path without
7269 checking the |left_type| and |right_type| fields.
7271 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7273 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7274 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7277 @ Before we can go further into the way choices are made, we need to
7278 consider the underlying theory. The basic ideas implemented in |make_choices|
7279 are due to John Hobby, who introduced the notion of ``mock curvature''
7280 @^Hobby, John Douglas@>
7281 at a knot. Angles are chosen so that they preserve mock curvature when
7282 a knot is passed, and this has been found to produce excellent results.
7284 It is convenient to introduce some notations that simplify the necessary
7285 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7286 between knots |k| and |k+1|; and let
7287 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7288 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7289 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7290 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7291 $$\eqalign{z_k^+&=z_k+
7292 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7294 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7295 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7296 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7297 corresponding ``offset angles.'' These angles satisfy the condition
7298 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7299 whenever the curve leaves an intermediate knot~|k| in the direction that
7302 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7303 the curve at its beginning and ending points. This means that
7304 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7305 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7306 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7307 z\k^-,z\k^{\phantom+};t)$
7310 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7311 \qquad{\rm and}\qquad
7312 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7313 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7315 approximation to this true curvature that arises in the limit for
7316 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7317 The standard velocity function satisfies
7318 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7319 hence the mock curvatures are respectively
7320 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7321 \qquad{\rm and}\qquad
7322 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7324 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7325 determines $\phi_k$ when $\theta_k$ is known, so the task of
7326 angle selection is essentially to choose appropriate values for each
7327 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7328 from $(**)$, we obtain a system of linear equations of the form
7329 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7331 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7332 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7333 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7334 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7335 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7336 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7337 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7338 hence they have a unique solution. Moreover, in most cases the tensions
7339 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7340 solution numerically stable, and there is an exponential damping
7341 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7342 a factor of~$O(2^{-j})$.
7344 @ However, we still must consider the angles at the starting and ending
7345 knots of a non-cyclic path. These angles might be given explicitly, or
7346 they might be specified implicitly in terms of an amount of ``curl.''
7348 Let's assume that angles need to be determined for a non-cyclic path
7349 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7350 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7351 have been given for $0<k<n$, and it will be convenient to introduce
7352 equations of the same form for $k=0$ and $k=n$, where
7353 $$A_0=B_0=C_n=D_n=0.$$
7354 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7355 define $C_0=1$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7356 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7357 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7358 mock curvature at $z_1$; i.e.,
7359 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7360 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7361 This equation simplifies to
7362 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7363 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7364 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7365 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7366 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7367 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7368 hence the linear equations remain nonsingular.
7370 Similar considerations apply at the right end, when the final angle $\phi_n$
7371 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7372 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7374 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7375 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7376 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7378 When |make_choices| chooses angles, it must compute the coefficients of
7379 these linear equations, then solve the equations. To compute the coefficients,
7380 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7381 When the equations are solved, the chosen directions $\theta_k$ are put
7382 back into the form of control points by essentially computing sines and
7385 @ OK, we are ready to make the hard choices of |make_choices|.
7386 Most of the work is relegated to an auxiliary procedure
7387 called |solve_choices|, which has been introduced to keep
7388 |make_choices| from being extremely long.
7390 @<Fill in the control information between...@>=
7391 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7392 set $n$ to the length of the path@>;
7393 @<Remove |open| types at the breakpoints@>;
7394 mp_solve_choices(mp, p,q,n)
7396 @ It's convenient to precompute quantities that will be needed several
7397 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7398 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7399 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7400 and $z\k-z_k$ will be stored in |psi[k]|.
7403 int path_size; /* maximum number of knots between breakpoints of a path */
7406 scaled *delta; /* knot differences */
7407 angle *psi; /* turning angles */
7409 @ @<Dealloc variables@>=
7415 @ @<Other local variables for |make_choices|@>=
7416 int k,n; /* current and final knot numbers */
7417 pointer s,t; /* registers for list traversal */
7418 scaled delx,dely; /* directions where |open| meets |explicit| */
7419 fraction sine,cosine; /* trig functions of various angles */
7421 @ @<Calculate the turning angles...@>=
7424 k=0; s=p; n=mp->path_size;
7427 mp->delta_x[k]=x_coord(t)-x_coord(s);
7428 mp->delta_y[k]=y_coord(t)-y_coord(s);
7429 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7431 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7432 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7433 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7434 mp_take_fraction(mp, mp->delta_y[k],sine),
7435 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7436 mp_take_fraction(mp, mp->delta_x[k],sine));
7439 if ( k==mp->path_size ) {
7440 mp_reallocate_paths(mp, mp->path_size+(mp->path_size/4));
7441 goto RESTART; /* retry, loop size has changed */
7444 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7445 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7448 @ When we get to this point of the code, |right_type(p)| is either
7449 |given| or |curl| or |open|. If it is |open|, we must have
7450 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7451 case, the |open| type is converted to |given|; however, if the
7452 velocity coming into this knot is zero, the |open| type is
7453 converted to a |curl|, since we don't know the incoming direction.
7455 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7456 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7458 @<Remove |open| types at the breakpoints@>=
7459 if ( left_type(q)==mp_open ) {
7460 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7461 if ( (delx==0)&&(dely==0) ) {
7462 left_type(q)=mp_curl; left_curl(q)=unity;
7464 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7467 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7468 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7469 if ( (delx==0)&&(dely==0) ) {
7470 right_type(p)=mp_curl; right_curl(p)=unity;
7472 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7476 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7477 and exactly one of the breakpoints involves a curl. The simplest case occurs
7478 when |n=1| and there is a curl at both breakpoints; then we simply draw
7481 But before coding up the simple cases, we might as well face the general case,
7482 since we must deal with it sooner or later, and since the general case
7483 is likely to give some insight into the way simple cases can be handled best.
7485 When there is no cycle, the linear equations to be solved form a tridiagonal
7486 system, and we can apply the standard technique of Gaussian elimination
7487 to convert that system to a sequence of equations of the form
7488 $$\theta_0+u_0\theta_1=v_0,\quad
7489 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7490 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7492 It is possible to do this diagonalization while generating the equations.
7493 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7494 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7496 The procedure is slightly more complex when there is a cycle, but the
7497 basic idea will be nearly the same. In the cyclic case the right-hand
7498 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7499 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7500 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7501 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7502 eliminate the $w$'s from the system, after which the solution can be
7505 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7506 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7507 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7508 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7511 angle *theta; /* values of $\theta_k$ */
7512 fraction *uu; /* values of $u_k$ */
7513 angle *vv; /* values of $v_k$ */
7514 fraction *ww; /* values of $w_k$ */
7516 @ @<Dealloc variables@>=
7522 @ @<Declare |mp_reallocate| functions@>=
7523 void mp_reallocate_paths (MP mp, int l);
7526 void mp_reallocate_paths (MP mp, int l) {
7527 XREALLOC (mp->delta_x, l, scaled);
7528 XREALLOC (mp->delta_y, l, scaled);
7529 XREALLOC (mp->delta, l, scaled);
7530 XREALLOC (mp->psi, l, angle);
7531 XREALLOC (mp->theta, l, angle);
7532 XREALLOC (mp->uu, l, fraction);
7533 XREALLOC (mp->vv, l, angle);
7534 XREALLOC (mp->ww, l, fraction);
7538 @ Our immediate problem is to get the ball rolling by setting up the
7539 first equation or by realizing that no equations are needed, and to fit
7540 this initialization into a framework suitable for the overall computation.
7542 @<Declare the procedure called |solve_choices|@>=
7543 @<Declare subroutines needed by |solve_choices|@>
7544 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7545 int k; /* current knot number */
7546 pointer r,s,t; /* registers for list traversal */
7547 @<Other local variables for |solve_choices|@>;
7552 @<Get the linear equations started; or |return|
7553 with the control points in place, if linear equations
7556 switch (left_type(s)) {
7557 case mp_end_cycle: case mp_open:
7558 @<Set up equation to match mock curvatures
7559 at $z_k$; then |goto found| with $\theta_n$
7560 adjusted to equal $\theta_0$, if a cycle has ended@>;
7563 @<Set up equation for a curl at $\theta_n$
7567 @<Calculate the given value of $\theta_n$
7570 } /* there are no other cases */
7575 @<Finish choosing angles and assigning control points@>;
7578 @ On the first time through the loop, we have |k=0| and |r| is not yet
7579 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7581 @<Get the linear equations started...@>=
7582 switch (right_type(s)) {
7584 if ( left_type(t)==mp_given ) {
7585 @<Reduce to simple case of two givens and |return|@>
7587 @<Set up the equation for a given value of $\theta_0$@>;
7591 if ( left_type(t)==mp_curl ) {
7592 @<Reduce to simple case of straight line and |return|@>
7594 @<Set up the equation for a curl at $\theta_0$@>;
7598 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7599 /* this begins a cycle */
7601 } /* there are no other cases */
7603 @ The general equation that specifies equality of mock curvature at $z_k$ is
7604 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7605 as derived above. We want to combine this with the already-derived equation
7606 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7608 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7610 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7611 -A_kw_{k-1}\theta_0$$
7612 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7613 fixed-point arithmetic, avoiding the chance of overflow while retaining
7616 The calculations will be performed in several registers that
7617 provide temporary storage for intermediate quantities.
7619 @<Other local variables for |solve_choices|@>=
7620 fraction aa,bb,cc,ff,acc; /* temporary registers */
7621 scaled dd,ee; /* likewise, but |scaled| */
7622 scaled lt,rt; /* tension values */
7624 @ @<Set up equation to match mock curvatures...@>=
7625 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7626 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7627 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7628 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7629 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7630 @<Calculate the values of $v_k$ and $w_k$@>;
7631 if ( left_type(s)==mp_end_cycle ) {
7632 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7636 @ Since tension values are never less than 3/4, the values |aa| and
7637 |bb| computed here are never more than 4/5.
7639 @<Calculate the values $\\{aa}=...@>=
7640 if ( abs(right_tension(r))==unity) {
7641 aa=fraction_half; dd=2*mp->delta[k];
7643 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7644 dd=mp_take_fraction(mp, mp->delta[k],
7645 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7647 if ( abs(left_tension(t))==unity ){
7648 bb=fraction_half; ee=2*mp->delta[k-1];
7650 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7651 ee=mp_take_fraction(mp, mp->delta[k-1],
7652 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7654 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7656 @ The ratio to be calculated in this step can be written in the form
7657 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7658 \\{cc}\cdot\\{dd},$$
7659 because of the quantities just calculated. The values of |dd| and |ee|
7660 will not be needed after this step has been performed.
7662 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7663 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7664 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7666 ff=mp_make_fraction(mp, lt,rt);
7667 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7668 dd=mp_take_fraction(mp, dd,ff);
7670 ff=mp_make_fraction(mp, rt,lt);
7671 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7672 ee=mp_take_fraction(mp, ee,ff);
7675 ff=mp_make_fraction(mp, ee,ee+dd)
7677 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7678 equation was specified by a curl. In that case we must use a special
7679 method of computation to prevent overflow.
7681 Fortunately, the calculations turn out to be even simpler in this ``hard''
7682 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7683 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7685 @<Calculate the values of $v_k$ and $w_k$@>=
7686 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7687 if ( right_type(r)==mp_curl ) {
7689 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7691 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7692 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7693 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7694 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7695 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7696 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7697 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7700 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7701 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7702 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7703 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7706 The idea in the following code is to observe that
7707 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7708 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7709 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7710 so we can solve for $\theta_n=\theta_0$.
7712 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7714 aa=0; bb=fraction_one; /* we have |k=n| */
7717 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7718 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7719 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7720 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7721 mp->theta[n]=aa; mp->vv[0]=aa;
7722 for (k=1;k<=n-1;k++) {
7723 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7728 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7729 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7731 @<Calculate the given value of $\theta_n$...@>=
7733 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7734 reduce_angle(mp->theta[n]);
7738 @ @<Set up the equation for a given value of $\theta_0$@>=
7740 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7741 reduce_angle(mp->vv[0]);
7742 mp->uu[0]=0; mp->ww[0]=0;
7745 @ @<Set up the equation for a curl at $\theta_0$@>=
7746 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7747 if ( (rt==unity)&&(lt==unity) )
7748 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7750 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7751 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7754 @ @<Set up equation for a curl at $\theta_n$...@>=
7755 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7756 if ( (rt==unity)&&(lt==unity) )
7757 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7759 ff=mp_curl_ratio(mp, cc,lt,rt);
7760 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7761 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7765 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7766 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7767 a somewhat tedious program to calculate
7768 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7769 \alpha^3\gamma+(3-\beta)\beta^2},$$
7770 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7771 is necessary only if the curl and tension are both large.)
7772 The values of $\alpha$ and $\beta$ will be at most~4/3.
7774 @<Declare subroutines needed by |solve_choices|@>=
7775 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7777 fraction alpha,beta,num,denom,ff; /* registers */
7778 alpha=mp_make_fraction(mp, unity,a_tension);
7779 beta=mp_make_fraction(mp, unity,b_tension);
7780 if ( alpha<=beta ) {
7781 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7782 gamma=mp_take_fraction(mp, gamma,ff);
7783 beta=beta / 010000; /* convert |fraction| to |scaled| */
7784 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7785 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7787 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7788 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7789 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7790 /* $1365\approx 2^{12}/3$ */
7791 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7793 if ( num>=denom+denom+denom+denom ) return fraction_four;
7794 else return mp_make_fraction(mp, num,denom);
7797 @ We're in the home stretch now.
7799 @<Finish choosing angles and assigning control points@>=
7800 for (k=n-1;k>=0;k--) {
7801 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7806 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7807 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7808 mp_set_controls(mp, s,t,k);
7812 @ The |set_controls| routine actually puts the control points into
7813 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7814 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7815 $\cos\phi$ needed in this calculation.
7821 fraction cf; /* sines and cosines */
7823 @ @<Declare subroutines needed by |solve_choices|@>=
7824 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7825 fraction rr,ss; /* velocities, divided by thrice the tension */
7826 scaled lt,rt; /* tensions */
7827 fraction sine; /* $\sin(\theta+\phi)$ */
7828 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7829 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7830 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7831 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7832 @<Decrease the velocities,
7833 if necessary, to stay inside the bounding triangle@>;
7835 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7836 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7837 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7838 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7839 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7840 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7841 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7842 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7843 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7844 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7845 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7846 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7847 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7850 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7851 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7852 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7853 there is no ``bounding triangle.''
7855 @<Decrease the velocities, if necessary...@>=
7856 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7857 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7858 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7860 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7861 if ( right_tension(p)<0 )
7862 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7863 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7864 if ( left_tension(q)<0 )
7865 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7866 ss=mp_make_fraction(mp, abs(mp->st),sine);
7870 @ Only the simple cases remain to be handled.
7872 @<Reduce to simple case of two givens and |return|@>=
7874 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7875 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7876 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7877 mp_set_controls(mp, p,q,0); return;
7880 @ @<Reduce to simple case of straight line and |return|@>=
7882 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7883 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7885 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7886 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7887 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7888 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7890 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7891 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7892 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7895 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7896 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7897 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7898 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7900 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7901 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7902 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7907 @* \[19] Measuring paths.
7908 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7909 allow the user to measure the bounding box of anything that can go into a
7910 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7911 by just finding the bounding box of the knots and the control points. We
7912 need a more accurate version of the bounding box, but we can still use the
7913 easy estimate to save time by focusing on the interesting parts of the path.
7915 @ Computing an accurate bounding box involves a theme that will come up again
7916 and again. Given a Bernshte{\u\i}n polynomial
7917 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7918 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7919 we can conveniently bisect its range as follows:
7922 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7925 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7926 |0<=k<n-j|, for |0<=j<n|.
7930 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7931 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7932 This formula gives us the coefficients of polynomials to use over the ranges
7933 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7935 @ Now here's a subroutine that's handy for all sorts of path computations:
7936 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7937 returns the unique |fraction| value |t| between 0 and~1 at which
7938 $B(a,b,c;t)$ changes from positive to negative, or returns
7939 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7940 is already negative at |t=0|), |crossing_point| returns the value zero.
7942 @d no_crossing { return (fraction_one+1); }
7943 @d one_crossing { return fraction_one; }
7944 @d zero_crossing { return 0; }
7945 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7947 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7948 integer d; /* recursive counter */
7949 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7950 if ( a<0 ) zero_crossing;
7953 if ( c>0 ) { no_crossing; }
7954 else if ( (a==0)&&(b==0) ) { no_crossing;}
7955 else { one_crossing; }
7957 if ( a==0 ) zero_crossing;
7958 } else if ( a==0 ) {
7959 if ( b<=0 ) zero_crossing;
7961 @<Use bisection to find the crossing point, if one exists@>;
7964 @ The general bisection method is quite simple when $n=2$, hence
7965 |crossing_point| does not take much time. At each stage in the
7966 recursion we have a subinterval defined by |l| and~|j| such that
7967 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7968 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7970 It is convenient for purposes of calculation to combine the values
7971 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7972 of bisection then corresponds simply to doubling $d$ and possibly
7973 adding~1. Furthermore it proves to be convenient to modify
7974 our previous conventions for bisection slightly, maintaining the
7975 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7976 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7977 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7979 The following code maintains the invariant relations
7980 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7981 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7982 it has been constructed in such a way that no arithmetic overflow
7983 will occur if the inputs satisfy
7984 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7986 @<Use bisection to find the crossing point...@>=
7987 d=1; x0=a; x1=a-b; x2=b-c;
7998 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8002 } while (d<fraction_one);
8003 return (d-fraction_one)
8005 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8006 a cubic corresponding to the |fraction| value~|t|.
8008 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8009 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8011 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8013 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8014 scaled x1,x2,x3; /* intermediate values */
8015 x1=t_of_the_way(knot_coord(p),right_coord(p));
8016 x2=t_of_the_way(right_coord(p),left_coord(q));
8017 x3=t_of_the_way(left_coord(q),knot_coord(q));
8018 x1=t_of_the_way(x1,x2);
8019 x2=t_of_the_way(x2,x3);
8020 return t_of_the_way(x1,x2);
8023 @ The actual bounding box information is stored in global variables.
8024 Since it is convenient to address the $x$ and $y$ information
8025 separately, we define arrays indexed by |x_code..y_code| and use
8026 macros to give them more convenient names.
8030 mp_x_code=0, /* index for |minx| and |maxx| */
8031 mp_y_code /* index for |miny| and |maxy| */
8035 @d minx mp->bbmin[mp_x_code]
8036 @d maxx mp->bbmax[mp_x_code]
8037 @d miny mp->bbmin[mp_y_code]
8038 @d maxy mp->bbmax[mp_y_code]
8041 scaled bbmin[mp_y_code+1];
8042 scaled bbmax[mp_y_code+1];
8043 /* the result of procedures that compute bounding box information */
8045 @ Now we're ready for the key part of the bounding box computation.
8046 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8047 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8048 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8050 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8051 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8052 The |c| parameter is |x_code| or |y_code|.
8054 @c void mp_bound_cubic (MP mp,pointer p, pointer q, quarterword c) {
8055 boolean wavy; /* whether we need to look for extremes */
8056 scaled del1,del2,del3,del,dmax; /* proportional to the control
8057 points of a quadratic derived from a cubic */
8058 fraction t,tt; /* where a quadratic crosses zero */
8059 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8061 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8062 @<Check the control points against the bounding box and set |wavy:=true|
8063 if any of them lie outside@>;
8065 del1=right_coord(p)-knot_coord(p);
8066 del2=left_coord(q)-right_coord(p);
8067 del3=knot_coord(q)-left_coord(q);
8068 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8069 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8071 negate(del1); negate(del2); negate(del3);
8073 t=mp_crossing_point(mp, del1,del2,del3);
8074 if ( t<fraction_one ) {
8075 @<Test the extremes of the cubic against the bounding box@>;
8080 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8081 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8082 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8084 @ @<Check the control points against the bounding box and set...@>=
8086 if ( mp->bbmin[c]<=right_coord(p) )
8087 if ( right_coord(p)<=mp->bbmax[c] )
8088 if ( mp->bbmin[c]<=left_coord(q) )
8089 if ( left_coord(q)<=mp->bbmax[c] )
8092 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8093 section. We just set |del=0| in that case.
8095 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8096 if ( del1!=0 ) del=del1;
8097 else if ( del2!=0 ) del=del2;
8101 if ( abs(del2)>dmax ) dmax=abs(del2);
8102 if ( abs(del3)>dmax ) dmax=abs(del3);
8103 while ( dmax<fraction_half ) {
8104 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8108 @ Since |crossing_point| has tried to choose |t| so that
8109 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8110 slope, the value of |del2| computed below should not be positive.
8111 But rounding error could make it slightly positive in which case we
8112 must cut it to zero to avoid confusion.
8114 @<Test the extremes of the cubic against the bounding box@>=
8116 x=mp_eval_cubic(mp, p,q,t);
8117 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8118 del2=t_of_the_way(del2,del3);
8119 /* now |0,del2,del3| represent the derivative on the remaining interval */
8120 if ( del2>0 ) del2=0;
8121 tt=mp_crossing_point(mp, 0,-del2,-del3);
8122 if ( tt<fraction_one ) {
8123 @<Test the second extreme against the bounding box@>;
8127 @ @<Test the second extreme against the bounding box@>=
8129 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8130 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8133 @ Finding the bounding box of a path is basically a matter of applying
8134 |bound_cubic| twice for each pair of adjacent knots.
8136 @c void mp_path_bbox (MP mp,pointer h) {
8137 pointer p,q; /* a pair of adjacent knots */
8138 minx=x_coord(h); miny=y_coord(h);
8139 maxx=minx; maxy=miny;
8142 if ( right_type(p)==mp_endpoint ) return;
8144 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8145 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8150 @ Another important way to measure a path is to find its arc length. This
8151 is best done by using the general bisection algorithm to subdivide the path
8152 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8155 Since the arc length is the integral with respect to time of the magnitude of
8156 the velocity, it is natural to use Simpson's rule for the approximation.
8158 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8159 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8160 for the arc length of a path of length~1. For a cubic spline
8161 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8162 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8164 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8166 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8167 is the result of the bisection algorithm.
8169 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8170 This could be done via the theoretical error bound for Simpson's rule,
8172 but this is impractical because it requires an estimate of the fourth
8173 derivative of the quantity being integrated. It is much easier to just perform
8174 a bisection step and see how much the arc length estimate changes. Since the
8175 error for Simpson's rule is proportional to the fourth power of the sample
8176 spacing, the remaining error is typically about $1\over16$ of the amount of
8177 the change. We say ``typically'' because the error has a pseudo-random behavior
8178 that could cause the two estimates to agree when each contain large errors.
8180 To protect against disasters such as undetected cusps, the bisection process
8181 should always continue until all the $dz_i$ vectors belong to a single
8182 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8183 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8184 If such a spline happens to produce an erroneous arc length estimate that
8185 is little changed by bisection, the amount of the error is likely to be fairly
8186 small. We will try to arrange things so that freak accidents of this type do
8187 not destroy the inverse relationship between the \&{arclength} and
8188 \&{arctime} operations.
8189 @:arclength_}{\&{arclength} primitive@>
8190 @:arctime_}{\&{arctime} primitive@>
8192 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8194 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8195 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8196 returns the time when the arc length reaches |a_goal| if there is such a time.
8197 Thus the return value is either an arc length less than |a_goal| or, if the
8198 arc length would be at least |a_goal|, it returns a time value decreased by
8199 |two|. This allows the caller to use the sign of the result to distinguish
8200 between arc lengths and time values. On certain types of overflow, it is
8201 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8202 Otherwise, the result is always less than |a_goal|.
8204 Rather than halving the control point coordinates on each recursive call to
8205 |arc_test|, it is better to keep them proportional to velocity on the original
8206 curve and halve the results instead. This means that recursive calls can
8207 potentially use larger error tolerances in their arc length estimates. How
8208 much larger depends on to what extent the errors behave as though they are
8209 independent of each other. To save computing time, we use optimistic assumptions
8210 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8213 In addition to the tolerance parameter, |arc_test| should also have parameters
8214 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8215 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8216 and they are needed in different instances of |arc_test|.
8218 @c @<Declare subroutines needed by |arc_test|@>
8219 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8220 scaled dx2, scaled dy2, scaled v0, scaled v02,
8221 scaled v2, scaled a_goal, scaled tol) {
8222 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8223 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8225 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8226 scaled arc; /* best arc length estimate before recursion */
8227 @<Other local variables in |arc_test|@>;
8228 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8230 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8231 set |arc_test| and |return|@>;
8232 @<Test if the control points are confined to one quadrant or rotating them
8233 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8234 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8235 if ( arc < a_goal ) {
8238 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8239 that time minus |two|@>;
8242 @<Use one or two recursive calls to compute the |arc_test| function@>;
8246 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8247 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8248 |make_fraction| in this inner loop.
8251 @<Use one or two recursive calls to compute the |arc_test| function@>=
8253 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8254 large as possible@>;
8255 tol = tol + halfp(tol);
8256 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8257 halfp(v02), a_new, tol);
8259 return (-halfp(two-a));
8261 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8262 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8263 halfp(v02), v022, v2, a_new, tol);
8265 return (-halfp(-b) - half_unit);
8267 return (a + half(b-a));
8271 @ @<Other local variables in |arc_test|@>=
8272 scaled a,b; /* results of recursive calls */
8273 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8275 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8276 a_aux = el_gordo - a_goal;
8277 if ( a_goal > a_aux ) {
8278 a_aux = a_goal - a_aux;
8281 a_new = a_goal + a_goal;
8285 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8286 to force the additions and subtractions to be done in an order that avoids
8289 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8292 a_new = a_new + a_aux;
8295 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8296 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8297 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8298 this bound. Note that recursive calls will maintain this invariant.
8300 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8301 dx01 = half(dx0 + dx1);
8302 dx12 = half(dx1 + dx2);
8303 dx02 = half(dx01 + dx12);
8304 dy01 = half(dy0 + dy1);
8305 dy12 = half(dy1 + dy2);
8306 dy02 = half(dy01 + dy12)
8308 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8309 |a_goal=el_gordo| is guaranteed to yield the arc length.
8311 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8312 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8313 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8315 arc1 = v002 + half(halfp(v0+tmp) - v002);
8316 arc = v022 + half(halfp(v2+tmp) - v022);
8317 if ( (arc < el_gordo-arc1) ) {
8320 mp->arith_error = true;
8321 if ( a_goal==el_gordo ) return (el_gordo);
8325 @ @<Other local variables in |arc_test|@>=
8326 scaled tmp, tmp2; /* all purpose temporary registers */
8327 scaled arc1; /* arc length estimate for the first half */
8329 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8330 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8331 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8333 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8334 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8336 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8337 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8339 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8340 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8343 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8345 it is appropriate to use the same approximation to decide when the integral
8346 reaches the intermediate value |a_goal|. At this point
8348 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8349 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8350 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8351 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8352 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8356 $$ {\vb\dot B(t)\vb\over 3} \approx
8357 \cases{B\left(\hbox{|v0|},
8358 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8359 {1\over 2}\hbox{|v02|}; 2t \right)&
8360 if $t\le{1\over 2}$\cr
8361 B\left({1\over 2}\hbox{|v02|},
8362 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8363 \hbox{|v2|}; 2t-1 \right)&
8364 if $t\ge{1\over 2}$.\cr}
8367 We can integrate $\vb\dot B(t)\vb$ by using
8368 $$\int 3B(a,b,c;\tau)\,dt =
8369 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8372 This construction allows us to find the time when the arc length reaches
8373 |a_goal| by solving a cubic equation of the form
8374 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8375 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8376 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8377 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8378 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8379 $\tau$ given $a$, $b$, $c$, and $x$.
8381 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8383 tmp = (v02 + 2) / 4;
8384 if ( a_goal<=arc1 ) {
8387 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8390 return ((half_unit - two) +
8391 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8395 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8396 $$ B(0, a, a+b, a+b+c; t) = x. $$
8397 This routine is based on |crossing_point| but is simplified by the
8398 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8399 If rounding error causes this condition to be violated slightly, we just ignore
8400 it and proceed with binary search. This finds a time when the function value
8401 reaches |x| and the slope is positive.
8403 @<Declare subroutines needed by |arc_test|@>=
8404 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8405 scaled ab, bc, ac; /* bisection results */
8406 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8407 integer xx; /* temporary for updating |x| */
8408 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8409 @:this can't happen rising?}{\quad rising?@>
8412 } else if ( x >= a+b+c ) {
8416 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8420 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8421 xx = x - a - ab - ac;
8422 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8423 else { x = x + xx; a=ac; b=bc; t = t+1; };
8424 } while (t < unity);
8429 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8434 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8436 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8437 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8444 @ It is convenient to have a simpler interface to |arc_test| that requires no
8445 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8446 length less than |fraction_four|.
8448 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8450 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8451 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8452 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8453 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8454 v0 = mp_pyth_add(mp, dx0,dy0);
8455 v1 = mp_pyth_add(mp, dx1,dy1);
8456 v2 = mp_pyth_add(mp, dx2,dy2);
8457 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8458 mp->arith_error = true;
8459 if ( a_goal==el_gordo ) return el_gordo;
8462 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8463 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8464 v0, v02, v2, a_goal, arc_tol));
8468 @ Now it is easy to find the arc length of an entire path.
8470 @c scaled mp_get_arc_length (MP mp,pointer h) {
8471 pointer p,q; /* for traversing the path */
8472 scaled a,a_tot; /* current and total arc lengths */
8475 while ( right_type(p)!=mp_endpoint ){
8477 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8478 left_x(q)-right_x(p), left_y(q)-right_y(p),
8479 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8480 a_tot = mp_slow_add(mp, a, a_tot);
8481 if ( q==h ) break; else p=q;
8487 @ The inverse operation of finding the time on a path~|h| when the arc length
8488 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8489 is required to handle very large times or negative times on cyclic paths. For
8490 non-cyclic paths, |arc0| values that are negative or too large cause
8491 |get_arc_time| to return 0 or the length of path~|h|.
8493 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8494 time value greater than the length of the path. Since it could be much greater,
8495 we must be prepared to compute the arc length of path~|h| and divide this into
8496 |arc0| to find how many multiples of the length of path~|h| to add.
8498 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8499 pointer p,q; /* for traversing the path */
8500 scaled t_tot; /* accumulator for the result */
8501 scaled t; /* the result of |do_arc_test| */
8502 scaled arc; /* portion of |arc0| not used up so far */
8503 integer n; /* number of extra times to go around the cycle */
8505 @<Deal with a negative |arc0| value and |return|@>;
8507 if ( arc0==el_gordo ) decr(arc0);
8511 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8513 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8514 left_x(q)-right_x(p), left_y(q)-right_y(p),
8515 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8516 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8518 @<Update |t_tot| and |arc| to avoid going around the cyclic
8519 path too many times but set |arith_error:=true| and |goto done| on
8528 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8529 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8530 else { t_tot = t_tot + unity; arc = arc - t; }
8532 @ @<Deal with a negative |arc0| value and |return|@>=
8534 if ( left_type(h)==mp_endpoint ) {
8537 p = mp_htap_ypoc(mp, h);
8538 t_tot = -mp_get_arc_time(mp, p, -arc0);
8539 mp_toss_knot_list(mp, p);
8545 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8547 n = arc / (arc0 - arc);
8548 arc = arc - n*(arc0 - arc);
8549 if ( t_tot > (el_gordo / (n+1)) ) {
8552 t_tot = (n + 1)*t_tot;
8555 @* \[20] Data structures for pens.
8556 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8557 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8558 @:stroke}{\&{stroke} command@>
8559 converted into an area fill as described in the next part of this program.
8560 The mathematics behind this process is based on simple aspects of the theory
8561 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8562 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8563 Foundations of Computer Science {\bf 24} (1983), 100--111].
8565 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8566 @:makepen_}{\&{makepen} primitive@>
8567 This path representation is almost sufficient for our purposes except that
8568 a pen path should always be a convex polygon with the vertices in
8569 counter-clockwise order.
8570 Since we will need to scan pen polygons both forward and backward, a pen
8571 should be represented as a doubly linked ring of knot nodes. There is
8572 room for the extra back pointer because we do not need the
8573 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8574 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8575 so that certain procedures can operate on both pens and paths. In particular,
8576 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8579 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8581 @ The |make_pen| procedure turns a path into a pen by initializing
8582 the |knil| pointers and making sure the knots form a convex polygon.
8583 Thus each cubic in the given path becomes a straight line and the control
8584 points are ignored. If the path is not cyclic, the ends are connected by a
8587 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8589 @c @<Declare a function called |convex_hull|@>
8590 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8591 pointer p,q; /* two consecutive knots */
8598 h=mp_convex_hull(mp, h);
8599 @<Make sure |h| isn't confused with an elliptical pen@>;
8604 @ The only information required about an elliptical pen is the overall
8605 transformation that has been applied to the original \&{pencircle}.
8606 @:pencircle_}{\&{pencircle} primitive@>
8607 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8608 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8609 knot node and transformed as if it were a path.
8611 @d pen_is_elliptical(A) ((A)==mp_link((A)))
8613 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8614 pointer h; /* the knot node to return */
8615 h=mp_get_node(mp, knot_node_size);
8616 mp_link(h)=h; knil(h)=h;
8617 originator(h)=mp_program_code;
8618 x_coord(h)=0; y_coord(h)=0;
8619 left_x(h)=diam; left_y(h)=0;
8620 right_x(h)=0; right_y(h)=diam;
8624 @ If the polygon being returned by |make_pen| has only one vertex, it will
8625 be interpreted as an elliptical pen. This is no problem since a degenerate
8626 polygon can equally well be thought of as a degenerate ellipse. We need only
8627 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8629 @<Make sure |h| isn't confused with an elliptical pen@>=
8630 if ( pen_is_elliptical( h) ){
8631 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8632 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8635 @ We have to cheat a little here but most operations on pens only use
8636 the first three words in each knot node.
8637 @^data structure assumptions@>
8639 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8640 x_coord(test_pen)=-half_unit;
8641 y_coord(test_pen)=0;
8642 x_coord(test_pen+3)=half_unit;
8643 y_coord(test_pen+3)=0;
8644 x_coord(test_pen+6)=0;
8645 y_coord(test_pen+6)=unity;
8646 mp_link(test_pen)=test_pen+3;
8647 mp_link(test_pen+3)=test_pen+6;
8648 mp_link(test_pen+6)=test_pen;
8649 knil(test_pen)=test_pen+6;
8650 knil(test_pen+3)=test_pen;
8651 knil(test_pen+6)=test_pen+3
8653 @ Printing a polygonal pen is very much like printing a path
8655 @<Declare subroutines for printing expressions@>=
8656 void mp_pr_pen (MP mp,pointer h) {
8657 pointer p,q; /* for list traversal */
8658 if ( pen_is_elliptical(h) ) {
8659 @<Print the elliptical pen |h|@>;
8663 mp_print_two(mp, x_coord(p),y_coord(p));
8664 mp_print_nl(mp, " .. ");
8665 @<Advance |p| making sure the links are OK and |return| if there is
8668 mp_print(mp, "cycle");
8672 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8674 if ( (q==null) || (knil(q)!=p) ) {
8675 mp_print_nl(mp, "???"); return; /* this won't happen */
8680 @ @<Print the elliptical pen |h|@>=
8682 mp_print(mp, "pencircle transformed (");
8683 mp_print_scaled(mp, x_coord(h));
8684 mp_print_char(mp, xord(','));
8685 mp_print_scaled(mp, y_coord(h));
8686 mp_print_char(mp, xord(','));
8687 mp_print_scaled(mp, left_x(h)-x_coord(h));
8688 mp_print_char(mp, xord(','));
8689 mp_print_scaled(mp, right_x(h)-x_coord(h));
8690 mp_print_char(mp, xord(','));
8691 mp_print_scaled(mp, left_y(h)-y_coord(h));
8692 mp_print_char(mp, xord(','));
8693 mp_print_scaled(mp, right_y(h)-y_coord(h));
8694 mp_print_char(mp, xord(')'));
8697 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8700 @<Declare subroutines for printing expressions@>=
8701 void mp_print_pen (MP mp,pointer h, const char *s, boolean nuline) {
8702 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8705 mp_end_diagnostic(mp, true);
8708 @ Making a polygonal pen into a path involves restoring the |left_type| and
8709 |right_type| fields and setting the control points so as to make a polygonal
8713 void mp_make_path (MP mp,pointer h) {
8714 pointer p; /* for traversing the knot list */
8715 quarterword k; /* a loop counter */
8716 @<Other local variables in |make_path|@>;
8717 if ( pen_is_elliptical(h) ) {
8718 @<Make the elliptical pen |h| into a path@>;
8722 left_type(p)=mp_explicit;
8723 right_type(p)=mp_explicit;
8724 @<copy the coordinates of knot |p| into its control points@>;
8730 @ @<copy the coordinates of knot |p| into its control points@>=
8731 left_x(p)=x_coord(p);
8732 left_y(p)=y_coord(p);
8733 right_x(p)=x_coord(p);
8734 right_y(p)=y_coord(p)
8736 @ We need an eight knot path to get a good approximation to an ellipse.
8738 @<Make the elliptical pen |h| into a path@>=
8740 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8742 for (k=0;k<=7;k++ ) {
8743 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8744 transforming it appropriately@>;
8745 if ( k==7 ) mp_link(p)=h; else mp_link(p)=mp_get_node(mp, knot_node_size);
8750 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8751 center_x=x_coord(h);
8752 center_y=y_coord(h);
8753 width_x=left_x(h)-center_x;
8754 width_y=left_y(h)-center_y;
8755 height_x=right_x(h)-center_x;
8756 height_y=right_y(h)-center_y
8758 @ @<Other local variables in |make_path|@>=
8759 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8760 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8761 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8762 scaled dx,dy; /* the vector from knot |p| to its right control point */
8764 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8766 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8767 find the point $k/8$ of the way around the circle and the direction vector
8770 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8772 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8773 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8774 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8775 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8776 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8777 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8778 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8779 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8780 right_x(p)=x_coord(p)+dx;
8781 right_y(p)=y_coord(p)+dy;
8782 left_x(p)=x_coord(p)-dx;
8783 left_y(p)=y_coord(p)-dy;
8784 left_type(p)=mp_explicit;
8785 right_type(p)=mp_explicit;
8786 originator(p)=mp_program_code
8789 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8790 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8792 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8793 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8794 function for $\theta=\phi=22.5^\circ$. This comes out to be
8795 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8796 \approx 0.132608244919772.
8800 mp->half_cos[0]=fraction_half;
8801 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8803 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8804 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8806 for (k=3;k<= 4;k++ ) {
8807 mp->half_cos[k]=-mp->half_cos[4-k];
8808 mp->d_cos[k]=-mp->d_cos[4-k];
8810 for (k=5;k<= 7;k++ ) {
8811 mp->half_cos[k]=mp->half_cos[8-k];
8812 mp->d_cos[k]=mp->d_cos[8-k];
8815 @ The |convex_hull| function forces a pen polygon to be convex when it is
8816 returned by |make_pen| and after any subsequent transformation where rounding
8817 error might allow the convexity to be lost.
8818 The convex hull algorithm used here is described by F.~P. Preparata and
8819 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8821 @<Declare a function called |convex_hull|@>=
8822 @<Declare a procedure called |move_knot|@>
8823 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8824 pointer l,r; /* the leftmost and rightmost knots */
8825 pointer p,q; /* knots being scanned */
8826 pointer s; /* the starting point for an upcoming scan */
8827 scaled dx,dy; /* a temporary pointer */
8828 if ( pen_is_elliptical(h) ) {
8831 @<Set |l| to the leftmost knot in polygon~|h|@>;
8832 @<Set |r| to the rightmost knot in polygon~|h|@>;
8835 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8836 move them past~|r|@>;
8837 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8838 move them past~|l|@>;
8839 @<Sort the path from |l| to |r| by increasing $x$@>;
8840 @<Sort the path from |r| to |l| by decreasing $x$@>;
8842 if ( l!=mp_link(l) ) {
8843 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8849 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8851 @<Set |l| to the leftmost knot in polygon~|h|@>=
8855 if ( x_coord(p)<=x_coord(l) )
8856 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8861 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8865 if ( x_coord(p)>=x_coord(r) )
8866 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8871 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8872 dx=x_coord(r)-x_coord(l);
8873 dy=y_coord(r)-y_coord(l);
8877 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8878 mp_move_knot(mp, p, r);
8882 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8885 @ @<Declare a procedure called |move_knot|@>=
8886 void mp_move_knot (MP mp,pointer p, pointer q) {
8887 mp_link(knil(p))=mp_link(p);
8888 knil(mp_link(p))=knil(p);
8890 mp_link(p)=mp_link(q);
8895 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8899 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8900 mp_move_knot(mp, p,l);
8904 @ The list is likely to be in order already so we just do linear insertions.
8905 Secondary comparisons on $y$ ensure that the sort is consistent with the
8906 choice of |l| and |r|.
8908 @<Sort the path from |l| to |r| by increasing $x$@>=
8912 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8913 while ( x_coord(q)==x_coord(p) ) {
8914 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8916 if ( q==knil(p) ) p=mp_link(p);
8917 else { p=mp_link(p); mp_move_knot(mp, knil(p),q); };
8920 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8924 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8925 while ( x_coord(q)==x_coord(p) ) {
8926 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8928 if ( q==knil(p) ) p=mp_link(p);
8929 else { p=mp_link(p); mp_move_knot(mp, knil(p),q); };
8932 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8933 at knot |q|. There usually will be a left turn so we streamline the case
8934 where the |then| clause is not executed.
8936 @<Do a Gramm scan and remove vertices where there...@>=
8940 dx=x_coord(q)-x_coord(p);
8941 dy=y_coord(q)-y_coord(p);
8945 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8946 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8951 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8954 mp_free_node(mp, p,knot_node_size);
8955 mp_link(s)=q; knil(q)=s;
8957 else { p=knil(s); q=s; };
8960 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8961 offset associated with the given direction |(x,y)|. If two different offsets
8962 apply, it chooses one of them.
8965 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8966 pointer p,q; /* consecutive knots */
8968 /* the transformation matrix for an elliptical pen */
8969 fraction xx,yy; /* untransformed offset for an elliptical pen */
8970 fraction d; /* a temporary register */
8971 if ( pen_is_elliptical(h) ) {
8972 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8977 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8980 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8981 mp->cur_x=x_coord(p);
8982 mp->cur_y=y_coord(p);
8988 scaled cur_y; /* all-purpose return value registers */
8990 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8991 if ( (x==0) && (y==0) ) {
8992 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8994 @<Find the non-constant part of the transformation for |h|@>;
8995 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8998 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8999 untransformed version of |(x,y)|@>;
9000 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9001 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9004 @ @<Find the non-constant part of the transformation for |h|@>=
9005 wx=left_x(h)-x_coord(h);
9006 wy=left_y(h)-y_coord(h);
9007 hx=right_x(h)-x_coord(h);
9008 hy=right_y(h)-y_coord(h)
9010 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9011 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9012 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9013 d=mp_pyth_add(mp, xx,yy);
9015 xx=half(mp_make_fraction(mp, xx,d));
9016 yy=half(mp_make_fraction(mp, yy,d));
9019 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9020 But we can handle that case by just calling |find_offset| twice. The answer
9021 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9024 void mp_pen_bbox (MP mp,pointer h) {
9025 pointer p; /* for scanning the knot list */
9026 if ( pen_is_elliptical(h) ) {
9027 @<Find the bounding box of an elliptical pen@>;
9029 minx=x_coord(h); maxx=minx;
9030 miny=y_coord(h); maxy=miny;
9033 if ( x_coord(p)<minx ) minx=x_coord(p);
9034 if ( y_coord(p)<miny ) miny=y_coord(p);
9035 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9036 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9042 @ @<Find the bounding box of an elliptical pen@>=
9044 mp_find_offset(mp, 0,fraction_one,h);
9046 minx=2*x_coord(h)-mp->cur_x;
9047 mp_find_offset(mp, -fraction_one,0,h);
9049 miny=2*y_coord(h)-mp->cur_y;
9052 @* \[21] Edge structures.
9053 Now we come to \MP's internal scheme for representing pictures.
9054 The representation is very different from \MF's edge structures
9055 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9056 images. However, the basic idea is somewhat similar in that shapes
9057 are represented via their boundaries.
9059 The main purpose of edge structures is to keep track of graphical objects
9060 until it is time to translate them into \ps. Since \MP\ does not need to
9061 know anything about an edge structure other than how to translate it into
9062 \ps\ and how to find its bounding box, edge structures can be just linked
9063 lists of graphical objects. \MP\ has no easy way to determine whether
9064 two such objects overlap, but it suffices to draw the first one first and
9065 let the second one overwrite it if necessary.
9068 enum mp_graphical_object_code {
9069 @<Graphical object codes@>
9073 @ Let's consider the types of graphical objects one at a time.
9074 First of all, a filled contour is represented by a eight-word node. The first
9075 word contains |type| and |link| fields, and the next six words contain a
9076 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9077 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9078 give the relevant information.
9080 @d path_p(A) mp_link((A)+1)
9081 /* a pointer to the path that needs filling */
9082 @d pen_p(A) info((A)+1)
9083 /* a pointer to the pen to fill or stroke with */
9084 @d color_model(A) type((A)+2) /* the color model */
9085 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9086 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9087 @d obj_grey_loc obj_red_loc /* the location for the color */
9088 @d red_val(A) mp->mem[(A)+3].sc
9089 /* the red component of the color in the range $0\ldots1$ */
9092 @d green_val(A) mp->mem[(A)+4].sc
9093 /* the green component of the color in the range $0\ldots1$ */
9094 @d magenta_val green_val
9095 @d blue_val(A) mp->mem[(A)+5].sc
9096 /* the blue component of the color in the range $0\ldots1$ */
9097 @d yellow_val blue_val
9098 @d black_val(A) mp->mem[(A)+6].sc
9099 /* the blue component of the color in the range $0\ldots1$ */
9100 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9101 @:mp_linejoin_}{\&{linejoin} primitive@>
9102 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9103 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9104 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9105 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9106 @d pre_script(A) mp->mem[(A)+8].hh.lh
9107 @d post_script(A) mp->mem[(A)+8].hh.rh
9110 @ @<Graphical object codes@>=
9114 pointer mp_new_fill_node (MP mp,pointer p) {
9115 /* make a fill node for cyclic path |p| and color black */
9116 pointer t; /* the new node */
9117 t=mp_get_node(mp, fill_node_size);
9118 type(t)=mp_fill_code;
9120 pen_p(t)=null; /* |null| means don't use a pen */
9125 color_model(t)=mp_uninitialized_model;
9127 post_script(t)=null;
9128 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9132 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9133 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9134 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9135 else ljoin_val(t)=0;
9136 if ( mp->internal[mp_miterlimit]<unity )
9137 miterlim_val(t)=unity;
9139 miterlim_val(t)=mp->internal[mp_miterlimit]
9141 @ A stroked path is represented by an eight-word node that is like a filled
9142 contour node except that it contains the current \&{linecap} value, a scale
9143 factor for the dash pattern, and a pointer that is non-null if the stroke
9144 is to be dashed. The purpose of the scale factor is to allow a picture to
9145 be transformed without touching the picture that |dash_p| points to.
9147 @d dash_p(A) mp_link((A)+9)
9148 /* a pointer to the edge structure that gives the dash pattern */
9149 @d lcap_val(A) type((A)+9)
9150 /* the value of \&{linecap} */
9151 @:mp_linecap_}{\&{linecap} primitive@>
9152 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9153 @d stroked_node_size 11
9155 @ @<Graphical object codes@>=
9159 pointer mp_new_stroked_node (MP mp,pointer p) {
9160 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9161 pointer t; /* the new node */
9162 t=mp_get_node(mp, stroked_node_size);
9163 type(t)=mp_stroked_code;
9164 path_p(t)=p; pen_p(t)=null;
9166 dash_scale(t)=unity;
9171 color_model(t)=mp_uninitialized_model;
9173 post_script(t)=null;
9174 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9175 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9176 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9181 @ When a dashed line is computed in a transformed coordinate system, the dash
9182 lengths get scaled like the pen shape and we need to compensate for this. Since
9183 there is no unique scale factor for an arbitrary transformation, we use the
9184 the square root of the determinant. The properties of the determinant make it
9185 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9186 except for the initialization of the scale factor |s|. The factor of 64 is
9187 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9188 to counteract the effect of |take_fraction|.
9190 @<Declare subroutines needed by |print_edges|@>=
9191 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9192 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9193 unsigned s; /* amount by which the result of |square_rt| needs to be scaled */
9194 @<Initialize |maxabs|@>;
9196 while ( (maxabs<fraction_one) && (s>1) ){
9197 a+=a; b+=b; c+=c; d+=d;
9198 maxabs+=maxabs; s=halfp(s);
9200 return (scaled)(s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c))));
9203 scaled mp_get_pen_scale (MP mp,pointer p) {
9204 return mp_sqrt_det(mp,
9205 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9206 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9209 @ @<Internal library ...@>=
9210 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9213 @ @<Initialize |maxabs|@>=
9215 if ( abs(b)>maxabs ) maxabs=abs(b);
9216 if ( abs(c)>maxabs ) maxabs=abs(c);
9217 if ( abs(d)>maxabs ) maxabs=abs(d)
9219 @ When a picture contains text, this is represented by a fourteen-word node
9220 where the color information and |type| and |link| fields are augmented by
9221 additional fields that describe the text and how it is transformed.
9222 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9223 the font and a string number that gives the text to be displayed.
9224 The |width|, |height|, and |depth| fields
9225 give the dimensions of the text at its design size, and the remaining six
9226 words give a transformation to be applied to the text. The |new_text_node|
9227 function initializes everything to default values so that the text comes out
9228 black with its reference point at the origin.
9230 @d text_p(A) mp_link((A)+1) /* a string pointer for the text to display */
9231 @d font_n(A) info((A)+1) /* the font number */
9232 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9233 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9234 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9235 @d text_tx_loc(A) ((A)+11)
9236 /* the first of six locations for transformation parameters */
9237 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9238 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9239 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9240 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9241 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9242 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9243 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9244 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9245 @d text_node_size 17
9247 @ @<Graphical object codes@>=
9250 @ @c @<Declare text measuring subroutines@>
9251 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9252 /* make a text node for font |f| and text string |s| */
9253 pointer t; /* the new node */
9254 t=mp_get_node(mp, text_node_size);
9255 type(t)=mp_text_code;
9257 font_n(t)=(halfword)mp_find_font(mp, f); /* this identifies the font */
9262 color_model(t)=mp_uninitialized_model;
9264 post_script(t)=null;
9265 tx_val(t)=0; ty_val(t)=0;
9266 txx_val(t)=unity; txy_val(t)=0;
9267 tyx_val(t)=0; tyy_val(t)=unity;
9268 mp_set_text_box(mp, t); /* this finds the bounding box */
9272 @ The last two types of graphical objects that can occur in an edge structure
9273 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9274 @:set_bounds_}{\&{setbounds} primitive@>
9275 to implement because we must keep track of exactly what is being clipped or
9276 bounded when pictures get merged together. For this reason, each clipping or
9277 \&{setbounds} operation is represented by a pair of nodes: first comes a
9278 two-word node whose |path_p| gives the relevant path, then there is the list
9279 of objects to clip or bound followed by a two-word node whose second word is
9282 Using at least two words for each graphical object node allows them all to be
9283 allocated and deallocated similarly with a global array |gr_object_size| to
9284 give the size in words for each object type.
9286 @d start_clip_size 2
9287 @d start_bounds_size 2
9288 @d stop_clip_size 2 /* the second word is not used here */
9289 @d stop_bounds_size 2 /* the second word is not used here */
9291 @d stop_type(A) ((A)+2)
9292 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9293 @d has_color(A) (type((A))<mp_start_clip_code)
9294 /* does a graphical object have color fields? */
9295 @d has_pen(A) (type((A))<mp_text_code)
9296 /* does a graphical object have a |pen_p| field? */
9297 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9298 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9300 @ @<Graphical object codes@>=
9301 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9302 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9303 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9304 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9307 pointer mp_new_bounds_node (MP mp,pointer p, quarterword c) {
9308 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9309 pointer t; /* the new node */
9310 t=mp_get_node(mp, mp->gr_object_size[c]);
9316 @ We need an array to keep track of the sizes of graphical objects.
9319 quarterword gr_object_size[mp_stop_bounds_code+1];
9322 mp->gr_object_size[mp_fill_code]=fill_node_size;
9323 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9324 mp->gr_object_size[mp_text_code]=text_node_size;
9325 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9326 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9327 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9328 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9330 @ All the essential information in an edge structure is encoded as a linked list
9331 of graphical objects as we have just seen, but it is helpful to add some
9332 redundant information. A single edge structure might be used as a dash pattern
9333 many times, and it would be nice to avoid scanning the same structure
9334 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9335 has a header that gives a list of dashes in a sorted order designed for rapid
9336 translation into \ps.
9338 Each dash is represented by a three-word node containing the initial and final
9339 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9340 the dash node with the next higher $x$-coordinates and the final link points
9341 to a special location called |null_dash|. (There should be no overlap between
9342 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9343 the period of repetition, this needs to be stored in the edge header along
9344 with a pointer to the list of dash nodes.
9346 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9347 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9349 @d dash_list mp_link
9350 /* in an edge header this points to the first dash node */
9351 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9353 @ It is also convenient for an edge header to contain the bounding
9354 box information needed by the \&{llcorner} and \&{urcorner} operators
9355 so that this does not have to be recomputed unnecessarily. This is done by
9356 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9357 how far the bounding box computation has gotten. Thus if the user asks for
9358 the bounding box and then adds some more text to the picture before asking
9359 for more bounding box information, the second computation need only look at
9360 the additional text.
9362 When the bounding box has not been computed, the |bblast| pointer points
9363 to a dummy link at the head of the graphical object list while the |minx_val|
9364 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9365 fields contain |-el_gordo|.
9367 Since the bounding box of pictures containing objects of type
9368 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9369 @:mp_true_corners_}{\&{truecorners} primitive@>
9370 data might not be valid for all values of this parameter. Hence, the |bbtype|
9371 field is needed to keep track of this.
9373 @d minx_val(A) mp->mem[(A)+2].sc
9374 @d miny_val(A) mp->mem[(A)+3].sc
9375 @d maxx_val(A) mp->mem[(A)+4].sc
9376 @d maxy_val(A) mp->mem[(A)+5].sc
9377 @d bblast(A) mp_link((A)+6) /* last item considered in bounding box computation */
9378 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9379 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9381 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9383 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9385 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9388 void mp_init_bbox (MP mp,pointer h) {
9389 /* Initialize the bounding box information in edge structure |h| */
9390 bblast(h)=dummy_loc(h);
9391 bbtype(h)=no_bounds;
9392 minx_val(h)=el_gordo;
9393 miny_val(h)=el_gordo;
9394 maxx_val(h)=-el_gordo;
9395 maxy_val(h)=-el_gordo;
9398 @ The only other entries in an edge header are a reference count in the first
9399 word and a pointer to the tail of the object list in the last word.
9401 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9402 @d edge_header_size 8
9405 void mp_init_edges (MP mp,pointer h) {
9406 /* initialize an edge header to null values */
9407 dash_list(h)=null_dash;
9408 obj_tail(h)=dummy_loc(h);
9409 mp_link(dummy_loc(h))=null;
9411 mp_init_bbox(mp, h);
9414 @ Here is how edge structures are deleted. The process can be recursive because
9415 of the need to dereference edge structures that are used as dash patterns.
9418 @d add_edge_ref(A) incr(ref_count(A))
9419 @d delete_edge_ref(A) {
9420 if ( ref_count((A))==null )
9421 mp_toss_edges(mp, A);
9426 @<Declare the recycling subroutines@>=
9427 void mp_flush_dash_list (MP mp,pointer h);
9428 pointer mp_toss_gr_object (MP mp,pointer p) ;
9429 void mp_toss_edges (MP mp,pointer h) ;
9431 @ @c void mp_toss_edges (MP mp,pointer h) {
9432 pointer p,q; /* pointers that scan the list being recycled */
9433 pointer r; /* an edge structure that object |p| refers to */
9434 mp_flush_dash_list(mp, h);
9435 q=mp_link(dummy_loc(h));
9436 while ( (q!=null) ) {
9438 r=mp_toss_gr_object(mp, p);
9439 if ( r!=null ) delete_edge_ref(r);
9441 mp_free_node(mp, h,edge_header_size);
9443 void mp_flush_dash_list (MP mp,pointer h) {
9444 pointer p,q; /* pointers that scan the list being recycled */
9446 while ( q!=null_dash ) {
9448 mp_free_node(mp, p,dash_node_size);
9450 dash_list(h)=null_dash;
9452 pointer mp_toss_gr_object (MP mp,pointer p) {
9453 /* returns an edge structure that needs to be dereferenced */
9454 pointer e; /* the edge structure to return */
9456 @<Prepare to recycle graphical object |p|@>;
9457 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9461 @ @<Prepare to recycle graphical object |p|@>=
9464 mp_toss_knot_list(mp, path_p(p));
9465 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9466 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9467 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9469 case mp_stroked_code:
9470 mp_toss_knot_list(mp, path_p(p));
9471 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9472 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9473 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9477 delete_str_ref(text_p(p));
9478 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9479 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9481 case mp_start_clip_code:
9482 case mp_start_bounds_code:
9483 mp_toss_knot_list(mp, path_p(p));
9485 case mp_stop_clip_code:
9486 case mp_stop_bounds_code:
9488 } /* there are no other cases */
9490 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9491 to be done before making a significant change to an edge structure. Much of
9492 the work is done in a separate routine |copy_objects| that copies a list of
9493 graphical objects into a new edge header.
9495 @c @<Declare a function called |copy_objects|@>
9496 pointer mp_private_edges (MP mp,pointer h) {
9497 /* make a private copy of the edge structure headed by |h| */
9498 pointer hh; /* the edge header for the new copy */
9499 pointer p,pp; /* pointers for copying the dash list */
9500 if ( ref_count(h)==null ) {
9504 hh=mp_copy_objects(mp, mp_link(dummy_loc(h)),null);
9505 @<Copy the dash list from |h| to |hh|@>;
9506 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9507 point into the new object list@>;
9512 @ Here we use the fact that |dash_list(hh)=mp_link(hh)|.
9513 @^data structure assumptions@>
9515 @<Copy the dash list from |h| to |hh|@>=
9516 pp=hh; p=dash_list(h);
9517 while ( (p!=null_dash) ) {
9518 mp_link(pp)=mp_get_node(mp, dash_node_size);
9520 start_x(pp)=start_x(p);
9521 stop_x(pp)=stop_x(p);
9524 mp_link(pp)=null_dash;
9525 dash_y(hh)=dash_y(h)
9528 @ |h| is an edge structure
9531 mp_dash_object *mp_export_dashes (MP mp, pointer q, scaled *w) {
9534 scaled scf; /* scale factor */
9538 if (h==null || dash_list(h)==null_dash)
9541 scf=mp_get_pen_scale(mp, pen_p(q));
9543 if (*w==0) scf = dash_scale(q); else return NULL;
9545 scf=mp_make_scaled(mp, *w,scf);
9546 scf=mp_take_scaled(mp, scf,dash_scale(q));
9549 d = xmalloc(1,sizeof(mp_dash_object));
9550 start_x(null_dash)=start_x(p)+dash_y(h);
9551 while (p != null_dash) {
9552 dashes = xrealloc(dashes, (num_dashes+2), sizeof(scaled));
9553 dashes[(num_dashes-1)] =
9554 mp_take_scaled(mp,(stop_x(p)-start_x(p)),scf);
9555 dashes[(num_dashes)] =
9556 mp_take_scaled(mp,(start_x(mp_link(p))-stop_x(p)),scf);
9557 dashes[(num_dashes+1)] = -1; /* terminus */
9561 d->array_field = dashes;
9563 mp_take_scaled(mp,mp_dash_offset(mp, h),scf);
9569 @ @<Copy the bounding box information from |h| to |hh|...@>=
9570 minx_val(hh)=minx_val(h);
9571 miny_val(hh)=miny_val(h);
9572 maxx_val(hh)=maxx_val(h);
9573 maxy_val(hh)=maxy_val(h);
9574 bbtype(hh)=bbtype(h);
9575 p=dummy_loc(h); pp=dummy_loc(hh);
9576 while ((p!=bblast(h)) ) {
9577 if ( p==null ) mp_confusion(mp, "bblast");
9578 @:this can't happen bblast}{\quad bblast@>
9579 p=mp_link(p); pp=mp_link(pp);
9583 @ Here is the promised routine for copying graphical objects into a new edge
9584 structure. It starts copying at object~|p| and stops just before object~|q|.
9585 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9586 structure requires further initialization by |init_bbox|.
9588 @<Declare a function called |copy_objects|@>=
9589 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9590 pointer hh; /* the new edge header */
9591 pointer pp; /* the last newly copied object */
9592 quarterword k; /* temporary register */
9593 hh=mp_get_node(mp, edge_header_size);
9594 dash_list(hh)=null_dash;
9598 @<Make |mp_link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9605 @ @<Make |mp_link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9606 { k=mp->gr_object_size[type(p)];
9607 mp_link(pp)=mp_get_node(mp, k);
9609 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9610 @<Fix anything in graphical object |pp| that should differ from the
9611 corresponding field in |p|@>;
9615 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9617 case mp_start_clip_code:
9618 case mp_start_bounds_code:
9619 path_p(pp)=mp_copy_path(mp, path_p(p));
9622 path_p(pp)=mp_copy_path(mp, path_p(p));
9623 if ( pre_script(p)!=null ) add_str_ref(pre_script(p));
9624 if ( post_script(p)!=null ) add_str_ref(post_script(p));
9625 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9627 case mp_stroked_code:
9628 if ( pre_script(p)!=null ) add_str_ref(pre_script(p));
9629 if ( post_script(p)!=null ) add_str_ref(post_script(p));
9630 path_p(pp)=mp_copy_path(mp, path_p(p));
9631 pen_p(pp)=copy_pen(pen_p(p));
9632 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9635 if ( pre_script(p)!=null ) add_str_ref(pre_script(p));
9636 if ( post_script(p)!=null ) add_str_ref(post_script(p));
9637 add_str_ref(text_p(pp));
9639 case mp_stop_clip_code:
9640 case mp_stop_bounds_code:
9642 } /* there are no other cases */
9644 @ Here is one way to find an acceptable value for the second argument to
9645 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9646 skips past one picture component, where a ``picture component'' is a single
9647 graphical object, or a start bounds or start clip object and everything up
9648 through the matching stop bounds or stop clip object. The macro version avoids
9649 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9650 unless |p| points to a stop bounds or stop clip node, in which case it executes
9653 @d skip_component(A)
9654 if ( ! is_start_or_stop((A)) ) (A)=mp_link((A));
9655 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9659 pointer mp_skip_1component (MP mp,pointer p) {
9660 integer lev; /* current nesting level */
9663 if ( is_start_or_stop(p) ) {
9664 if ( is_stop(p) ) decr(lev); else incr(lev);
9671 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9673 @<Declare subroutines for printing expressions@>=
9674 @<Declare subroutines needed by |print_edges|@>
9675 void mp_print_edges (MP mp,pointer h, const char *s, boolean nuline) {
9676 pointer p; /* a graphical object to be printed */
9677 pointer hh,pp; /* temporary pointers */
9678 scaled scf; /* a scale factor for the dash pattern */
9679 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9680 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9682 while ( mp_link(p)!=null ) {
9686 @<Cases for printing graphical object node |p|@>;
9688 mp_print(mp, "[unknown object type!]");
9692 mp_print_nl(mp, "End edges");
9693 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9695 mp_end_diagnostic(mp, true);
9698 @ @<Cases for printing graphical object node |p|@>=
9700 mp_print(mp, "Filled contour ");
9701 mp_print_obj_color(mp, p);
9702 mp_print_char(mp, xord(':')); mp_print_ln(mp);
9703 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9704 if ( (pen_p(p)!=null) ) {
9705 @<Print join type for graphical object |p|@>;
9706 mp_print(mp, " with pen"); mp_print_ln(mp);
9707 mp_pr_pen(mp, pen_p(p));
9711 @ @<Print join type for graphical object |p|@>=
9712 switch (ljoin_val(p)) {
9714 mp_print(mp, "mitered joins limited ");
9715 mp_print_scaled(mp, miterlim_val(p));
9718 mp_print(mp, "round joins");
9721 mp_print(mp, "beveled joins");
9724 mp_print(mp, "?? joins");
9729 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9731 @<Print join and cap types for stroked node |p|@>=
9732 switch (lcap_val(p)) {
9733 case 0:mp_print(mp, "butt"); break;
9734 case 1:mp_print(mp, "round"); break;
9735 case 2:mp_print(mp, "square"); break;
9736 default: mp_print(mp, "??"); break;
9739 mp_print(mp, " ends, ");
9740 @<Print join type for graphical object |p|@>
9742 @ Here is a routine that prints the color of a graphical object if it isn't
9743 black (the default color).
9745 @<Declare subroutines needed by |print_edges|@>=
9746 @<Declare a procedure called |print_compact_node|@>
9747 void mp_print_obj_color (MP mp,pointer p) {
9748 if ( color_model(p)==mp_grey_model ) {
9749 if ( grey_val(p)>0 ) {
9750 mp_print(mp, "greyed ");
9751 mp_print_compact_node(mp, obj_grey_loc(p),1);
9753 } else if ( color_model(p)==mp_cmyk_model ) {
9754 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9755 (yellow_val(p)>0) || (black_val(p)>0) ) {
9756 mp_print(mp, "processcolored ");
9757 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9759 } else if ( color_model(p)==mp_rgb_model ) {
9760 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9761 mp_print(mp, "colored ");
9762 mp_print_compact_node(mp, obj_red_loc(p),3);
9767 @ We also need a procedure for printing consecutive scaled values as if they
9768 were a known big node.
9770 @<Declare a procedure called |print_compact_node|@>=
9771 void mp_print_compact_node (MP mp,pointer p, quarterword k) {
9772 pointer q; /* last location to print */
9774 mp_print_char(mp, xord('('));
9776 mp_print_scaled(mp, mp->mem[p].sc);
9777 if ( p<q ) mp_print_char(mp, xord(','));
9780 mp_print_char(mp, xord(')'));
9783 @ @<Cases for printing graphical object node |p|@>=
9784 case mp_stroked_code:
9785 mp_print(mp, "Filled pen stroke ");
9786 mp_print_obj_color(mp, p);
9787 mp_print_char(mp, xord(':')); mp_print_ln(mp);
9788 mp_pr_path(mp, path_p(p));
9789 if ( dash_p(p)!=null ) {
9790 mp_print_nl(mp, "dashed (");
9791 @<Finish printing the dash pattern that |p| refers to@>;
9794 @<Print join and cap types for stroked node |p|@>;
9795 mp_print(mp, " with pen"); mp_print_ln(mp);
9796 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9798 else mp_pr_pen(mp, pen_p(p));
9801 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9802 when it is not known to define a suitable dash pattern. This is disallowed
9803 here because the |dash_p| field should never point to such an edge header.
9804 Note that memory is allocated for |start_x(null_dash)| and we are free to
9805 give it any convenient value.
9807 @<Finish printing the dash pattern that |p| refers to@>=
9808 ok_to_dash=pen_is_elliptical(pen_p(p));
9809 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9812 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9813 mp_print(mp, " ??");
9814 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9815 while ( pp!=null_dash ) {
9816 mp_print(mp, "on ");
9817 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9818 mp_print(mp, " off ");
9819 mp_print_scaled(mp, mp_take_scaled(mp, start_x(mp_link(pp))-stop_x(pp),scf));
9821 if ( pp!=null_dash ) mp_print_char(mp, xord(' '));
9823 mp_print(mp, ") shifted ");
9824 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9825 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9828 @ @<Declare subroutines needed by |print_edges|@>=
9829 scaled mp_dash_offset (MP mp,pointer h) {
9830 scaled x; /* the answer */
9831 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9832 @:this can't happen dash0}{\quad dash0@>
9833 if ( dash_y(h)==0 ) {
9836 x=-(start_x(dash_list(h)) % dash_y(h));
9837 if ( x<0 ) x=x+dash_y(h);
9842 @ @<Cases for printing graphical object node |p|@>=
9844 mp_print_char(mp, xord('"')); mp_print_str(mp,text_p(p));
9845 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9846 mp_print_char(mp, xord('"')); mp_print_ln(mp);
9847 mp_print_obj_color(mp, p);
9848 mp_print(mp, "transformed ");
9849 mp_print_compact_node(mp, text_tx_loc(p),6);
9852 @ @<Cases for printing graphical object node |p|@>=
9853 case mp_start_clip_code:
9854 mp_print(mp, "clipping path:");
9856 mp_pr_path(mp, path_p(p));
9858 case mp_stop_clip_code:
9859 mp_print(mp, "stop clipping");
9862 @ @<Cases for printing graphical object node |p|@>=
9863 case mp_start_bounds_code:
9864 mp_print(mp, "setbounds path:");
9866 mp_pr_path(mp, path_p(p));
9868 case mp_stop_bounds_code:
9869 mp_print(mp, "end of setbounds");
9872 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9873 subroutine that scans an edge structure and tries to interpret it as a dash
9874 pattern. This can only be done when there are no filled regions or clipping
9875 paths and all the pen strokes have the same color. The first step is to let
9876 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9877 project all the pen stroke paths onto the line $y=y_0$ and require that there
9878 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9879 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9880 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9882 @c @<Declare a procedure called |x_retrace_error|@>
9883 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9884 pointer p; /* this scans the stroked nodes in the object list */
9885 pointer p0; /* if not |null| this points to the first stroked node */
9886 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9887 pointer d,dd; /* pointers used to create the dash list */
9889 @<Other local variables in |make_dashes|@>;
9890 y0=0; /* the initial $y$ coordinate */
9891 if ( dash_list(h)!=null_dash )
9894 p=mp_link(dummy_loc(h));
9896 if ( type(p)!=mp_stroked_code ) {
9897 @<Compain that the edge structure contains a node of the wrong type
9898 and |goto not_found|@>;
9901 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9902 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9903 or |goto not_found| if there is an error@>;
9904 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9907 if ( dash_list(h)==null_dash )
9908 goto NOT_FOUND; /* No error message */
9909 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9910 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9913 @<Flush the dash list, recycle |h| and return |null|@>;
9916 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9918 print_err("Picture is too complicated to use as a dash pattern");
9919 help3("When you say `dashed p', picture p should not contain any",
9920 "text, filled regions, or clipping paths. This time it did",
9921 "so I'll just make it a solid line instead.");
9922 mp_put_get_error(mp);
9926 @ A similar error occurs when monotonicity fails.
9928 @<Declare a procedure called |x_retrace_error|@>=
9929 void mp_x_retrace_error (MP mp) {
9930 print_err("Picture is too complicated to use as a dash pattern");
9931 help3("When you say `dashed p', every path in p should be monotone",
9932 "in x and there must be no overlapping. This failed",
9933 "so I'll just make it a solid line instead.");
9934 mp_put_get_error(mp);
9937 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9938 handle the case where the pen stroke |p| is itself dashed.
9940 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9941 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9944 if ( mp_link(pp)!=pp ) {
9946 qq=rr; rr=mp_link(rr);
9947 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9948 if there is a problem@>;
9949 } while (right_type(rr)!=mp_endpoint);
9951 d=mp_get_node(mp, dash_node_size);
9952 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9953 if ( x_coord(pp)<x_coord(rr) ) {
9954 start_x(d)=x_coord(pp);
9955 stop_x(d)=x_coord(rr);
9957 start_x(d)=x_coord(rr);
9958 stop_x(d)=x_coord(pp);
9961 @ We also need to check for the case where the segment from |qq| to |rr| is
9962 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9964 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9969 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9970 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9971 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9972 mp_x_retrace_error(mp); goto NOT_FOUND;
9976 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9977 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9978 mp_x_retrace_error(mp); goto NOT_FOUND;
9982 @ @<Other local variables in |make_dashes|@>=
9983 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9985 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9986 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9987 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9988 print_err("Picture is too complicated to use as a dash pattern");
9989 help3("When you say `dashed p', everything in picture p should",
9990 "be the same color. I can\'t handle your color changes",
9991 "so I'll just make it a solid line instead.");
9992 mp_put_get_error(mp);
9996 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9997 start_x(null_dash)=stop_x(d);
9998 dd=h; /* this makes |mp_link(dd)=dash_list(h)| */
9999 while ( start_x(mp_link(dd))<stop_x(d) )
10002 if ( (stop_x(dd)>start_x(d)) )
10003 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10005 mp_link(d)=mp_link(dd);
10008 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10010 while ( (mp_link(d)!=null_dash) )
10013 dash_y(h)=stop_x(d)-start_x(dd);
10014 if ( abs(y0)>dash_y(h) ) {
10016 } else if ( d!=dd ) {
10017 dash_list(h)=mp_link(dd);
10018 stop_x(d)=stop_x(dd)+dash_y(h);
10019 mp_free_node(mp, dd,dash_node_size);
10022 @ We get here when the argument is a null picture or when there is an error.
10023 Recovering from an error involves making |dash_list(h)| empty to indicate
10024 that |h| is not known to be a valid dash pattern. We also dereference |h|
10025 since it is not being used for the return value.
10027 @<Flush the dash list, recycle |h| and return |null|@>=
10028 mp_flush_dash_list(mp, h);
10029 delete_edge_ref(h);
10032 @ Having carefully saved the dashed stroked nodes in the
10033 corresponding dash nodes, we must be prepared to break up these dashes into
10036 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10037 d=h; /* now |mp_link(d)=dash_list(h)| */
10038 while ( mp_link(d)!=null_dash ) {
10039 ds=info(mp_link(d));
10044 hsf=dash_scale(ds);
10045 if ( (hh==null) ) mp_confusion(mp, "dash1");
10046 @:this can't happen dash0}{\quad dash1@>
10047 if ( dash_y(hh)==0 ) {
10050 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10051 @:this can't happen dash0}{\quad dash1@>
10052 @<Replace |mp_link(d)| by a dashed version as determined by edge header
10053 |hh| and scale factor |ds|@>;
10058 @ @<Other local variables in |make_dashes|@>=
10059 pointer dln; /* |mp_link(d)| */
10060 pointer hh; /* an edge header that tells how to break up |dln| */
10061 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10062 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10063 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10065 @ @<Replace |mp_link(d)| by a dashed version as determined by edge header...@>=
10068 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10069 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10070 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10071 +mp_take_scaled(mp, hsf,dash_y(hh));
10072 stop_x(null_dash)=start_x(null_dash);
10073 @<Advance |dd| until finding the first dash that overlaps |dln| when
10074 offset by |xoff|@>;
10075 while ( start_x(dln)<=stop_x(dln) ) {
10076 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10077 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10080 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10082 mp_link(d)=mp_link(dln);
10083 mp_free_node(mp, dln,dash_node_size)
10085 @ The name of this module is a bit of a lie because we just find the
10086 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10087 overlap possible. It could be that the unoffset version of dash |dln| falls
10088 in the gap between |dd| and its predecessor.
10090 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10091 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10095 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10096 if ( dd==null_dash ) {
10098 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10101 @ At this point we already know that
10102 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10104 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10105 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10106 mp_link(d)=mp_get_node(mp, dash_node_size);
10109 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10110 start_x(d)=start_x(dln);
10112 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10113 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10114 stop_x(d)=stop_x(dln);
10116 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10119 @ The next major task is to update the bounding box information in an edge
10120 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10121 header's bounding box to accommodate the box computed by |path_bbox| or
10122 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10125 @c void mp_adjust_bbox (MP mp,pointer h) {
10126 if ( minx<minx_val(h) ) minx_val(h)=minx;
10127 if ( miny<miny_val(h) ) miny_val(h)=miny;
10128 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10129 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10132 @ Here is a special routine for updating the bounding box information in
10133 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10134 that is to be stroked with the pen~|pp|.
10136 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10137 pointer q; /* a knot node adjacent to knot |p| */
10138 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10139 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10140 scaled z; /* a coordinate being tested against the bounding box */
10141 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10142 integer i; /* a loop counter */
10143 if ( right_type(p)!=mp_endpoint ) {
10146 @<Make |(dx,dy)| the final direction for the path segment from
10147 |q| to~|p|; set~|d|@>;
10148 d=mp_pyth_add(mp, dx,dy);
10150 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10151 for (i=1;i<= 2;i++) {
10152 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10153 update the bounding box to accommodate it@>;
10157 if ( right_type(p)==mp_endpoint ) {
10160 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10166 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10167 if ( q==mp_link(p) ) {
10168 dx=x_coord(p)-right_x(p);
10169 dy=y_coord(p)-right_y(p);
10170 if ( (dx==0)&&(dy==0) ) {
10171 dx=x_coord(p)-left_x(q);
10172 dy=y_coord(p)-left_y(q);
10175 dx=x_coord(p)-left_x(p);
10176 dy=y_coord(p)-left_y(p);
10177 if ( (dx==0)&&(dy==0) ) {
10178 dx=x_coord(p)-right_x(q);
10179 dy=y_coord(p)-right_y(q);
10182 dx=x_coord(p)-x_coord(q);
10183 dy=y_coord(p)-y_coord(q)
10185 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10186 dx=mp_make_fraction(mp, dx,d);
10187 dy=mp_make_fraction(mp, dy,d);
10188 mp_find_offset(mp, -dy,dx,pp);
10189 xx=mp->cur_x; yy=mp->cur_y
10191 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10192 mp_find_offset(mp, dx,dy,pp);
10193 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10194 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10195 mp_confusion(mp, "box_ends");
10196 @:this can't happen box ends}{\quad\\{box\_ends}@>
10197 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10198 if ( z<minx_val(h) ) minx_val(h)=z;
10199 if ( z>maxx_val(h) ) maxx_val(h)=z;
10200 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10201 if ( z<miny_val(h) ) miny_val(h)=z;
10202 if ( z>maxy_val(h) ) maxy_val(h)=z
10204 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10208 } while (right_type(p)!=mp_endpoint)
10210 @ The major difficulty in finding the bounding box of an edge structure is the
10211 effect of clipping paths. We treat them conservatively by only clipping to the
10212 clipping path's bounding box, but this still
10213 requires recursive calls to |set_bbox| in order to find the bounding box of
10215 the objects to be clipped. Such calls are distinguished by the fact that the
10216 boolean parameter |top_level| is false.
10218 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10219 pointer p; /* a graphical object being considered */
10220 scaled sminx,sminy,smaxx,smaxy;
10221 /* for saving the bounding box during recursive calls */
10222 scaled x0,x1,y0,y1; /* temporary registers */
10223 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10224 @<Wipe out any existing bounding box information if |bbtype(h)| is
10225 incompatible with |internal[mp_true_corners]|@>;
10226 while ( mp_link(bblast(h))!=null ) {
10227 p=mp_link(bblast(h));
10230 case mp_stop_clip_code:
10231 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10232 @:this can't happen bbox}{\quad bbox@>
10234 @<Other cases for updating the bounding box based on the type of object |p|@>;
10235 } /* all cases are enumerated above */
10237 if ( ! top_level ) mp_confusion(mp, "bbox");
10240 @ @<Internal library declarations@>=
10241 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10243 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10244 switch (bbtype(h)) {
10248 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10251 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10253 } /* there are no other cases */
10255 @ @<Other cases for updating the bounding box...@>=
10257 mp_path_bbox(mp, path_p(p));
10258 if ( pen_p(p)!=null ) {
10261 mp_pen_bbox(mp, pen_p(p));
10267 mp_adjust_bbox(mp, h);
10270 @ @<Other cases for updating the bounding box...@>=
10271 case mp_start_bounds_code:
10272 if ( mp->internal[mp_true_corners]>0 ) {
10273 bbtype(h)=bounds_unset;
10275 bbtype(h)=bounds_set;
10276 mp_path_bbox(mp, path_p(p));
10277 mp_adjust_bbox(mp, h);
10278 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10282 case mp_stop_bounds_code:
10283 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10284 @:this can't happen bbox2}{\quad bbox2@>
10287 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10290 if ( mp_link(p)==null ) mp_confusion(mp, "bbox2");
10291 @:this can't happen bbox2}{\quad bbox2@>
10293 if ( type(p)==mp_start_bounds_code ) incr(lev);
10294 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10298 @ It saves a lot of grief here to be slightly conservative and not account for
10299 omitted parts of dashed lines. We also don't worry about the material omitted
10300 when using butt end caps. The basic computation is for round end caps and
10301 |box_ends| augments it for square end caps.
10303 @<Other cases for updating the bounding box...@>=
10304 case mp_stroked_code:
10305 mp_path_bbox(mp, path_p(p));
10308 mp_pen_bbox(mp, pen_p(p));
10313 mp_adjust_bbox(mp, h);
10314 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10315 mp_box_ends(mp, path_p(p), pen_p(p), h);
10318 @ The height width and depth information stored in a text node determines a
10319 rectangle that needs to be transformed according to the transformation
10320 parameters stored in the text node.
10322 @<Other cases for updating the bounding box...@>=
10324 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10325 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10326 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10329 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10330 else { minx=minx+y1; maxx=maxx+y0; }
10331 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10332 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10333 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10334 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10337 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10338 else { miny=miny+y1; maxy=maxy+y0; }
10339 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10340 mp_adjust_bbox(mp, h);
10343 @ This case involves a recursive call that advances |bblast(h)| to the node of
10344 type |mp_stop_clip_code| that matches |p|.
10346 @<Other cases for updating the bounding box...@>=
10347 case mp_start_clip_code:
10348 mp_path_bbox(mp, path_p(p));
10351 sminx=minx_val(h); sminy=miny_val(h);
10352 smaxx=maxx_val(h); smaxy=maxy_val(h);
10353 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10354 starting at |mp_link(p)|@>;
10355 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10357 minx=sminx; miny=sminy;
10358 maxx=smaxx; maxy=smaxy;
10359 mp_adjust_bbox(mp, h);
10362 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10363 minx_val(h)=el_gordo;
10364 miny_val(h)=el_gordo;
10365 maxx_val(h)=-el_gordo;
10366 maxy_val(h)=-el_gordo;
10367 mp_set_bbox(mp, h,false)
10369 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10370 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10371 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10372 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10373 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10375 @* \[22] Finding an envelope.
10376 When \MP\ has a path and a polygonal pen, it needs to express the desired
10377 shape in terms of things \ps\ can understand. The present task is to compute
10378 a new path that describes the region to be filled. It is convenient to
10379 define this as a two step process where the first step is determining what
10380 offset to use for each segment of the path.
10382 @ Given a pointer |c| to a cyclic path,
10383 and a pointer~|h| to the first knot of a pen polygon,
10384 the |offset_prep| routine changes the path into cubics that are
10385 associated with particular pen offsets. Thus if the cubic between |p|
10386 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10387 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10388 to because |l-k| could be negative.)
10390 After overwriting the type information with offset differences, we no longer
10391 have a true path so we refer to the knot list returned by |offset_prep| as an
10394 Since an envelope spec only determines relative changes in pen offsets,
10395 |offset_prep| sets a global variable |spec_offset| to the relative change from
10396 |h| to the first offset.
10398 @d zero_off 16384 /* added to offset changes to make them positive */
10401 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10403 @ @c @<Declare subroutines needed by |offset_prep|@>
10404 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10405 halfword n; /* the number of vertices in the pen polygon */
10406 pointer c0,p,q,q0,r,w, ww; /* for list manipulation */
10407 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10408 pointer w0; /* a pointer to pen offset to use just before |p| */
10409 scaled dxin,dyin; /* the direction into knot |p| */
10410 integer turn_amt; /* change in pen offsets for the current cubic */
10411 @<Other local variables for |offset_prep|@>;
10413 @<Initialize the pen size~|n|@>;
10414 @<Initialize the incoming direction and pen offset at |c|@>;
10415 p=c; c0=c; k_needed=0;
10418 @<Split the cubic between |p| and |q|, if necessary, into cubics
10419 associated with single offsets, after which |q| should
10420 point to the end of the final such cubic@>;
10422 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10423 might have been introduced by the splitting process@>;
10425 @<Fix the offset change in |info(c)| and set |c| to the return value of
10430 @ We shall want to keep track of where certain knots on the cyclic path
10431 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10432 knot nodes because some nodes are deleted while removing dead cubics. Thus
10433 |offset_prep| updates the following pointers
10437 pointer spec_p2; /* pointers to distinguished knots */
10440 mp->spec_p1=null; mp->spec_p2=null;
10442 @ @<Initialize the pen size~|n|@>=
10449 @ Since the true incoming direction isn't known yet, we just pick a direction
10450 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10453 @<Initialize the incoming direction and pen offset at |c|@>=
10454 dxin=x_coord(mp_link(h))-x_coord(knil(h));
10455 dyin=y_coord(mp_link(h))-y_coord(knil(h));
10456 if ( (dxin==0)&&(dyin==0) ) {
10457 dxin=y_coord(knil(h))-y_coord(h);
10458 dyin=x_coord(h)-x_coord(knil(h));
10462 @ We must be careful not to remove the only cubic in a cycle.
10464 But we must also be careful for another reason. If the user-supplied
10465 path starts with a set of degenerate cubics, the target node |q| can
10466 be collapsed to the initial node |p| which might be the same as the
10467 initial node |c| of the curve. This would cause the |offset_prep| routine
10468 to bail out too early, causing distress later on. (See for example
10469 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10472 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10476 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10477 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10478 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10480 @<Remove the cubic following |p| and update the data structures
10481 to merge |r| into |p|@>;
10485 /* Check if we removed too much */
10486 if ((q!=q0)&&(q!=c||c==c0))
10489 @ @<Remove the cubic following |p| and update the data structures...@>=
10490 { k_needed=info(p)-zero_off;
10494 info(p)=k_needed+info(r);
10497 if ( r==c ) { info(p)=info(c); c=p; };
10498 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10499 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10500 r=p; mp_remove_cubic(mp, p);
10503 @ Not setting the |info| field of the newly created knot allows the splitting
10504 routine to work for paths.
10506 @<Declare subroutines needed by |offset_prep|@>=
10507 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10508 scaled v; /* an intermediate value */
10509 pointer q,r; /* for list manipulation */
10510 q=mp_link(p); r=mp_get_node(mp, knot_node_size); mp_link(p)=r; mp_link(r)=q;
10511 originator(r)=mp_program_code;
10512 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10513 v=t_of_the_way(right_x(p),left_x(q));
10514 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10515 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10516 left_x(r)=t_of_the_way(right_x(p),v);
10517 right_x(r)=t_of_the_way(v,left_x(q));
10518 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10519 v=t_of_the_way(right_y(p),left_y(q));
10520 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10521 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10522 left_y(r)=t_of_the_way(right_y(p),v);
10523 right_y(r)=t_of_the_way(v,left_y(q));
10524 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10527 @ This does not set |info(p)| or |right_type(p)|.
10529 @<Declare subroutines needed by |offset_prep|@>=
10530 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10531 pointer q; /* the node that disappears */
10532 q=mp_link(p); mp_link(p)=mp_link(q);
10533 right_x(p)=right_x(q); right_y(p)=right_y(q);
10534 mp_free_node(mp, q,knot_node_size);
10537 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10538 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10539 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10540 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10541 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10542 When listed by increasing $k$, these directions occur in counter-clockwise
10543 order so that $d_k\preceq d\k$ for all~$k$.
10544 The goal of |offset_prep| is to find an offset index~|k| to associate with
10545 each cubic, such that the direction $d(t)$ of the cubic satisfies
10546 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10547 We may have to split a cubic into many pieces before each
10548 piece corresponds to a unique offset.
10550 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10551 info(p)=zero_off+k_needed;
10553 @<Prepare for derivative computations;
10554 |goto not_found| if the current cubic is dead@>;
10555 @<Find the initial direction |(dx,dy)|@>;
10556 @<Update |info(p)| and find the offset $w_k$ such that
10557 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10558 the direction change at |p|@>;
10559 @<Find the final direction |(dxin,dyin)|@>;
10560 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10561 @<Complete the offset splitting process@>;
10562 w0=mp_pen_walk(mp, w0,turn_amt)
10564 @ @<Declare subroutines needed by |offset_prep|@>=
10565 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10566 /* walk |k| steps around a pen from |w| */
10567 while ( k>0 ) { w=mp_link(w); decr(k); };
10568 while ( k<0 ) { w=knil(w); incr(k); };
10572 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10573 calculated from the quadratic polynomials
10574 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10575 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10576 Since we may be calculating directions from several cubics
10577 split from the current one, it is desirable to do these calculations
10578 without losing too much precision. ``Scaled up'' values of the
10579 derivatives, which will be less tainted by accumulated errors than
10580 derivatives found from the cubics themselves, are maintained in
10581 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10582 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10583 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10585 @<Other local variables for |offset_prep|@>=
10586 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10587 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10588 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10589 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10590 integer max_coef; /* used while scaling */
10591 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10592 fraction t; /* where the derivative passes through zero */
10593 fraction s; /* a temporary value */
10595 @ @<Prepare for derivative computations...@>=
10596 x0=right_x(p)-x_coord(p);
10597 x2=x_coord(q)-left_x(q);
10598 x1=left_x(q)-right_x(p);
10599 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10600 y1=left_y(q)-right_y(p);
10602 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10603 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10604 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10605 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10606 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10607 if ( max_coef==0 ) goto NOT_FOUND;
10608 while ( max_coef<fraction_half ) {
10610 double(x0); double(x1); double(x2);
10611 double(y0); double(y1); double(y2);
10614 @ Let us first solve a special case of the problem: Suppose we
10615 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10616 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10617 $d(0)\succ d_{k-1}$.
10618 Then, in a sense, we're halfway done, since one of the two relations
10619 in $(*)$ is satisfied, and the other couldn't be satisfied for
10620 any other value of~|k|.
10622 Actually, the conditions can be relaxed somewhat since a relation such as
10623 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10624 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10625 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10626 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10627 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10628 counterclockwise direction.
10630 The |fin_offset_prep| subroutine solves the stated subproblem.
10631 It has a parameter called |rise| that is |1| in
10632 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10633 the derivative of the cubic following |p|.
10634 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10635 be set properly. The |turn_amt| parameter gives the absolute value of the
10636 overall net change in pen offsets.
10638 @<Declare subroutines needed by |offset_prep|@>=
10639 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10640 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10641 integer rise, integer turn_amt) {
10642 pointer ww; /* for list manipulation */
10643 scaled du,dv; /* for slope calculation */
10644 integer t0,t1,t2; /* test coefficients */
10645 fraction t; /* place where the derivative passes a critical slope */
10646 fraction s; /* slope or reciprocal slope */
10647 integer v; /* intermediate value for updating |x0..y2| */
10648 pointer q; /* original |mp_link(p)| */
10651 if ( rise>0 ) ww=mp_link(w); /* a pointer to $w\k$ */
10652 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10653 @<Compute test coefficients |(t0,t1,t2)|
10654 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10655 t=mp_crossing_point(mp, t0,t1,t2);
10656 if ( t>=fraction_one ) {
10657 if ( turn_amt>0 ) t=fraction_one; else return;
10659 @<Split the cubic at $t$,
10660 and split off another cubic if the derivative crosses back@>;
10665 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10666 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10667 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10670 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10671 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10672 if ( abs(du)>=abs(dv) ) {
10673 s=mp_make_fraction(mp, dv,du);
10674 t0=mp_take_fraction(mp, x0,s)-y0;
10675 t1=mp_take_fraction(mp, x1,s)-y1;
10676 t2=mp_take_fraction(mp, x2,s)-y2;
10677 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10679 s=mp_make_fraction(mp, du,dv);
10680 t0=x0-mp_take_fraction(mp, y0,s);
10681 t1=x1-mp_take_fraction(mp, y1,s);
10682 t2=x2-mp_take_fraction(mp, y2,s);
10683 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10685 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10687 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10688 $(*)$, and it might cross again and return towards $s_{k-1}$ or $s_k$,
10689 respectively, yielding another solution of $(*)$.
10691 @<Split the cubic at $t$, and split off another...@>=
10693 mp_split_cubic(mp, p,t); p=mp_link(p); info(p)=zero_off+rise;
10695 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10696 x0=t_of_the_way(v,x1);
10697 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10698 y0=t_of_the_way(v,y1);
10699 if ( turn_amt<0 ) {
10700 t1=t_of_the_way(t1,t2);
10701 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10702 t=mp_crossing_point(mp, 0,-t1,-t2);
10703 if ( t>fraction_one ) t=fraction_one;
10705 if ( (t==fraction_one)&&(mp_link(p)!=q) ) {
10706 info(mp_link(p))=info(mp_link(p))-rise;
10708 mp_split_cubic(mp, p,t); info(mp_link(p))=zero_off-rise;
10709 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10710 x2=t_of_the_way(x1,v);
10711 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10712 y2=t_of_the_way(y1,v);
10717 @ Now we must consider the general problem of |offset_prep|, when
10718 nothing is known about a given cubic. We start by finding its
10719 direction in the vicinity of |t=0|.
10721 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10722 has not yet introduced any more numerical errors. Thus we can compute
10723 the true initial direction for the given cubic, even if it is almost
10726 @<Find the initial direction |(dx,dy)|@>=
10728 if ( dx==0 && dy==0 ) {
10730 if ( dx==0 && dy==0 ) {
10734 if ( p==c ) { dx0=dx; dy0=dy; }
10736 @ @<Find the final direction |(dxin,dyin)|@>=
10738 if ( dxin==0 && dyin==0 ) {
10740 if ( dxin==0 && dyin==0 ) {
10745 @ The next step is to bracket the initial direction between consecutive
10746 edges of the pen polygon. We must be careful to turn clockwise only if
10747 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10748 counter-clockwise in order to make \&{doublepath} envelopes come out
10749 @:double_path_}{\&{doublepath} primitive@>
10750 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10752 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10753 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10754 w=mp_pen_walk(mp, w0, turn_amt);
10756 info(p)=info(p)+turn_amt
10758 @ Decide how many pen offsets to go away from |w| in order to find the offset
10759 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10760 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10761 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10763 If the pen polygon has only two edges, they could both be parallel
10764 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10765 such edge in order to avoid an infinite loop.
10767 @<Declare subroutines needed by |offset_prep|@>=
10768 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10769 scaled dy, boolean ccw) {
10770 pointer ww; /* a neighbor of knot~|w| */
10771 integer s; /* turn amount so far */
10772 integer t; /* |ab_vs_cd| result */
10777 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10778 dx,(y_coord(ww)-y_coord(w)));
10781 w=ww; ww=mp_link(ww);
10785 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10786 dx,(y_coord(w)-y_coord(ww))) < 0) {
10794 @ When we're all done, the final offset is |w0| and the final curve direction
10795 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10796 can correct |info(c)| which was erroneously based on an incoming offset
10799 @d fix_by(A) info(c)=info(c)+(A)
10801 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10802 mp->spec_offset=info(c)-zero_off;
10803 if ( mp_link(c)==c ) {
10804 info(c)=zero_off+n;
10807 while ( w0!=h ) { fix_by(1); w0=mp_link(w0); };
10808 while ( info(c)<=zero_off-n ) fix_by(n);
10809 while ( info(c)>zero_off ) fix_by(-n);
10810 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10813 @ Finally we want to reduce the general problem to situations that
10814 |fin_offset_prep| can handle. We split the cubic into at most three parts
10815 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10817 @<Complete the offset splitting process@>=
10819 @<Compute test coeff...@>;
10820 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10821 |t:=fraction_one+1|@>;
10822 if ( t>fraction_one ) {
10823 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10825 mp_split_cubic(mp, p,t); r=mp_link(p);
10826 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10827 x2a=t_of_the_way(x1a,x1);
10828 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10829 y2a=t_of_the_way(y1a,y1);
10830 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10831 info(r)=zero_off-1;
10832 if ( turn_amt>=0 ) {
10833 t1=t_of_the_way(t1,t2);
10835 t=mp_crossing_point(mp, 0,-t1,-t2);
10836 if ( t>fraction_one ) t=fraction_one;
10837 @<Split off another rising cubic for |fin_offset_prep|@>;
10838 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10840 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10844 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10845 mp_split_cubic(mp, r,t); info(mp_link(r))=zero_off+1;
10846 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10847 x0a=t_of_the_way(x1,x1a);
10848 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10849 y0a=t_of_the_way(y1,y1a);
10850 mp_fin_offset_prep(mp, mp_link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10853 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10854 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10855 need to decide whether the directions are parallel or antiparallel. We
10856 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10857 should be avoided when the value of |turn_amt| already determines the
10858 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10859 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10860 crossing and the first crossing cannot be antiparallel.
10862 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10863 t=mp_crossing_point(mp, t0,t1,t2);
10864 if ( turn_amt>=0 ) {
10868 u0=t_of_the_way(x0,x1);
10869 u1=t_of_the_way(x1,x2);
10870 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10871 v0=t_of_the_way(y0,y1);
10872 v1=t_of_the_way(y1,y2);
10873 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10874 if ( ss<0 ) t=fraction_one+1;
10876 } else if ( t>fraction_one ) {
10880 @ @<Other local variables for |offset_prep|@>=
10881 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10882 integer ss = 0; /* the part of the dot product computed so far */
10883 int d_sign; /* sign of overall change in direction for this cubic */
10885 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10886 problem to decide which way it loops around but that's OK as long we're
10887 consistent. To make \&{doublepath} envelopes work properly, reversing
10888 the path should always change the sign of |turn_amt|.
10890 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10891 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10893 @<Check rotation direction based on node position@>
10897 if ( dy>0 ) d_sign=1; else d_sign=-1;
10899 if ( dx>0 ) d_sign=1; else d_sign=-1;
10902 @<Make |ss| negative if and only if the total change in direction is
10903 more than $180^\circ$@>;
10904 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10905 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10907 @ We check rotation direction by looking at the vector connecting the current
10908 node with the next. If its angle with incoming and outgoing tangents has the
10909 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10910 Otherwise we proceed to the cusp code.
10912 @<Check rotation direction based on node position@>=
10913 u0=x_coord(q)-x_coord(p);
10914 u1=y_coord(q)-y_coord(p);
10915 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10916 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10918 @ In order to be invariant under path reversal, the result of this computation
10919 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10920 then swapped with |(x2,y2)|. We make use of the identities
10921 |take_fraction(-a,-b)=take_fraction(a,b)| and
10922 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10924 @<Make |ss| negative if and only if the total change in direction is...@>=
10925 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10926 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10927 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10929 t=mp_crossing_point(mp, t0,t1,-t0);
10930 u0=t_of_the_way(x0,x1);
10931 u1=t_of_the_way(x1,x2);
10932 v0=t_of_the_way(y0,y1);
10933 v1=t_of_the_way(y1,y2);
10935 t=mp_crossing_point(mp, -t0,t1,t0);
10936 u0=t_of_the_way(x2,x1);
10937 u1=t_of_the_way(x1,x0);
10938 v0=t_of_the_way(y2,y1);
10939 v1=t_of_the_way(y1,y0);
10941 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10942 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10944 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10945 that the |cur_pen| has not been walked around to the first offset.
10948 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, const char *s) {
10949 pointer p,q; /* list traversal */
10950 pointer w; /* the current pen offset */
10951 mp_print_diagnostic(mp, "Envelope spec",s,true);
10952 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10954 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10955 mp_print(mp, " % beginning with offset ");
10956 mp_print_two(mp, x_coord(w),y_coord(w));
10960 @<Print the cubic between |p| and |q|@>;
10962 if ((p==cur_spec) || (info(p)!=zero_off))
10965 if ( info(p)!=zero_off ) {
10966 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10968 } while (p!=cur_spec);
10969 mp_print_nl(mp, " & cycle");
10970 mp_end_diagnostic(mp, true);
10973 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10975 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10976 mp_print(mp, " % ");
10977 if ( info(p)>zero_off ) mp_print(mp, "counter");
10978 mp_print(mp, "clockwise to offset ");
10979 mp_print_two(mp, x_coord(w),y_coord(w));
10982 @ @<Print the cubic between |p| and |q|@>=
10984 mp_print_nl(mp, " ..controls ");
10985 mp_print_two(mp, right_x(p),right_y(p));
10986 mp_print(mp, " and ");
10987 mp_print_two(mp, left_x(q),left_y(q));
10988 mp_print_nl(mp, " ..");
10989 mp_print_two(mp, x_coord(q),y_coord(q));
10992 @ Once we have an envelope spec, the remaining task to construct the actual
10993 envelope by offsetting each cubic as determined by the |info| fields in
10994 the knots. First we use |offset_prep| to convert the |c| into an envelope
10995 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10998 The |ljoin| and |miterlim| parameters control the treatment of points where the
10999 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11000 The endpoints are easily located because |c| is given in undoubled form
11001 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11002 track of the endpoints and treat them like very sharp corners.
11003 Butt end caps are treated like beveled joins; round end caps are treated like
11004 round joins; and square end caps are achieved by setting |join_type:=3|.
11006 None of these parameters apply to inside joins where the convolution tracing
11007 has retrograde lines. In such cases we use a simple connect-the-endpoints
11008 approach that is achieved by setting |join_type:=2|.
11010 @c @<Declare a function called |insert_knot|@>
11011 pointer mp_make_envelope (MP mp,pointer c, pointer h, quarterword ljoin,
11012 quarterword lcap, scaled miterlim) {
11013 pointer p,q,r,q0; /* for manipulating the path */
11014 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11015 pointer w,w0; /* the pen knot for the current offset */
11016 scaled qx,qy; /* unshifted coordinates of |q| */
11017 halfword k,k0; /* controls pen edge insertion */
11018 @<Other local variables for |make_envelope|@>;
11019 dxin=0; dyin=0; dxout=0; dyout=0;
11020 mp->spec_p1=null; mp->spec_p2=null;
11021 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11022 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11023 the initial offset@>;
11027 q=mp_link(p); q0=q;
11028 qx=x_coord(q); qy=y_coord(q);
11031 if ( k!=zero_off ) {
11032 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11034 @<Add offset |w| to the cubic from |p| to |q|@>;
11035 while ( k!=zero_off ) {
11036 @<Step |w| and move |k| one step closer to |zero_off|@>;
11037 if ( (join_type==1)||(k==zero_off) )
11038 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11040 if ( q!=mp_link(p) ) {
11041 @<Set |p=mp_link(p)| and add knots between |p| and |q| as
11042 required by |join_type|@>;
11049 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11050 c=mp_offset_prep(mp, c,h);
11051 if ( mp->internal[mp_tracing_specs]>0 )
11052 mp_print_spec(mp, c,h,"");
11053 h=mp_pen_walk(mp, h,mp->spec_offset)
11055 @ Mitered and squared-off joins depend on path directions that are difficult to
11056 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11057 have degenerate cubics only if the entire cycle collapses to a single
11058 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11059 envelope degenerate as well.
11061 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11062 if ( k<zero_off ) {
11065 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11066 else if ( lcap==2 ) join_type=3;
11067 else join_type=2-lcap;
11068 if ( (join_type==0)||(join_type==3) ) {
11069 @<Set the incoming and outgoing directions at |q|; in case of
11070 degeneracy set |join_type:=2|@>;
11071 if ( join_type==0 ) {
11072 @<If |miterlim| is less than the secant of half the angle at |q|
11073 then set |join_type:=2|@>;
11078 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11080 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11081 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11083 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11086 @ @<Other local variables for |make_envelope|@>=
11087 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11088 scaled tmp; /* a temporary value */
11090 @ The coordinates of |p| have already been shifted unless |p| is the first
11091 knot in which case they get shifted at the very end.
11093 @<Add offset |w| to the cubic from |p| to |q|@>=
11094 right_x(p)=right_x(p)+x_coord(w);
11095 right_y(p)=right_y(p)+y_coord(w);
11096 left_x(q)=left_x(q)+x_coord(w);
11097 left_y(q)=left_y(q)+y_coord(w);
11098 x_coord(q)=x_coord(q)+x_coord(w);
11099 y_coord(q)=y_coord(q)+y_coord(w);
11100 left_type(q)=mp_explicit;
11101 right_type(q)=mp_explicit
11103 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11104 if ( k>zero_off ){ w=mp_link(w); decr(k); }
11105 else { w=knil(w); incr(k); }
11107 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11108 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11109 case the cubic containing these control points is ``yet to be examined.''
11111 @<Declare a function called |insert_knot|@>=
11112 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11113 /* returns the inserted knot */
11114 pointer r; /* the new knot */
11115 r=mp_get_node(mp, knot_node_size);
11116 mp_link(r)=mp_link(q); mp_link(q)=r;
11117 right_x(r)=right_x(q);
11118 right_y(r)=right_y(q);
11121 right_x(q)=x_coord(q);
11122 right_y(q)=y_coord(q);
11123 left_x(r)=x_coord(r);
11124 left_y(r)=y_coord(r);
11125 left_type(r)=mp_explicit;
11126 right_type(r)=mp_explicit;
11127 originator(r)=mp_program_code;
11131 @ After setting |p:=mp_link(p)|, either |join_type=1| or |q=mp_link(p)|.
11133 @<Set |p=mp_link(p)| and add knots between |p| and |q| as...@>=
11136 if ( (join_type==0)||(join_type==3) ) {
11137 if ( join_type==0 ) {
11138 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11140 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11144 right_x(r)=x_coord(r);
11145 right_y(r)=y_coord(r);
11150 @ For very small angles, adding a knot is unnecessary and would cause numerical
11151 problems, so we just set |r:=null| in that case.
11153 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11155 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11156 if ( abs(det)<26844 ) {
11157 r=null; /* sine $<10^{-4}$ */
11159 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11160 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11161 tmp=mp_make_fraction(mp, tmp,det);
11162 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11163 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11167 @ @<Other local variables for |make_envelope|@>=
11168 fraction det; /* a determinant used for mitered join calculations */
11170 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11172 ht_x=y_coord(w)-y_coord(w0);
11173 ht_y=x_coord(w0)-x_coord(w);
11174 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11175 ht_x+=ht_x; ht_y+=ht_y;
11177 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11178 product with |(ht_x,ht_y)|@>;
11179 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11180 mp_take_fraction(mp, dyin,ht_y));
11181 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11182 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11183 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11184 mp_take_fraction(mp, dyout,ht_y));
11185 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11186 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11189 @ @<Other local variables for |make_envelope|@>=
11190 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11191 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11192 halfword kk; /* keeps track of the pen vertices being scanned */
11193 pointer ww; /* the pen vertex being tested */
11195 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11196 from zero to |max_ht|.
11198 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11203 @<Step |ww| and move |kk| one step closer to |k0|@>;
11204 if ( kk==k0 ) break;
11205 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11206 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11207 if ( tmp>max_ht ) max_ht=tmp;
11211 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11212 if ( kk>k0 ) { ww=mp_link(ww); decr(kk); }
11213 else { ww=knil(ww); incr(kk); }
11215 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11216 if ( left_type(c)==mp_endpoint ) {
11217 mp->spec_p1=mp_htap_ypoc(mp, c);
11218 mp->spec_p2=mp->path_tail;
11219 originator(mp->spec_p1)=mp_program_code;
11220 mp_link(mp->spec_p2)=mp_link(mp->spec_p1);
11221 mp_link(mp->spec_p1)=c;
11222 mp_remove_cubic(mp, mp->spec_p1);
11224 if ( c!=mp_link(c) ) {
11225 originator(mp->spec_p2)=mp_program_code;
11226 mp_remove_cubic(mp, mp->spec_p2);
11228 @<Make |c| look like a cycle of length one@>;
11232 @ @<Make |c| look like a cycle of length one@>=
11234 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11235 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11236 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11239 @ In degenerate situations we might have to look at the knot preceding~|q|.
11240 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11242 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11243 dxin=x_coord(q)-left_x(q);
11244 dyin=y_coord(q)-left_y(q);
11245 if ( (dxin==0)&&(dyin==0) ) {
11246 dxin=x_coord(q)-right_x(p);
11247 dyin=y_coord(q)-right_y(p);
11248 if ( (dxin==0)&&(dyin==0) ) {
11249 dxin=x_coord(q)-x_coord(p);
11250 dyin=y_coord(q)-y_coord(p);
11251 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11252 dxin=dxin+x_coord(w);
11253 dyin=dyin+y_coord(w);
11257 tmp=mp_pyth_add(mp, dxin,dyin);
11261 dxin=mp_make_fraction(mp, dxin,tmp);
11262 dyin=mp_make_fraction(mp, dyin,tmp);
11263 @<Set the outgoing direction at |q|@>;
11266 @ If |q=c| then the coordinates of |r| and the control points between |q|
11267 and~|r| have already been offset by |h|.
11269 @<Set the outgoing direction at |q|@>=
11270 dxout=right_x(q)-x_coord(q);
11271 dyout=right_y(q)-y_coord(q);
11272 if ( (dxout==0)&&(dyout==0) ) {
11274 dxout=left_x(r)-x_coord(q);
11275 dyout=left_y(r)-y_coord(q);
11276 if ( (dxout==0)&&(dyout==0) ) {
11277 dxout=x_coord(r)-x_coord(q);
11278 dyout=y_coord(r)-y_coord(q);
11282 dxout=dxout-x_coord(h);
11283 dyout=dyout-y_coord(h);
11285 tmp=mp_pyth_add(mp, dxout,dyout);
11286 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11287 @:this can't happen degerate spec}{\quad degenerate spec@>
11288 dxout=mp_make_fraction(mp, dxout,tmp);
11289 dyout=mp_make_fraction(mp, dyout,tmp)
11291 @* \[23] Direction and intersection times.
11292 A path of length $n$ is defined parametrically by functions $x(t)$ and
11293 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11294 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11295 we shall consider operations that determine special times associated with
11296 given paths: the first time that a path travels in a given direction, and
11297 a pair of times at which two paths cross each other.
11299 @ Let's start with the easier task. The function |find_direction_time| is
11300 given a direction |(x,y)| and a path starting at~|h|. If the path never
11301 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11302 it will be nonnegative.
11304 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11305 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11306 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11307 assumed to match any given direction at time~|t|.
11309 The routine solves this problem in nondegenerate cases by rotating the path
11310 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11311 to find when a given path first travels ``due east.''
11314 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11315 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11316 pointer p,q; /* for list traversal */
11317 scaled n; /* the direction time at knot |p| */
11318 scaled tt; /* the direction time within a cubic */
11319 @<Other local variables for |find_direction_time|@>;
11320 @<Normalize the given direction for better accuracy;
11321 but |return| with zero result if it's zero@>;
11324 if ( right_type(p)==mp_endpoint ) break;
11326 @<Rotate the cubic between |p| and |q|; then
11327 |goto found| if the rotated cubic travels due east at some time |tt|;
11328 but |break| if an entire cyclic path has been traversed@>;
11336 @ @<Normalize the given direction for better accuracy...@>=
11337 if ( abs(x)<abs(y) ) {
11338 x=mp_make_fraction(mp, x,abs(y));
11339 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11340 } else if ( x==0 ) {
11343 y=mp_make_fraction(mp, y,abs(x));
11344 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11347 @ Since we're interested in the tangent directions, we work with the
11348 derivative $${1\over3}B'(x_0,x_1,x_2,x_3;t)=
11349 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11350 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11351 in order to achieve better accuracy.
11353 The given path may turn abruptly at a knot, and it might pass the critical
11354 tangent direction at such a time. Therefore we remember the direction |phi|
11355 in which the previous rotated cubic was traveling. (The value of |phi| will be
11356 undefined on the first cubic, i.e., when |n=0|.)
11358 @<Rotate the cubic between |p| and |q|; then...@>=
11360 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11361 points of the rotated derivatives@>;
11362 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11364 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11367 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11368 @<Exit to |found| if the curve whose derivatives are specified by
11369 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11371 @ @<Other local variables for |find_direction_time|@>=
11372 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11373 angle theta,phi; /* angles of exit and entry at a knot */
11374 fraction t; /* temp storage */
11376 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11377 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11378 x3=x_coord(q)-left_x(q);
11379 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11380 y3=y_coord(q)-left_y(q);
11382 if ( abs(x2)>max ) max=abs(x2);
11383 if ( abs(x3)>max ) max=abs(x3);
11384 if ( abs(y1)>max ) max=abs(y1);
11385 if ( abs(y2)>max ) max=abs(y2);
11386 if ( abs(y3)>max ) max=abs(y3);
11387 if ( max==0 ) goto FOUND;
11388 while ( max<fraction_half ){
11389 max+=max; x1+=x1; x2+=x2; x3+=x3;
11390 y1+=y1; y2+=y2; y3+=y3;
11392 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11393 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11394 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11395 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11396 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11397 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11399 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11400 theta=mp_n_arg(mp, x1,y1);
11401 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11402 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11404 @ In this step we want to use the |crossing_point| routine to find the
11405 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11406 Several complications arise: If the quadratic equation has a double root,
11407 the curve never crosses zero, and |crossing_point| will find nothing;
11408 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11409 equation has simple roots, or only one root, we may have to negate it
11410 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11411 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11414 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11415 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11416 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11417 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11418 either |goto found| or |goto done|@>;
11421 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11422 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11424 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11425 $B(x_1,x_2,x_3;t)\ge0$@>;
11428 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11429 two roots, because we know that it isn't identically zero.
11431 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11432 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11433 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11434 subject to rounding errors. Yet this code optimistically tries to
11435 do the right thing.
11437 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11439 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11440 t=mp_crossing_point(mp, y1,y2,y3);
11441 if ( t>fraction_one ) goto DONE;
11442 y2=t_of_the_way(y2,y3);
11443 x1=t_of_the_way(x1,x2);
11444 x2=t_of_the_way(x2,x3);
11445 x1=t_of_the_way(x1,x2);
11446 if ( x1>=0 ) we_found_it;
11448 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11449 if ( t>fraction_one ) goto DONE;
11450 x1=t_of_the_way(x1,x2);
11451 x2=t_of_the_way(x2,x3);
11452 if ( t_of_the_way(x1,x2)>=0 ) {
11453 t=t_of_the_way(tt,fraction_one); we_found_it;
11456 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11457 either |goto found| or |goto done|@>=
11459 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11460 t=mp_make_fraction(mp, y1,y1-y2);
11461 x1=t_of_the_way(x1,x2);
11462 x2=t_of_the_way(x2,x3);
11463 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11464 } else if ( y3==0 ) {
11466 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11467 } else if ( x3>=0 ) {
11468 tt=unity; goto FOUND;
11474 @ At this point we know that the derivative of |y(t)| is identically zero,
11475 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11478 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11480 t=mp_crossing_point(mp, -x1,-x2,-x3);
11481 if ( t<=fraction_one ) we_found_it;
11482 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11483 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11487 @ The intersection of two cubics can be found by an interesting variant
11488 of the general bisection scheme described in the introduction to
11490 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11491 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11492 if an intersection exists. First we find the smallest rectangle that
11493 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11494 the smallest rectangle that encloses
11495 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11496 But if the rectangles do overlap, we bisect the intervals, getting
11497 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11498 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11499 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11500 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11501 levels of bisection we will have determined the intersection times $t_1$
11502 and~$t_2$ to $l$~bits of accuracy.
11504 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11505 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11506 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11507 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11508 to determine when the enclosing rectangles overlap. Here's why:
11509 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11510 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11511 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11512 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11513 overlap if and only if $u\submin\L x\submax$ and
11514 $x\submin\L u\submax$. Letting
11515 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11516 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11517 we have $2^lu\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11519 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11520 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11521 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11522 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11523 because of the overlap condition; i.e., we know that $X\submin$,
11524 $X\submax$, and their relatives are bounded, hence $X\submax-
11525 U\submin$ and $X\submin-U\submax$ are bounded.
11527 @ Incidentally, if the given cubics intersect more than once, the process
11528 just sketched will not necessarily find the lexicographically smallest pair
11529 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11530 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11531 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11532 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11533 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11534 Shuffled order agrees with lexicographic order if all pairs of solutions
11535 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11536 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11537 and the bisection algorithm would be substantially less efficient if it were
11538 constrained by lexicographic order.
11540 For example, suppose that an overlap has been found for $l=3$ and
11541 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11542 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11543 Then there is probably an intersection in one of the subintervals
11544 $(.1011,.011x)$; but lexicographic order would require us to explore
11545 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11546 want to store all of the subdivision data for the second path, so the
11547 subdivisions would have to be regenerated many times. Such inefficiencies
11548 would be associated with every `1' in the binary representation of~$t_1$.
11550 @ The subdivision process introduces rounding errors, hence we need to
11551 make a more liberal test for overlap. It is not hard to show that the
11552 computed values of $U_i$ differ from the truth by at most~$l$, on
11553 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11554 If $\beta$ is an upper bound on the absolute error in the computed
11555 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11556 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11557 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11559 More accuracy is obtained if we try the algorithm first with |tol=0|;
11560 the more liberal tolerance is used only if an exact approach fails.
11561 It is convenient to do this double-take by letting `3' in the preceding
11562 paragraph be a parameter, which is first 0, then 3.
11565 unsigned int tol_step; /* either 0 or 3, usually */
11567 @ We shall use an explicit stack to implement the recursive bisection
11568 method described above. The |bisect_stack| array will contain numerous 5-word
11569 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11570 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11572 The following macros define the allocation of stack positions to
11573 the quantities needed for bisection-intersection.
11575 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11576 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11577 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11578 @d stack_min(A) mp->bisect_stack[(A)+3]
11579 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11580 @d stack_max(A) mp->bisect_stack[(A)+4]
11581 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11582 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11584 @d u_packet(A) ((A)-5)
11585 @d v_packet(A) ((A)-10)
11586 @d x_packet(A) ((A)-15)
11587 @d y_packet(A) ((A)-20)
11588 @d l_packets (mp->bisect_ptr-int_packets)
11589 @d r_packets mp->bisect_ptr
11590 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11591 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11592 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11593 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11594 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11595 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11596 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11597 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11599 @d u1l stack_1(ul_packet) /* $U'_1$ */
11600 @d u2l stack_2(ul_packet) /* $U'_2$ */
11601 @d u3l stack_3(ul_packet) /* $U'_3$ */
11602 @d v1l stack_1(vl_packet) /* $V'_1$ */
11603 @d v2l stack_2(vl_packet) /* $V'_2$ */
11604 @d v3l stack_3(vl_packet) /* $V'_3$ */
11605 @d x1l stack_1(xl_packet) /* $X'_1$ */
11606 @d x2l stack_2(xl_packet) /* $X'_2$ */
11607 @d x3l stack_3(xl_packet) /* $X'_3$ */
11608 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11609 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11610 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11611 @d u1r stack_1(ur_packet) /* $U''_1$ */
11612 @d u2r stack_2(ur_packet) /* $U''_2$ */
11613 @d u3r stack_3(ur_packet) /* $U''_3$ */
11614 @d v1r stack_1(vr_packet) /* $V''_1$ */
11615 @d v2r stack_2(vr_packet) /* $V''_2$ */
11616 @d v3r stack_3(vr_packet) /* $V''_3$ */
11617 @d x1r stack_1(xr_packet) /* $X''_1$ */
11618 @d x2r stack_2(xr_packet) /* $X''_2$ */
11619 @d x3r stack_3(xr_packet) /* $X''_3$ */
11620 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11621 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11622 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11624 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11625 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11626 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11627 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11628 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11629 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11632 integer *bisect_stack;
11633 integer bisect_ptr;
11635 @ @<Allocate or initialize ...@>=
11636 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11638 @ @<Dealloc variables@>=
11639 xfree(mp->bisect_stack);
11641 @ @<Check the ``constant''...@>=
11642 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11644 @ Computation of the min and max is a tedious but fairly fast sequence of
11645 instructions; exactly four comparisons are made in each branch.
11648 if ( stack_1((A))<0 ) {
11649 if ( stack_3((A))>=0 ) {
11650 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11651 else stack_min((A))=stack_1((A));
11652 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11653 if ( stack_max((A))<0 ) stack_max((A))=0;
11655 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11656 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11657 stack_max((A))=stack_1((A))+stack_2((A));
11658 if ( stack_max((A))<0 ) stack_max((A))=0;
11660 } else if ( stack_3((A))<=0 ) {
11661 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11662 else stack_max((A))=stack_1((A));
11663 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11664 if ( stack_min((A))>0 ) stack_min((A))=0;
11666 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11667 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11668 stack_min((A))=stack_1((A))+stack_2((A));
11669 if ( stack_min((A))>0 ) stack_min((A))=0;
11672 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11673 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11674 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11675 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11676 plus the |scaled| values of $t_1$ and~$t_2$.
11678 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11679 finds no intersection. The routine gives up and gives an approximate answer
11680 if it has backtracked
11681 more than 5000 times (otherwise there are cases where several minutes
11682 of fruitless computation would be possible).
11684 @d max_patience 5000
11687 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11688 integer time_to_go; /* this many backtracks before giving up */
11689 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11691 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11692 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,mp_link(p))|
11693 and |(pp,mp_link(pp))|, respectively.
11695 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11696 pointer q,qq; /* |mp_link(p)|, |mp_link(pp)| */
11697 mp->time_to_go=max_patience; mp->max_t=2;
11698 @<Initialize for intersections at level zero@>;
11701 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11702 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11703 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11704 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11706 if ( mp->cur_t>=mp->max_t ){
11707 if ( mp->max_t==two ) { /* we've done 17 bisections */
11708 mp->cur_t=halfp(mp->cur_t+1);
11709 mp->cur_tt=halfp(mp->cur_tt+1);
11712 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11714 @<Subdivide for a new level of intersection@>;
11717 if ( mp->time_to_go>0 ) {
11718 decr(mp->time_to_go);
11720 while ( mp->appr_t<unity ) {
11721 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11723 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11725 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11729 @ The following variables are global, although they are used only by
11730 |cubic_intersection|, because it is necessary on some machines to
11731 split |cubic_intersection| up into two procedures.
11734 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11735 integer tol; /* bound on the uncertainty in the overlap test */
11737 integer xy; /* pointers to the current packets of interest */
11738 integer three_l; /* |tol_step| times the bisection level */
11739 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11741 @ We shall assume that the coordinates are sufficiently non-extreme that
11742 integer overflow will not occur.
11743 @^overflow in arithmetic@>
11745 @<Initialize for intersections at level zero@>=
11746 q=mp_link(p); qq=mp_link(pp); mp->bisect_ptr=int_packets;
11747 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11748 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11749 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11750 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11751 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11752 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11753 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11754 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11755 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11756 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11757 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11759 @ @<Subdivide for a new level of intersection@>=
11760 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11761 stack_uv=mp->uv; stack_xy=mp->xy;
11762 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11763 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11764 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11765 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11766 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11767 u3l=half(u2l+u2r); u1r=u3l;
11768 set_min_max(ul_packet); set_min_max(ur_packet);
11769 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11770 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11771 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11772 v3l=half(v2l+v2r); v1r=v3l;
11773 set_min_max(vl_packet); set_min_max(vr_packet);
11774 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11775 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11776 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11777 x3l=half(x2l+x2r); x1r=x3l;
11778 set_min_max(xl_packet); set_min_max(xr_packet);
11779 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11780 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11781 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11782 y3l=half(y2l+y2r); y1r=y3l;
11783 set_min_max(yl_packet); set_min_max(yr_packet);
11784 mp->uv=l_packets; mp->xy=l_packets;
11785 mp->delx+=mp->delx; mp->dely+=mp->dely;
11786 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11787 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11789 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11791 if ( odd(mp->cur_tt) ) {
11792 if ( odd(mp->cur_t) ) {
11793 @<Descend to the previous level and |goto not_found|@>;
11796 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11797 +stack_3(u_packet(mp->uv));
11798 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11799 +stack_3(v_packet(mp->uv));
11800 mp->uv=mp->uv+int_packets; /* switch from |l_packets| to |r_packets| */
11801 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11802 /* switch from |r_packets| to |l_packets| */
11803 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11804 +stack_3(x_packet(mp->xy));
11805 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11806 +stack_3(y_packet(mp->xy));
11809 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11810 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11811 -stack_3(x_packet(mp->xy));
11812 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11813 -stack_3(y_packet(mp->xy));
11814 mp->xy=mp->xy+int_packets; /* switch from |l_packets| to |r_packets| */
11817 @ @<Descend to the previous level...@>=
11819 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11820 if ( mp->cur_t==0 ) return;
11821 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11822 mp->three_l=mp->three_l-mp->tol_step;
11823 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11824 mp->uv=stack_uv; mp->xy=stack_xy;
11828 @ The |path_intersection| procedure is much simpler.
11829 It invokes |cubic_intersection| in lexicographic order until finding a
11830 pair of cubics that intersect. The final intersection times are placed in
11831 |cur_t| and~|cur_tt|.
11833 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11834 pointer p,pp; /* link registers that traverse the given paths */
11835 integer n,nn; /* integer parts of intersection times, minus |unity| */
11836 @<Change one-point paths into dead cycles@>;
11841 if ( right_type(p)!=mp_endpoint ) {
11844 if ( right_type(pp)!=mp_endpoint ) {
11845 mp_cubic_intersection(mp, p,pp);
11846 if ( mp->cur_t>0 ) {
11847 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11851 nn=nn+unity; pp=mp_link(pp);
11854 n=n+unity; p=mp_link(p);
11856 mp->tol_step=mp->tol_step+3;
11857 } while (mp->tol_step<=3);
11858 mp->cur_t=-unity; mp->cur_tt=-unity;
11861 @ @<Change one-point paths...@>=
11862 if ( right_type(h)==mp_endpoint ) {
11863 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11864 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11866 if ( right_type(hh)==mp_endpoint ) {
11867 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11868 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11871 @* \[24] Dynamic linear equations.
11872 \MP\ users define variables implicitly by stating equations that should be
11873 satisfied; the computer is supposed to be smart enough to solve those equations.
11874 And indeed, the computer tries valiantly to do so, by distinguishing five
11875 different types of numeric values:
11878 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11879 of the variable whose address is~|p|.
11882 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11883 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11884 as a |scaled| number plus a sum of independent variables with |fraction|
11888 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11889 number'' reflecting the time this variable was first used in an equation;
11890 also |0<=m<64|, and each dependent variable
11891 that refers to this one is actually referring to the future value of
11892 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11893 scaling are sometimes needed to keep the coefficients in dependency lists
11894 from getting too large. The value of~|m| will always be even.)
11897 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11898 equation before, but it has been explicitly declared to be numeric.
11901 |type(p)=undefined| means that variable |p| hasn't appeared before.
11903 \smallskip\noindent
11904 We have actually discussed these five types in the reverse order of their
11905 history during a computation: Once |known|, a variable never again
11906 becomes |dependent|; once |dependent|, it almost never again becomes
11907 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11908 and once |mp_numeric_type|, it never again becomes |undefined| (except
11909 of course when the user specifically decides to scrap the old value
11910 and start again). A backward step may, however, take place: Sometimes
11911 a |dependent| variable becomes |mp_independent| again, when one of the
11912 independent variables it depends on is reverting to |undefined|.
11915 The next patch detects overflow of independent-variable serial
11916 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11918 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11919 @d new_indep(A) /* create a new independent variable */
11920 { if ( mp->serial_no>el_gordo-s_scale )
11921 mp_fatal_error(mp, "variable instance identifiers exhausted");
11922 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11923 value((A))=mp->serial_no;
11927 integer serial_no; /* the most recent serial number, times |s_scale| */
11929 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11931 @ But how are dependency lists represented? It's simple: The linear combination
11932 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11933 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11934 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11935 of $\alpha_1$; and |mp_link(p)| points to the dependency list
11936 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11937 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11938 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11939 they appear in decreasing order of their |value| fields (i.e., of
11940 their serial numbers). \ (It is convenient to use decreasing order,
11941 since |value(null)=0|. If the independent variables were not sorted by
11942 serial number but by some other criterion, such as their location in |mem|,
11943 the equation-solving mechanism would be too system-dependent, because
11944 the ordering can affect the computed results.)
11946 The |link| field in the node that contains the constant term $\beta$ is
11947 called the {\sl final link\/} of the dependency list. \MP\ maintains
11948 a doubly-linked master list of all dependency lists, in terms of a permanently
11950 in |mem| called |dep_head|. If there are no dependencies, we have
11951 |mp_link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11952 otherwise |mp_link(dep_head)| points to the first dependent variable, say~|p|,
11953 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11954 points to its dependency list. If the final link of that dependency list
11955 occurs in location~|q|, then |mp_link(q)| points to the next dependent
11956 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11958 @d dep_list(A) mp_link(value_loc((A)))
11959 /* half of the |value| field in a |dependent| variable */
11960 @d prev_dep(A) info(value_loc((A)))
11961 /* the other half; makes a doubly linked list */
11962 @d dep_node_size 2 /* the number of words per dependency node */
11964 @<Initialize table entries...@>= mp->serial_no=0;
11965 mp_link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11966 info(dep_head)=null; dep_list(dep_head)=null;
11968 @ Actually the description above contains a little white lie. There's
11969 another kind of variable called |mp_proto_dependent|, which is
11970 just like a |dependent| one except that the $\alpha$ coefficients
11971 in its dependency list are |scaled| instead of being fractions.
11972 Proto-dependency lists are mixed with dependency lists in the
11973 nodes reachable from |dep_head|.
11975 @ Here is a procedure that prints a dependency list in symbolic form.
11976 The second parameter should be either |dependent| or |mp_proto_dependent|,
11977 to indicate the scaling of the coefficients.
11979 @<Declare subroutines for printing expressions@>=
11980 void mp_print_dependency (MP mp,pointer p, quarterword t) {
11981 integer v; /* a coefficient */
11982 pointer pp,q; /* for list manipulation */
11985 v=abs(value(p)); q=info(p);
11986 if ( q==null ) { /* the constant term */
11987 if ( (v!=0)||(p==pp) ) {
11988 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, xord('+'));
11989 mp_print_scaled(mp, value(p));
11993 @<Print the coefficient, unless it's $\pm1.0$@>;
11994 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11995 @:this can't happen dep}{\quad dep@>
11996 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11997 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12002 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12003 if ( value(p)<0 ) mp_print_char(mp, xord('-'));
12004 else if ( p!=pp ) mp_print_char(mp, xord('+'));
12005 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12006 if ( v!=unity ) mp_print_scaled(mp, v)
12008 @ The maximum absolute value of a coefficient in a given dependency list
12009 is returned by the following simple function.
12011 @c fraction mp_max_coef (MP mp,pointer p) {
12012 fraction x; /* the maximum so far */
12014 while ( info(p)!=null ) {
12015 if ( abs(value(p))>x ) x=abs(value(p));
12021 @ One of the main operations needed on dependency lists is to add a multiple
12022 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12023 to dependency lists and |f| is a fraction.
12025 If the coefficient of any independent variable becomes |coef_bound| or
12026 more, in absolute value, this procedure changes the type of that variable
12027 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12028 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12029 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12030 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12031 2.3723$, the safer value 7/3 is taken as the threshold.)
12033 The changes mentioned in the preceding paragraph are actually done only if
12034 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12035 it is |false| only when \MP\ is making a dependency list that will soon
12036 be equated to zero.
12038 Several procedures that act on dependency lists, including |p_plus_fq|,
12039 set the global variable |dep_final| to the final (constant term) node of
12040 the dependency list that they produce.
12042 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12043 @d independent_needing_fix 0
12046 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12047 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12048 pointer dep_final; /* location of the constant term and final link */
12051 mp->fix_needed=false; mp->watch_coefs=true;
12053 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12054 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12055 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12056 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12058 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12060 The final link of the dependency list or proto-dependency list returned
12061 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12062 constant term of the result will be located in the same |mem| location
12063 as the original constant term of~|p|.
12065 Coefficients of the result are assumed to be zero if they are less than
12066 a certain threshold. This compensates for inevitable rounding errors,
12067 and tends to make more variables `|known|'. The threshold is approximately
12068 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12069 proto-dependencies.
12071 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12072 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12073 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12074 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12076 @<Declare basic dependency-list subroutines@>=
12077 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12078 pointer q, quarterword t, quarterword tt) ;
12081 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12082 pointer q, quarterword t, quarterword tt) {
12083 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12084 pointer r,s; /* for list manipulation */
12085 integer threshold; /* defines a neighborhood of zero */
12086 integer v; /* temporary register */
12087 if ( t==mp_dependent ) threshold=fraction_threshold;
12088 else threshold=scaled_threshold;
12089 r=temp_head; pp=info(p); qq=info(q);
12095 @<Contribute a term from |p|, plus |f| times the
12096 corresponding term from |q|@>
12098 } else if ( value(pp)<value(qq) ) {
12099 @<Contribute a term from |q|, multiplied by~|f|@>
12101 mp_link(r)=p; r=p; p=mp_link(p); pp=info(p);
12104 if ( t==mp_dependent )
12105 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12107 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12108 mp_link(r)=p; mp->dep_final=p;
12109 return mp_link(temp_head);
12112 @ @<Contribute a term from |p|, plus |f|...@>=
12114 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12115 else v=value(p)+mp_take_scaled(mp, f,value(q));
12116 value(p)=v; s=p; p=mp_link(p);
12117 if ( abs(v)<threshold ) {
12118 mp_free_node(mp, s,dep_node_size);
12120 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12121 type(qq)=independent_needing_fix; mp->fix_needed=true;
12125 pp=info(p); q=mp_link(q); qq=info(q);
12128 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12130 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12131 else v=mp_take_scaled(mp, f,value(q));
12132 if ( (unsigned)abs(v)>halfp(threshold) ) {
12133 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12134 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12135 type(qq)=independent_needing_fix; mp->fix_needed=true;
12139 q=mp_link(q); qq=info(q);
12142 @ It is convenient to have another subroutine for the special case
12143 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12144 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12146 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, quarterword t) {
12147 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12148 pointer r,s; /* for list manipulation */
12149 integer threshold; /* defines a neighborhood of zero */
12150 integer v; /* temporary register */
12151 if ( t==mp_dependent ) threshold=fraction_threshold;
12152 else threshold=scaled_threshold;
12153 r=temp_head; pp=info(p); qq=info(q);
12159 @<Contribute a term from |p|, plus the
12160 corresponding term from |q|@>
12163 if ( value(pp)<value(qq) ) {
12164 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12165 q=mp_link(q); qq=info(q); mp_link(r)=s; r=s;
12167 mp_link(r)=p; r=p; p=mp_link(p); pp=info(p);
12171 value(p)=mp_slow_add(mp, value(p),value(q));
12172 mp_link(r)=p; mp->dep_final=p;
12173 return mp_link(temp_head);
12176 @ @<Contribute a term from |p|, plus the...@>=
12178 v=value(p)+value(q);
12179 value(p)=v; s=p; p=mp_link(p); pp=info(p);
12180 if ( abs(v)<threshold ) {
12181 mp_free_node(mp, s,dep_node_size);
12183 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12184 type(qq)=independent_needing_fix; mp->fix_needed=true;
12188 q=mp_link(q); qq=info(q);
12191 @ A somewhat simpler routine will multiply a dependency list
12192 by a given constant~|v|. The constant is either a |fraction| less than
12193 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12194 convert a dependency list to a proto-dependency list.
12195 Parameters |t0| and |t1| are the list types before and after;
12196 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12197 and |v_is_scaled=true|.
12199 @c pointer mp_p_times_v (MP mp,pointer p, integer v, quarterword t0,
12200 quarterword t1, boolean v_is_scaled) {
12201 pointer r,s; /* for list manipulation */
12202 integer w; /* tentative coefficient */
12204 boolean scaling_down;
12205 if ( t0!=t1 ) scaling_down=true; else scaling_down=(!v_is_scaled);
12206 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12207 else threshold=half_scaled_threshold;
12209 while ( info(p)!=null ) {
12210 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12211 else w=mp_take_scaled(mp, v,value(p));
12212 if ( abs(w)<=threshold ) {
12213 s=mp_link(p); mp_free_node(mp, p,dep_node_size); p=s;
12215 if ( abs(w)>=coef_bound ) {
12216 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12218 mp_link(r)=p; r=p; value(p)=w; p=mp_link(p);
12222 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12223 else value(p)=mp_take_fraction(mp, value(p),v);
12224 return mp_link(temp_head);
12227 @ Similarly, we sometimes need to divide a dependency list
12228 by a given |scaled| constant.
12230 @<Declare basic dependency-list subroutines@>=
12231 pointer mp_p_over_v (MP mp,pointer p, scaled v, quarterword
12232 t0, quarterword t1) ;
12235 pointer mp_p_over_v (MP mp,pointer p, scaled v, quarterword
12236 t0, quarterword t1) {
12237 pointer r,s; /* for list manipulation */
12238 integer w; /* tentative coefficient */
12240 boolean scaling_down;
12241 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12242 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12243 else threshold=half_scaled_threshold;
12245 while ( info( p)!=null ) {
12246 if ( scaling_down ) {
12247 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12248 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12250 w=mp_make_scaled(mp, value(p),v);
12252 if ( abs(w)<=threshold ) {
12253 s=mp_link(p); mp_free_node(mp, p,dep_node_size); p=s;
12255 if ( abs(w)>=coef_bound ) {
12256 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12258 mp_link(r)=p; r=p; value(p)=w; p=mp_link(p);
12261 mp_link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12262 return mp_link(temp_head);
12265 @ Here's another utility routine for dependency lists. When an independent
12266 variable becomes dependent, we want to remove it from all existing
12267 dependencies. The |p_with_x_becoming_q| function computes the
12268 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12270 This procedure has basically the same calling conventions as |p_plus_fq|:
12271 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12272 final link are inherited from~|p|; and the fourth parameter tells whether
12273 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12274 is not altered if |x| does not occur in list~|p|.
12276 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12277 pointer x, pointer q, quarterword t) {
12278 pointer r,s; /* for list manipulation */
12279 integer v; /* coefficient of |x| */
12280 integer sx; /* serial number of |x| */
12281 s=p; r=temp_head; sx=value(x);
12282 while ( value(info(s))>sx ) { r=s; s=mp_link(s); };
12283 if ( info(s)!=x ) {
12286 mp_link(temp_head)=p; mp_link(r)=mp_link(s); v=value(s);
12287 mp_free_node(mp, s,dep_node_size);
12288 return mp_p_plus_fq(mp, mp_link(temp_head),v,q,t,mp_dependent);
12292 @ Here's a simple procedure that reports an error when a variable
12293 has just received a known value that's out of the required range.
12295 @<Declare basic dependency-list subroutines@>=
12296 void mp_val_too_big (MP mp,scaled x) ;
12298 @ @c void mp_val_too_big (MP mp,scaled x) {
12299 if ( mp->internal[mp_warning_check]>0 ) {
12300 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, xord(')'));
12301 @.Value is too large@>
12302 help4("The equation I just processed has given some variable",
12303 "a value of 4096 or more. Continue and I'll try to cope",
12304 "with that big value; but it might be dangerous.",
12305 "(Set warningcheck:=0 to suppress this message.)");
12310 @ When a dependent variable becomes known, the following routine
12311 removes its dependency list. Here |p| points to the variable, and
12312 |q| points to the dependency list (which is one node long).
12314 @<Declare basic dependency-list subroutines@>=
12315 void mp_make_known (MP mp,pointer p, pointer q) ;
12317 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12318 int t; /* the previous type */
12319 prev_dep(mp_link(q))=prev_dep(p);
12320 mp_link(prev_dep(p))=mp_link(q); t=type(p);
12321 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12322 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12323 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12324 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12325 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12326 mp_print_variable_name(mp, p);
12327 mp_print_char(mp, xord('=')); mp_print_scaled(mp, value(p));
12328 mp_end_diagnostic(mp, false);
12330 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12331 mp->cur_type=mp_known; mp->cur_exp=value(p);
12332 mp_free_node(mp, p,value_node_size);
12336 @ The |fix_dependencies| routine is called into action when |fix_needed|
12337 has been triggered. The program keeps a list~|s| of independent variables
12338 whose coefficients must be divided by~4.
12340 In unusual cases, this fixup process might reduce one or more coefficients
12341 to zero, so that a variable will become known more or less by default.
12343 @<Declare basic dependency-list subroutines@>=
12344 void mp_fix_dependencies (MP mp);
12346 @ @c void mp_fix_dependencies (MP mp) {
12347 pointer p,q,r,s,t; /* list manipulation registers */
12348 pointer x; /* an independent variable */
12349 r=mp_link(dep_head); s=null;
12350 while ( r!=dep_head ){
12352 @<Run through the dependency list for variable |t|, fixing
12353 all nodes, and ending with final link~|q|@>;
12355 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12357 while ( s!=null ) {
12358 p=mp_link(s); x=info(s); free_avail(s); s=p;
12359 type(x)=mp_independent; value(x)=value(x)+2;
12361 mp->fix_needed=false;
12364 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12366 @<Run through the dependency list for variable |t|...@>=
12367 r=value_loc(t); /* |mp_link(r)=dep_list(t)| */
12369 q=mp_link(r); x=info(q);
12370 if ( x==null ) break;
12371 if ( type(x)<=independent_being_fixed ) {
12372 if ( type(x)<independent_being_fixed ) {
12373 p=mp_get_avail(mp); mp_link(p)=s; s=p;
12374 info(s)=x; type(x)=independent_being_fixed;
12376 value(q)=value(q) / 4;
12377 if ( value(q)==0 ) {
12378 mp_link(r)=mp_link(q); mp_free_node(mp, q,dep_node_size); q=r;
12385 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12386 linking it into the list of all known dependencies. We assume that
12387 |dep_final| points to the final node of list~|p|.
12389 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12390 pointer r; /* what used to be the first dependency */
12391 dep_list(q)=p; prev_dep(q)=dep_head;
12392 r=mp_link(dep_head); mp_link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12393 mp_link(dep_head)=q;
12396 @ Here is one of the ways a dependency list gets started.
12397 The |const_dependency| routine produces a list that has nothing but
12400 @c pointer mp_const_dependency (MP mp, scaled v) {
12401 mp->dep_final=mp_get_node(mp, dep_node_size);
12402 value(mp->dep_final)=v; info(mp->dep_final)=null;
12403 return mp->dep_final;
12406 @ And here's a more interesting way to start a dependency list from scratch:
12407 The parameter to |single_dependency| is the location of an
12408 independent variable~|x|, and the result is the simple dependency list
12411 In the unlikely event that the given independent variable has been doubled so
12412 often that we can't refer to it with a nonzero coefficient,
12413 |single_dependency| returns the simple list `0'. This case can be
12414 recognized by testing that the returned list pointer is equal to
12417 @c pointer mp_single_dependency (MP mp,pointer p) {
12418 pointer q; /* the new dependency list */
12419 integer m; /* the number of doublings */
12420 m=value(p) % s_scale;
12422 return mp_const_dependency(mp, 0);
12424 q=mp_get_node(mp, dep_node_size);
12425 value(q)=two_to_the(28-m); info(q)=p;
12426 mp_link(q)=mp_const_dependency(mp, 0);
12431 @ We sometimes need to make an exact copy of a dependency list.
12433 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12434 pointer q; /* the new dependency list */
12435 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12437 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12438 if ( info(mp->dep_final)==null ) break;
12439 mp_link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12440 mp->dep_final=mp_link(mp->dep_final); p=mp_link(p);
12445 @ But how do variables normally become known? Ah, now we get to the heart of the
12446 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12447 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12448 appears. It equates this list to zero, by choosing an independent variable
12449 with the largest coefficient and making it dependent on the others. The
12450 newly dependent variable is eliminated from all current dependencies,
12451 thereby possibly making other dependent variables known.
12453 The given list |p| is, of course, totally destroyed by all this processing.
12455 @c void mp_linear_eq (MP mp, pointer p, quarterword t) {
12456 pointer q,r,s; /* for link manipulation */
12457 pointer x; /* the variable that loses its independence */
12458 integer n; /* the number of times |x| had been halved */
12459 integer v; /* the coefficient of |x| in list |p| */
12460 pointer prev_r; /* lags one step behind |r| */
12461 pointer final_node; /* the constant term of the new dependency list */
12462 integer w; /* a tentative coefficient */
12463 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12464 x=info(q); n=value(x) % s_scale;
12465 @<Divide list |p| by |-v|, removing node |q|@>;
12466 if ( mp->internal[mp_tracing_equations]>0 ) {
12467 @<Display the new dependency@>;
12469 @<Simplify all existing dependencies by substituting for |x|@>;
12470 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12471 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12474 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12475 q=p; r=mp_link(p); v=value(q);
12476 while ( info(r)!=null ) {
12477 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12481 @ Here we want to change the coefficients from |scaled| to |fraction|,
12482 except in the constant term. In the common case of a trivial equation
12483 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12485 @<Divide list |p| by |-v|, removing node |q|@>=
12486 s=temp_head; mp_link(s)=p; r=p;
12489 mp_link(s)=mp_link(r); mp_free_node(mp, r,dep_node_size);
12491 w=mp_make_fraction(mp, value(r),v);
12492 if ( abs(w)<=half_fraction_threshold ) {
12493 mp_link(s)=mp_link(r); mp_free_node(mp, r,dep_node_size);
12499 } while (info(r)!=null);
12500 if ( t==mp_proto_dependent ) {
12501 value(r)=-mp_make_scaled(mp, value(r),v);
12502 } else if ( v!=-fraction_one ) {
12503 value(r)=-mp_make_fraction(mp, value(r),v);
12505 final_node=r; p=mp_link(temp_head)
12507 @ @<Display the new dependency@>=
12508 if ( mp_interesting(mp, x) ) {
12509 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12510 mp_print_variable_name(mp, x);
12511 @:]]]\#\#_}{\.{\#\#}@>
12513 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12514 mp_print_char(mp, xord('=')); mp_print_dependency(mp, p,mp_dependent);
12515 mp_end_diagnostic(mp, false);
12518 @ @<Simplify all existing dependencies by substituting for |x|@>=
12519 prev_r=dep_head; r=mp_link(dep_head);
12520 while ( r!=dep_head ) {
12521 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12522 if ( info(q)==null ) {
12523 mp_make_known(mp, r,q);
12526 do { q=mp_link(q); } while (info(q)!=null);
12532 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12533 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12534 if ( info(p)==null ) {
12537 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12538 mp_free_node(mp, p,dep_node_size);
12539 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12540 mp->cur_exp=value(x); mp->cur_type=mp_known;
12541 mp_free_node(mp, x,value_node_size);
12544 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12545 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12548 @ @<Divide list |p| by $2^n$@>=
12550 s=temp_head; mp_link(temp_head)=p; r=p;
12553 else w=value(r) / two_to_the(n);
12554 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12555 mp_link(s)=mp_link(r);
12556 mp_free_node(mp, r,dep_node_size);
12561 } while (info(s)!=null);
12562 p=mp_link(temp_head);
12565 @ The |check_mem| procedure, which is used only when \MP\ is being
12566 debugged, makes sure that the current dependency lists are well formed.
12568 @<Check the list of linear dependencies@>=
12569 q=dep_head; p=mp_link(q);
12570 while ( p!=dep_head ) {
12571 if ( prev_dep(p)!=q ) {
12572 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12577 r=info(p); q=p; p=mp_link(q);
12578 if ( r==null ) break;
12579 if ( value(info(p))>=value(r) ) {
12580 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12581 @.Out of order...@>
12586 @* \[25] Dynamic nonlinear equations.
12587 Variables of numeric type are maintained by the general scheme of
12588 independent, dependent, and known values that we have just studied;
12589 and the components of pair and transform variables are handled in the
12590 same way. But \MP\ also has five other types of values: \&{boolean},
12591 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12593 Equations are allowed between nonlinear quantities, but only in a
12594 simple form. Two variables that haven't yet been assigned values are
12595 either equal to each other, or they're not.
12597 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12598 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12599 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12600 |null| (which means that no other variables are equivalent to this one), or
12601 it points to another variable of the same undefined type. The pointers in the
12602 latter case form a cycle of nodes, which we shall call a ``ring.''
12603 Rings of undefined variables may include capsules, which arise as
12604 intermediate results within expressions or as \&{expr} parameters to macros.
12606 When one member of a ring receives a value, the same value is given to
12607 all the other members. In the case of paths and pictures, this implies
12608 making separate copies of a potentially large data structure; users should
12609 restrain their enthusiasm for such generality, unless they have lots and
12610 lots of memory space.
12612 @ The following procedure is called when a capsule node is being
12613 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12615 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12616 pointer q; /* the new capsule node */
12617 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12619 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12624 @ Conversely, we might delete a capsule or a variable before it becomes known.
12625 The following procedure simply detaches a quantity from its ring,
12626 without recycling the storage.
12628 @<Declare the recycling subroutines@>=
12629 void mp_ring_delete (MP mp,pointer p) {
12632 if ( q!=null ) if ( q!=p ){
12633 while ( value(q)!=p ) q=value(q);
12638 @ Eventually there might be an equation that assigns values to all of the
12639 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12640 propagation of values.
12642 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12643 value, it will soon be recycled.
12645 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12646 quarterword t; /* the type of ring |p| */
12647 pointer q,r; /* link manipulation registers */
12648 t=type(p)-unknown_tag; q=value(p);
12649 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12651 r=value(q); type(q)=t;
12653 case mp_boolean_type: value(q)=v; break;
12654 case mp_string_type: value(q)=v; add_str_ref(v); break;
12655 case mp_pen_type: value(q)=copy_pen(v); break;
12656 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12657 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12658 } /* there ain't no more cases */
12663 @ If two members of rings are equated, and if they have the same type,
12664 the |ring_merge| procedure is called on to make them equivalent.
12666 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12667 pointer r; /* traverses one list */
12671 @<Exclaim about a redundant equation@>;
12676 r=value(p); value(p)=value(q); value(q)=r;
12679 @ @<Exclaim about a redundant equation@>=
12681 print_err("Redundant equation");
12682 @.Redundant equation@>
12683 help2("I already knew that this equation was true.",
12684 "But perhaps no harm has been done; let's continue.");
12685 mp_put_get_error(mp);
12688 @* \[26] Introduction to the syntactic routines.
12689 Let's pause a moment now and try to look at the Big Picture.
12690 The \MP\ program consists of three main parts: syntactic routines,
12691 semantic routines, and output routines. The chief purpose of the
12692 syntactic routines is to deliver the user's input to the semantic routines,
12693 while parsing expressions and locating operators and operands. The
12694 semantic routines act as an interpreter responding to these operators,
12695 which may be regarded as commands. And the output routines are
12696 periodically called on to produce compact font descriptions that can be
12697 used for typesetting or for making interim proof drawings. We have
12698 discussed the basic data structures and many of the details of semantic
12699 operations, so we are good and ready to plunge into the part of \MP\ that
12700 actually controls the activities.
12702 Our current goal is to come to grips with the |get_next| procedure,
12703 which is the keystone of \MP's input mechanism. Each call of |get_next|
12704 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12705 representing the next input token.
12706 $$\vbox{\halign{#\hfil\cr
12707 \hbox{|cur_cmd| denotes a command code from the long list of codes
12709 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12710 \hbox{|cur_sym| is the hash address of the symbolic token that was
12712 \hbox{\qquad or zero in the case of a numeric or string
12713 or capsule token.}\cr}}$$
12714 Underlying this external behavior of |get_next| is all the machinery
12715 necessary to convert from character files to tokens. At a given time we
12716 may be only partially finished with the reading of several files (for
12717 which \&{input} was specified), and partially finished with the expansion
12718 of some user-defined macros and/or some macro parameters, and partially
12719 finished reading some text that the user has inserted online,
12720 and so on. When reading a character file, the characters must be
12721 converted to tokens; comments and blank spaces must
12722 be removed, numeric and string tokens must be evaluated.
12724 To handle these situations, which might all be present simultaneously,
12725 \MP\ uses various stacks that hold information about the incomplete
12726 activities, and there is a finite state control for each level of the
12727 input mechanism. These stacks record the current state of an implicitly
12728 recursive process, but the |get_next| procedure is not recursive.
12731 integer cur_cmd; /* current command set by |get_next| */
12732 integer cur_mod; /* operand of current command */
12733 halfword cur_sym; /* hash address of current symbol */
12735 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12736 command code and its modifier.
12737 It consists of a rather tedious sequence of print
12738 commands, and most of it is essentially an inverse to the |primitive|
12739 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12740 all of this procedure appears elsewhere in the program, together with the
12741 corresponding |primitive| calls.
12743 @<Declare the procedure called |print_cmd_mod|@>=
12744 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12746 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12747 default: mp_print(mp, "[unknown command code!]"); break;
12751 @ Here is a procedure that displays a given command in braces, in the
12752 user's transcript file.
12754 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12757 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12758 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12759 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, xord('}'));
12760 mp_end_diagnostic(mp, false);
12763 @* \[27] Input stacks and states.
12764 The state of \MP's input mechanism appears in the input stack, whose
12765 entries are records with five fields, called |index|, |start|, |loc|,
12766 |limit|, and |name|. The top element of this stack is maintained in a
12767 global variable for which no subscripting needs to be done; the other
12768 elements of the stack appear in an array. Hence the stack is declared thus:
12772 quarterword index_field;
12773 halfword start_field, loc_field, limit_field, name_field;
12777 in_state_record *input_stack;
12778 integer input_ptr; /* first unused location of |input_stack| */
12779 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12780 in_state_record cur_input; /* the ``top'' input state */
12781 int stack_size; /* maximum number of simultaneous input sources */
12783 @ @<Allocate or initialize ...@>=
12784 mp->stack_size = 300;
12785 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12787 @ @<Dealloc variables@>=
12788 xfree(mp->input_stack);
12790 @ We've already defined the special variable |loc==cur_input.loc_field|
12791 in our discussion of basic input-output routines. The other components of
12792 |cur_input| are defined in the same way:
12794 @d iindex mp->cur_input.index_field /* reference for buffer information */
12795 @d start mp->cur_input.start_field /* starting position in |buffer| */
12796 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12797 @d name mp->cur_input.name_field /* name of the current file */
12799 @ Let's look more closely now at the five control variables
12800 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12801 assuming that \MP\ is reading a line of characters that have been input
12802 from some file or from the user's terminal. There is an array called
12803 |buffer| that acts as a stack of all lines of characters that are
12804 currently being read from files, including all lines on subsidiary
12805 levels of the input stack that are not yet completed. \MP\ will return to
12806 the other lines when it is finished with the present input file.
12808 (Incidentally, on a machine with byte-oriented addressing, it would be
12809 appropriate to combine |buffer| with the |str_pool| array,
12810 letting the buffer entries grow downward from the top of the string pool
12811 and checking that these two tables don't bump into each other.)
12813 The line we are currently working on begins in position |start| of the
12814 buffer; the next character we are about to read is |buffer[loc]|; and
12815 |limit| is the location of the last character present. We always have
12816 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12817 that the end of a line is easily sensed.
12819 The |name| variable is a string number that designates the name of
12820 the current file, if we are reading an ordinary text file. Special codes
12821 |is_term..max_spec_src| indicate other sources of input text.
12823 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12824 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12825 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12826 @d max_spec_src is_scantok
12828 @ Additional information about the current line is available via the
12829 |index| variable, which counts how many lines of characters are present
12830 in the buffer below the current level. We have |index=0| when reading
12831 from the terminal and prompting the user for each line; then if the user types,
12832 e.g., `\.{input figs}', we will have |index=1| while reading
12833 the file \.{figs.mp}. However, it does not follow that |index| is the
12834 same as the input stack pointer, since many of the levels on the input
12835 stack may come from token lists and some |index| values may correspond
12836 to \.{MPX} files that are not currently on the stack.
12838 The global variable |in_open| is equal to the highest |index| value counting
12839 \.{MPX} files but excluding token-list input levels. Thus, the number of
12840 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12841 when we are not reading a token list.
12843 If we are not currently reading from the terminal,
12844 we are reading from the file variable |input_file[index]|. We use
12845 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12846 and |cur_file| as an abbreviation for |input_file[index]|.
12848 When \MP\ is not reading from the terminal, the global variable |line| contains
12849 the line number in the current file, for use in error messages. More precisely,
12850 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12851 the line number for each file in the |input_file| array.
12853 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12854 array so that the name doesn't get lost when the file is temporarily removed
12855 from the input stack.
12856 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12857 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12858 Since this is not an \.{MPX} file, we have
12859 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12860 This |name| field is set to |finished| when |input_file[k]| is completely
12863 If more information about the input state is needed, it can be
12864 included in small arrays like those shown here. For example,
12865 the current page or segment number in the input file might be put
12866 into a variable |page|, that is really a macro for the current entry
12867 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12868 by analogy with |line_stack|.
12869 @^system dependencies@>
12871 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12872 @d cur_file mp->input_file[iindex] /* the current |void *| variable */
12873 @d line mp->line_stack[iindex] /* current line number in the current source file */
12874 @d in_name mp->iname_stack[iindex] /* a string used to construct \.{MPX} file names */
12875 @d in_area mp->iarea_stack[iindex] /* another string for naming \.{MPX} files */
12876 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12877 @d mpx_reading (mp->mpx_name[iindex]>absent)
12878 /* when reading a file, is it an \.{MPX} file? */
12880 /* |name_field| value when the corresponding \.{MPX} file is finished */
12883 integer in_open; /* the number of lines in the buffer, less one */
12884 unsigned int open_parens; /* the number of open text files */
12885 void * *input_file ;
12886 integer *line_stack ; /* the line number for each file */
12887 char * *iname_stack; /* used for naming \.{MPX} files */
12888 char * *iarea_stack; /* used for naming \.{MPX} files */
12889 halfword*mpx_name ;
12891 @ @<Allocate or ...@>=
12892 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12893 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12894 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12895 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12896 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12899 for (k=0;k<=mp->max_in_open;k++) {
12900 mp->iname_stack[k] =NULL;
12901 mp->iarea_stack[k] =NULL;
12905 @ @<Dealloc variables@>=
12908 for (l=0;l<=mp->max_in_open;l++) {
12909 xfree(mp->iname_stack[l]);
12910 xfree(mp->iarea_stack[l]);
12913 xfree(mp->input_file);
12914 xfree(mp->line_stack);
12915 xfree(mp->iname_stack);
12916 xfree(mp->iarea_stack);
12917 xfree(mp->mpx_name);
12920 @ However, all this discussion about input state really applies only to the
12921 case that we are inputting from a file. There is another important case,
12922 namely when we are currently getting input from a token list. In this case
12923 |iindex>max_in_open|, and the conventions about the other state variables
12926 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12927 the node that will be read next. If |loc=null|, the token list has been
12930 \yskip\hang|start| points to the first node of the token list; this node
12931 may or may not contain a reference count, depending on the type of token
12934 \yskip\hang|token_type|, which takes the place of |iindex| in the
12935 discussion above, is a code number that explains what kind of token list
12938 \yskip\hang|name| points to the |eqtb| address of the control sequence
12939 being expanded, if the current token list is a macro not defined by
12940 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12941 can be deduced by looking at their first two parameters.
12943 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12944 the parameters of the current macro or loop text begin in the |param_stack|.
12946 \yskip\noindent The |token_type| can take several values, depending on
12947 where the current token list came from:
12950 \indent|forever_text|, if the token list being scanned is the body of
12951 a \&{forever} loop;
12953 \indent|loop_text|, if the token list being scanned is the body of
12954 a \&{for} or \&{forsuffixes} loop;
12956 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12958 \indent|backed_up|, if the token list being scanned has been inserted as
12959 `to be read again'.
12961 \indent|inserted|, if the token list being scanned has been inserted as
12962 part of error recovery;
12964 \indent|macro|, if the expansion of a user-defined symbolic token is being
12968 The token list begins with a reference count if and only if |token_type=
12970 @^reference counts@>
12972 @d token_type iindex /* type of current token list */
12973 @d token_state (iindex>(int)mp->max_in_open) /* are we scanning a token list? */
12974 @d file_state (iindex<=(int)mp->max_in_open) /* are we scanning a file line? */
12975 @d param_start limit /* base of macro parameters in |param_stack| */
12976 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12977 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12978 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12979 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12980 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12981 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12983 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12984 lists for parameters at the current level and subsidiary levels of input.
12985 This stack grows at a different rate from the others.
12988 pointer *param_stack; /* token list pointers for parameters */
12989 integer param_ptr; /* first unused entry in |param_stack| */
12990 integer max_param_stack; /* largest value of |param_ptr| */
12992 @ @<Allocate or initialize ...@>=
12993 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12995 @ @<Dealloc variables@>=
12996 xfree(mp->param_stack);
12998 @ Notice that the |line| isn't valid when |token_state| is true because it
12999 depends on |iindex|. If we really need to know the line number for the
13000 topmost file in the iindex stack we use the following function. If a page
13001 number or other information is needed, this routine should be modified to
13002 compute it as well.
13003 @^system dependencies@>
13005 @<Declare a function called |true_line|@>=
13006 integer mp_true_line (MP mp) {
13007 int k; /* an index into the input stack */
13008 if ( file_state && (name>max_spec_src) ) {
13013 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13014 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13017 return (k>0 ? mp->line_stack[(k-1)] : 0 );
13021 @ Thus, the ``current input state'' can be very complicated indeed; there
13022 can be many levels and each level can arise in a variety of ways. The
13023 |show_context| procedure, which is used by \MP's error-reporting routine to
13024 print out the current input state on all levels down to the most recent
13025 line of characters from an input file, illustrates most of these conventions.
13026 The global variable |file_ptr| contains the lowest level that was
13027 displayed by this procedure.
13030 integer file_ptr; /* shallowest level shown by |show_context| */
13032 @ The status at each level is indicated by printing two lines, where the first
13033 line indicates what was read so far and the second line shows what remains
13034 to be read. The context is cropped, if necessary, so that the first line
13035 contains at most |half_error_line| characters, and the second contains
13036 at most |error_line|. Non-current input levels whose |token_type| is
13037 `|backed_up|' are shown only if they have not been fully read.
13039 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13040 unsigned old_setting; /* saved |selector| setting */
13041 @<Local variables for formatting calculations@>
13042 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13043 /* store current state */
13045 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13046 @<Display the current context@>;
13048 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13049 decr(mp->file_ptr);
13051 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13054 @ @<Display the current context@>=
13055 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13056 (token_type!=backed_up) || (loc!=null) ) {
13057 /* we omit backed-up token lists that have already been read */
13058 mp->tally=0; /* get ready to count characters */
13059 old_setting=mp->selector;
13060 if ( file_state ) {
13061 @<Print location of current line@>;
13062 @<Pseudoprint the line@>;
13064 @<Print type of token list@>;
13065 @<Pseudoprint the token list@>;
13067 mp->selector=old_setting; /* stop pseudoprinting */
13068 @<Print two lines using the tricky pseudoprinted information@>;
13071 @ This routine should be changed, if necessary, to give the best possible
13072 indication of where the current line resides in the input file.
13073 For example, on some systems it is best to print both a page and line number.
13074 @^system dependencies@>
13076 @<Print location of current line@>=
13077 if ( name>max_spec_src ) {
13078 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13079 } else if ( terminal_input ) {
13080 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13081 else mp_print_nl(mp, "<insert>");
13082 } else if ( name==is_scantok ) {
13083 mp_print_nl(mp, "<scantokens>");
13085 mp_print_nl(mp, "<read>");
13087 mp_print_char(mp, xord(' '))
13089 @ Can't use case statement here because the |token_type| is not
13090 a constant expression.
13092 @<Print type of token list@>=
13094 if(token_type==forever_text) {
13095 mp_print_nl(mp, "<forever> ");
13096 } else if (token_type==loop_text) {
13097 @<Print the current loop value@>;
13098 } else if (token_type==parameter) {
13099 mp_print_nl(mp, "<argument> ");
13100 } else if (token_type==backed_up) {
13101 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13102 else mp_print_nl(mp, "<to be read again> ");
13103 } else if (token_type==inserted) {
13104 mp_print_nl(mp, "<inserted text> ");
13105 } else if (token_type==macro) {
13107 if ( name!=null ) mp_print_text(name);
13108 else @<Print the name of a \&{vardef}'d macro@>;
13109 mp_print(mp, "->");
13111 mp_print_nl(mp, "?");/* this should never happen */
13116 @ The parameter that corresponds to a loop text is either a token list
13117 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13118 We'll discuss capsules later; for now, all we need to know is that
13119 the |link| field in a capsule parameter is |void| and that
13120 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13122 @<Print the current loop value@>=
13123 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13125 if ( mp_link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13126 else mp_show_token_list(mp, p,null,20,mp->tally);
13128 mp_print(mp, ")> ");
13131 @ The first two parameters of a macro defined by \&{vardef} will be token
13132 lists representing the macro's prefix and ``at point.'' By putting these
13133 together, we get the macro's full name.
13135 @<Print the name of a \&{vardef}'d macro@>=
13136 { p=mp->param_stack[param_start];
13138 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13141 while ( mp_link(q)!=null ) q=mp_link(q);
13142 mp_link(q)=mp->param_stack[param_start+1];
13143 mp_show_token_list(mp, p,null,20,mp->tally);
13148 @ Now it is necessary to explain a little trick. We don't want to store a long
13149 string that corresponds to a token list, because that string might take up
13150 lots of memory; and we are printing during a time when an error message is
13151 being given, so we dare not do anything that might overflow one of \MP's
13152 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13153 that stores characters into a buffer of length |error_line|, where character
13154 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13155 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13156 |tally:=0| and |trick_count:=1000000|; then when we reach the
13157 point where transition from line 1 to line 2 should occur, we
13158 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13159 tally+1+error_line-half_error_line)|. At the end of the
13160 pseudoprinting, the values of |first_count|, |tally|, and
13161 |trick_count| give us all the information we need to print the two lines,
13162 and all of the necessary text is in |trick_buf|.
13164 Namely, let |l| be the length of the descriptive information that appears
13165 on the first line. The length of the context information gathered for that
13166 line is |k=first_count|, and the length of the context information
13167 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13168 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13169 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13170 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13171 and print `\.{...}' followed by
13172 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13173 where subscripts of |trick_buf| are circular modulo |error_line|. The
13174 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13175 unless |n+m>error_line|; in the latter case, further cropping is done.
13176 This is easier to program than to explain.
13178 @<Local variables for formatting...@>=
13179 int i; /* index into |buffer| */
13180 integer l; /* length of descriptive information on line 1 */
13181 integer m; /* context information gathered for line 2 */
13182 int n; /* length of line 1 */
13183 integer p; /* starting or ending place in |trick_buf| */
13184 integer q; /* temporary index */
13186 @ The following code tells the print routines to gather
13187 the desired information.
13189 @d begin_pseudoprint {
13190 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13191 mp->trick_count=1000000;
13193 @d set_trick_count {
13194 mp->first_count=mp->tally;
13195 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13196 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13199 @ And the following code uses the information after it has been gathered.
13201 @<Print two lines using the tricky pseudoprinted information@>=
13202 if ( mp->trick_count==1000000 ) set_trick_count;
13203 /* |set_trick_count| must be performed */
13204 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13205 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13206 if ( l+mp->first_count<=mp->half_error_line ) {
13207 p=0; n=l+mp->first_count;
13209 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13210 n=mp->half_error_line;
13212 for (q=p;q<=mp->first_count-1;q++) {
13213 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13216 for (q=1;q<=n;q++) {
13217 mp_print_char(mp, xord(' ')); /* print |n| spaces to begin line~2 */
13219 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13220 else p=mp->first_count+(mp->error_line-n-3);
13221 for (q=mp->first_count;q<=p-1;q++) {
13222 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13224 if ( m+n>mp->error_line ) mp_print(mp, "...")
13226 @ But the trick is distracting us from our current goal, which is to
13227 understand the input state. So let's concentrate on the data structures that
13228 are being pseudoprinted as we finish up the |show_context| procedure.
13230 @<Pseudoprint the line@>=
13233 for (i=start;i<=limit-1;i++) {
13234 if ( i==loc ) set_trick_count;
13235 mp_print_str(mp, mp->buffer[i]);
13239 @ @<Pseudoprint the token list@>=
13241 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13242 else mp_show_macro(mp, start,loc,100000)
13244 @ Here is the missing piece of |show_token_list| that is activated when the
13245 token beginning line~2 is about to be shown:
13247 @<Do magic computation@>=set_trick_count
13249 @* \[28] Maintaining the input stacks.
13250 The following subroutines change the input status in commonly needed ways.
13252 First comes |push_input|, which stores the current state and creates a
13253 new level (having, initially, the same properties as the old).
13255 @d push_input { /* enter a new input level, save the old */
13256 if ( mp->input_ptr>mp->max_in_stack ) {
13257 mp->max_in_stack=mp->input_ptr;
13258 if ( mp->input_ptr==mp->stack_size ) {
13259 int l = (mp->stack_size+(mp->stack_size/4));
13260 XREALLOC(mp->input_stack, l, in_state_record);
13261 mp->stack_size = l;
13264 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13265 incr(mp->input_ptr);
13268 @ And of course what goes up must come down.
13270 @d pop_input { /* leave an input level, re-enter the old */
13271 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13274 @ Here is a procedure that starts a new level of token-list input, given
13275 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13276 set |name|, reset~|loc|, and increase the macro's reference count.
13278 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13280 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13281 push_input; start=p; token_type=t;
13282 param_start=mp->param_ptr; loc=p;
13285 @ When a token list has been fully scanned, the following computations
13286 should be done as we leave that level of input.
13289 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13290 pointer p; /* temporary register */
13291 if ( token_type>=backed_up ) { /* token list to be deleted */
13292 if ( token_type<=inserted ) {
13293 mp_flush_token_list(mp, start); goto DONE;
13295 mp_delete_mac_ref(mp, start); /* update reference count */
13298 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13299 decr(mp->param_ptr);
13300 p=mp->param_stack[mp->param_ptr];
13302 if ( mp_link(p)==mp_void ) { /* it's an \&{expr} parameter */
13303 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13305 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13310 pop_input; check_interrupt;
13313 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13314 token by the |cur_tok| routine.
13317 @c @<Declare the procedure called |make_exp_copy|@>
13318 pointer mp_cur_tok (MP mp) {
13319 pointer p; /* a new token node */
13320 quarterword save_type; /* |cur_type| to be restored */
13321 integer save_exp; /* |cur_exp| to be restored */
13322 if ( mp->cur_sym==0 ) {
13323 if ( mp->cur_cmd==capsule_token ) {
13324 save_type=mp->cur_type; save_exp=mp->cur_exp;
13325 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); mp_link(p)=null;
13326 mp->cur_type=save_type; mp->cur_exp=save_exp;
13328 p=mp_get_node(mp, token_node_size);
13329 value(p)=mp->cur_mod; name_type(p)=mp_token;
13330 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13331 else type(p)=mp_string_type;
13334 fast_get_avail(p); info(p)=mp->cur_sym;
13339 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13340 seen. The |back_input| procedure takes care of this by putting the token
13341 just scanned back into the input stream, ready to be read again.
13342 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13345 void mp_back_input (MP mp);
13347 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13348 pointer p; /* a token list of length one */
13350 while ( token_state &&(loc==null) )
13351 mp_end_token_list(mp); /* conserve stack space */
13355 @ The |back_error| routine is used when we want to restore or replace an
13356 offending token just before issuing an error message. We disable interrupts
13357 during the call of |back_input| so that the help message won't be lost.
13360 void mp_error (MP mp);
13361 void mp_back_error (MP mp);
13363 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13364 mp->OK_to_interrupt=false;
13366 mp->OK_to_interrupt=true; mp_error(mp);
13368 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13369 mp->OK_to_interrupt=false;
13370 mp_back_input(mp); token_type=inserted;
13371 mp->OK_to_interrupt=true; mp_error(mp);
13374 @ The |begin_file_reading| procedure starts a new level of input for lines
13375 of characters to be read from a file, or as an insertion from the
13376 terminal. It does not take care of opening the file, nor does it set |loc|
13377 or |limit| or |line|.
13378 @^system dependencies@>
13380 @c void mp_begin_file_reading (MP mp) {
13381 if ( mp->in_open==mp->max_in_open )
13382 mp_overflow(mp, "text input levels",mp->max_in_open);
13383 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13384 if ( mp->first==mp->buf_size )
13385 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size/4)));
13386 incr(mp->in_open); push_input; iindex=mp->in_open;
13387 mp->mpx_name[iindex]=absent;
13388 start=(halfword)mp->first;
13389 name=is_term; /* |terminal_input| is now |true| */
13392 @ Conversely, the variables must be downdated when such a level of input
13393 is finished. Any associated \.{MPX} file must also be closed and popped
13394 off the file stack.
13396 @c void mp_end_file_reading (MP mp) {
13397 if ( mp->in_open>iindex ) {
13398 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13399 mp_confusion(mp, "endinput");
13400 @:this can't happen endinput}{\quad endinput@>
13402 (mp->close_file)(mp,mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13403 delete_str_ref(mp->mpx_name[mp->in_open]);
13407 mp->first=(size_t)start;
13408 if ( iindex!=mp->in_open ) mp_confusion(mp, "endinput");
13409 if ( name>max_spec_src ) {
13410 (mp->close_file)(mp,cur_file);
13411 delete_str_ref(name);
13415 pop_input; decr(mp->in_open);
13418 @ Here is a function that tries to resume input from an \.{MPX} file already
13419 associated with the current input file. It returns |false| if this doesn't
13422 @c boolean mp_begin_mpx_reading (MP mp) {
13423 if ( mp->in_open!=iindex+1 ) {
13426 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13427 @:this can't happen mpx}{\quad mpx@>
13428 if ( mp->first==mp->buf_size )
13429 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size/4)));
13430 push_input; iindex=mp->in_open;
13431 start=(halfword)mp->first;
13432 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13433 @<Put an empty line in the input buffer@>;
13438 @ This procedure temporarily stops reading an \.{MPX} file.
13440 @c void mp_end_mpx_reading (MP mp) {
13441 if ( mp->in_open!=iindex ) mp_confusion(mp, "mpx");
13442 @:this can't happen mpx}{\quad mpx@>
13444 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13446 mp->first=(size_t)start;
13450 @ Here we enforce a restriction that simplifies the input stacks considerably.
13451 This should not inconvenience the user because \.{MPX} files are generated
13452 by an auxiliary program called \.{DVItoMP}.
13454 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13456 print_err("`mpxbreak' must be at the end of a line");
13457 help4("This file contains picture expressions for btex...etex",
13458 "blocks. Such files are normally generated automatically",
13459 "but this one seems to be messed up. I'm going to ignore",
13460 "the rest of this line.");
13464 @ In order to keep the stack from overflowing during a long sequence of
13465 inserted `\.{show}' commands, the following routine removes completed
13466 error-inserted lines from memory.
13468 @c void mp_clear_for_error_prompt (MP mp) {
13469 while ( file_state && terminal_input &&
13470 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13471 mp_print_ln(mp); clear_terminal;
13474 @ To get \MP's whole input mechanism going, we perform the following
13477 @<Initialize the input routines@>=
13478 { mp->input_ptr=0; mp->max_in_stack=0;
13479 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13480 mp->param_ptr=0; mp->max_param_stack=0;
13482 start=1; iindex=0; line=0; name=is_term;
13483 mp->mpx_name[0]=absent;
13484 mp->force_eof=false;
13485 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13486 limit=(halfword)mp->last; mp->first=mp->last+1;
13487 /* |init_terminal| has set |loc| and |last| */
13490 @* \[29] Getting the next token.
13491 The heart of \MP's input mechanism is the |get_next| procedure, which
13492 we shall develop in the next few sections of the program. Perhaps we
13493 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13494 eyes and mouth, reading the source files and gobbling them up. And it also
13495 helps \MP\ to regurgitate stored token lists that are to be processed again.
13497 The main duty of |get_next| is to input one token and to set |cur_cmd|
13498 and |cur_mod| to that token's command code and modifier. Furthermore, if
13499 the input token is a symbolic token, that token's |hash| address
13500 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13502 Underlying this simple description is a certain amount of complexity
13503 because of all the cases that need to be handled.
13504 However, the inner loop of |get_next| is reasonably short and fast.
13506 @ Before getting into |get_next|, we need to consider a mechanism by which
13507 \MP\ helps keep errors from propagating too far. Whenever the program goes
13508 into a mode where it keeps calling |get_next| repeatedly until a certain
13509 condition is met, it sets |scanner_status| to some value other than |normal|.
13510 Then if an input file ends, or if an `\&{outer}' symbol appears,
13511 an appropriate error recovery will be possible.
13513 The global variable |warning_info| helps in this error recovery by providing
13514 additional information. For example, |warning_info| might indicate the
13515 name of a macro whose replacement text is being scanned.
13517 @d normal 0 /* |scanner_status| at ``quiet times'' */
13518 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13519 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13520 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13521 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13522 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13523 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13524 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13527 integer scanner_status; /* are we scanning at high speed? */
13528 integer warning_info; /* if so, what else do we need to know,
13529 in case an error occurs? */
13531 @ @<Initialize the input routines@>=
13532 mp->scanner_status=normal;
13534 @ The following subroutine
13535 is called when an `\&{outer}' symbolic token has been scanned or
13536 when the end of a file has been reached. These two cases are distinguished
13537 by |cur_sym|, which is zero at the end of a file.
13539 @c boolean mp_check_outer_validity (MP mp) {
13540 pointer p; /* points to inserted token list */
13541 if ( mp->scanner_status==normal ) {
13543 } else if ( mp->scanner_status==tex_flushing ) {
13544 @<Check if the file has ended while flushing \TeX\ material and set the
13545 result value for |check_outer_validity|@>;
13547 mp->deletions_allowed=false;
13548 @<Back up an outer symbolic token so that it can be reread@>;
13549 if ( mp->scanner_status>skipping ) {
13550 @<Tell the user what has run away and try to recover@>;
13552 print_err("Incomplete if; all text was ignored after line ");
13553 @.Incomplete if...@>
13554 mp_print_int(mp, mp->warning_info);
13555 help3("A forbidden `outer' token occurred in skipped text.",
13556 "This kind of error happens when you say `if...' and forget",
13557 "the matching `fi'. I've inserted a `fi'; this might work.");
13558 if ( mp->cur_sym==0 )
13559 mp->help_line[2]="The file ended while I was skipping conditional text.";
13560 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13562 mp->deletions_allowed=true;
13567 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13568 if ( mp->cur_sym!=0 ) {
13571 mp->deletions_allowed=false;
13572 print_err("TeX mode didn't end; all text was ignored after line ");
13573 mp_print_int(mp, mp->warning_info);
13574 help2("The file ended while I was looking for the `etex' to",
13575 "finish this TeX material. I've inserted `etex' now.");
13576 mp->cur_sym = frozen_etex;
13578 mp->deletions_allowed=true;
13582 @ @<Back up an outer symbolic token so that it can be reread@>=
13583 if ( mp->cur_sym!=0 ) {
13584 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13585 back_list(p); /* prepare to read the symbolic token again */
13588 @ @<Tell the user what has run away...@>=
13590 mp_runaway(mp); /* print the definition-so-far */
13591 if ( mp->cur_sym==0 ) {
13592 print_err("File ended");
13593 @.File ended while scanning...@>
13595 print_err("Forbidden token found");
13596 @.Forbidden token found...@>
13598 mp_print(mp, " while scanning ");
13599 help4("I suspect you have forgotten an `enddef',",
13600 "causing me to read past where you wanted me to stop.",
13601 "I'll try to recover; but if the error is serious,",
13602 "you'd better type `E' or `X' now and fix your file.");
13603 switch (mp->scanner_status) {
13604 @<Complete the error message,
13605 and set |cur_sym| to a token that might help recover from the error@>
13606 } /* there are no other cases */
13610 @ As we consider various kinds of errors, it is also appropriate to
13611 change the first line of the help message just given; |help_line[3]|
13612 points to the string that might be changed.
13614 @<Complete the error message,...@>=
13616 mp_print(mp, "to the end of the statement");
13617 mp->help_line[3]="A previous error seems to have propagated,";
13618 mp->cur_sym=frozen_semicolon;
13621 mp_print(mp, "a text argument");
13622 mp->help_line[3]="It seems that a right delimiter was left out,";
13623 if ( mp->warning_info==0 ) {
13624 mp->cur_sym=frozen_end_group;
13626 mp->cur_sym=frozen_right_delimiter;
13627 equiv(frozen_right_delimiter)=mp->warning_info;
13632 mp_print(mp, "the definition of ");
13633 if ( mp->scanner_status==op_defining )
13634 mp_print_text(mp->warning_info);
13636 mp_print_variable_name(mp, mp->warning_info);
13637 mp->cur_sym=frozen_end_def;
13639 case loop_defining:
13640 mp_print(mp, "the text of a ");
13641 mp_print_text(mp->warning_info);
13642 mp_print(mp, " loop");
13643 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13644 mp->cur_sym=frozen_end_for;
13647 @ The |runaway| procedure displays the first part of the text that occurred
13648 when \MP\ began its special |scanner_status|, if that text has been saved.
13650 @<Declare the procedure called |runaway|@>=
13651 void mp_runaway (MP mp) {
13652 if ( mp->scanner_status>flushing ) {
13653 mp_print_nl(mp, "Runaway ");
13654 switch (mp->scanner_status) {
13655 case absorbing: mp_print(mp, "text?"); break;
13657 case op_defining: mp_print(mp,"definition?"); break;
13658 case loop_defining: mp_print(mp, "loop?"); break;
13659 } /* there are no other cases */
13661 mp_show_token_list(mp, mp_link(hold_head),null,mp->error_line-10,0);
13665 @ We need to mention a procedure that may be called by |get_next|.
13668 void mp_firm_up_the_line (MP mp);
13670 @ And now we're ready to take the plunge into |get_next| itself.
13671 Note that the behavior depends on the |scanner_status| because percent signs
13672 and double quotes need to be passed over when skipping TeX material.
13675 void mp_get_next (MP mp) {
13676 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13678 /*restart*/ /* go here to get the next input token */
13679 /*exit*/ /* go here when the next input token has been got */
13680 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13681 /*found*/ /* go here when the end of a symbolic token has been found */
13682 /*switch*/ /* go here to branch on the class of an input character */
13683 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13684 /* go here at crucial stages when scanning a number */
13685 int k; /* an index into |buffer| */
13686 ASCII_code c; /* the current character in the buffer */
13687 int class; /* its class number */
13688 integer n,f; /* registers for decimal-to-binary conversion */
13691 if ( file_state ) {
13692 @<Input from external file; |goto restart| if no input found,
13693 or |return| if a non-symbolic token is found@>;
13695 @<Input from token list; |goto restart| if end of list or
13696 if a parameter needs to be expanded,
13697 or |return| if a non-symbolic token is found@>;
13700 @<Finish getting the symbolic token in |cur_sym|;
13701 |goto restart| if it is illegal@>;
13704 @ When a symbolic token is declared to be `\&{outer}', its command code
13705 is increased by |outer_tag|.
13708 @<Finish getting the symbolic token in |cur_sym|...@>=
13709 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13710 if ( mp->cur_cmd>=outer_tag ) {
13711 if ( mp_check_outer_validity(mp) )
13712 mp->cur_cmd=mp->cur_cmd-outer_tag;
13717 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13718 to have a special test for end-of-line.
13721 @<Input from external file;...@>=
13724 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13726 case digit_class: goto START_NUMERIC_TOKEN; break;
13728 class=mp->char_class[mp->buffer[loc]];
13729 if ( class>period_class ) {
13731 } else if ( class<period_class ) { /* |class=digit_class| */
13732 n=0; goto START_DECIMAL_TOKEN;
13736 case space_class: goto SWITCH; break;
13737 case percent_class:
13738 if ( mp->scanner_status==tex_flushing ) {
13739 if ( loc<limit ) goto SWITCH;
13741 @<Move to next line of file, or |goto restart| if there is no next line@>;
13746 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13747 else @<Get a string token and |return|@>;
13749 case isolated_classes:
13750 k=loc-1; goto FOUND; break;
13751 case invalid_class:
13752 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13753 else @<Decry the invalid character and |goto restart|@>;
13755 default: break; /* letters, etc. */
13758 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13760 START_NUMERIC_TOKEN:
13761 @<Get the integer part |n| of a numeric token;
13762 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13763 START_DECIMAL_TOKEN:
13764 @<Get the fraction part |f| of a numeric token@>;
13766 @<Pack the numeric and fraction parts of a numeric token
13769 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13772 @ We go to |restart| instead of to |SWITCH|, because we might enter
13773 |token_state| after the error has been dealt with
13774 (cf.\ |clear_for_error_prompt|).
13776 @<Decry the invalid...@>=
13778 print_err("Text line contains an invalid character");
13779 @.Text line contains...@>
13780 help2("A funny symbol that I can\'t read has just been input.",
13781 "Continue, and I'll forget that it ever happened.");
13782 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13786 @ @<Get a string token and |return|@>=
13788 if ( mp->buffer[loc]=='"' ) {
13789 mp->cur_mod=null_str;
13791 k=loc; mp->buffer[limit+1]=xord('"');
13794 } while (mp->buffer[loc]!='"');
13796 @<Decry the missing string delimiter and |goto restart|@>;
13799 mp->cur_mod=mp->buffer[k];
13803 append_char(mp->buffer[k]); incr(k);
13805 mp->cur_mod=mp_make_string(mp);
13808 incr(loc); mp->cur_cmd=string_token;
13812 @ We go to |restart| after this error message, not to |SWITCH|,
13813 because the |clear_for_error_prompt| routine might have reinstated
13814 |token_state| after |error| has finished.
13816 @<Decry the missing string delimiter and |goto restart|@>=
13818 loc=limit; /* the next character to be read on this line will be |"%"| */
13819 print_err("Incomplete string token has been flushed");
13820 @.Incomplete string token...@>
13821 help3("Strings should finish on the same line as they began.",
13822 "I've deleted the partial string; you might want to",
13823 "insert another by typing, e.g., `I\"new string\"'.");
13824 mp->deletions_allowed=false; mp_error(mp);
13825 mp->deletions_allowed=true;
13829 @ @<Get the integer part |n| of a numeric token...@>=
13831 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13832 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13835 if ( mp->buffer[loc]=='.' )
13836 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13839 goto FIN_NUMERIC_TOKEN;
13842 @ @<Get the fraction part |f| of a numeric token@>=
13845 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13846 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13849 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13850 f=mp_round_decimals(mp, k);
13855 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13857 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13858 } else if ( mp->scanner_status!=tex_flushing ) {
13859 print_err("Enormous number has been reduced");
13860 @.Enormous number...@>
13861 help2("I can\'t handle numbers bigger than 32767.99998;",
13862 "so I've changed your constant to that maximum amount.");
13863 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13864 mp->cur_mod=el_gordo;
13866 mp->cur_cmd=numeric_token; return
13868 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13870 mp->cur_mod=n*unity+f;
13871 if ( mp->cur_mod>=fraction_one ) {
13872 if ( (mp->internal[mp_warning_check]>0) &&
13873 (mp->scanner_status!=tex_flushing) ) {
13874 print_err("Number is too large (");
13875 mp_print_scaled(mp, mp->cur_mod);
13876 mp_print_char(mp, xord(')'));
13877 help3("It is at least 4096. Continue and I'll try to cope",
13878 "with that big value; but it might be dangerous.",
13879 "(Set warningcheck:=0 to suppress this message.)");
13885 @ Let's consider now what happens when |get_next| is looking at a token list.
13888 @<Input from token list;...@>=
13889 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13890 mp->cur_sym=info(loc); loc=mp_link(loc); /* move to next */
13891 if ( mp->cur_sym>=expr_base ) {
13892 if ( mp->cur_sym>=suffix_base ) {
13893 @<Insert a suffix or text parameter and |goto restart|@>;
13895 mp->cur_cmd=capsule_token;
13896 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13897 mp->cur_sym=0; return;
13900 } else if ( loc>null ) {
13901 @<Get a stored numeric or string or capsule token and |return|@>
13902 } else { /* we are done with this token list */
13903 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13906 @ @<Insert a suffix or text parameter...@>=
13908 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13909 /* |param_size=text_base-suffix_base| */
13910 mp_begin_token_list(mp,
13911 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13916 @ @<Get a stored numeric or string or capsule token...@>=
13918 if ( name_type(loc)==mp_token ) {
13919 mp->cur_mod=value(loc);
13920 if ( type(loc)==mp_known ) {
13921 mp->cur_cmd=numeric_token;
13923 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13926 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13928 loc=mp_link(loc); return;
13931 @ All of the easy branches of |get_next| have now been taken care of.
13932 There is one more branch.
13934 @<Move to next line of file, or |goto restart|...@>=
13935 if ( name>max_spec_src) {
13936 @<Read next line of file into |buffer|, or
13937 |goto restart| if the file has ended@>;
13939 if ( mp->input_ptr>0 ) {
13940 /* text was inserted during error recovery or by \&{scantokens} */
13941 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13943 if (mp->job_name == NULL && ( mp->selector<log_only || mp->selector>=write_file))
13944 mp_open_log_file(mp);
13945 if ( mp->interaction>mp_nonstop_mode ) {
13946 if ( limit==start ) /* previous line was empty */
13947 mp_print_nl(mp, "(Please type a command or say `end')");
13949 mp_print_ln(mp); mp->first=(size_t)start;
13950 prompt_input("*"); /* input on-line into |buffer| */
13952 limit=(halfword)mp->last; mp->buffer[limit]=xord('%');
13953 mp->first=(size_t)(limit+1); loc=start;
13955 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13957 /* nonstop mode, which is intended for overnight batch processing,
13958 never waits for on-line input */
13962 @ The global variable |force_eof| is normally |false|; it is set |true|
13963 by an \&{endinput} command.
13966 boolean force_eof; /* should the next \&{input} be aborted early? */
13968 @ We must decrement |loc| in order to leave the buffer in a valid state
13969 when an error condition causes us to |goto restart| without calling
13970 |end_file_reading|.
13972 @<Read next line of file into |buffer|, or
13973 |goto restart| if the file has ended@>=
13975 incr(line); mp->first=(size_t)start;
13976 if ( ! mp->force_eof ) {
13977 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13978 mp_firm_up_the_line(mp); /* this sets |limit| */
13980 mp->force_eof=true;
13982 if ( mp->force_eof ) {
13983 mp->force_eof=false;
13985 if ( mpx_reading ) {
13986 @<Complain that the \.{MPX} file ended unexpectly; then set
13987 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13989 mp_print_char(mp, xord(')')); decr(mp->open_parens);
13990 update_terminal; /* show user that file has been read */
13991 mp_end_file_reading(mp); /* resume previous level */
13992 if ( mp_check_outer_validity(mp) ) goto RESTART;
13996 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start; /* ready to read */
13999 @ We should never actually come to the end of an \.{MPX} file because such
14000 files should have an \&{mpxbreak} after the translation of the last
14001 \&{btex}$\,\ldots\,$\&{etex} block.
14003 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14005 mp->mpx_name[iindex]=mpx_finished;
14006 print_err("mpx file ended unexpectedly");
14007 help4("The file had too few picture expressions for btex...etex",
14008 "blocks. Such files are normally generated automatically",
14009 "but this one got messed up. You might want to insert a",
14010 "picture expression now.");
14011 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14012 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14015 @ Sometimes we want to make it look as though we have just read a blank line
14016 without really doing so.
14018 @<Put an empty line in the input buffer@>=
14019 mp->last=mp->first; limit=(halfword)mp->last;
14020 /* simulate |input_ln| and |firm_up_the_line| */
14021 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start
14023 @ If the user has set the |mp_pausing| parameter to some positive value,
14024 and if nonstop mode has not been selected, each line of input is displayed
14025 on the terminal and the transcript file, followed by `\.{=>}'.
14026 \MP\ waits for a response. If the response is null (i.e., if nothing is
14027 typed except perhaps a few blank spaces), the original
14028 line is accepted as it stands; otherwise the line typed is
14029 used instead of the line in the file.
14031 @c void mp_firm_up_the_line (MP mp) {
14032 size_t k; /* an index into |buffer| */
14033 limit=(halfword)mp->last;
14034 if ((!mp->noninteractive)
14035 && (mp->internal[mp_pausing]>0 )
14036 && (mp->interaction>mp_nonstop_mode )) {
14037 wake_up_terminal; mp_print_ln(mp);
14038 if ( start<limit ) {
14039 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14040 mp_print_str(mp, mp->buffer[k]);
14043 mp->first=(size_t)limit; prompt_input("=>"); /* wait for user response */
14045 if ( mp->last>mp->first ) {
14046 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14047 mp->buffer[k+start-mp->first]=mp->buffer[k];
14049 limit=(halfword)(start+mp->last-mp->first);
14054 @* \[30] Dealing with \TeX\ material.
14055 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14056 features need to be implemented at a low level in the scanning process
14057 so that \MP\ can stay in synch with the a preprocessor that treats
14058 blocks of \TeX\ material as they occur in the input file without trying
14059 to expand \MP\ macros. Thus we need a special version of |get_next|
14060 that does not expand macros and such but does handle \&{btex},
14061 \&{verbatimtex}, etc.
14063 The special version of |get_next| is called |get_t_next|. It works by flushing
14064 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14065 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14066 \&{btex}, and switching back when it sees \&{mpxbreak}.
14072 mp_primitive(mp, "btex",start_tex,btex_code);
14073 @:btex_}{\&{btex} primitive@>
14074 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14075 @:verbatimtex_}{\&{verbatimtex} primitive@>
14076 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14077 @:etex_}{\&{etex} primitive@>
14078 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14079 @:mpx_break_}{\&{mpxbreak} primitive@>
14081 @ @<Cases of |print_cmd...@>=
14082 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14083 else mp_print(mp, "verbatimtex"); break;
14084 case etex_marker: mp_print(mp, "etex"); break;
14085 case mpx_break: mp_print(mp, "mpxbreak"); break;
14087 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14088 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14091 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14094 void mp_start_mpx_input (MP mp);
14097 void mp_t_next (MP mp) {
14098 int old_status; /* saves the |scanner_status| */
14099 integer old_info; /* saves the |warning_info| */
14100 while ( mp->cur_cmd<=max_pre_command ) {
14101 if ( mp->cur_cmd==mpx_break ) {
14102 if ( ! file_state || (mp->mpx_name[iindex]==absent) ) {
14103 @<Complain about a misplaced \&{mpxbreak}@>;
14105 mp_end_mpx_reading(mp);
14108 } else if ( mp->cur_cmd==start_tex ) {
14109 if ( token_state || (name<=max_spec_src) ) {
14110 @<Complain that we are not reading a file@>;
14111 } else if ( mpx_reading ) {
14112 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14113 } else if ( (mp->cur_mod!=verbatim_code)&&
14114 (mp->mpx_name[iindex]!=mpx_finished) ) {
14115 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14120 @<Complain about a misplaced \&{etex}@>;
14122 goto COMMON_ENDING;
14124 @<Flush the \TeX\ material@>;
14130 @ We could be in the middle of an operation such as skipping false conditional
14131 text when \TeX\ material is encountered, so we must be careful to save the
14134 @<Flush the \TeX\ material@>=
14135 old_status=mp->scanner_status;
14136 old_info=mp->warning_info;
14137 mp->scanner_status=tex_flushing;
14138 mp->warning_info=line;
14139 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14140 mp->scanner_status=old_status;
14141 mp->warning_info=old_info
14143 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14144 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14145 help4("This file contains picture expressions for btex...etex",
14146 "blocks. Such files are normally generated automatically",
14147 "but this one seems to be messed up. I'll just keep going",
14148 "and hope for the best.");
14152 @ @<Complain that we are not reading a file@>=
14153 { print_err("You can only use `btex' or `verbatimtex' in a file");
14154 help3("I'll have to ignore this preprocessor command because it",
14155 "only works when there is a file to preprocess. You might",
14156 "want to delete everything up to the next `etex`.");
14160 @ @<Complain about a misplaced \&{mpxbreak}@>=
14161 { print_err("Misplaced mpxbreak");
14162 help2("I'll ignore this preprocessor command because it",
14163 "doesn't belong here");
14167 @ @<Complain about a misplaced \&{etex}@>=
14168 { print_err("Extra etex will be ignored");
14169 help1("There is no btex or verbatimtex for this to match");
14173 @* \[31] Scanning macro definitions.
14174 \MP\ has a variety of ways to tuck tokens away into token lists for later
14175 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14176 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14177 All such operations are handled by the routines in this part of the program.
14179 The modifier part of each command code is zero for the ``ending delimiters''
14180 like \&{enddef} and \&{endfor}.
14182 @d start_def 1 /* command modifier for \&{def} */
14183 @d var_def 2 /* command modifier for \&{vardef} */
14184 @d end_def 0 /* command modifier for \&{enddef} */
14185 @d start_forever 1 /* command modifier for \&{forever} */
14186 @d end_for 0 /* command modifier for \&{endfor} */
14189 mp_primitive(mp, "def",macro_def,start_def);
14190 @:def_}{\&{def} primitive@>
14191 mp_primitive(mp, "vardef",macro_def,var_def);
14192 @:var_def_}{\&{vardef} primitive@>
14193 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14194 @:primary_def_}{\&{primarydef} primitive@>
14195 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14196 @:secondary_def_}{\&{secondarydef} primitive@>
14197 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14198 @:tertiary_def_}{\&{tertiarydef} primitive@>
14199 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14200 @:end_def_}{\&{enddef} primitive@>
14202 mp_primitive(mp, "for",iteration,expr_base);
14203 @:for_}{\&{for} primitive@>
14204 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14205 @:for_suffixes_}{\&{forsuffixes} primitive@>
14206 mp_primitive(mp, "forever",iteration,start_forever);
14207 @:forever_}{\&{forever} primitive@>
14208 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14209 @:end_for_}{\&{endfor} primitive@>
14211 @ @<Cases of |print_cmd...@>=
14213 if ( m<=var_def ) {
14214 if ( m==start_def ) mp_print(mp, "def");
14215 else if ( m<start_def ) mp_print(mp, "enddef");
14216 else mp_print(mp, "vardef");
14217 } else if ( m==secondary_primary_macro ) {
14218 mp_print(mp, "primarydef");
14219 } else if ( m==tertiary_secondary_macro ) {
14220 mp_print(mp, "secondarydef");
14222 mp_print(mp, "tertiarydef");
14226 if ( m<=start_forever ) {
14227 if ( m==start_forever ) mp_print(mp, "forever");
14228 else mp_print(mp, "endfor");
14229 } else if ( m==expr_base ) {
14230 mp_print(mp, "for");
14232 mp_print(mp, "forsuffixes");
14236 @ Different macro-absorbing operations have different syntaxes, but they
14237 also have a lot in common. There is a list of special symbols that are to
14238 be replaced by parameter tokens; there is a special command code that
14239 ends the definition; the quotation conventions are identical. Therefore
14240 it makes sense to have most of the work done by a single subroutine. That
14241 subroutine is called |scan_toks|.
14243 The first parameter to |scan_toks| is the command code that will
14244 terminate scanning (either |macro_def| or |iteration|).
14246 The second parameter, |subst_list|, points to a (possibly empty) list
14247 of two-word nodes whose |info| and |value| fields specify symbol tokens
14248 before and after replacement. The list will be returned to free storage
14251 The third parameter is simply appended to the token list that is built.
14252 And the final parameter tells how many of the special operations
14253 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14254 When such parameters are present, they are called \.{(SUFFIX0)},
14255 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14257 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14258 subst_list, pointer tail_end, quarterword suffix_count) {
14259 pointer p; /* tail of the token list being built */
14260 pointer q; /* temporary for link management */
14261 integer balance; /* left delimiters minus right delimiters */
14262 p=hold_head; balance=1; mp_link(hold_head)=null;
14265 if ( mp->cur_sym>0 ) {
14266 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14267 if ( mp->cur_cmd==terminator ) {
14268 @<Adjust the balance; |break| if it's zero@>;
14269 } else if ( mp->cur_cmd==macro_special ) {
14270 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14273 mp_link(p)=mp_cur_tok(mp); p=mp_link(p);
14275 mp_link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14276 return mp_link(hold_head);
14279 @ @<Substitute for |cur_sym|...@>=
14282 while ( q!=null ) {
14283 if ( info(q)==mp->cur_sym ) {
14284 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14290 @ @<Adjust the balance; |break| if it's zero@>=
14291 if ( mp->cur_mod>0 ) {
14299 @ Four commands are intended to be used only within macro texts: \&{quote},
14300 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14301 code called |macro_special|.
14303 @d quote 0 /* |macro_special| modifier for \&{quote} */
14304 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14305 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14306 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14309 mp_primitive(mp, "quote",macro_special,quote);
14310 @:quote_}{\&{quote} primitive@>
14311 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14312 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14313 mp_primitive(mp, "@@",macro_special,macro_at);
14314 @:]]]\AT!_}{\.{\AT!} primitive@>
14315 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14316 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14318 @ @<Cases of |print_cmd...@>=
14319 case macro_special:
14321 case macro_prefix: mp_print(mp, "#@@"); break;
14322 case macro_at: mp_print_char(mp, xord('@@')); break;
14323 case macro_suffix: mp_print(mp, "@@#"); break;
14324 default: mp_print(mp, "quote"); break;
14328 @ @<Handle quoted...@>=
14330 if ( mp->cur_mod==quote ) { get_t_next; }
14331 else if ( mp->cur_mod<=suffix_count )
14332 mp->cur_sym=suffix_base-1+mp->cur_mod;
14335 @ Here is a routine that's used whenever a token will be redefined. If
14336 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14337 substituted; the latter is redefinable but essentially impossible to use,
14338 hence \MP's tables won't get fouled up.
14340 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14343 if ( (mp->cur_sym==0)||(mp->cur_sym>(integer)frozen_inaccessible) ) {
14344 print_err("Missing symbolic token inserted");
14345 @.Missing symbolic token...@>
14346 help3("Sorry: You can\'t redefine a number, string, or expr.",
14347 "I've inserted an inaccessible symbol so that your",
14348 "definition will be completed without mixing me up too badly.");
14349 if ( mp->cur_sym>0 )
14350 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14351 else if ( mp->cur_cmd==string_token )
14352 delete_str_ref(mp->cur_mod);
14353 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14357 @ Before we actually redefine a symbolic token, we need to clear away its
14358 former value, if it was a variable. The following stronger version of
14359 |get_symbol| does that.
14361 @c void mp_get_clear_symbol (MP mp) {
14362 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14365 @ Here's another little subroutine; it checks that an equals sign
14366 or assignment sign comes along at the proper place in a macro definition.
14368 @c void mp_check_equals (MP mp) {
14369 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14370 mp_missing_err(mp, "=");
14372 help5("The next thing in this `def' should have been `=',",
14373 "because I've already looked at the definition heading.",
14374 "But don't worry; I'll pretend that an equals sign",
14375 "was present. Everything from here to `enddef'",
14376 "will be the replacement text of this macro.");
14381 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14382 handled now that we have |scan_toks|. In this case there are
14383 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14384 |expr_base| and |expr_base+1|).
14386 @c void mp_make_op_def (MP mp) {
14387 command_code m; /* the type of definition */
14388 pointer p,q,r; /* for list manipulation */
14390 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14391 info(q)=mp->cur_sym; value(q)=expr_base;
14392 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14393 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14394 info(p)=mp->cur_sym; value(p)=expr_base+1; mp_link(p)=q;
14395 get_t_next; mp_check_equals(mp);
14396 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14397 r=mp_get_avail(mp); mp_link(q)=r; info(r)=general_macro;
14398 mp_link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14399 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14400 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14403 @ Parameters to macros are introduced by the keywords \&{expr},
14404 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14407 mp_primitive(mp, "expr",param_type,expr_base);
14408 @:expr_}{\&{expr} primitive@>
14409 mp_primitive(mp, "suffix",param_type,suffix_base);
14410 @:suffix_}{\&{suffix} primitive@>
14411 mp_primitive(mp, "text",param_type,text_base);
14412 @:text_}{\&{text} primitive@>
14413 mp_primitive(mp, "primary",param_type,primary_macro);
14414 @:primary_}{\&{primary} primitive@>
14415 mp_primitive(mp, "secondary",param_type,secondary_macro);
14416 @:secondary_}{\&{secondary} primitive@>
14417 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14418 @:tertiary_}{\&{tertiary} primitive@>
14420 @ @<Cases of |print_cmd...@>=
14422 if ( m>=expr_base ) {
14423 if ( m==expr_base ) mp_print(mp, "expr");
14424 else if ( m==suffix_base ) mp_print(mp, "suffix");
14425 else mp_print(mp, "text");
14426 } else if ( m<secondary_macro ) {
14427 mp_print(mp, "primary");
14428 } else if ( m==secondary_macro ) {
14429 mp_print(mp, "secondary");
14431 mp_print(mp, "tertiary");
14435 @ Let's turn next to the more complex processing associated with \&{def}
14436 and \&{vardef}. When the following procedure is called, |cur_mod|
14437 should be either |start_def| or |var_def|.
14439 @c @<Declare the procedure called |check_delimiter|@>
14440 @<Declare the function called |scan_declared_variable|@>
14441 void mp_scan_def (MP mp) {
14442 int m; /* the type of definition */
14443 int n; /* the number of special suffix parameters */
14444 int k; /* the total number of parameters */
14445 int c; /* the kind of macro we're defining */
14446 pointer r; /* parameter-substitution list */
14447 pointer q; /* tail of the macro token list */
14448 pointer p; /* temporary storage */
14449 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14450 pointer l_delim,r_delim; /* matching delimiters */
14451 m=mp->cur_mod; c=general_macro; mp_link(hold_head)=null;
14452 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14453 @<Scan the token or variable to be defined;
14454 set |n|, |scanner_status|, and |warning_info|@>;
14456 if ( mp->cur_cmd==left_delimiter ) {
14457 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14459 if ( mp->cur_cmd==param_type ) {
14460 @<Absorb undelimited parameters, putting them into list |r|@>;
14462 mp_check_equals(mp);
14463 p=mp_get_avail(mp); info(p)=c; mp_link(q)=p;
14464 @<Attach the replacement text to the tail of node |p|@>;
14465 mp->scanner_status=normal; mp_get_x_next(mp);
14468 @ We don't put `|frozen_end_group|' into the replacement text of
14469 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14471 @<Attach the replacement text to the tail of node |p|@>=
14472 if ( m==start_def ) {
14473 mp_link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14475 q=mp_get_avail(mp); info(q)=mp->bg_loc; mp_link(p)=q;
14476 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14477 mp_link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14479 if ( mp->warning_info==bad_vardef )
14480 mp_flush_token_list(mp, value(bad_vardef))
14484 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14486 @ @<Scan the token or variable to be defined;...@>=
14487 if ( m==start_def ) {
14488 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14489 mp->scanner_status=op_defining; n=0;
14490 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14492 p=mp_scan_declared_variable(mp);
14493 mp_flush_variable(mp, equiv(info(p)),mp_link(p),true);
14494 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14495 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14496 mp->scanner_status=var_defining; n=2;
14497 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14500 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14501 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14503 @ @<Change to `\.{a bad variable}'@>=
14505 print_err("This variable already starts with a macro");
14506 @.This variable already...@>
14507 help2("After `vardef a' you can\'t say `vardef a.b'.",
14508 "So I'll have to discard this definition.");
14509 mp_error(mp); mp->warning_info=bad_vardef;
14512 @ @<Initialize table entries...@>=
14513 name_type(bad_vardef)=mp_root; mp_link(bad_vardef)=frozen_bad_vardef;
14514 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14516 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14518 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14519 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14522 print_err("Missing parameter type; `expr' will be assumed");
14523 @.Missing parameter type@>
14524 help1("You should've had `expr' or `suffix' or `text' here.");
14525 mp_back_error(mp); base=expr_base;
14527 @<Absorb parameter tokens for type |base|@>;
14528 mp_check_delimiter(mp, l_delim,r_delim);
14530 } while (mp->cur_cmd==left_delimiter)
14532 @ @<Absorb parameter tokens for type |base|@>=
14534 mp_link(q)=mp_get_avail(mp); q=mp_link(q); info(q)=base+k;
14535 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14536 value(p)=base+k; info(p)=mp->cur_sym;
14537 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14538 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14539 incr(k); mp_link(p)=r; r=p; get_t_next;
14540 } while (mp->cur_cmd==comma)
14542 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14544 p=mp_get_node(mp, token_node_size);
14545 if ( mp->cur_mod<expr_base ) {
14546 c=mp->cur_mod; value(p)=expr_base+k;
14548 value(p)=mp->cur_mod+k;
14549 if ( mp->cur_mod==expr_base ) c=expr_macro;
14550 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14553 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14554 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; mp_link(p)=r; r=p; get_t_next;
14555 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14556 c=of_macro; p=mp_get_node(mp, token_node_size);
14557 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14558 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14559 mp_link(p)=r; r=p; get_t_next;
14563 @* \[32] Expanding the next token.
14564 Only a few command codes |<min_command| can possibly be returned by
14565 |get_t_next|; in increasing order, they are
14566 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14567 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14569 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14570 like |get_t_next| except that it keeps getting more tokens until
14571 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14572 macros and removes conditionals or iterations or input instructions that
14575 It follows that |get_x_next| might invoke itself recursively. In fact,
14576 there is massive recursion, since macro expansion can involve the
14577 scanning of arbitrarily complex expressions, which in turn involve
14578 macro expansion and conditionals, etc.
14581 Therefore it's necessary to declare a whole bunch of |forward|
14582 procedures at this point, and to insert some other procedures
14583 that will be invoked by |get_x_next|.
14586 void mp_scan_primary (MP mp);
14587 void mp_scan_secondary (MP mp);
14588 void mp_scan_tertiary (MP mp);
14589 void mp_scan_expression (MP mp);
14590 void mp_scan_suffix (MP mp);
14591 @<Declare the procedure called |macro_call|@>
14592 void mp_get_boolean (MP mp);
14593 void mp_pass_text (MP mp);
14594 void mp_conditional (MP mp);
14595 void mp_start_input (MP mp);
14596 void mp_begin_iteration (MP mp);
14597 void mp_resume_iteration (MP mp);
14598 void mp_stop_iteration (MP mp);
14600 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14601 when it has to do exotic expansion commands.
14603 @c void mp_expand (MP mp) {
14604 pointer p; /* for list manipulation */
14605 size_t k; /* something that we hope is |<=buf_size| */
14606 pool_pointer j; /* index into |str_pool| */
14607 if ( mp->internal[mp_tracing_commands]>unity )
14608 if ( mp->cur_cmd!=defined_macro )
14610 switch (mp->cur_cmd) {
14612 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14615 @<Terminate the current conditional and skip to \&{fi}@>;
14618 @<Initiate or terminate input from a file@>;
14621 if ( mp->cur_mod==end_for ) {
14622 @<Scold the user for having an extra \&{endfor}@>;
14624 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14631 @<Exit a loop if the proper time has come@>;
14636 @<Expand the token after the next token@>;
14639 @<Put a string into the input buffer@>;
14641 case defined_macro:
14642 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14644 }; /* there are no other cases */
14647 @ @<Scold the user...@>=
14649 print_err("Extra `endfor'");
14651 help2("I'm not currently working on a for loop,",
14652 "so I had better not try to end anything.");
14656 @ The processing of \&{input} involves the |start_input| subroutine,
14657 which will be declared later; the processing of \&{endinput} is trivial.
14660 mp_primitive(mp, "input",input,0);
14661 @:input_}{\&{input} primitive@>
14662 mp_primitive(mp, "endinput",input,1);
14663 @:end_input_}{\&{endinput} primitive@>
14665 @ @<Cases of |print_cmd_mod|...@>=
14667 if ( m==0 ) mp_print(mp, "input");
14668 else mp_print(mp, "endinput");
14671 @ @<Initiate or terminate input...@>=
14672 if ( mp->cur_mod>0 ) mp->force_eof=true;
14673 else mp_start_input(mp)
14675 @ We'll discuss the complicated parts of loop operations later. For now
14676 it suffices to know that there's a global variable called |loop_ptr|
14677 that will be |null| if no loop is in progress.
14680 { while ( token_state &&(loc==null) )
14681 mp_end_token_list(mp); /* conserve stack space */
14682 if ( mp->loop_ptr==null ) {
14683 print_err("Lost loop");
14685 help2("I'm confused; after exiting from a loop, I still seem",
14686 "to want to repeat it. I'll try to forget the problem.");
14689 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14693 @ @<Exit a loop if the proper time has come@>=
14694 { mp_get_boolean(mp);
14695 if ( mp->internal[mp_tracing_commands]>unity )
14696 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14697 if ( mp->cur_exp==true_code ) {
14698 if ( mp->loop_ptr==null ) {
14699 print_err("No loop is in progress");
14700 @.No loop is in progress@>
14701 help1("Why say `exitif' when there's nothing to exit from?");
14702 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14704 @<Exit prematurely from an iteration@>;
14706 } else if ( mp->cur_cmd!=semicolon ) {
14707 mp_missing_err(mp, ";");
14709 help2("After `exitif <boolean exp>' I expect to see a semicolon.",
14710 "I shall pretend that one was there."); mp_back_error(mp);
14714 @ Here we use the fact that |forever_text| is the only |token_type| that
14715 is less than |loop_text|.
14717 @<Exit prematurely...@>=
14720 if ( file_state ) {
14721 mp_end_file_reading(mp);
14723 if ( token_type<=loop_text ) p=start;
14724 mp_end_token_list(mp);
14727 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14729 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14732 @ @<Expand the token after the next token@>=
14734 p=mp_cur_tok(mp); get_t_next;
14735 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14736 else mp_back_input(mp);
14740 @ @<Put a string into the input buffer@>=
14741 { mp_get_x_next(mp); mp_scan_primary(mp);
14742 if ( mp->cur_type!=mp_string_type ) {
14743 mp_disp_err(mp, null,"Not a string");
14745 help2("I'm going to flush this expression, since",
14746 "scantokens should be followed by a known string.");
14747 mp_put_get_flush_error(mp, 0);
14750 if ( length(mp->cur_exp)>0 )
14751 @<Pretend we're reading a new one-line file@>;
14755 @ @<Pretend we're reading a new one-line file@>=
14756 { mp_begin_file_reading(mp); name=is_scantok;
14757 k=mp->first+length(mp->cur_exp);
14758 if ( k>=mp->max_buf_stack ) {
14759 while ( k>=mp->buf_size ) {
14760 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size/4)));
14762 mp->max_buf_stack=k+1;
14764 j=mp->str_start[mp->cur_exp]; limit=(halfword)k;
14765 while ( mp->first<(size_t)limit ) {
14766 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14768 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start;
14769 mp_flush_cur_exp(mp, 0);
14772 @ Here finally is |get_x_next|.
14774 The expression scanning routines to be considered later
14775 communicate via the global quantities |cur_type| and |cur_exp|;
14776 we must be very careful to save and restore these quantities while
14777 macros are being expanded.
14781 void mp_get_x_next (MP mp);
14783 @ @c void mp_get_x_next (MP mp) {
14784 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14786 if ( mp->cur_cmd<min_command ) {
14787 save_exp=mp_stash_cur_exp(mp);
14789 if ( mp->cur_cmd==defined_macro )
14790 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14794 } while (mp->cur_cmd<min_command);
14795 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14799 @ Now let's consider the |macro_call| procedure, which is used to start up
14800 all user-defined macros. Since the arguments to a macro might be expressions,
14801 |macro_call| is recursive.
14804 The first parameter to |macro_call| points to the reference count of the
14805 token list that defines the macro. The second parameter contains any
14806 arguments that have already been parsed (see below). The third parameter
14807 points to the symbolic token that names the macro. If the third parameter
14808 is |null|, the macro was defined by \&{vardef}, so its name can be
14809 reconstructed from the prefix and ``at'' arguments found within the
14812 What is this second parameter? It's simply a linked list of one-word items,
14813 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14814 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14815 the first scanned argument, and |mp_link(arg_list)| points to the list of
14816 further arguments (if any).
14818 Arguments of type \&{expr} are so-called capsules, which we will
14819 discuss later when we concentrate on expressions; they can be
14820 recognized easily because their |link| field is |void|. Arguments of type
14821 \&{suffix} and \&{text} are token lists without reference counts.
14823 @ After argument scanning is complete, the arguments are moved to the
14824 |param_stack|. (They can't be put on that stack any sooner, because
14825 the stack is growing and shrinking in unpredictable ways as more arguments
14826 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14827 the replacement text of the macro is placed at the top of the \MP's
14828 input stack, so that |get_t_next| will proceed to read it next.
14830 @<Declare the procedure called |macro_call|@>=
14831 @<Declare the procedure called |print_macro_name|@>
14832 @<Declare the procedure called |print_arg|@>
14833 @<Declare the procedure called |scan_text_arg|@>
14834 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14835 pointer macro_name) ;
14838 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14839 pointer macro_name) {
14840 /* invokes a user-defined control sequence */
14841 pointer r; /* current node in the macro's token list */
14842 pointer p,q; /* for list manipulation */
14843 integer n; /* the number of arguments */
14844 pointer tail = 0; /* tail of the argument list */
14845 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14846 r=mp_link(def_ref); add_mac_ref(def_ref);
14847 if ( arg_list==null ) {
14850 @<Determine the number |n| of arguments already supplied,
14851 and set |tail| to the tail of |arg_list|@>;
14853 if ( mp->internal[mp_tracing_macros]>0 ) {
14854 @<Show the text of the macro being expanded, and the existing arguments@>;
14856 @<Scan the remaining arguments, if any; set |r| to the first token
14857 of the replacement text@>;
14858 @<Feed the arguments and replacement text to the scanner@>;
14861 @ @<Show the text of the macro...@>=
14862 mp_begin_diagnostic(mp); mp_print_ln(mp);
14863 mp_print_macro_name(mp, arg_list,macro_name);
14864 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14865 mp_show_macro(mp, def_ref,null,100000);
14866 if ( arg_list!=null ) {
14870 mp_print_arg(mp, q,n,0);
14871 incr(n); p=mp_link(p);
14874 mp_end_diagnostic(mp, false)
14877 @ @<Declare the procedure called |print_macro_name|@>=
14878 void mp_print_macro_name (MP mp,pointer a, pointer n);
14881 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14882 pointer p,q; /* they traverse the first part of |a| */
14888 mp_print_text(info(info(mp_link(a))));
14891 while ( mp_link(q)!=null ) q=mp_link(q);
14892 mp_link(q)=info(mp_link(a));
14893 mp_show_token_list(mp, p,null,1000,0);
14899 @ @<Declare the procedure called |print_arg|@>=
14900 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14903 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14904 if ( mp_link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14905 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14906 else mp_print_nl(mp, "(TEXT");
14907 mp_print_int(mp, n); mp_print(mp, ")<-");
14908 if ( mp_link(q)==mp_void ) mp_print_exp(mp, q,1);
14909 else mp_show_token_list(mp, q,null,1000,0);
14912 @ @<Determine the number |n| of arguments already supplied...@>=
14914 n=1; tail=arg_list;
14915 while ( mp_link(tail)!=null ) {
14916 incr(n); tail=mp_link(tail);
14920 @ @<Scan the remaining arguments, if any; set |r|...@>=
14921 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14922 while ( info(r)>=expr_base ) {
14923 @<Scan the delimited argument represented by |info(r)|@>;
14926 if ( mp->cur_cmd==comma ) {
14927 print_err("Too many arguments to ");
14928 @.Too many arguments...@>
14929 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, xord(';'));
14930 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14932 mp_print(mp, "' has been inserted");
14933 help3("I'm going to assume that the comma I just read was a",
14934 "right delimiter, and then I'll begin expanding the macro.",
14935 "You might want to delete some tokens before continuing.");
14938 if ( info(r)!=general_macro ) {
14939 @<Scan undelimited argument(s)@>;
14943 @ At this point, the reader will find it advisable to review the explanation
14944 of token list format that was presented earlier, paying special attention to
14945 the conventions that apply only at the beginning of a macro's token list.
14947 On the other hand, the reader will have to take the expression-parsing
14948 aspects of the following program on faith; we will explain |cur_type|
14949 and |cur_exp| later. (Several things in this program depend on each other,
14950 and it's necessary to jump into the circle somewhere.)
14952 @<Scan the delimited argument represented by |info(r)|@>=
14953 if ( mp->cur_cmd!=comma ) {
14955 if ( mp->cur_cmd!=left_delimiter ) {
14956 print_err("Missing argument to ");
14957 @.Missing argument...@>
14958 mp_print_macro_name(mp, arg_list,macro_name);
14959 help3("That macro has more parameters than you thought.",
14960 "I'll continue by pretending that each missing argument",
14961 "is either zero or null.");
14962 if ( info(r)>=suffix_base ) {
14963 mp->cur_exp=null; mp->cur_type=mp_token_list;
14965 mp->cur_exp=0; mp->cur_type=mp_known;
14967 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14970 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14972 @<Scan the argument represented by |info(r)|@>;
14973 if ( mp->cur_cmd!=comma )
14974 @<Check that the proper right delimiter was present@>;
14976 @<Append the current expression to |arg_list|@>
14978 @ @<Check that the proper right delim...@>=
14979 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14980 if ( info(mp_link(r))>=expr_base ) {
14981 mp_missing_err(mp, ",");
14983 help3("I've finished reading a macro argument and am about to",
14984 "read another; the arguments weren't delimited correctly.",
14985 "You might want to delete some tokens before continuing.");
14986 mp_back_error(mp); mp->cur_cmd=comma;
14988 mp_missing_err(mp, str(text(r_delim)));
14990 help2("I've gotten to the end of the macro parameter list.",
14991 "You might want to delete some tokens before continuing.");
14996 @ A \&{suffix} or \&{text} parameter will have been scanned as
14997 a token list pointed to by |cur_exp|, in which case we will have
14998 |cur_type=token_list|.
15000 @<Append the current expression to |arg_list|@>=
15002 p=mp_get_avail(mp);
15003 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15004 else info(p)=mp_stash_cur_exp(mp);
15005 if ( mp->internal[mp_tracing_macros]>0 ) {
15006 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15007 mp_end_diagnostic(mp, false);
15009 if ( arg_list==null ) arg_list=p;
15010 else mp_link(tail)=p;
15014 @ @<Scan the argument represented by |info(r)|@>=
15015 if ( info(r)>=text_base ) {
15016 mp_scan_text_arg(mp, l_delim,r_delim);
15019 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15020 else mp_scan_expression(mp);
15023 @ The parameters to |scan_text_arg| are either a pair of delimiters
15024 or zero; the latter case is for undelimited text arguments, which
15025 end with the first semicolon or \&{endgroup} or \&{end} that is not
15026 contained in a group.
15028 @<Declare the procedure called |scan_text_arg|@>=
15029 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15032 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15033 integer balance; /* excess of |l_delim| over |r_delim| */
15034 pointer p; /* list tail */
15035 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15036 p=hold_head; balance=1; mp_link(hold_head)=null;
15039 if ( l_delim==0 ) {
15040 @<Adjust the balance for an undelimited argument; |break| if done@>;
15042 @<Adjust the balance for a delimited argument; |break| if done@>;
15044 mp_link(p)=mp_cur_tok(mp); p=mp_link(p);
15046 mp->cur_exp=mp_link(hold_head); mp->cur_type=mp_token_list;
15047 mp->scanner_status=normal;
15050 @ @<Adjust the balance for a delimited argument...@>=
15051 if ( mp->cur_cmd==right_delimiter ) {
15052 if ( mp->cur_mod==l_delim ) {
15054 if ( balance==0 ) break;
15056 } else if ( mp->cur_cmd==left_delimiter ) {
15057 if ( mp->cur_mod==r_delim ) incr(balance);
15060 @ @<Adjust the balance for an undelimited...@>=
15061 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15062 if ( balance==1 ) { break; }
15063 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15064 } else if ( mp->cur_cmd==begin_group ) {
15068 @ @<Scan undelimited argument(s)@>=
15070 if ( info(r)<text_macro ) {
15072 if ( info(r)!=suffix_macro ) {
15073 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15077 case primary_macro:mp_scan_primary(mp); break;
15078 case secondary_macro:mp_scan_secondary(mp); break;
15079 case tertiary_macro:mp_scan_tertiary(mp); break;
15080 case expr_macro:mp_scan_expression(mp); break;
15082 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15085 @<Scan a suffix with optional delimiters@>;
15087 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15088 } /* there are no other cases */
15090 @<Append the current expression to |arg_list|@>;
15093 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15095 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15096 if ( mp->internal[mp_tracing_macros]>0 ) {
15097 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15098 mp_end_diagnostic(mp, false);
15100 if ( arg_list==null ) arg_list=p; else mp_link(tail)=p;
15102 if ( mp->cur_cmd!=of_token ) {
15103 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15105 mp_print_macro_name(mp, arg_list,macro_name);
15106 help1("I've got the first argument; will look now for the other.");
15109 mp_get_x_next(mp); mp_scan_primary(mp);
15112 @ @<Scan a suffix with optional delimiters@>=
15114 if ( mp->cur_cmd!=left_delimiter ) {
15117 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15119 mp_scan_suffix(mp);
15120 if ( l_delim!=null ) {
15121 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15122 mp_missing_err(mp, str(text(r_delim)));
15124 help2("I've gotten to the end of the macro parameter list.",
15125 "You might want to delete some tokens before continuing.");
15132 @ Before we put a new token list on the input stack, it is wise to clean off
15133 all token lists that have recently been depleted. Then a user macro that ends
15134 with a call to itself will not require unbounded stack space.
15136 @<Feed the arguments and replacement text to the scanner@>=
15137 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15138 if ( mp->param_ptr+n>mp->max_param_stack ) {
15139 mp->max_param_stack=mp->param_ptr+n;
15140 if ( mp->max_param_stack>mp->param_size )
15141 mp_overflow(mp, "parameter stack size",mp->param_size);
15142 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15144 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15148 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=mp_link(p);
15150 mp_flush_list(mp, arg_list);
15153 @ It's sometimes necessary to put a single argument onto |param_stack|.
15154 The |stack_argument| subroutine does this.
15156 @c void mp_stack_argument (MP mp,pointer p) {
15157 if ( mp->param_ptr==mp->max_param_stack ) {
15158 incr(mp->max_param_stack);
15159 if ( mp->max_param_stack>mp->param_size )
15160 mp_overflow(mp, "parameter stack size",mp->param_size);
15161 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15163 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15166 @* \[33] Conditional processing.
15167 Let's consider now the way \&{if} commands are handled.
15169 Conditions can be inside conditions, and this nesting has a stack
15170 that is independent of other stacks.
15171 Four global variables represent the top of the condition stack:
15172 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15173 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15174 the largest code of a |fi_or_else| command that is syntactically legal;
15175 and |if_line| is the line number at which the current conditional began.
15177 If no conditions are currently in progress, the condition stack has the
15178 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15179 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15180 |link| fields of the first word contain |if_limit|, |cur_if|, and
15181 |cond_ptr| at the next level, and the second word contains the
15182 corresponding |if_line|.
15184 @d if_node_size 2 /* number of words in stack entry for conditionals */
15185 @d if_line_field(A) mp->mem[(A)+1].cint
15186 @d if_code 1 /* code for \&{if} being evaluated */
15187 @d fi_code 2 /* code for \&{fi} */
15188 @d else_code 3 /* code for \&{else} */
15189 @d else_if_code 4 /* code for \&{elseif} */
15192 pointer cond_ptr; /* top of the condition stack */
15193 integer if_limit; /* upper bound on |fi_or_else| codes */
15194 quarterword cur_if; /* type of conditional being worked on */
15195 integer if_line; /* line where that conditional began */
15198 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15201 mp_primitive(mp, "if",if_test,if_code);
15202 @:if_}{\&{if} primitive@>
15203 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15204 @:fi_}{\&{fi} primitive@>
15205 mp_primitive(mp, "else",fi_or_else,else_code);
15206 @:else_}{\&{else} primitive@>
15207 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15208 @:else_if_}{\&{elseif} primitive@>
15210 @ @<Cases of |print_cmd_mod|...@>=
15214 case if_code:mp_print(mp, "if"); break;
15215 case fi_code:mp_print(mp, "fi"); break;
15216 case else_code:mp_print(mp, "else"); break;
15217 default: mp_print(mp, "elseif"); break;
15221 @ Here is a procedure that ignores text until coming to an \&{elseif},
15222 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15223 nesting. After it has acted, |cur_mod| will indicate the token that
15226 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15227 makes the skipping process a bit simpler.
15230 void mp_pass_text (MP mp) {
15232 mp->scanner_status=skipping;
15233 mp->warning_info=mp_true_line(mp);
15236 if ( mp->cur_cmd<=fi_or_else ) {
15237 if ( mp->cur_cmd<fi_or_else ) {
15241 if ( mp->cur_mod==fi_code ) decr(l);
15244 @<Decrease the string reference count,
15245 if the current token is a string@>;
15248 mp->scanner_status=normal;
15251 @ @<Decrease the string reference count...@>=
15252 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15254 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15255 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15256 condition has been evaluated, a colon will be inserted.
15257 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15259 @<Push the condition stack@>=
15260 { p=mp_get_node(mp, if_node_size); mp_link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15261 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15262 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15263 mp->cur_if=if_code;
15266 @ @<Pop the condition stack@>=
15267 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15268 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=mp_link(p);
15269 mp_free_node(mp, p,if_node_size);
15272 @ Here's a procedure that changes the |if_limit| code corresponding to
15273 a given value of |cond_ptr|.
15275 @c void mp_change_if_limit (MP mp,quarterword l, pointer p) {
15277 if ( p==mp->cond_ptr ) {
15278 mp->if_limit=l; /* that's the easy case */
15282 if ( q==null ) mp_confusion(mp, "if");
15283 @:this can't happen if}{\quad if@>
15284 if ( mp_link(q)==p ) {
15292 @ The user is supposed to put colons into the proper parts of conditional
15293 statements. Therefore, \MP\ has to check for their presence.
15296 void mp_check_colon (MP mp) {
15297 if ( mp->cur_cmd!=colon ) {
15298 mp_missing_err(mp, ":");
15300 help2("There should've been a colon after the condition.",
15301 "I shall pretend that one was there.");
15306 @ A condition is started when the |get_x_next| procedure encounters
15307 an |if_test| command; in that case |get_x_next| calls |conditional|,
15308 which is a recursive procedure.
15311 @c void mp_conditional (MP mp) {
15312 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15313 int new_if_limit; /* future value of |if_limit| */
15314 pointer p; /* temporary register */
15315 @<Push the condition stack@>;
15316 save_cond_ptr=mp->cond_ptr;
15318 mp_get_boolean(mp); new_if_limit=else_if_code;
15319 if ( mp->internal[mp_tracing_commands]>unity ) {
15320 @<Display the boolean value of |cur_exp|@>;
15323 mp_check_colon(mp);
15324 if ( mp->cur_exp==true_code ) {
15325 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15326 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15328 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15330 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15331 if ( mp->cur_mod==fi_code ) {
15332 @<Pop the condition stack@>
15333 } else if ( mp->cur_mod==else_if_code ) {
15336 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15341 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15342 \&{else}: \\{bar} \&{fi}', the first \&{else}
15343 that we come to after learning that the \&{if} is false is not the
15344 \&{else} we're looking for. Hence the following curious logic is needed.
15346 @<Skip to \&{elseif}...@>=
15349 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15350 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15354 @ @<Display the boolean value...@>=
15355 { mp_begin_diagnostic(mp);
15356 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15357 else mp_print(mp, "{false}");
15358 mp_end_diagnostic(mp, false);
15361 @ The processing of conditionals is complete except for the following
15362 code, which is actually part of |get_x_next|. It comes into play when
15363 \&{elseif}, \&{else}, or \&{fi} is scanned.
15365 @<Terminate the current conditional and skip to \&{fi}@>=
15366 if ( mp->cur_mod>mp->if_limit ) {
15367 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15368 mp_missing_err(mp, ":");
15370 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15372 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15376 help1("I'm ignoring this; it doesn't match any if.");
15380 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15381 @<Pop the condition stack@>;
15384 @* \[34] Iterations.
15385 To bring our treatment of |get_x_next| to a close, we need to consider what
15386 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15388 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15389 that are currently active. If |loop_ptr=null|, no loops are in progress;
15390 otherwise |info(loop_ptr)| points to the iterative text of the current
15391 (innermost) loop, and |mp_link(loop_ptr)| points to the data for any other
15392 loops that enclose the current one.
15394 A loop-control node also has two other fields, called |loop_type| and
15395 |loop_list|, whose contents depend on the type of loop:
15397 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15398 points to a list of one-word nodes whose |info| fields point to the
15399 remaining argument values of a suffix list and expression list.
15401 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15404 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15405 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15406 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15409 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15410 header and |loop_list(loop_ptr)| points into the graphical object list for
15413 \yskip\noindent In the case of a progression node, the first word is not used
15414 because the link field of words in the dynamic memory area cannot be arbitrary.
15416 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15417 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15418 @d loop_list(A) mp_link(loop_list_loc((A))) /* the remaining list elements */
15419 @d loop_node_size 2 /* the number of words in a loop control node */
15420 @d progression_node_size 4 /* the number of words in a progression node */
15421 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15422 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15423 @d progression_flag (null+2)
15424 /* |loop_type| value when |loop_list| points to a progression node */
15427 pointer loop_ptr; /* top of the loop-control-node stack */
15432 @ If the expressions that define an arithmetic progression in
15433 a \&{for} loop don't have known numeric values, the |bad_for|
15434 subroutine screams at the user.
15436 @c void mp_bad_for (MP mp, const char * s) {
15437 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15438 @.Improper...replaced by 0@>
15439 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15440 help4("When you say `for x=a step b until c',",
15441 "the initial value `a' and the step size `b'",
15442 "and the final value `c' must have known numeric values.",
15443 "I'm zeroing this one. Proceed, with fingers crossed.");
15444 mp_put_get_flush_error(mp, 0);
15447 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15448 has just been scanned. (This code requires slight familiarity with
15449 expression-parsing routines that we have not yet discussed; but it seems
15450 to belong in the present part of the program, even though the original author
15451 didn't write it until later. The reader may wish to come back to it.)
15453 @c void mp_begin_iteration (MP mp) {
15454 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15455 halfword n; /* hash address of the current symbol */
15456 pointer s; /* the new loop-control node */
15457 pointer p; /* substitution list for |scan_toks| */
15458 pointer q; /* link manipulation register */
15459 pointer pp; /* a new progression node */
15460 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15461 if ( m==start_forever ){
15462 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15464 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15465 info(p)=mp->cur_sym; value(p)=m;
15467 if ( mp->cur_cmd==within_token ) {
15468 @<Set up a picture iteration@>;
15470 @<Check for the |"="| or |":="| in a loop header@>;
15471 @<Scan the values to be used in the loop@>;
15474 @<Check for the presence of a colon@>;
15475 @<Scan the loop text and put it on the loop control stack@>;
15476 mp_resume_iteration(mp);
15479 @ @<Check for the |"="| or |":="| in a loop header@>=
15480 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15481 mp_missing_err(mp, "=");
15483 help3("The next thing in this loop should have been `=' or `:='.",
15484 "But don't worry; I'll pretend that an equals sign",
15485 "was present, and I'll look for the values next.");
15489 @ @<Check for the presence of a colon@>=
15490 if ( mp->cur_cmd!=colon ) {
15491 mp_missing_err(mp, ":");
15493 help3("The next thing in this loop should have been a `:'.",
15494 "So I'll pretend that a colon was present;",
15495 "everything from here to `endfor' will be iterated.");
15499 @ We append a special |frozen_repeat_loop| token in place of the
15500 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15501 at the proper time to cause the loop to be repeated.
15503 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15504 he will be foiled by the |get_symbol| routine, which keeps frozen
15505 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15506 token, so it won't be lost accidentally.)
15508 @ @<Scan the loop text...@>=
15509 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15510 mp->scanner_status=loop_defining; mp->warning_info=n;
15511 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15512 mp_link(s)=mp->loop_ptr; mp->loop_ptr=s
15514 @ @<Initialize table...@>=
15515 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15516 text(frozen_repeat_loop)=intern(" ENDFOR");
15518 @ The loop text is inserted into \MP's scanning apparatus by the
15519 |resume_iteration| routine.
15521 @c void mp_resume_iteration (MP mp) {
15522 pointer p,q; /* link registers */
15523 p=loop_type(mp->loop_ptr);
15524 if ( p==progression_flag ) {
15525 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15526 mp->cur_exp=value(p);
15527 if ( @<The arithmetic progression has ended@> ) {
15528 mp_stop_iteration(mp);
15531 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15532 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15533 } else if ( p==null ) {
15534 p=loop_list(mp->loop_ptr);
15536 mp_stop_iteration(mp);
15539 loop_list(mp->loop_ptr)=mp_link(p); q=info(p); free_avail(p);
15540 } else if ( p==mp_void ) {
15541 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15543 @<Make |q| a capsule containing the next picture component from
15544 |loop_list(loop_ptr)| or |goto not_found|@>;
15546 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15547 mp_stack_argument(mp, q);
15548 if ( mp->internal[mp_tracing_commands]>unity ) {
15549 @<Trace the start of a loop@>;
15553 mp_stop_iteration(mp);
15556 @ @<The arithmetic progression has ended@>=
15557 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15558 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15560 @ @<Trace the start of a loop@>=
15562 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15564 if ( (q!=null)&&(mp_link(q)==mp_void) ) mp_print_exp(mp, q,1);
15565 else mp_show_token_list(mp, q,null,50,0);
15566 mp_print_char(mp, xord('}')); mp_end_diagnostic(mp, false);
15569 @ @<Make |q| a capsule containing the next picture component from...@>=
15570 { q=loop_list(mp->loop_ptr);
15571 if ( q==null ) goto NOT_FOUND;
15572 skip_component(q) goto NOT_FOUND;
15573 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15574 mp_init_bbox(mp, mp->cur_exp);
15575 mp->cur_type=mp_picture_type;
15576 loop_list(mp->loop_ptr)=q;
15577 q=mp_stash_cur_exp(mp);
15580 @ A level of loop control disappears when |resume_iteration| has decided
15581 not to resume, or when an \&{exitif} construction has removed the loop text
15582 from the input stack.
15584 @c void mp_stop_iteration (MP mp) {
15585 pointer p,q; /* the usual */
15586 p=loop_type(mp->loop_ptr);
15587 if ( p==progression_flag ) {
15588 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15589 } else if ( p==null ){
15590 q=loop_list(mp->loop_ptr);
15591 while ( q!=null ) {
15594 if ( mp_link(p)==mp_void ) { /* it's an \&{expr} parameter */
15595 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15597 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15600 p=q; q=mp_link(q); free_avail(p);
15602 } else if ( p>progression_flag ) {
15603 delete_edge_ref(p);
15605 p=mp->loop_ptr; mp->loop_ptr=mp_link(p); mp_flush_token_list(mp, info(p));
15606 mp_free_node(mp, p,loop_node_size);
15609 @ Now that we know all about loop control, we can finish up
15610 the missing portion of |begin_iteration| and we'll be done.
15612 The following code is performed after the `\.=' has been scanned in
15613 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15614 (if |m=suffix_base|).
15616 @<Scan the values to be used in the loop@>=
15617 loop_type(s)=null; q=loop_list_loc(s); mp_link(q)=null; /* |mp_link(q)=loop_list(s)| */
15620 if ( m!=expr_base ) {
15621 mp_scan_suffix(mp);
15623 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15625 mp_scan_expression(mp);
15626 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15627 @<Prepare for step-until construction and |break|@>;
15629 mp->cur_exp=mp_stash_cur_exp(mp);
15631 mp_link(q)=mp_get_avail(mp); q=mp_link(q);
15632 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15635 } while (mp->cur_cmd==comma)
15637 @ @<Prepare for step-until construction and |break|@>=
15639 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15640 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15641 mp_get_x_next(mp); mp_scan_expression(mp);
15642 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15643 step_size(pp)=mp->cur_exp;
15644 if ( mp->cur_cmd!=until_token ) {
15645 mp_missing_err(mp, "until");
15646 @.Missing `until'@>
15647 help2("I assume you meant to say `until' after `step'.",
15648 "So I'll look for the final value and colon next.");
15651 mp_get_x_next(mp); mp_scan_expression(mp);
15652 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15653 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15654 loop_type(s)=progression_flag;
15658 @ The last case is when we have just seen ``\&{within}'', and we need to
15659 parse a picture expression and prepare to iterate over it.
15661 @<Set up a picture iteration@>=
15662 { mp_get_x_next(mp);
15663 mp_scan_expression(mp);
15664 @<Make sure the current expression is a known picture@>;
15665 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15666 q=mp_link(dummy_loc(mp->cur_exp));
15668 if ( is_start_or_stop(q) )
15669 if ( mp_skip_1component(mp, q)==null ) q=mp_link(q);
15673 @ @<Make sure the current expression is a known picture@>=
15674 if ( mp->cur_type!=mp_picture_type ) {
15675 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15676 help1("When you say `for x in p', p must be a known picture.");
15677 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15678 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15681 @* \[35] File names.
15682 It's time now to fret about file names. Besides the fact that different
15683 operating systems treat files in different ways, we must cope with the
15684 fact that completely different naming conventions are used by different
15685 groups of people. The following programs show what is required for one
15686 particular operating system; similar routines for other systems are not
15687 difficult to devise.
15688 @^system dependencies@>
15690 \MP\ assumes that a file name has three parts: the name proper; its
15691 ``extension''; and a ``file area'' where it is found in an external file
15692 system. The extension of an input file is assumed to be
15693 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15694 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15695 metric files that describe characters in any fonts created by \MP; it is
15696 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15697 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15698 The file area can be arbitrary on input files, but files are usually
15699 output to the user's current area. If an input file cannot be
15700 found on the specified area, \MP\ will look for it on a special system
15701 area; this special area is intended for commonly used input files.
15703 Simple uses of \MP\ refer only to file names that have no explicit
15704 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15705 instead of `\.{input} \.{cmr10.new}'. Simple file
15706 names are best, because they make the \MP\ source files portable;
15707 whenever a file name consists entirely of letters and digits, it should be
15708 treated in the same way by all implementations of \MP. However, users
15709 need the ability to refer to other files in their environment, especially
15710 when responding to error messages concerning unopenable files; therefore
15711 we want to let them use the syntax that appears in their favorite
15714 @ \MP\ uses the same conventions that have proved to be satisfactory for
15715 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15716 @^system dependencies@>
15717 the system-independent parts of \MP\ are expressed in terms
15718 of three system-dependent
15719 procedures called |begin_name|, |more_name|, and |end_name|. In
15720 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15721 the system-independent driver program does the operations
15722 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;\,|more_name|(c_n);
15724 These three procedures communicate with each other via global variables.
15725 Afterwards the file name will appear in the string pool as three strings
15726 called |cur_name|\penalty10000\hskip-.05em,
15727 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15728 |""|), unless they were explicitly specified by the user.
15730 Actually the situation is slightly more complicated, because \MP\ needs
15731 to know when the file name ends. The |more_name| routine is a function
15732 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15733 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15734 returns |false|; or, it returns |true| and $c_n$ is the last character
15735 on the current input line. In other words,
15736 |more_name| is supposed to return |true| unless it is sure that the
15737 file name has been completely scanned; and |end_name| is supposed to be able
15738 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15739 whether $|more_name|(c_n)$ returned |true| or |false|.
15742 char * cur_name; /* name of file just scanned */
15743 char * cur_area; /* file area just scanned, or \.{""} */
15744 char * cur_ext; /* file extension just scanned, or \.{""} */
15746 @ It is easier to maintain reference counts if we assign initial values.
15749 mp->cur_name=xstrdup("");
15750 mp->cur_area=xstrdup("");
15751 mp->cur_ext=xstrdup("");
15753 @ @<Dealloc variables@>=
15754 xfree(mp->cur_area);
15755 xfree(mp->cur_name);
15756 xfree(mp->cur_ext);
15758 @ The file names we shall deal with for illustrative purposes have the
15759 following structure: If the name contains `\.>' or `\.:', the file area
15760 consists of all characters up to and including the final such character;
15761 otherwise the file area is null. If the remaining file name contains
15762 `\..', the file extension consists of all such characters from the first
15763 remaining `\..' to the end, otherwise the file extension is null.
15764 @^system dependencies@>
15766 We can scan such file names easily by using two global variables that keep track
15767 of the occurrences of area and extension delimiters. Note that these variables
15768 cannot be of type |pool_pointer| because a string pool compaction could occur
15769 while scanning a file name.
15772 integer area_delimiter;
15773 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15774 integer ext_delimiter; /* the relevant `\..', if any */
15776 @ Here now is the first of the system-dependent routines for file name scanning.
15777 @^system dependencies@>
15779 The file name length is limited to |file_name_size|. That is good, because
15780 in the current configuration we cannot call |mp_do_compaction| while a name
15781 is being scanned, |mp->area_delimiter| and |mp->ext_delimiter| are direct
15782 offsets into |mp->str_pool|. I am not in a great hurry to fix this, because
15783 calling |str_room()| just once is more efficient anyway. TODO.
15785 @<Declare subroutines for parsing file names@>=
15786 void mp_begin_name (MP mp) {
15787 xfree(mp->cur_name);
15788 xfree(mp->cur_area);
15789 xfree(mp->cur_ext);
15790 mp->area_delimiter=-1;
15791 mp->ext_delimiter=-1;
15792 str_room(file_name_size);
15795 @ And here's the second.
15796 @^system dependencies@>
15798 @<Declare subroutines for parsing file names@>=
15799 boolean mp_more_name (MP mp, ASCII_code c) {
15803 if ( (c=='>')||(c==':') ) {
15804 mp->area_delimiter=mp->pool_ptr;
15805 mp->ext_delimiter=-1;
15806 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15807 mp->ext_delimiter=mp->pool_ptr;
15809 append_char(c); /* contribute |c| to the current string */
15815 @^system dependencies@>
15817 @d copy_pool_segment(A,B,C) {
15818 A = xmalloc(C+1,sizeof(char));
15819 strncpy(A,(char *)(mp->str_pool+B),C);
15822 @<Declare subroutines for parsing file names@>=
15823 void mp_end_name (MP mp) {
15824 pool_pointer s; /* length of area, name, and extension */
15827 s = mp->str_start[mp->str_ptr];
15828 if ( mp->area_delimiter<0 ) {
15829 mp->cur_area=xstrdup("");
15831 len = (unsigned)(mp->area_delimiter-s);
15832 copy_pool_segment(mp->cur_area,s,len);
15835 if ( mp->ext_delimiter<0 ) {
15836 mp->cur_ext=xstrdup("");
15837 len = (unsigned)(mp->pool_ptr-s);
15839 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(size_t)(mp->pool_ptr-mp->ext_delimiter));
15840 len = (unsigned)(mp->ext_delimiter-s);
15842 copy_pool_segment(mp->cur_name,s,len);
15843 mp->pool_ptr=s; /* don't need this partial string */
15846 @ Conversely, here is a routine that takes three strings and prints a file
15847 name that might have produced them. (The routine is system dependent, because
15848 some operating systems put the file area last instead of first.)
15849 @^system dependencies@>
15851 @<Basic printing...@>=
15852 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15853 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15856 @ Another system-dependent routine is needed to convert three internal
15858 to the |name_of_file| value that is used to open files. The present code
15859 allows both lowercase and uppercase letters in the file name.
15860 @^system dependencies@>
15862 @d append_to_name(A) { c=xord((int)(A));
15863 if ( k<file_name_size ) {
15864 mp->name_of_file[k]=(char)xchr(c);
15869 @<Declare subroutines for parsing file names@>=
15870 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) {
15871 integer k; /* number of positions filled in |name_of_file| */
15872 ASCII_code c; /* character being packed */
15873 const char *j; /* a character index */
15877 for (j=a;*j!='\0';j++) { append_to_name(*j); }
15879 for (j=n;*j!='\0';j++) { append_to_name(*j); }
15881 for (j=e;*j!='\0';j++) { append_to_name(*j); }
15883 mp->name_of_file[k]=0;
15887 @ @<Internal library declarations@>=
15888 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) ;
15890 @ @<Option variables@>=
15891 char *mem_name; /* for commandline */
15893 @ @<Find constant sizes@>=
15894 mp->mem_name = xstrdup(opt->mem_name);
15895 if (mp->mem_name) {
15896 size_t l = strlen(mp->mem_name);
15898 char *test = strstr(mp->mem_name,".mem");
15899 if (test == mp->mem_name+l-4) {
15906 @ @<Dealloc variables@>=
15907 xfree(mp->mem_name);
15909 @ This part of the program becomes active when a ``virgin'' \MP\ is
15910 trying to get going, just after the preliminary initialization, or
15911 when the user is substituting another mem file by typing `\.\&' after
15912 the initial `\.{**}' prompt. The buffer contains the first line of
15913 input in |buffer[loc..(last-1)]|, where |loc<last| and |buffer[loc]<>""|.
15916 boolean mp_open_mem_name (MP mp) ;
15917 boolean mp_open_mem_file (MP mp) ;
15920 boolean mp_open_mem_name (MP mp) {
15921 if (mp->mem_name!=NULL) {
15922 size_t l = strlen(mp->mem_name);
15923 char *s = xstrdup (mp->mem_name);
15925 char *test = strstr(s,".mem");
15926 if (test == NULL || test != s+l-4) {
15927 s = xrealloc (s, l+5, 1);
15928 strcat (s, ".mem");
15931 s = xrealloc (s, l+5, 1);
15932 strcat (s, ".mem");
15934 mp->mem_file = (mp->open_file)(mp,s, "r", mp_filetype_memfile);
15936 if ( mp->mem_file ) return true;
15940 boolean mp_open_mem_file (MP mp) {
15941 if (mp->mem_file != NULL)
15943 if (mp_open_mem_name(mp))
15945 if (mp_xstrcmp(mp->mem_name, "plain")) {
15947 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15948 @.Sorry, I can't find...@>
15950 /* now pull out all the stops: try for the system \.{plain} file */
15951 xfree(mp->mem_name);
15952 mp->mem_name = xstrdup("plain");
15953 if (mp_open_mem_name(mp))
15957 wterm_ln("I can\'t find the PLAIN mem file!");
15958 @.I can't find PLAIN...@>
15963 @ Operating systems often make it possible to determine the exact name (and
15964 possible version number) of a file that has been opened. The following routine,
15965 which simply makes a \MP\ string from the value of |name_of_file|, should
15966 ideally be changed to deduce the full name of file~|f|, which is the file
15967 most recently opened, if it is possible to do this.
15968 @^system dependencies@>
15971 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15972 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15973 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15976 str_number mp_make_name_string (MP mp) {
15977 int k; /* index into |name_of_file| */
15978 str_room(mp->name_length);
15979 for (k=0;k<mp->name_length;k++) {
15980 append_char(xord((int)mp->name_of_file[k]));
15982 return mp_make_string(mp);
15985 @ Now let's consider the ``driver''
15986 routines by which \MP\ deals with file names
15987 in a system-independent manner. First comes a procedure that looks for a
15988 file name in the input by taking the information from the input buffer.
15989 (We can't use |get_next|, because the conversion to tokens would
15990 destroy necessary information.)
15992 This procedure doesn't allow semicolons or percent signs to be part of
15993 file names, because of other conventions of \MP.
15994 {\sl The {\logos METAFONT\/}book} doesn't
15995 use semicolons or percents immediately after file names, but some users
15996 no doubt will find it natural to do so; therefore system-dependent
15997 changes to allow such characters in file names should probably
15998 be made with reluctance, and only when an entire file name that
15999 includes special characters is ``quoted'' somehow.
16000 @^system dependencies@>
16002 @c void mp_scan_file_name (MP mp) {
16004 while ( mp->buffer[loc]==' ' ) incr(loc);
16006 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16007 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16013 @ Here is another version that takes its input from a string.
16015 @<Declare subroutines for parsing file names@>=
16016 void mp_str_scan_file (MP mp, str_number s) {
16017 pool_pointer p,q; /* current position and stopping point */
16019 p=mp->str_start[s]; q=str_stop(s);
16021 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16027 @ And one that reads from a |char*|.
16029 @<Declare subroutines for parsing file names@>=
16030 void mp_ptr_scan_file (MP mp, char *s) {
16031 char *p, *q; /* current position and stopping point */
16033 p=s; q=p+strlen(s);
16035 if ( ! mp_more_name(mp, xord((int)(*p)))) break;
16042 @ The global variable |job_name| contains the file name that was first
16043 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16044 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16047 boolean log_opened; /* has the transcript file been opened? */
16048 char *log_name; /* full name of the log file */
16050 @ @<Option variables@>=
16051 char *job_name; /* principal file name */
16053 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16054 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16055 except of course for a short time just after |job_name| has become nonzero.
16057 @<Allocate or ...@>=
16058 mp->job_name=mp_xstrdup(mp, opt->job_name);
16059 if (opt->noninteractive && opt->ini_version) {
16060 if (mp->job_name == NULL)
16061 mp->job_name=mp_xstrdup(mp,mp->mem_name);
16062 if (mp->job_name != NULL) {
16063 size_t l = strlen(mp->job_name);
16065 char *test = strstr(mp->job_name,".mem");
16066 if (test == mp->job_name+l-4)
16071 mp->log_opened=false;
16073 @ @<Dealloc variables@>=
16074 xfree(mp->job_name);
16076 @ Here is a routine that manufactures the output file names, assuming that
16077 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16080 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16083 void mp_pack_job_name (MP mp, const char *s) ;
16086 void mp_pack_job_name (MP mp, const char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16087 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16088 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16089 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16093 @ If some trouble arises when \MP\ tries to open a file, the following
16094 routine calls upon the user to supply another file name. Parameter~|s|
16095 is used in the error message to identify the type of file; parameter~|e|
16096 is the default extension if none is given. Upon exit from the routine,
16097 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16098 ready for another attempt at file opening.
16101 void mp_prompt_file_name (MP mp, const char * s, const char * e) ;
16103 @ @c void mp_prompt_file_name (MP mp, const char * s, const char * e) {
16104 size_t k; /* index into |buffer| */
16105 char * saved_cur_name;
16106 if ( mp->interaction==mp_scroll_mode )
16108 if (strcmp(s,"input file name")==0) {
16109 print_err("I can\'t find file `");
16110 @.I can't find file x@>
16112 print_err("I can\'t write on file `");
16113 @.I can't write on file x@>
16115 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16116 mp_print(mp, "'.");
16117 if (strcmp(e,"")==0)
16118 mp_show_context(mp);
16119 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16121 if (mp->noninteractive || mp->interaction<mp_scroll_mode )
16122 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16123 @.job aborted, file error...@>
16124 saved_cur_name = xstrdup(mp->cur_name);
16125 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16126 if (strcmp(mp->cur_ext,"")==0)
16127 mp->cur_ext=xstrdup(e);
16128 if (strlen(mp->cur_name)==0) {
16129 mp->cur_name=saved_cur_name;
16131 xfree(saved_cur_name);
16136 @ @<Scan file name in the buffer@>=
16138 mp_begin_name(mp); k=mp->first;
16139 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16141 if ( k==mp->last ) break;
16142 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16148 @ The |open_log_file| routine is used to open the transcript file and to help
16149 it catch up to what has previously been printed on the terminal.
16151 @c void mp_open_log_file (MP mp) {
16152 unsigned old_setting; /* previous |selector| setting */
16153 int k; /* index into |months| and |buffer| */
16154 int l; /* end of first input line */
16155 integer m; /* the current month */
16156 const char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16157 /* abbreviations of month names */
16158 old_setting=mp->selector;
16159 if ( mp->job_name==NULL ) {
16160 mp->job_name=xstrdup("mpout");
16162 mp_pack_job_name(mp,".log");
16163 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16164 @<Try to get a different log file name@>;
16166 mp->log_name=xstrdup(mp->name_of_file);
16167 mp->selector=log_only; mp->log_opened=true;
16168 @<Print the banner line, including the date and time@>;
16169 mp->input_stack[mp->input_ptr]=mp->cur_input;
16170 /* make sure bottom level is in memory */
16171 if (!mp->noninteractive) {
16172 mp_print_nl(mp, "**");
16174 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16175 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16176 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16178 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16181 @ @<Dealloc variables@>=
16182 xfree(mp->log_name);
16184 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16185 unable to print error messages or even to |show_context|.
16186 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16187 routine will not be invoked because |log_opened| will be false.
16189 The normal idea of |mp_batch_mode| is that nothing at all should be written
16190 on the terminal. However, in the unusual case that
16191 no log file could be opened, we make an exception and allow
16192 an explanatory message to be seen.
16194 Incidentally, the program always refers to the log file as a `\.{transcript
16195 file}', because some systems cannot use the extension `\.{.log}' for
16198 @<Try to get a different log file name@>=
16200 mp->selector=term_only;
16201 mp_prompt_file_name(mp, "transcript file name",".log");
16204 @ @<Print the banner...@>=
16207 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16208 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16209 mp_print_char(mp, xord(' '));
16210 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16211 for (k=3*m-3;k<3*m;k++) { wlog_chr((unsigned char)months[k]); }
16212 mp_print_char(mp, xord(' '));
16213 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16214 mp_print_char(mp, xord(' '));
16215 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16216 mp_print_dd(mp, m / 60); mp_print_char(mp, xord(':')); mp_print_dd(mp, m % 60);
16219 @ The |try_extension| function tries to open an input file determined by
16220 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16221 can't find the file in |cur_area| or the appropriate system area.
16223 @c boolean mp_try_extension (MP mp, const char *ext) {
16224 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16225 in_name=xstrdup(mp->cur_name);
16226 in_area=xstrdup(mp->cur_area);
16227 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16230 mp_pack_file_name(mp, mp->cur_name,NULL,ext);
16231 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16235 @ Let's turn now to the procedure that is used to initiate file reading
16236 when an `\.{input}' command is being processed.
16238 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16239 char *fname = NULL;
16240 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16242 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16243 if ( strlen(mp->cur_ext)==0 ) {
16244 if ( mp_try_extension(mp, ".mp") ) break;
16245 else if ( mp_try_extension(mp, "") ) break;
16246 else if ( mp_try_extension(mp, ".mf") ) break;
16247 /* |else do_nothing; | */
16248 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16251 mp_end_file_reading(mp); /* remove the level that didn't work */
16252 mp_prompt_file_name(mp, "input file name","");
16254 name=mp_a_make_name_string(mp, cur_file);
16255 fname = xstrdup(mp->name_of_file);
16256 if ( mp->job_name==NULL ) {
16257 mp->job_name=xstrdup(mp->cur_name);
16258 mp_open_log_file(mp);
16259 } /* |open_log_file| doesn't |show_context|, so |limit|
16260 and |loc| needn't be set to meaningful values yet */
16261 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16262 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, xord(' '));
16263 mp_print_char(mp, xord('(')); incr(mp->open_parens); mp_print(mp, fname);
16266 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16267 @<Read the first line of the new file@>;
16270 @ This code should be omitted if |a_make_name_string| returns something other
16271 than just a copy of its argument and the full file name is needed for opening
16272 \.{MPX} files or implementing the switch-to-editor option.
16273 @^system dependencies@>
16275 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16276 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16278 @ If the file is empty, it is considered to contain a single blank line,
16279 so there is no need to test the return value.
16281 @<Read the first line...@>=
16284 (void)mp_input_ln(mp, cur_file );
16285 mp_firm_up_the_line(mp);
16286 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start;
16289 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16290 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16291 if ( token_state ) {
16292 print_err("File names can't appear within macros");
16293 @.File names can't...@>
16294 help3("Sorry...I've converted what follows to tokens,",
16295 "possibly garbaging the name you gave.",
16296 "Please delete the tokens and insert the name again.");
16299 if ( file_state ) {
16300 mp_scan_file_name(mp);
16302 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16303 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16304 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16307 @ The following simple routine starts reading the \.{MPX} file associated
16308 with the current input file.
16310 @c void mp_start_mpx_input (MP mp) {
16311 char *origname = NULL; /* a copy of nameoffile */
16312 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16313 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16314 |goto not_found| if there is a problem@>;
16315 mp_begin_file_reading(mp);
16316 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16317 mp_end_file_reading(mp);
16320 name=mp_a_make_name_string(mp, cur_file);
16321 mp->mpx_name[iindex]=name; add_str_ref(name);
16322 @<Read the first line of the new file@>;
16326 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16330 @ This should ideally be changed to do whatever is necessary to create the
16331 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16332 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16333 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16334 completely different typesetting program if suitable postprocessor is
16335 available to perform the function of \.{DVItoMP}.)
16336 @^system dependencies@>
16338 @ @<Exported types@>=
16339 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16341 @ @<Option variables@>=
16342 mp_run_make_mpx_command run_make_mpx;
16344 @ @<Allocate or initialize ...@>=
16345 set_callback_option(run_make_mpx);
16347 @ @<Internal library declarations@>=
16348 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16350 @ The default does nothing.
16352 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16359 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16360 |goto not_found| if there is a problem@>=
16361 origname = mp_xstrdup(mp,mp->name_of_file);
16362 *(origname+strlen(origname)-1)=0; /* drop the x */
16363 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16366 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16367 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16368 mp_print_nl(mp, ">> ");
16369 mp_print(mp, origname);
16370 mp_print_nl(mp, ">> ");
16371 mp_print(mp, mp->name_of_file);
16372 mp_print_nl(mp, "! Unable to make mpx file");
16373 help4("The two files given above are one of your source files",
16374 "and an auxiliary file I need to read to find out what your",
16375 "btex..etex blocks mean. If you don't know why I had trouble,",
16376 "try running it manually through MPtoTeX, TeX, and DVItoMP");
16379 @ The last file-opening commands are for files accessed via the \&{readfrom}
16380 @:read_from_}{\&{readfrom} primitive@>
16381 operator and the \&{write} command. Such files are stored in separate arrays.
16382 @:write_}{\&{write} primitive@>
16384 @<Types in the outer block@>=
16385 typedef unsigned int readf_index; /* |0..max_read_files| */
16386 typedef unsigned int write_index; /* |0..max_write_files| */
16389 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16390 void ** rd_file; /* \&{readfrom} files */
16391 char ** rd_fname; /* corresponding file name or 0 if file not open */
16392 readf_index read_files; /* number of valid entries in the above arrays */
16393 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16394 void ** wr_file; /* \&{write} files */
16395 char ** wr_fname; /* corresponding file name or 0 if file not open */
16396 write_index write_files; /* number of valid entries in the above arrays */
16398 @ @<Allocate or initialize ...@>=
16399 mp->max_read_files=8;
16400 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16401 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16402 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16403 mp->max_write_files=8;
16404 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16405 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16406 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16409 @ This routine starts reading the file named by string~|s| without setting
16410 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16411 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16413 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16414 mp_ptr_scan_file(mp, s);
16416 mp_begin_file_reading(mp);
16417 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (int)(mp_filetype_text+n)) )
16419 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16420 (mp->close_file)(mp,mp->rd_file[n]);
16423 mp->rd_fname[n]=xstrdup(s);
16426 mp_end_file_reading(mp);
16430 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16433 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16435 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16436 mp_ptr_scan_file(mp, s);
16438 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (int)(mp_filetype_text+n)) )
16439 mp_prompt_file_name(mp, "file name for write output","");
16440 mp->wr_fname[n]=xstrdup(s);
16444 @* \[36] Introduction to the parsing routines.
16445 We come now to the central nervous system that sparks many of \MP's activities.
16446 By evaluating expressions, from their primary constituents to ever larger
16447 subexpressions, \MP\ builds the structures that ultimately define complete
16448 pictures or fonts of type.
16450 Four mutually recursive subroutines are involved in this process: We call them
16451 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16452 and |scan_expression|.}$$
16454 Each of them is parameterless and begins with the first token to be scanned
16455 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16456 the value of the primary or secondary or tertiary or expression that was
16457 found will appear in the global variables |cur_type| and |cur_exp|. The
16458 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16461 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16462 backup mechanisms have been added in order to provide reasonable error
16466 quarterword cur_type; /* the type of the expression just found */
16467 integer cur_exp; /* the value of the expression just found */
16472 @ Many different kinds of expressions are possible, so it is wise to have
16473 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16476 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16477 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16478 construction in which there was no expression before the \&{endgroup}.
16479 In this case |cur_exp| has some irrelevant value.
16482 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16486 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16488 a ring of equivalent booleans whose value has not yet been defined.
16491 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16492 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16493 includes this particular reference.
16496 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16498 a ring of equivalent strings whose value has not yet been defined.
16501 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16502 else points to any of the nodes in this pen. The pen may be polygonal or
16506 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16508 a ring of equivalent pens whose value has not yet been defined.
16511 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16512 a path; nobody else points to this particular path. The control points of
16513 the path will have been chosen.
16516 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16518 a ring of equivalent paths whose value has not yet been defined.
16521 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16522 There may be other pointers to this particular set of edges. The header node
16523 contains a reference count that includes this particular reference.
16526 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16528 a ring of equivalent pictures whose value has not yet been defined.
16531 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16532 capsule node. The |value| part of this capsule
16533 points to a transform node that contains six numeric values,
16534 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16537 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16538 capsule node. The |value| part of this capsule
16539 points to a color node that contains three numeric values,
16540 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16543 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16544 capsule node. The |value| part of this capsule
16545 points to a color node that contains four numeric values,
16546 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16549 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16550 node whose type is |mp_pair_type|. The |value| part of this capsule
16551 points to a pair node that contains two numeric values,
16552 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16555 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16558 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16559 is |dependent|. The |dep_list| field in this capsule points to the associated
16563 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16564 capsule node. The |dep_list| field in this capsule
16565 points to the associated dependency list.
16568 |cur_type=independent| means that |cur_exp| points to a capsule node
16569 whose type is |independent|. This somewhat unusual case can arise, for
16570 example, in the expression
16571 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16574 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16577 \smallskip\noindent
16578 The possible settings of |cur_type| have been listed here in increasing
16579 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16580 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16581 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16584 @ Capsules are two-word nodes that have a similar meaning
16585 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|,
16586 and their |type| field is one of the possibilities for |cur_type| listed above.
16587 Also |link<=void| in capsules that aren't part of a token list.
16589 The |value| field of a capsule is, in most cases, the value that
16590 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16591 However, when |cur_exp| would point to a capsule,
16592 no extra layer of indirection is present; the |value|
16593 field is what would have been called |value(cur_exp)| if it had not been
16594 encapsulated. Furthermore, if the type is |dependent| or
16595 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16596 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16597 always part of the general |dep_list| structure.
16599 The |get_x_next| routine is careful not to change the values of |cur_type|
16600 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16601 call a macro, which might parse an expression, which might execute lots of
16602 commands in a group; hence it's possible that |cur_type| might change
16603 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16604 |known| or |independent|, during the time |get_x_next| is called. The
16605 programs below are careful to stash sensitive intermediate results in
16606 capsules, so that \MP's generality doesn't cause trouble.
16608 Here's a procedure that illustrates these conventions. It takes
16609 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16610 and stashes them away in a
16611 capsule. It is not used when |cur_type=mp_token_list|.
16612 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16613 copy path lists or to update reference counts, etc.
16615 The special link |mp_void| is put on the capsule returned by
16616 |stash_cur_exp|, because this procedure is used to store macro parameters
16617 that must be easily distinguishable from token lists.
16619 @<Declare the stashing/unstashing routines@>=
16620 pointer mp_stash_cur_exp (MP mp) {
16621 pointer p; /* the capsule that will be returned */
16622 switch (mp->cur_type) {
16623 case unknown_types:
16624 case mp_transform_type:
16625 case mp_color_type:
16628 case mp_proto_dependent:
16629 case mp_independent:
16630 case mp_cmykcolor_type:
16634 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16635 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16638 mp->cur_type=mp_vacuous; mp_link(p)=mp_void;
16642 @ The inverse of |stash_cur_exp| is the following procedure, which
16643 deletes an unnecessary capsule and puts its contents into |cur_type|
16646 The program steps of \MP\ can be divided into two categories: those in
16647 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16648 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16649 information or not. It's important not to ignore them when they're alive,
16650 and it's important not to pay attention to them when they're dead.
16652 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16653 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16654 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16655 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16656 only when they are alive or dormant.
16658 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16659 are alive or dormant. The \\{unstash} procedure assumes that they are
16660 dead or dormant; it resuscitates them.
16662 @<Declare the stashing/unstashing...@>=
16663 void mp_unstash_cur_exp (MP mp,pointer p) ;
16666 void mp_unstash_cur_exp (MP mp,pointer p) {
16667 mp->cur_type=type(p);
16668 switch (mp->cur_type) {
16669 case unknown_types:
16670 case mp_transform_type:
16671 case mp_color_type:
16674 case mp_proto_dependent:
16675 case mp_independent:
16676 case mp_cmykcolor_type:
16680 mp->cur_exp=value(p);
16681 mp_free_node(mp, p,value_node_size);
16686 @ The following procedure prints the values of expressions in an
16687 abbreviated format. If its first parameter |p| is null, the value of
16688 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16689 containing the desired value. The second parameter controls the amount of
16690 output. If it is~0, dependency lists will be abbreviated to
16691 `\.{linearform}' unless they consist of a single term. If it is greater
16692 than~1, complicated structures (pens, pictures, and paths) will be displayed
16696 @<Declare subroutines for printing expressions@>=
16697 @<Declare the procedure called |print_dp|@>
16698 @<Declare the stashing/unstashing routines@>
16699 void mp_print_exp (MP mp,pointer p, quarterword verbosity) {
16700 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16701 quarterword t; /* the type of the expression */
16702 pointer q; /* a big node being displayed */
16703 integer v=0; /* the value of the expression */
16705 restore_cur_exp=false;
16707 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16710 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16711 @<Print an abbreviated value of |v| with format depending on |t|@>;
16712 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16715 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16717 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16718 case mp_boolean_type:
16719 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16721 case unknown_types: case mp_numeric_type:
16722 @<Display a variable that's been declared but not defined@>;
16724 case mp_string_type:
16725 mp_print_char(mp, xord('"')); mp_print_str(mp, v); mp_print_char(mp, xord('"'));
16727 case mp_pen_type: case mp_path_type: case mp_picture_type:
16728 @<Display a complex type@>;
16730 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16731 if ( v==null ) mp_print_type(mp, t);
16732 else @<Display a big node@>;
16734 case mp_known:mp_print_scaled(mp, v); break;
16735 case mp_dependent: case mp_proto_dependent:
16736 mp_print_dp(mp, t,v,verbosity);
16738 case mp_independent:mp_print_variable_name(mp, p); break;
16739 default: mp_confusion(mp, "exp"); break;
16740 @:this can't happen exp}{\quad exp@>
16743 @ @<Display a big node@>=
16745 mp_print_char(mp, xord('(')); q=v+mp->big_node_size[t];
16747 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16748 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16749 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16751 if ( v!=q ) mp_print_char(mp, xord(','));
16753 mp_print_char(mp, xord(')'));
16756 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16757 in the log file only, unless the user has given a positive value to
16760 @<Display a complex type@>=
16761 if ( verbosity<=1 ) {
16762 mp_print_type(mp, t);
16764 if ( mp->selector==term_and_log )
16765 if ( mp->internal[mp_tracing_online]<=0 ) {
16766 mp->selector=term_only;
16767 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16768 mp->selector=term_and_log;
16771 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16772 case mp_path_type:mp_print_path(mp, v,"",false); break;
16773 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16774 } /* there are no other cases */
16777 @ @<Declare the procedure called |print_dp|@>=
16778 void mp_print_dp (MP mp, quarterword t, pointer p,
16779 quarterword verbosity) {
16780 pointer q; /* the node following |p| */
16782 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16783 else mp_print(mp, "linearform");
16786 @ The displayed name of a variable in a ring will not be a capsule unless
16787 the ring consists entirely of capsules.
16789 @<Display a variable that's been declared but not defined@>=
16790 { mp_print_type(mp, t);
16792 { mp_print_char(mp, xord(' '));
16793 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16794 mp_print_variable_name(mp, v);
16798 @ When errors are detected during parsing, it is often helpful to
16799 display an expression just above the error message, using |exp_err|
16800 or |disp_err| instead of |print_err|.
16802 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16804 @<Declare subroutines for printing expressions@>=
16805 void mp_disp_err (MP mp,pointer p, const char *s) {
16806 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16807 mp_print_nl(mp, ">> ");
16809 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16811 mp_print_nl(mp, "! "); mp_print(mp, s);
16816 @ If |cur_type| and |cur_exp| contain relevant information that should
16817 be recycled, we will use the following procedure, which changes |cur_type|
16818 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16819 and |cur_exp| as either alive or dormant after this has been done,
16820 because |cur_exp| will not contain a pointer value.
16822 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16823 switch (mp->cur_type) {
16824 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16825 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16826 mp_recycle_value(mp, mp->cur_exp);
16827 mp_free_node(mp, mp->cur_exp,value_node_size);
16829 case mp_string_type:
16830 delete_str_ref(mp->cur_exp); break;
16831 case mp_pen_type: case mp_path_type:
16832 mp_toss_knot_list(mp, mp->cur_exp); break;
16833 case mp_picture_type:
16834 delete_edge_ref(mp->cur_exp); break;
16838 mp->cur_type=mp_known; mp->cur_exp=v;
16841 @ There's a much more general procedure that is capable of releasing
16842 the storage associated with any two-word value packet.
16844 @<Declare the recycling subroutines@>=
16845 void mp_recycle_value (MP mp,pointer p) ;
16847 @ @c void mp_recycle_value (MP mp,pointer p) {
16848 quarterword t; /* a type code */
16849 integer vv; /* another value */
16850 pointer q,r,s,pp; /* link manipulation registers */
16851 integer v=0; /* a value */
16853 if ( t<mp_dependent ) v=value(p);
16855 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16856 case mp_numeric_type:
16858 case unknown_types:
16859 mp_ring_delete(mp, p); break;
16860 case mp_string_type:
16861 delete_str_ref(v); break;
16862 case mp_path_type: case mp_pen_type:
16863 mp_toss_knot_list(mp, v); break;
16864 case mp_picture_type:
16865 delete_edge_ref(v); break;
16866 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16867 case mp_transform_type:
16868 @<Recycle a big node@>; break;
16869 case mp_dependent: case mp_proto_dependent:
16870 @<Recycle a dependency list@>; break;
16871 case mp_independent:
16872 @<Recycle an independent variable@>; break;
16873 case mp_token_list: case mp_structured:
16874 mp_confusion(mp, "recycle"); break;
16875 @:this can't happen recycle}{\quad recycle@>
16876 case mp_unsuffixed_macro: case mp_suffixed_macro:
16877 mp_delete_mac_ref(mp, value(p)); break;
16878 } /* there are no other cases */
16882 @ @<Recycle a big node@>=
16884 q=v+mp->big_node_size[t];
16886 q=q-2; mp_recycle_value(mp, q);
16888 mp_free_node(mp, v,mp->big_node_size[t]);
16891 @ @<Recycle a dependency list@>=
16894 while ( info(q)!=null ) q=mp_link(q);
16895 mp_link(prev_dep(p))=mp_link(q);
16896 prev_dep(mp_link(q))=prev_dep(p);
16897 mp_link(q)=null; mp_flush_node_list(mp, dep_list(p));
16900 @ When an independent variable disappears, it simply fades away, unless
16901 something depends on it. In the latter case, a dependent variable whose
16902 coefficient of dependence is maximal will take its place.
16903 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16904 as part of his Ph.D. thesis (Stanford University, December 1982).
16905 @^Zabala Salelles, Ignacio Andr\'es@>
16907 For example, suppose that variable $x$ is being recycled, and that the
16908 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16909 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16910 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16911 we will print `\.{\#\#\# -2x=-y+a}'.
16913 There's a slight complication, however: An independent variable $x$
16914 can occur both in dependency lists and in proto-dependency lists.
16915 This makes it necessary to be careful when deciding which coefficient
16918 Furthermore, this complication is not so slight when
16919 a proto-dependent variable is chosen to become independent. For example,
16920 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16921 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16922 large coefficient `50'.
16924 In order to deal with these complications without wasting too much time,
16925 we shall link together the occurrences of~$x$ among all the linear
16926 dependencies, maintaining separate lists for the dependent and
16927 proto-dependent cases.
16929 @<Recycle an independent variable@>=
16931 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16932 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16933 q=mp_link(dep_head);
16934 while ( q!=dep_head ) {
16935 s=value_loc(q); /* now |mp_link(s)=dep_list(q)| */
16938 if ( info(r)==null ) break;
16939 if ( info(r)!=p ) {
16942 t=type(q); mp_link(s)=mp_link(r); info(r)=q;
16943 if ( abs(value(r))>mp->max_c[t] ) {
16944 @<Record a new maximum coefficient of type |t|@>;
16946 mp_link(r)=mp->max_link[t]; mp->max_link[t]=r;
16952 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16953 @<Choose a dependent variable to take the place of the disappearing
16954 independent variable, and change all remaining dependencies
16959 @ The code for independency removal makes use of three two-word arrays.
16962 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16963 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16964 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16966 @ @<Record a new maximum coefficient...@>=
16968 if ( mp->max_c[t]>0 ) {
16969 mp_link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16971 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16974 @ @<Choose a dependent...@>=
16976 if ( (mp->max_c[mp_dependent] / 010000) >= mp->max_c[mp_proto_dependent] )
16979 t=mp_proto_dependent;
16980 @<Determine the dependency list |s| to substitute for the independent
16982 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16983 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16984 mp_link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16986 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16987 else { @<Substitute new proto-dependencies in place of |p|@>;}
16988 mp_flush_node_list(mp, s);
16989 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16993 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16994 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16995 whose dependency list we have removed node~|s|. We must reinsert
16996 node~|s| into the dependency list, with coefficient $-1.0$, and with
16997 |pp| as the new independent variable. Since |pp| will have a larger serial
16998 number than any other variable, we can put node |s| at the head of the
17001 @<Determine the dep...@>=
17002 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17003 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17004 r=dep_list(pp); mp_link(s)=r;
17005 while ( info(r)!=null ) r=mp_link(r);
17006 q=mp_link(r); mp_link(r)=null;
17007 prev_dep(q)=prev_dep(pp); mp_link(prev_dep(pp))=q;
17009 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17010 if ( mp->internal[mp_tracing_equations]>0 ) {
17011 @<Show the transformed dependency@>;
17014 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17015 by the dependency list~|s|.
17017 @<Show the transformed...@>=
17018 if ( mp_interesting(mp, p) ) {
17019 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17020 @:]]]\#\#\#_}{\.{\#\#\#}@>
17021 if ( v>0 ) mp_print_char(mp, xord('-'));
17022 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17023 else vv=mp->max_c[mp_proto_dependent];
17024 if ( vv!=unity ) mp_print_scaled(mp, vv);
17025 mp_print_variable_name(mp, p);
17026 while ( value(p) % s_scale>0 ) {
17027 mp_print(mp, "*4"); value(p)=value(p)-2;
17029 if ( t==mp_dependent ) mp_print_char(mp, xord('=')); else mp_print(mp, " = ");
17030 mp_print_dependency(mp, s,t);
17031 mp_end_diagnostic(mp, false);
17034 @ Finally, there are dependent and proto-dependent variables whose
17035 dependency lists must be brought up to date.
17037 @<Substitute new dependencies...@>=
17038 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17040 while ( r!=null ) {
17042 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17043 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17044 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17045 q=r; r=mp_link(r); mp_free_node(mp, q,dep_node_size);
17049 @ @<Substitute new proto...@>=
17050 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17052 while ( r!=null ) {
17054 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17055 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17056 mp->cur_type=mp_proto_dependent;
17057 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,
17058 mp_dependent,mp_proto_dependent);
17059 type(q)=mp_proto_dependent;
17060 value(r)=mp_round_fraction(mp, value(r));
17062 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17063 mp_make_scaled(mp, value(r),-v),s,
17064 mp_proto_dependent,mp_proto_dependent);
17065 if ( dep_list(q)==mp->dep_final )
17066 mp_make_known(mp, q,mp->dep_final);
17067 q=r; r=mp_link(r); mp_free_node(mp, q,dep_node_size);
17071 @ Here are some routines that provide handy combinations of actions
17072 that are often needed during error recovery. For example,
17073 `|flush_error|' flushes the current expression, replaces it by
17074 a given value, and calls |error|.
17076 Errors often are detected after an extra token has already been scanned.
17077 The `\\{put\_get}' routines put that token back before calling |error|;
17078 then they get it back again. (Or perhaps they get another token, if
17079 the user has changed things.)
17082 void mp_flush_error (MP mp,scaled v);
17083 void mp_put_get_error (MP mp);
17084 void mp_put_get_flush_error (MP mp,scaled v) ;
17087 void mp_flush_error (MP mp,scaled v) {
17088 mp_error(mp); mp_flush_cur_exp(mp, v);
17090 void mp_put_get_error (MP mp) {
17091 mp_back_error(mp); mp_get_x_next(mp);
17093 void mp_put_get_flush_error (MP mp,scaled v) {
17094 mp_put_get_error(mp);
17095 mp_flush_cur_exp(mp, v);
17098 @ A global variable |var_flag| is set to a special command code
17099 just before \MP\ calls |scan_expression|, if the expression should be
17100 treated as a variable when this command code immediately follows. For
17101 example, |var_flag| is set to |assignment| at the beginning of a
17102 statement, because we want to know the {\sl location\/} of a variable at
17103 the left of `\.{:=}', not the {\sl value\/} of that variable.
17105 The |scan_expression| subroutine calls |scan_tertiary|,
17106 which calls |scan_secondary|, which calls |scan_primary|, which sets
17107 |var_flag:=0|. In this way each of the scanning routines ``knows''
17108 when it has been called with a special |var_flag|, but |var_flag| is
17111 A variable preceding a command that equals |var_flag| is converted to a
17112 token list rather than a value. Furthermore, an `\.{=}' sign following an
17113 expression with |var_flag=assignment| is not considered to be a relation
17114 that produces boolean expressions.
17118 int var_flag; /* command that wants a variable */
17123 @* \[37] Parsing primary expressions.
17124 The first parsing routine, |scan_primary|, is also the most complicated one,
17125 since it involves so many different cases. But each case---with one
17126 exception---is fairly simple by itself.
17128 When |scan_primary| begins, the first token of the primary to be scanned
17129 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17130 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17131 earlier. If |cur_cmd| is not between |min_primary_command| and
17132 |max_primary_command|, inclusive, a syntax error will be signaled.
17134 @<Declare the basic parsing subroutines@>=
17135 void mp_scan_primary (MP mp) {
17136 pointer p,q,r; /* for list manipulation */
17137 quarterword c; /* a primitive operation code */
17138 int my_var_flag; /* initial value of |my_var_flag| */
17139 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17140 @<Other local variables for |scan_primary|@>;
17141 my_var_flag=mp->var_flag; mp->var_flag=0;
17144 @<Supply diagnostic information, if requested@>;
17145 switch (mp->cur_cmd) {
17146 case left_delimiter:
17147 @<Scan a delimited primary@>; break;
17149 @<Scan a grouped primary@>; break;
17151 @<Scan a string constant@>; break;
17152 case numeric_token:
17153 @<Scan a primary that starts with a numeric token@>; break;
17155 @<Scan a nullary operation@>; break;
17156 case unary: case type_name: case cycle: case plus_or_minus:
17157 @<Scan a unary operation@>; break;
17158 case primary_binary:
17159 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17161 @<Convert a suffix to a string@>; break;
17162 case internal_quantity:
17163 @<Scan an internal numeric quantity@>; break;
17164 case capsule_token:
17165 mp_make_exp_copy(mp, mp->cur_mod); break;
17167 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17169 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17170 @.A primary expression...@>
17172 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17174 if ( mp->cur_cmd==left_bracket ) {
17175 if ( mp->cur_type>=mp_known ) {
17176 @<Scan a mediation construction@>;
17183 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17185 @c void mp_bad_exp (MP mp, const char * s) {
17187 print_err(s); mp_print(mp, " expression can't begin with `");
17188 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17189 mp_print_char(mp, xord('\''));
17190 help4("I'm afraid I need some sort of value in order to continue,",
17191 "so I've tentatively inserted `0'. You may want to",
17192 "delete this zero and insert something else;",
17193 "see Chapter 27 of The METAFONTbook for an example.");
17194 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17195 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17196 mp->cur_mod=0; mp_ins_error(mp);
17197 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17198 mp->var_flag=save_flag;
17201 @ @<Supply diagnostic information, if requested@>=
17203 if ( mp->panicking ) mp_check_mem(mp, false);
17205 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17206 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17209 @ @<Scan a delimited primary@>=
17211 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17212 mp_get_x_next(mp); mp_scan_expression(mp);
17213 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17214 @<Scan the rest of a delimited set of numerics@>;
17216 mp_check_delimiter(mp, l_delim,r_delim);
17220 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17221 within a ``big node.''
17223 @c void mp_stash_in (MP mp,pointer p) {
17224 pointer q; /* temporary register */
17225 type(p)=mp->cur_type;
17226 if ( mp->cur_type==mp_known ) {
17227 value(p)=mp->cur_exp;
17229 if ( mp->cur_type==mp_independent ) {
17230 @<Stash an independent |cur_exp| into a big node@>;
17232 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17233 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17234 mp_link(prev_dep(p))=p;
17236 mp_free_node(mp, mp->cur_exp,value_node_size);
17238 mp->cur_type=mp_vacuous;
17241 @ In rare cases the current expression can become |independent|. There
17242 may be many dependency lists pointing to such an independent capsule,
17243 so we can't simply move it into place within a big node. Instead,
17244 we copy it, then recycle it.
17246 @ @<Stash an independent |cur_exp|...@>=
17248 q=mp_single_dependency(mp, mp->cur_exp);
17249 if ( q==mp->dep_final ){
17250 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17252 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17254 mp_recycle_value(mp, mp->cur_exp);
17257 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17258 are synonymous with |x_part_loc| and |y_part_loc|.
17260 @<Scan the rest of a delimited set of numerics@>=
17262 p=mp_stash_cur_exp(mp);
17263 mp_get_x_next(mp); mp_scan_expression(mp);
17264 @<Make sure the second part of a pair or color has a numeric type@>;
17265 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17266 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17267 else type(q)=mp_pair_type;
17268 mp_init_big_node(mp, q); r=value(q);
17269 mp_stash_in(mp, y_part_loc(r));
17270 mp_unstash_cur_exp(mp, p);
17271 mp_stash_in(mp, x_part_loc(r));
17272 if ( mp->cur_cmd==comma ) {
17273 @<Scan the last of a triplet of numerics@>;
17275 if ( mp->cur_cmd==comma ) {
17276 type(q)=mp_cmykcolor_type;
17277 mp_init_big_node(mp, q); t=value(q);
17278 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17279 value(cyan_part_loc(t))=value(red_part_loc(r));
17280 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17281 value(magenta_part_loc(t))=value(green_part_loc(r));
17282 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17283 value(yellow_part_loc(t))=value(blue_part_loc(r));
17284 mp_recycle_value(mp, r);
17286 @<Scan the last of a quartet of numerics@>;
17288 mp_check_delimiter(mp, l_delim,r_delim);
17289 mp->cur_type=type(q);
17293 @ @<Make sure the second part of a pair or color has a numeric type@>=
17294 if ( mp->cur_type<mp_known ) {
17295 exp_err("Nonnumeric ypart has been replaced by 0");
17296 @.Nonnumeric...replaced by 0@>
17297 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';",
17298 "but after finding a nice `a' I found a `b' that isn't",
17299 "of numeric type. So I've changed that part to zero.",
17300 "(The b that I didn't like appears above the error message.)");
17301 mp_put_get_flush_error(mp, 0);
17304 @ @<Scan the last of a triplet of numerics@>=
17306 mp_get_x_next(mp); mp_scan_expression(mp);
17307 if ( mp->cur_type<mp_known ) {
17308 exp_err("Nonnumeric third part has been replaced by 0");
17309 @.Nonnumeric...replaced by 0@>
17310 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'",
17311 "isn't of numeric type. So I've changed that part to zero.",
17312 "(The c that I didn't like appears above the error message.)");
17313 mp_put_get_flush_error(mp, 0);
17315 mp_stash_in(mp, blue_part_loc(r));
17318 @ @<Scan the last of a quartet of numerics@>=
17320 mp_get_x_next(mp); mp_scan_expression(mp);
17321 if ( mp->cur_type<mp_known ) {
17322 exp_err("Nonnumeric blackpart has been replaced by 0");
17323 @.Nonnumeric...replaced by 0@>
17324 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't",
17325 "of numeric type. So I've changed that part to zero.",
17326 "(The k that I didn't like appears above the error message.)");
17327 mp_put_get_flush_error(mp, 0);
17329 mp_stash_in(mp, black_part_loc(r));
17332 @ The local variable |group_line| keeps track of the line
17333 where a \&{begingroup} command occurred; this will be useful
17334 in an error message if the group doesn't actually end.
17336 @<Other local variables for |scan_primary|@>=
17337 integer group_line; /* where a group began */
17339 @ @<Scan a grouped primary@>=
17341 group_line=mp_true_line(mp);
17342 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17343 save_boundary_item(p);
17345 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17346 } while (mp->cur_cmd==semicolon);
17347 if ( mp->cur_cmd!=end_group ) {
17348 print_err("A group begun on line ");
17349 @.A group...never ended@>
17350 mp_print_int(mp, group_line);
17351 mp_print(mp, " never ended");
17352 help2("I saw a `begingroup' back there that hasn't been matched",
17353 "by `endgroup'. So I've inserted `endgroup' now.");
17354 mp_back_error(mp); mp->cur_cmd=end_group;
17357 /* this might change |cur_type|, if independent variables are recycled */
17358 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17361 @ @<Scan a string constant@>=
17363 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17366 @ Later we'll come to procedures that perform actual operations like
17367 addition, square root, and so on; our purpose now is to do the parsing.
17368 But we might as well mention those future procedures now, so that the
17369 suspense won't be too bad:
17372 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17373 `\&{true}' or `\&{pencircle}');
17376 |do_unary(c)| applies a primitive operation to the current expression;
17379 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17380 and the current expression.
17382 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17384 @ @<Scan a unary operation@>=
17386 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17387 mp_do_unary(mp, c); goto DONE;
17390 @ A numeric token might be a primary by itself, or it might be the
17391 numerator of a fraction composed solely of numeric tokens, or it might
17392 multiply the primary that follows (provided that the primary doesn't begin
17393 with a plus sign or a minus sign). The code here uses the facts that
17394 |max_primary_command=plus_or_minus| and
17395 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17396 than unity, we try to retain higher precision when we use it in scalar
17399 @<Other local variables for |scan_primary|@>=
17400 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17402 @ @<Scan a primary that starts with a numeric token@>=
17404 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17405 if ( mp->cur_cmd!=slash ) {
17409 if ( mp->cur_cmd!=numeric_token ) {
17411 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17414 num=mp->cur_exp; denom=mp->cur_mod;
17415 if ( denom==0 ) { @<Protest division by zero@>; }
17416 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17417 check_arith; mp_get_x_next(mp);
17419 if ( mp->cur_cmd>=min_primary_command ) {
17420 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17421 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17422 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17423 mp_do_binary(mp, p,times);
17425 mp_frac_mult(mp, num,denom);
17426 mp_free_node(mp, p,value_node_size);
17433 @ @<Protest division...@>=
17435 print_err("Division by zero");
17436 @.Division by zero@>
17437 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17440 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17442 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17443 if ( mp->cur_cmd!=of_token ) {
17444 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17445 mp_print_cmd_mod(mp, primary_binary,c);
17447 help1("I've got the first argument; will look now for the other.");
17450 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17451 mp_do_binary(mp, p,c); goto DONE;
17454 @ @<Convert a suffix to a string@>=
17456 mp_get_x_next(mp); mp_scan_suffix(mp);
17457 mp->old_setting=mp->selector; mp->selector=new_string;
17458 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17459 mp_flush_token_list(mp, mp->cur_exp);
17460 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17461 mp->cur_type=mp_string_type;
17465 @ If an internal quantity appears all by itself on the left of an
17466 assignment, we return a token list of length one, containing the address
17467 of the internal quantity plus |hash_end|. (This accords with the conventions
17468 of the save stack, as described earlier.)
17470 @<Scan an internal...@>=
17473 if ( my_var_flag==assignment ) {
17475 if ( mp->cur_cmd==assignment ) {
17476 mp->cur_exp=mp_get_avail(mp);
17477 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17482 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17485 @ The most difficult part of |scan_primary| has been saved for last, since
17486 it was necessary to build up some confidence first. We can now face the task
17487 of scanning a variable.
17489 As we scan a variable, we build a token list containing the relevant
17490 names and subscript values, simultaneously following along in the
17491 ``collective'' structure to see if we are actually dealing with a macro
17492 instead of a value.
17494 The local variables |pre_head| and |post_head| will point to the beginning
17495 of the prefix and suffix lists; |tail| will point to the end of the list
17496 that is currently growing.
17498 Another local variable, |tt|, contains partial information about the
17499 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17500 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17501 doesn't bother to update its information about type. And if
17502 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17504 @ @<Other local variables for |scan_primary|@>=
17505 pointer pre_head,post_head,tail;
17506 /* prefix and suffix list variables */
17507 quarterword tt; /* approximation to the type of the variable-so-far */
17508 pointer t; /* a token */
17509 pointer macro_ref = 0; /* reference count for a suffixed macro */
17511 @ @<Scan a variable primary...@>=
17513 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17515 t=mp_cur_tok(mp); mp_link(tail)=t;
17516 if ( tt!=undefined ) {
17517 @<Find the approximate type |tt| and corresponding~|q|@>;
17518 if ( tt>=mp_unsuffixed_macro ) {
17519 @<Either begin an unsuffixed macro call or
17520 prepare for a suffixed one@>;
17523 mp_get_x_next(mp); tail=t;
17524 if ( mp->cur_cmd==left_bracket ) {
17525 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17527 if ( mp->cur_cmd>max_suffix_token ) break;
17528 if ( mp->cur_cmd<min_suffix_token ) break;
17529 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17530 @<Handle unusual cases that masquerade as variables, and |goto restart|
17531 or |goto done| if appropriate;
17532 otherwise make a copy of the variable and |goto done|@>;
17535 @ @<Either begin an unsuffixed macro call or...@>=
17537 mp_link(tail)=null;
17538 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17539 post_head=mp_get_avail(mp); tail=post_head; mp_link(tail)=t;
17540 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17542 @<Set up unsuffixed macro call and |goto restart|@>;
17546 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17548 mp_get_x_next(mp); mp_scan_expression(mp);
17549 if ( mp->cur_cmd!=right_bracket ) {
17550 @<Put the left bracket and the expression back to be rescanned@>;
17552 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17553 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17557 @ The left bracket that we thought was introducing a subscript might have
17558 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17559 So we don't issue an error message at this point; but we do want to back up
17560 so as to avoid any embarrassment about our incorrect assumption.
17562 @<Put the left bracket and the expression back to be rescanned@>=
17564 mp_back_input(mp); /* that was the token following the current expression */
17565 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17566 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17569 @ Here's a routine that puts the current expression back to be read again.
17571 @c void mp_back_expr (MP mp) {
17572 pointer p; /* capsule token */
17573 p=mp_stash_cur_exp(mp); mp_link(p)=null; back_list(p);
17576 @ Unknown subscripts lead to the following error message.
17578 @c void mp_bad_subscript (MP mp) {
17579 exp_err("Improper subscript has been replaced by zero");
17580 @.Improper subscript...@>
17581 help3("A bracketed subscript must have a known numeric value;",
17582 "unfortunately, what I found was the value that appears just",
17583 "above this error message. So I'll try a zero subscript.");
17584 mp_flush_error(mp, 0);
17587 @ Every time we call |get_x_next|, there's a chance that the variable we've
17588 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17589 into the variable structure; we need to start searching from the root each time.
17591 @<Find the approximate type |tt| and corresponding~|q|@>=
17594 p=mp_link(pre_head); q=info(p); tt=undefined;
17595 if ( eq_type(q) % outer_tag==tag_token ) {
17597 if ( q==null ) goto DONE2;
17601 tt=type(q); goto DONE2;
17603 if ( type(q)!=mp_structured ) goto DONE2;
17604 q=mp_link(attr_head(q)); /* the |collective_subscript| attribute */
17605 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17606 do { q=mp_link(q); } while (! (attr_loc(q)>=info(p)));
17607 if ( attr_loc(q)>info(p) ) goto DONE2;
17615 @ How do things stand now? Well, we have scanned an entire variable name,
17616 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17617 |cur_sym| represent the token that follows. If |post_head=null|, a
17618 token list for this variable name starts at |mp_link(pre_head)|, with all
17619 subscripts evaluated. But if |post_head<>null|, the variable turned out
17620 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17621 |post_head| is the head of a token list containing both `\.{\AT!}' and
17624 Our immediate problem is to see if this variable still exists. (Variable
17625 structures can change drastically whenever we call |get_x_next|; users
17626 aren't supposed to do this, but the fact that it is possible means that
17627 we must be cautious.)
17629 The following procedure prints an error message when a variable
17630 unexpectedly disappears. Its help message isn't quite right for
17631 our present purposes, but we'll be able to fix that up.
17634 void mp_obliterated (MP mp,pointer q) {
17635 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17636 mp_print(mp, " has been obliterated");
17637 @.Variable...obliterated@>
17638 help5("It seems you did a nasty thing---probably by accident,",
17639 "but nevertheless you nearly hornswoggled me...",
17640 "While I was evaluating the right-hand side of this",
17641 "command, something happened, and the left-hand side",
17642 "is no longer a variable! So I won't change anything.");
17645 @ If the variable does exist, we also need to check
17646 for a few other special cases before deciding that a plain old ordinary
17647 variable has, indeed, been scanned.
17649 @<Handle unusual cases that masquerade as variables...@>=
17650 if ( post_head!=null ) {
17651 @<Set up suffixed macro call and |goto restart|@>;
17653 q=mp_link(pre_head); free_avail(pre_head);
17654 if ( mp->cur_cmd==my_var_flag ) {
17655 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17657 p=mp_find_variable(mp, q);
17659 mp_make_exp_copy(mp, p);
17661 mp_obliterated(mp, q);
17662 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17663 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17664 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17665 mp_put_get_flush_error(mp, 0);
17667 mp_flush_node_list(mp, q);
17670 @ The only complication associated with macro calling is that the prefix
17671 and ``at'' parameters must be packaged in an appropriate list of lists.
17673 @<Set up unsuffixed macro call and |goto restart|@>=
17675 p=mp_get_avail(mp); info(pre_head)=mp_link(pre_head); mp_link(pre_head)=p;
17676 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17681 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17682 we don't care, because we have reserved a pointer (|macro_ref|) to its
17685 @<Set up suffixed macro call and |goto restart|@>=
17687 mp_back_input(mp); p=mp_get_avail(mp); q=mp_link(post_head);
17688 info(pre_head)=mp_link(pre_head); mp_link(pre_head)=post_head;
17689 info(post_head)=q; mp_link(post_head)=p; info(p)=mp_link(q); mp_link(q)=null;
17690 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17691 mp_get_x_next(mp); goto RESTART;
17694 @ Our remaining job is simply to make a copy of the value that has been
17695 found. Some cases are harder than others, but complexity arises solely
17696 because of the multiplicity of possible cases.
17698 @<Declare the procedure called |make_exp_copy|@>=
17699 @<Declare subroutines needed by |make_exp_copy|@>
17700 void mp_make_exp_copy (MP mp,pointer p) {
17701 pointer q,r,t; /* registers for list manipulation */
17703 mp->cur_type=type(p);
17704 switch (mp->cur_type) {
17705 case mp_vacuous: case mp_boolean_type: case mp_known:
17706 mp->cur_exp=value(p); break;
17707 case unknown_types:
17708 mp->cur_exp=mp_new_ring_entry(mp, p);
17710 case mp_string_type:
17711 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17713 case mp_picture_type:
17714 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17717 mp->cur_exp=copy_pen(value(p));
17720 mp->cur_exp=mp_copy_path(mp, value(p));
17722 case mp_transform_type: case mp_color_type:
17723 case mp_cmykcolor_type: case mp_pair_type:
17724 @<Copy the big node |p|@>;
17726 case mp_dependent: case mp_proto_dependent:
17727 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17729 case mp_numeric_type:
17730 new_indep(p); goto RESTART;
17732 case mp_independent:
17733 q=mp_single_dependency(mp, p);
17734 if ( q==mp->dep_final ){
17735 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,dep_node_size);
17737 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17741 mp_confusion(mp, "copy");
17742 @:this can't happen copy}{\quad copy@>
17747 @ The |encapsulate| subroutine assumes that |dep_final| is the
17748 tail of dependency list~|p|.
17750 @<Declare subroutines needed by |make_exp_copy|@>=
17751 void mp_encapsulate (MP mp,pointer p) {
17752 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17753 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17756 @ The most tedious case arises when the user refers to a
17757 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17758 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17761 @<Copy the big node |p|@>=
17763 if ( value(p)==null )
17764 mp_init_big_node(mp, p);
17765 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17766 mp_init_big_node(mp, t);
17767 q=value(p)+mp->big_node_size[mp->cur_type];
17768 r=value(t)+mp->big_node_size[mp->cur_type];
17770 q=q-2; r=r-2; mp_install(mp, r,q);
17771 } while (q!=value(p));
17775 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17776 a big node that will be part of a capsule.
17778 @<Declare subroutines needed by |make_exp_copy|@>=
17779 void mp_install (MP mp,pointer r, pointer q) {
17780 pointer p; /* temporary register */
17781 if ( type(q)==mp_known ){
17782 value(r)=value(q); type(r)=mp_known;
17783 } else if ( type(q)==mp_independent ) {
17784 p=mp_single_dependency(mp, q);
17785 if ( p==mp->dep_final ) {
17786 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,dep_node_size);
17788 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17791 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17795 @ Expressions of the form `\.{a[b,c]}' are converted into
17796 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17797 provided that \.a is numeric.
17799 @<Scan a mediation...@>=
17801 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17802 if ( mp->cur_cmd!=comma ) {
17803 @<Put the left bracket and the expression back...@>;
17804 mp_unstash_cur_exp(mp, p);
17806 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17807 if ( mp->cur_cmd!=right_bracket ) {
17808 mp_missing_err(mp, "]");
17810 help3("I've scanned an expression of the form `a[b,c',",
17811 "so a right bracket should have come next.",
17812 "I shall pretend that one was there.");
17815 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17816 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17817 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17821 @ Here is a comparatively simple routine that is used to scan the
17822 \&{suffix} parameters of a macro.
17824 @<Declare the basic parsing subroutines@>=
17825 void mp_scan_suffix (MP mp) {
17826 pointer h,t; /* head and tail of the list being built */
17827 pointer p; /* temporary register */
17828 h=mp_get_avail(mp); t=h;
17830 if ( mp->cur_cmd==left_bracket ) {
17831 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17833 if ( mp->cur_cmd==numeric_token ) {
17834 p=mp_new_num_tok(mp, mp->cur_mod);
17835 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17836 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17840 mp_link(t)=p; t=p; mp_get_x_next(mp);
17842 mp->cur_exp=mp_link(h); free_avail(h); mp->cur_type=mp_token_list;
17845 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17847 mp_get_x_next(mp); mp_scan_expression(mp);
17848 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17849 if ( mp->cur_cmd!=right_bracket ) {
17850 mp_missing_err(mp, "]");
17852 help3("I've seen a `[' and a subscript value, in a suffix,",
17853 "so a right bracket should have come next.",
17854 "I shall pretend that one was there.");
17857 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17860 @* \[38] Parsing secondary and higher expressions.
17862 After the intricacies of |scan_primary|\kern-1pt,
17863 the |scan_secondary| routine is
17864 refreshingly simple. It's not trivial, but the operations are relatively
17865 straightforward; the main difficulty is, again, that expressions and data
17866 structures might change drastically every time we call |get_x_next|, so a
17867 cautious approach is mandatory. For example, a macro defined by
17868 \&{primarydef} might have disappeared by the time its second argument has
17869 been scanned; we solve this by increasing the reference count of its token
17870 list, so that the macro can be called even after it has been clobbered.
17872 @<Declare the basic parsing subroutines@>=
17873 void mp_scan_secondary (MP mp) {
17874 pointer p; /* for list manipulation */
17875 halfword c,d; /* operation codes or modifiers */
17876 pointer mac_name; /* token defined with \&{primarydef} */
17878 if ((mp->cur_cmd<min_primary_command)||
17879 (mp->cur_cmd>max_primary_command) )
17880 mp_bad_exp(mp, "A secondary");
17881 @.A secondary expression...@>
17882 mp_scan_primary(mp);
17884 if ( mp->cur_cmd<=max_secondary_command &&
17885 mp->cur_cmd>=min_secondary_command ) {
17886 p=mp_stash_cur_exp(mp);
17887 c=mp->cur_mod; d=mp->cur_cmd;
17888 if ( d==secondary_primary_macro ) {
17889 mac_name=mp->cur_sym;
17893 mp_scan_primary(mp);
17894 if ( d!=secondary_primary_macro ) {
17895 mp_do_binary(mp, p,c);
17898 mp_binary_mac(mp, p,c,mac_name);
17899 decr(ref_count(c));
17907 @ The following procedure calls a macro that has two parameters,
17910 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17911 pointer q,r; /* nodes in the parameter list */
17912 q=mp_get_avail(mp); r=mp_get_avail(mp); mp_link(q)=r;
17913 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17914 mp_macro_call(mp, c,q,n);
17917 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17919 @<Declare the basic parsing subroutines@>=
17920 void mp_scan_tertiary (MP mp) {
17921 pointer p; /* for list manipulation */
17922 halfword c,d; /* operation codes or modifiers */
17923 pointer mac_name; /* token defined with \&{secondarydef} */
17925 if ((mp->cur_cmd<min_primary_command)||
17926 (mp->cur_cmd>max_primary_command) )
17927 mp_bad_exp(mp, "A tertiary");
17928 @.A tertiary expression...@>
17929 mp_scan_secondary(mp);
17931 if ( mp->cur_cmd<=max_tertiary_command ) {
17932 if ( mp->cur_cmd>=min_tertiary_command ) {
17933 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17934 if ( d==tertiary_secondary_macro ) {
17935 mac_name=mp->cur_sym; add_mac_ref(c);
17937 mp_get_x_next(mp); mp_scan_secondary(mp);
17938 if ( d!=tertiary_secondary_macro ) {
17939 mp_do_binary(mp, p,c);
17941 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17942 decr(ref_count(c)); mp_get_x_next(mp);
17950 @ Finally we reach the deepest level in our quartet of parsing routines.
17951 This one is much like the others; but it has an extra complication from
17952 paths, which materialize here.
17954 @d continue_path 25 /* a label inside of |scan_expression| */
17955 @d finish_path 26 /* another */
17957 @<Declare the basic parsing subroutines@>=
17958 void mp_scan_expression (MP mp) {
17959 pointer p,q,r,pp,qq; /* for list manipulation */
17960 halfword c,d; /* operation codes or modifiers */
17961 int my_var_flag; /* initial value of |var_flag| */
17962 pointer mac_name; /* token defined with \&{tertiarydef} */
17963 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17964 scaled x,y; /* explicit coordinates or tension at a path join */
17965 int t; /* knot type following a path join */
17967 my_var_flag=mp->var_flag; mac_name=null;
17969 if ((mp->cur_cmd<min_primary_command)||
17970 (mp->cur_cmd>max_primary_command) )
17971 mp_bad_exp(mp, "An");
17972 @.An expression...@>
17973 mp_scan_tertiary(mp);
17975 if ( mp->cur_cmd<=max_expression_command )
17976 if ( mp->cur_cmd>=min_expression_command ) {
17977 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17978 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17979 if ( d==expression_tertiary_macro ) {
17980 mac_name=mp->cur_sym; add_mac_ref(c);
17982 if ( (d<ampersand)||((d==ampersand)&&
17983 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17984 @<Scan a path construction operation;
17985 but |return| if |p| has the wrong type@>;
17987 mp_get_x_next(mp); mp_scan_tertiary(mp);
17988 if ( d!=expression_tertiary_macro ) {
17989 mp_do_binary(mp, p,c);
17991 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17992 decr(ref_count(c)); mp_get_x_next(mp);
18001 @ The reader should review the data structure conventions for paths before
18002 hoping to understand the next part of this code.
18004 @<Scan a path construction operation...@>=
18007 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18008 but |return| if |p| doesn't have a suitable type@>;
18010 @<Determine the path join parameters;
18011 but |goto finish_path| if there's only a direction specifier@>;
18012 if ( mp->cur_cmd==cycle ) {
18013 @<Get ready to close a cycle@>;
18015 mp_scan_tertiary(mp);
18016 @<Convert the right operand, |cur_exp|,
18017 into a partial path from |pp| to~|qq|@>;
18019 @<Join the partial paths and reset |p| and |q| to the head and tail
18021 if ( mp->cur_cmd>=min_expression_command )
18022 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18024 @<Choose control points for the path and put the result into |cur_exp|@>;
18027 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18029 mp_unstash_cur_exp(mp, p);
18030 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18031 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18034 while ( mp_link(q)!=p ) q=mp_link(q);
18035 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18036 r=mp_copy_knot(mp, p); mp_link(q)=r; q=r;
18038 left_type(p)=mp_open; right_type(q)=mp_open;
18041 @ A pair of numeric values is changed into a knot node for a one-point path
18042 when \MP\ discovers that the pair is part of a path.
18044 @c @<Declare the procedure called |known_pair|@>
18045 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18046 pointer q; /* the new node */
18047 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18048 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; mp_link(q)=q;
18049 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18053 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18054 of the current expression, assuming that the current expression is a
18055 pair of known numerics. Unknown components are zeroed, and the
18056 current expression is flushed.
18058 @<Declare the procedure called |known_pair|@>=
18059 void mp_known_pair (MP mp) {
18060 pointer p; /* the pair node */
18061 if ( mp->cur_type!=mp_pair_type ) {
18062 exp_err("Undefined coordinates have been replaced by (0,0)");
18063 @.Undefined coordinates...@>
18064 help5("I need x and y numbers for this part of the path.",
18065 "The value I found (see above) was no good;",
18066 "so I'll try to keep going by using zero instead.",
18067 "(Chapter 27 of The METAFONTbook explains that",
18068 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18069 "you might want to type `I ??" "?' now.)");
18070 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18072 p=value(mp->cur_exp);
18073 @<Make sure that both |x| and |y| parts of |p| are known;
18074 copy them into |cur_x| and |cur_y|@>;
18075 mp_flush_cur_exp(mp, 0);
18079 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18080 if ( type(x_part_loc(p))==mp_known ) {
18081 mp->cur_x=value(x_part_loc(p));
18083 mp_disp_err(mp, x_part_loc(p),
18084 "Undefined x coordinate has been replaced by 0");
18085 @.Undefined coordinates...@>
18086 help5("I need a `known' x value for this part of the path.",
18087 "The value I found (see above) was no good;",
18088 "so I'll try to keep going by using zero instead.",
18089 "(Chapter 27 of The METAFONTbook explains that",
18090 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18091 "you might want to type `I ??" "?' now.)");
18092 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18094 if ( type(y_part_loc(p))==mp_known ) {
18095 mp->cur_y=value(y_part_loc(p));
18097 mp_disp_err(mp, y_part_loc(p),
18098 "Undefined y coordinate has been replaced by 0");
18099 help5("I need a `known' y value for this part of the path.",
18100 "The value I found (see above) was no good;",
18101 "so I'll try to keep going by using zero instead.",
18102 "(Chapter 27 of The METAFONTbook explains that",
18103 "you might want to type `I ??" "?' now.)");
18104 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18107 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18109 @<Determine the path join parameters...@>=
18110 if ( mp->cur_cmd==left_brace ) {
18111 @<Put the pre-join direction information into node |q|@>;
18114 if ( d==path_join ) {
18115 @<Determine the tension and/or control points@>;
18116 } else if ( d!=ampersand ) {
18120 if ( mp->cur_cmd==left_brace ) {
18121 @<Put the post-join direction information into |x| and |t|@>;
18122 } else if ( right_type(q)!=mp_explicit ) {
18126 @ The |scan_direction| subroutine looks at the directional information
18127 that is enclosed in braces, and also scans ahead to the following character.
18128 A type code is returned, either |open| (if the direction was $(0,0)$),
18129 or |curl| (if the direction was a curl of known value |cur_exp|), or
18130 |given| (if the direction is given by the |angle| value that now
18131 appears in |cur_exp|).
18133 There's nothing difficult about this subroutine, but the program is rather
18134 lengthy because a variety of potential errors need to be nipped in the bud.
18136 @c quarterword mp_scan_direction (MP mp) {
18137 int t; /* the type of information found */
18138 scaled x; /* an |x| coordinate */
18140 if ( mp->cur_cmd==curl_command ) {
18141 @<Scan a curl specification@>;
18143 @<Scan a given direction@>;
18145 if ( mp->cur_cmd!=right_brace ) {
18146 mp_missing_err(mp, "}");
18147 @.Missing `\char`\}'@>
18148 help3("I've scanned a direction spec for part of a path,",
18149 "so a right brace should have come next.",
18150 "I shall pretend that one was there.");
18157 @ @<Scan a curl specification@>=
18158 { mp_get_x_next(mp); mp_scan_expression(mp);
18159 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18160 exp_err("Improper curl has been replaced by 1");
18162 help1("A curl must be a known, nonnegative number.");
18163 mp_put_get_flush_error(mp, unity);
18168 @ @<Scan a given direction@>=
18169 { mp_scan_expression(mp);
18170 if ( mp->cur_type>mp_pair_type ) {
18171 @<Get given directions separated by commas@>;
18175 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18176 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18179 @ @<Get given directions separated by commas@>=
18181 if ( mp->cur_type!=mp_known ) {
18182 exp_err("Undefined x coordinate has been replaced by 0");
18183 @.Undefined coordinates...@>
18184 help5("I need a `known' x value for this part of the path.",
18185 "The value I found (see above) was no good;",
18186 "so I'll try to keep going by using zero instead.",
18187 "(Chapter 27 of The METAFONTbook explains that",
18188 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18189 "you might want to type `I ??" "?' now.)");
18190 mp_put_get_flush_error(mp, 0);
18193 if ( mp->cur_cmd!=comma ) {
18194 mp_missing_err(mp, ",");
18196 help2("I've got the x coordinate of a path direction;",
18197 "will look for the y coordinate next.");
18200 mp_get_x_next(mp); mp_scan_expression(mp);
18201 if ( mp->cur_type!=mp_known ) {
18202 exp_err("Undefined y coordinate has been replaced by 0");
18203 help5("I need a `known' y value for this part of the path.",
18204 "The value I found (see above) was no good;",
18205 "so I'll try to keep going by using zero instead.",
18206 "(Chapter 27 of The METAFONTbook explains that",
18207 "you might want to type `I ??" "?' now.)");
18208 mp_put_get_flush_error(mp, 0);
18210 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18213 @ At this point |right_type(q)| is usually |open|, but it may have been
18214 set to some other value by a previous operation. We must maintain
18215 the value of |right_type(q)| in cases such as
18216 `\.{..\{curl2\}z\{0,0\}..}'.
18218 @<Put the pre-join...@>=
18220 t=mp_scan_direction(mp);
18221 if ( t!=mp_open ) {
18222 right_type(q)=t; right_given(q)=mp->cur_exp;
18223 if ( left_type(q)==mp_open ) {
18224 left_type(q)=t; left_given(q)=mp->cur_exp;
18225 } /* note that |left_given(q)=left_curl(q)| */
18229 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18230 and since |left_given| is similarly equivalent to |left_x|, we use
18231 |x| and |y| to hold the given direction and tension information when
18232 there are no explicit control points.
18234 @<Put the post-join...@>=
18236 t=mp_scan_direction(mp);
18237 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18238 else t=mp_explicit; /* the direction information is superfluous */
18241 @ @<Determine the tension and/or...@>=
18244 if ( mp->cur_cmd==tension ) {
18245 @<Set explicit tensions@>;
18246 } else if ( mp->cur_cmd==controls ) {
18247 @<Set explicit control points@>;
18249 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18252 if ( mp->cur_cmd!=path_join ) {
18253 mp_missing_err(mp, "..");
18255 help1("A path join command should end with two dots.");
18262 @ @<Set explicit tensions@>=
18264 mp_get_x_next(mp); y=mp->cur_cmd;
18265 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18266 mp_scan_primary(mp);
18267 @<Make sure that the current expression is a valid tension setting@>;
18268 if ( y==at_least ) negate(mp->cur_exp);
18269 right_tension(q)=mp->cur_exp;
18270 if ( mp->cur_cmd==and_command ) {
18271 mp_get_x_next(mp); y=mp->cur_cmd;
18272 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18273 mp_scan_primary(mp);
18274 @<Make sure that the current expression is a valid tension setting@>;
18275 if ( y==at_least ) negate(mp->cur_exp);
18280 @ @d min_tension three_quarter_unit
18282 @<Make sure that the current expression is a valid tension setting@>=
18283 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18284 exp_err("Improper tension has been set to 1");
18285 @.Improper tension@>
18286 help1("The expression above should have been a number >=3/4.");
18287 mp_put_get_flush_error(mp, unity);
18290 @ @<Set explicit control points@>=
18292 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18293 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18294 if ( mp->cur_cmd!=and_command ) {
18295 x=right_x(q); y=right_y(q);
18297 mp_get_x_next(mp); mp_scan_primary(mp);
18298 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18302 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18304 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18305 else pp=mp->cur_exp;
18307 while ( mp_link(qq)!=pp ) qq=mp_link(qq);
18308 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18309 r=mp_copy_knot(mp, pp); mp_link(qq)=r; qq=r;
18311 left_type(pp)=mp_open; right_type(qq)=mp_open;
18314 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18315 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18316 shouldn't have length zero.
18318 @<Get ready to close a cycle@>=
18320 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18321 if ( d==ampersand ) if ( p==q ) {
18322 d=path_join; right_tension(q)=unity; y=unity;
18326 @ @<Join the partial paths and reset |p| and |q|...@>=
18328 if ( d==ampersand ) {
18329 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18330 print_err("Paths don't touch; `&' will be changed to `..'");
18331 @.Paths don't touch@>
18332 help3("When you join paths `p&q', the ending point of p",
18333 "must be exactly equal to the starting point of q.",
18334 "So I'm going to pretend that you said `p..q' instead.");
18335 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18338 @<Plug an opening in |right_type(pp)|, if possible@>;
18339 if ( d==ampersand ) {
18340 @<Splice independent paths together@>;
18342 @<Plug an opening in |right_type(q)|, if possible@>;
18343 mp_link(q)=pp; left_y(pp)=y;
18344 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18349 @ @<Plug an opening in |right_type(q)|...@>=
18350 if ( right_type(q)==mp_open ) {
18351 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18352 right_type(q)=left_type(q); right_given(q)=left_given(q);
18356 @ @<Plug an opening in |right_type(pp)|...@>=
18357 if ( right_type(pp)==mp_open ) {
18358 if ( (t==mp_curl)||(t==mp_given) ) {
18359 right_type(pp)=t; right_given(pp)=x;
18363 @ @<Splice independent paths together@>=
18365 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18366 left_type(q)=mp_curl; left_curl(q)=unity;
18368 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18369 right_type(pp)=mp_curl; right_curl(pp)=unity;
18371 right_type(q)=right_type(pp); mp_link(q)=mp_link(pp);
18372 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18373 mp_free_node(mp, pp,knot_node_size);
18374 if ( qq==pp ) qq=q;
18377 @ @<Choose control points for the path...@>=
18379 if ( d==ampersand ) p=q;
18381 left_type(p)=mp_endpoint;
18382 if ( right_type(p)==mp_open ) {
18383 right_type(p)=mp_curl; right_curl(p)=unity;
18385 right_type(q)=mp_endpoint;
18386 if ( left_type(q)==mp_open ) {
18387 left_type(q)=mp_curl; left_curl(q)=unity;
18391 mp_make_choices(mp, p);
18392 mp->cur_type=mp_path_type; mp->cur_exp=p
18394 @ Finally, we sometimes need to scan an expression whose value is
18395 supposed to be either |true_code| or |false_code|.
18397 @<Declare the basic parsing subroutines@>=
18398 void mp_get_boolean (MP mp) {
18399 mp_get_x_next(mp); mp_scan_expression(mp);
18400 if ( mp->cur_type!=mp_boolean_type ) {
18401 exp_err("Undefined condition will be treated as `false'");
18402 @.Undefined condition...@>
18403 help2("The expression shown above should have had a definite",
18404 "true-or-false value. I'm changing it to `false'.");
18405 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18409 @* \[39] Doing the operations.
18410 The purpose of parsing is primarily to permit people to avoid piles of
18411 parentheses. But the real work is done after the structure of an expression
18412 has been recognized; that's when new expressions are generated. We
18413 turn now to the guts of \MP, which handles individual operators that
18414 have come through the parsing mechanism.
18416 We'll start with the easy ones that take no operands, then work our way
18417 up to operators with one and ultimately two arguments. In other words,
18418 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18419 that are invoked periodically by the expression scanners.
18421 First let's make sure that all of the primitive operators are in the
18422 hash table. Although |scan_primary| and its relatives made use of the
18423 \\{cmd} code for these operators, the \\{do} routines base everything
18424 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18425 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18428 mp_primitive(mp, "true",nullary,true_code);
18429 @:true_}{\&{true} primitive@>
18430 mp_primitive(mp, "false",nullary,false_code);
18431 @:false_}{\&{false} primitive@>
18432 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18433 @:null_picture_}{\&{nullpicture} primitive@>
18434 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18435 @:null_pen_}{\&{nullpen} primitive@>
18436 mp_primitive(mp, "jobname",nullary,job_name_op);
18437 @:job_name_}{\&{jobname} primitive@>
18438 mp_primitive(mp, "readstring",nullary,read_string_op);
18439 @:read_string_}{\&{readstring} primitive@>
18440 mp_primitive(mp, "pencircle",nullary,pen_circle);
18441 @:pen_circle_}{\&{pencircle} primitive@>
18442 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18443 @:normal_deviate_}{\&{normaldeviate} primitive@>
18444 mp_primitive(mp, "readfrom",unary,read_from_op);
18445 @:read_from_}{\&{readfrom} primitive@>
18446 mp_primitive(mp, "closefrom",unary,close_from_op);
18447 @:close_from_}{\&{closefrom} primitive@>
18448 mp_primitive(mp, "odd",unary,odd_op);
18449 @:odd_}{\&{odd} primitive@>
18450 mp_primitive(mp, "known",unary,known_op);
18451 @:known_}{\&{known} primitive@>
18452 mp_primitive(mp, "unknown",unary,unknown_op);
18453 @:unknown_}{\&{unknown} primitive@>
18454 mp_primitive(mp, "not",unary,not_op);
18455 @:not_}{\&{not} primitive@>
18456 mp_primitive(mp, "decimal",unary,decimal);
18457 @:decimal_}{\&{decimal} primitive@>
18458 mp_primitive(mp, "reverse",unary,reverse);
18459 @:reverse_}{\&{reverse} primitive@>
18460 mp_primitive(mp, "makepath",unary,make_path_op);
18461 @:make_path_}{\&{makepath} primitive@>
18462 mp_primitive(mp, "makepen",unary,make_pen_op);
18463 @:make_pen_}{\&{makepen} primitive@>
18464 mp_primitive(mp, "oct",unary,oct_op);
18465 @:oct_}{\&{oct} primitive@>
18466 mp_primitive(mp, "hex",unary,hex_op);
18467 @:hex_}{\&{hex} primitive@>
18468 mp_primitive(mp, "ASCII",unary,ASCII_op);
18469 @:ASCII_}{\&{ASCII} primitive@>
18470 mp_primitive(mp, "char",unary,char_op);
18471 @:char_}{\&{char} primitive@>
18472 mp_primitive(mp, "length",unary,length_op);
18473 @:length_}{\&{length} primitive@>
18474 mp_primitive(mp, "turningnumber",unary,turning_op);
18475 @:turning_number_}{\&{turningnumber} primitive@>
18476 mp_primitive(mp, "xpart",unary,x_part);
18477 @:x_part_}{\&{xpart} primitive@>
18478 mp_primitive(mp, "ypart",unary,y_part);
18479 @:y_part_}{\&{ypart} primitive@>
18480 mp_primitive(mp, "xxpart",unary,xx_part);
18481 @:xx_part_}{\&{xxpart} primitive@>
18482 mp_primitive(mp, "xypart",unary,xy_part);
18483 @:xy_part_}{\&{xypart} primitive@>
18484 mp_primitive(mp, "yxpart",unary,yx_part);
18485 @:yx_part_}{\&{yxpart} primitive@>
18486 mp_primitive(mp, "yypart",unary,yy_part);
18487 @:yy_part_}{\&{yypart} primitive@>
18488 mp_primitive(mp, "redpart",unary,red_part);
18489 @:red_part_}{\&{redpart} primitive@>
18490 mp_primitive(mp, "greenpart",unary,green_part);
18491 @:green_part_}{\&{greenpart} primitive@>
18492 mp_primitive(mp, "bluepart",unary,blue_part);
18493 @:blue_part_}{\&{bluepart} primitive@>
18494 mp_primitive(mp, "cyanpart",unary,cyan_part);
18495 @:cyan_part_}{\&{cyanpart} primitive@>
18496 mp_primitive(mp, "magentapart",unary,magenta_part);
18497 @:magenta_part_}{\&{magentapart} primitive@>
18498 mp_primitive(mp, "yellowpart",unary,yellow_part);
18499 @:yellow_part_}{\&{yellowpart} primitive@>
18500 mp_primitive(mp, "blackpart",unary,black_part);
18501 @:black_part_}{\&{blackpart} primitive@>
18502 mp_primitive(mp, "greypart",unary,grey_part);
18503 @:grey_part_}{\&{greypart} primitive@>
18504 mp_primitive(mp, "colormodel",unary,color_model_part);
18505 @:color_model_part_}{\&{colormodel} primitive@>
18506 mp_primitive(mp, "fontpart",unary,font_part);
18507 @:font_part_}{\&{fontpart} primitive@>
18508 mp_primitive(mp, "textpart",unary,text_part);
18509 @:text_part_}{\&{textpart} primitive@>
18510 mp_primitive(mp, "pathpart",unary,path_part);
18511 @:path_part_}{\&{pathpart} primitive@>
18512 mp_primitive(mp, "penpart",unary,pen_part);
18513 @:pen_part_}{\&{penpart} primitive@>
18514 mp_primitive(mp, "dashpart",unary,dash_part);
18515 @:dash_part_}{\&{dashpart} primitive@>
18516 mp_primitive(mp, "sqrt",unary,sqrt_op);
18517 @:sqrt_}{\&{sqrt} primitive@>
18518 mp_primitive(mp, "mexp",unary,mp_m_exp_op);
18519 @:m_exp_}{\&{mexp} primitive@>
18520 mp_primitive(mp, "mlog",unary,mp_m_log_op);
18521 @:m_log_}{\&{mlog} primitive@>
18522 mp_primitive(mp, "sind",unary,sin_d_op);
18523 @:sin_d_}{\&{sind} primitive@>
18524 mp_primitive(mp, "cosd",unary,cos_d_op);
18525 @:cos_d_}{\&{cosd} primitive@>
18526 mp_primitive(mp, "floor",unary,floor_op);
18527 @:floor_}{\&{floor} primitive@>
18528 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18529 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18530 mp_primitive(mp, "charexists",unary,char_exists_op);
18531 @:char_exists_}{\&{charexists} primitive@>
18532 mp_primitive(mp, "fontsize",unary,font_size);
18533 @:font_size_}{\&{fontsize} primitive@>
18534 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18535 @:ll_corner_}{\&{llcorner} primitive@>
18536 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18537 @:lr_corner_}{\&{lrcorner} primitive@>
18538 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18539 @:ul_corner_}{\&{ulcorner} primitive@>
18540 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18541 @:ur_corner_}{\&{urcorner} primitive@>
18542 mp_primitive(mp, "arclength",unary,arc_length);
18543 @:arc_length_}{\&{arclength} primitive@>
18544 mp_primitive(mp, "angle",unary,angle_op);
18545 @:angle_}{\&{angle} primitive@>
18546 mp_primitive(mp, "cycle",cycle,cycle_op);
18547 @:cycle_}{\&{cycle} primitive@>
18548 mp_primitive(mp, "stroked",unary,stroked_op);
18549 @:stroked_}{\&{stroked} primitive@>
18550 mp_primitive(mp, "filled",unary,filled_op);
18551 @:filled_}{\&{filled} primitive@>
18552 mp_primitive(mp, "textual",unary,textual_op);
18553 @:textual_}{\&{textual} primitive@>
18554 mp_primitive(mp, "clipped",unary,clipped_op);
18555 @:clipped_}{\&{clipped} primitive@>
18556 mp_primitive(mp, "bounded",unary,bounded_op);
18557 @:bounded_}{\&{bounded} primitive@>
18558 mp_primitive(mp, "+",plus_or_minus,plus);
18559 @:+ }{\.{+} primitive@>
18560 mp_primitive(mp, "-",plus_or_minus,minus);
18561 @:- }{\.{-} primitive@>
18562 mp_primitive(mp, "*",secondary_binary,times);
18563 @:* }{\.{*} primitive@>
18564 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18565 @:/ }{\.{/} primitive@>
18566 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18567 @:++_}{\.{++} primitive@>
18568 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18569 @:+-+_}{\.{+-+} primitive@>
18570 mp_primitive(mp, "or",tertiary_binary,or_op);
18571 @:or_}{\&{or} primitive@>
18572 mp_primitive(mp, "and",and_command,and_op);
18573 @:and_}{\&{and} primitive@>
18574 mp_primitive(mp, "<",expression_binary,less_than);
18575 @:< }{\.{<} primitive@>
18576 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18577 @:<=_}{\.{<=} primitive@>
18578 mp_primitive(mp, ">",expression_binary,greater_than);
18579 @:> }{\.{>} primitive@>
18580 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18581 @:>=_}{\.{>=} primitive@>
18582 mp_primitive(mp, "=",equals,equal_to);
18583 @:= }{\.{=} primitive@>
18584 mp_primitive(mp, "<>",expression_binary,unequal_to);
18585 @:<>_}{\.{<>} primitive@>
18586 mp_primitive(mp, "substring",primary_binary,substring_of);
18587 @:substring_}{\&{substring} primitive@>
18588 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18589 @:subpath_}{\&{subpath} primitive@>
18590 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18591 @:direction_time_}{\&{directiontime} primitive@>
18592 mp_primitive(mp, "point",primary_binary,point_of);
18593 @:point_}{\&{point} primitive@>
18594 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18595 @:precontrol_}{\&{precontrol} primitive@>
18596 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18597 @:postcontrol_}{\&{postcontrol} primitive@>
18598 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18599 @:pen_offset_}{\&{penoffset} primitive@>
18600 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18601 @:arc_time_of_}{\&{arctime} primitive@>
18602 mp_primitive(mp, "mpversion",nullary,mp_version);
18603 @:mp_verison_}{\&{mpversion} primitive@>
18604 mp_primitive(mp, "&",ampersand,concatenate);
18605 @:!!!}{\.{\&} primitive@>
18606 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18607 @:rotated_}{\&{rotated} primitive@>
18608 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18609 @:slanted_}{\&{slanted} primitive@>
18610 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18611 @:scaled_}{\&{scaled} primitive@>
18612 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18613 @:shifted_}{\&{shifted} primitive@>
18614 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18615 @:transformed_}{\&{transformed} primitive@>
18616 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18617 @:x_scaled_}{\&{xscaled} primitive@>
18618 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18619 @:y_scaled_}{\&{yscaled} primitive@>
18620 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18621 @:z_scaled_}{\&{zscaled} primitive@>
18622 mp_primitive(mp, "infont",secondary_binary,in_font);
18623 @:in_font_}{\&{infont} primitive@>
18624 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18625 @:intersection_times_}{\&{intersectiontimes} primitive@>
18626 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18627 @:envelope_}{\&{envelope} primitive@>
18629 @ @<Cases of |print_cmd...@>=
18632 case primary_binary:
18633 case secondary_binary:
18634 case tertiary_binary:
18635 case expression_binary:
18637 case plus_or_minus:
18642 mp_print_op(mp, m);
18645 @ OK, let's look at the simplest \\{do} procedure first.
18647 @c @<Declare nullary action procedure@>
18648 void mp_do_nullary (MP mp,quarterword c) {
18650 if ( mp->internal[mp_tracing_commands]>two )
18651 mp_show_cmd_mod(mp, nullary,c);
18653 case true_code: case false_code:
18654 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18656 case null_picture_code:
18657 mp->cur_type=mp_picture_type;
18658 mp->cur_exp=mp_get_node(mp, edge_header_size);
18659 mp_init_edges(mp, mp->cur_exp);
18661 case null_pen_code:
18662 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18664 case normal_deviate:
18665 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18668 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18671 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18672 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18675 mp->cur_type=mp_string_type;
18676 mp->cur_exp=intern(metapost_version) ;
18678 case read_string_op:
18679 @<Read a string from the terminal@>;
18681 } /* there are no other cases */
18685 @ @<Read a string...@>=
18687 if (mp->noninteractive || mp->interaction<=mp_nonstop_mode )
18688 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18689 mp_begin_file_reading(mp); name=is_read;
18690 limit=start; prompt_input("");
18691 mp_finish_read(mp);
18694 @ @<Declare nullary action procedure@>=
18695 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18697 str_room((int)mp->last-start);
18698 for (k=(size_t)start;k<=mp->last-1;k++) {
18699 append_char(mp->buffer[k]);
18701 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18702 mp->cur_exp=mp_make_string(mp);
18705 @ Things get a bit more interesting when there's an operand. The
18706 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18708 @c @<Declare unary action procedures@>
18709 void mp_do_unary (MP mp,quarterword c) {
18710 pointer p,q,r; /* for list manipulation */
18711 integer x; /* a temporary register */
18713 if ( mp->internal[mp_tracing_commands]>two )
18714 @<Trace the current unary operation@>;
18717 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18720 @<Negate the current expression@>;
18722 @<Additional cases of unary operators@>;
18723 } /* there are no other cases */
18727 @ The |nice_pair| function returns |true| if both components of a pair
18730 @<Declare unary action procedures@>=
18731 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18732 if ( t==mp_pair_type ) {
18734 if ( type(x_part_loc(p))==mp_known )
18735 if ( type(y_part_loc(p))==mp_known )
18741 @ The |nice_color_or_pair| function is analogous except that it also accepts
18742 fully known colors.
18744 @<Declare unary action procedures@>=
18745 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18746 pointer q,r; /* for scanning the big node */
18747 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18751 r=q+mp->big_node_size[type(p)];
18754 if ( type(r)!=mp_known )
18761 @ @<Declare unary action...@>=
18762 void mp_print_known_or_unknown_type (MP mp,quarterword t, integer v) {
18763 mp_print_char(mp, xord('('));
18764 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18765 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18766 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18767 mp_print_type(mp, t);
18769 mp_print_char(mp, xord(')'));
18772 @ @<Declare unary action...@>=
18773 void mp_bad_unary (MP mp,quarterword c) {
18774 exp_err("Not implemented: "); mp_print_op(mp, c);
18775 @.Not implemented...@>
18776 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18777 help3("I'm afraid I don't know how to apply that operation to that",
18778 "particular type. Continue, and I'll simply return the",
18779 "argument (shown above) as the result of the operation.");
18780 mp_put_get_error(mp);
18783 @ @<Trace the current unary operation@>=
18785 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18786 mp_print_op(mp, c); mp_print_char(mp, xord('('));
18787 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18788 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18791 @ Negation is easy except when the current expression
18792 is of type |independent|, or when it is a pair with one or more
18793 |independent| components.
18795 It is tempting to argue that the negative of an independent variable
18796 is an independent variable, hence we don't have to do anything when
18797 negating it. The fallacy is that other dependent variables pointing
18798 to the current expression must change the sign of their
18799 coefficients if we make no change to the current expression.
18801 Instead, we work around the problem by copying the current expression
18802 and recycling it afterwards (cf.~the |stash_in| routine).
18804 @<Negate the current expression@>=
18805 switch (mp->cur_type) {
18806 case mp_color_type:
18807 case mp_cmykcolor_type:
18809 case mp_independent:
18810 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18811 if ( mp->cur_type==mp_dependent ) {
18812 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18813 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18814 p=value(mp->cur_exp);
18815 r=p+mp->big_node_size[mp->cur_type];
18818 if ( type(r)==mp_known ) negate(value(r));
18819 else mp_negate_dep_list(mp, dep_list(r));
18821 } /* if |cur_type=mp_known| then |cur_exp=0| */
18822 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18825 case mp_proto_dependent:
18826 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18829 negate(mp->cur_exp);
18832 mp_bad_unary(mp, minus);
18836 @ @<Declare unary action...@>=
18837 void mp_negate_dep_list (MP mp,pointer p) {
18840 if ( info(p)==null ) return;
18845 @ @<Additional cases of unary operators@>=
18847 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18848 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18851 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18852 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18854 @<Additional cases of unary operators@>=
18861 case uniform_deviate:
18863 case char_exists_op:
18864 if ( mp->cur_type!=mp_known ) {
18865 mp_bad_unary(mp, c);
18868 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18869 case mp_m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18870 case mp_m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18873 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18874 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18875 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18877 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18878 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18880 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18881 mp->cur_type=mp_boolean_type;
18883 case char_exists_op:
18884 @<Determine if a character has been shipped out@>;
18886 } /* there are no other cases */
18890 @ @<Additional cases of unary operators@>=
18892 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18893 p=value(mp->cur_exp);
18894 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18895 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18896 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18898 mp_bad_unary(mp, angle_op);
18902 @ If the current expression is a pair, but the context wants it to
18903 be a path, we call |pair_to_path|.
18905 @<Declare unary action...@>=
18906 void mp_pair_to_path (MP mp) {
18907 mp->cur_exp=mp_new_knot(mp);
18908 mp->cur_type=mp_path_type;
18912 @d pict_color_type(A) ((mp_link(dummy_loc(mp->cur_exp))!=null) &&
18913 (has_color(mp_link(dummy_loc(mp->cur_exp)))) &&
18914 ((color_model(mp_link(dummy_loc(mp->cur_exp)))==A)
18916 ((color_model(mp_link(dummy_loc(mp->cur_exp)))==mp_uninitialized_model) &&
18917 (mp->internal[mp_default_color_model]/unity)==(A))))
18919 @<Additional cases of unary operators@>=
18922 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18923 mp_take_part(mp, c);
18924 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18925 else mp_bad_unary(mp, c);
18931 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18932 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18933 else mp_bad_unary(mp, c);
18938 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18939 else if ( mp->cur_type==mp_picture_type ) {
18940 if pict_color_type(mp_rgb_model) mp_take_pict_part(mp, c);
18941 else mp_bad_color_part(mp, c);
18943 else mp_bad_unary(mp, c);
18949 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18950 else if ( mp->cur_type==mp_picture_type ) {
18951 if pict_color_type(mp_cmyk_model) mp_take_pict_part(mp, c);
18952 else mp_bad_color_part(mp, c);
18954 else mp_bad_unary(mp, c);
18957 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18958 else if ( mp->cur_type==mp_picture_type ) {
18959 if pict_color_type(mp_grey_model) mp_take_pict_part(mp, c);
18960 else mp_bad_color_part(mp, c);
18962 else mp_bad_unary(mp, c);
18964 case color_model_part:
18965 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18966 else mp_bad_unary(mp, c);
18969 @ @<Declarations@>=
18970 void mp_bad_color_part(MP mp, quarterword c);
18973 void mp_bad_color_part(MP mp, quarterword c) {
18974 pointer p; /* the big node */
18975 p=mp_link(dummy_loc(mp->cur_exp));
18976 exp_err("Wrong picture color model: "); mp_print_op(mp, c);
18977 @.Wrong picture color model...@>
18978 if (color_model(p)==mp_grey_model)
18979 mp_print(mp, " of grey object");
18980 else if (color_model(p)==mp_cmyk_model)
18981 mp_print(mp, " of cmyk object");
18982 else if (color_model(p)==mp_rgb_model)
18983 mp_print(mp, " of rgb object");
18984 else if (color_model(p)==mp_no_model)
18985 mp_print(mp, " of marking object");
18987 mp_print(mp," of defaulted object");
18988 help3("You can only ask for the redpart, greenpart, bluepart of a rgb object,",
18989 "the cyanpart, magentapart, yellowpart or blackpart of a cmyk object, ",
18990 "or the greypart of a grey object. No mixing and matching, please.");
18993 mp_flush_cur_exp(mp,unity);
18995 mp_flush_cur_exp(mp,0);
18998 @ In the following procedure, |cur_exp| points to a capsule, which points to
18999 a big node. We want to delete all but one part of the big node.
19001 @<Declare unary action...@>=
19002 void mp_take_part (MP mp,quarterword c) {
19003 pointer p; /* the big node */
19004 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19005 mp_link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19006 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19007 mp_recycle_value(mp, temp_val);
19010 @ @<Initialize table entries...@>=
19011 name_type(temp_val)=mp_capsule;
19013 @ @<Additional cases of unary operators@>=
19019 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19020 else mp_bad_unary(mp, c);
19023 @ @<Declarations@>=
19024 void mp_scale_edges (MP mp);
19026 @ @<Declare unary action...@>=
19027 void mp_take_pict_part (MP mp,quarterword c) {
19028 pointer p; /* first graphical object in |cur_exp| */
19029 p=mp_link(dummy_loc(mp->cur_exp));
19032 case x_part: case y_part: case xx_part:
19033 case xy_part: case yx_part: case yy_part:
19034 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19035 else goto NOT_FOUND;
19037 case red_part: case green_part: case blue_part:
19038 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19039 else goto NOT_FOUND;
19041 case cyan_part: case magenta_part: case yellow_part:
19043 if ( has_color(p) ) {
19044 if ( color_model(p)==mp_uninitialized_model && c==black_part)
19045 mp_flush_cur_exp(mp, unity);
19047 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19048 } else goto NOT_FOUND;
19051 if ( has_color(p) )
19052 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19053 else goto NOT_FOUND;
19055 case color_model_part:
19056 if ( has_color(p) ) {
19057 if ( color_model(p)==mp_uninitialized_model )
19058 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19060 mp_flush_cur_exp(mp, color_model(p)*unity);
19061 } else goto NOT_FOUND;
19063 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19064 } /* all cases have been enumerated */
19068 @<Convert the current expression to a null value appropriate
19072 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19074 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19076 mp_flush_cur_exp(mp, text_p(p));
19077 add_str_ref(mp->cur_exp);
19078 mp->cur_type=mp_string_type;
19082 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19084 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19085 add_str_ref(mp->cur_exp);
19086 mp->cur_type=mp_string_type;
19090 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19091 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19092 @:this can't happen pict}{\quad pict@>
19094 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19095 mp->cur_type=mp_path_type;
19099 if ( ! has_pen(p) ) goto NOT_FOUND;
19101 if ( pen_p(p)==null ) goto NOT_FOUND;
19102 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19103 mp->cur_type=mp_pen_type;
19108 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19109 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19110 else { add_edge_ref(dash_p(p));
19111 mp->se_sf=dash_scale(p);
19112 mp->se_pic=dash_p(p);
19113 mp_scale_edges(mp);
19114 mp_flush_cur_exp(mp, mp->se_pic);
19115 mp->cur_type=mp_picture_type;
19120 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19121 parameterless procedure even though it really takes two arguments and updates
19122 one of them. Hence the following globals are needed.
19125 pointer se_pic; /* edge header used and updated by |scale_edges| */
19126 scaled se_sf; /* the scale factor argument to |scale_edges| */
19128 @ @<Convert the current expression to a null value appropriate...@>=
19130 case text_part: case font_part:
19131 mp_flush_cur_exp(mp, null_str);
19132 mp->cur_type=mp_string_type;
19135 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19136 left_type(mp->cur_exp)=mp_endpoint;
19137 right_type(mp->cur_exp)=mp_endpoint;
19138 mp_link(mp->cur_exp)=mp->cur_exp;
19139 x_coord(mp->cur_exp)=0;
19140 y_coord(mp->cur_exp)=0;
19141 originator(mp->cur_exp)=mp_metapost_user;
19142 mp->cur_type=mp_path_type;
19145 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19146 mp->cur_type=mp_pen_type;
19149 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19150 mp_init_edges(mp, mp->cur_exp);
19151 mp->cur_type=mp_picture_type;
19154 mp_flush_cur_exp(mp, 0);
19158 @ @<Additional cases of unary...@>=
19160 if ( mp->cur_type!=mp_known ) {
19161 mp_bad_unary(mp, char_op);
19163 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19164 mp->cur_type=mp_string_type;
19165 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19169 if ( mp->cur_type!=mp_known ) {
19170 mp_bad_unary(mp, decimal);
19172 mp->old_setting=mp->selector; mp->selector=new_string;
19173 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19174 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19180 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19181 else mp_str_to_num(mp, c);
19184 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19185 else @<Find the design size of the font whose name is |cur_exp|@>;
19188 @ @<Declare unary action...@>=
19189 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19190 integer n; /* accumulator */
19191 ASCII_code m; /* current character */
19192 pool_pointer k; /* index into |str_pool| */
19193 int b; /* radix of conversion */
19194 boolean bad_char; /* did the string contain an invalid digit? */
19195 if ( c==ASCII_op ) {
19196 if ( length(mp->cur_exp)==0 ) n=-1;
19197 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19199 if ( c==oct_op ) b=8; else b=16;
19200 n=0; bad_char=false;
19201 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19203 if ( (m>='0')&&(m<='9') ) m=m-'0';
19204 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19205 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19206 else { bad_char=true; m=0; };
19207 if ( (int)m>=b ) { bad_char=true; m=0; };
19208 if ( n<32768 / b ) n=n*b+m; else n=32767;
19210 @<Give error messages if |bad_char| or |n>=4096|@>;
19212 mp_flush_cur_exp(mp, n*unity);
19215 @ @<Give error messages if |bad_char|...@>=
19217 exp_err("String contains illegal digits");
19218 @.String contains illegal digits@>
19220 help1("I zeroed out characters that weren't in the range 0..7.");
19222 help1("I zeroed out characters that weren't hex digits.");
19224 mp_put_get_error(mp);
19227 if ( mp->internal[mp_warning_check]>0 ) {
19228 print_err("Number too large (");
19229 mp_print_int(mp, n); mp_print_char(mp, xord(')'));
19230 @.Number too large@>
19231 help2("I have trouble with numbers greater than 4095; watch out.",
19232 "(Set warningcheck:=0 to suppress this message.)");
19233 mp_put_get_error(mp);
19237 @ The length operation is somewhat unusual in that it applies to a variety
19238 of different types of operands.
19240 @<Additional cases of unary...@>=
19242 switch (mp->cur_type) {
19243 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19244 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19245 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19246 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19248 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19249 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19250 value(x_part_loc(value(mp->cur_exp))),
19251 value(y_part_loc(value(mp->cur_exp)))));
19252 else mp_bad_unary(mp, c);
19257 @ @<Declare unary action...@>=
19258 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19259 scaled n; /* the path length so far */
19260 pointer p; /* traverser */
19262 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19263 do { p=mp_link(p); n=n+unity; } while (p!=mp->cur_exp);
19267 @ @<Declare unary action...@>=
19268 scaled mp_pict_length (MP mp) {
19269 /* counts interior components in picture |cur_exp| */
19270 scaled n; /* the count so far */
19271 pointer p; /* traverser */
19273 p=mp_link(dummy_loc(mp->cur_exp));
19275 if ( is_start_or_stop(p) )
19276 if ( mp_skip_1component(mp, p)==null ) p=mp_link(p);
19277 while ( p!=null ) {
19278 skip_component(p) return n;
19285 @ Implement |turningnumber|
19287 @<Additional cases of unary...@>=
19289 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19290 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19291 else if ( left_type(mp->cur_exp)==mp_endpoint )
19292 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19294 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19297 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19298 argument is |origin|.
19300 @<Declare unary action...@>=
19301 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19302 if ( (! ((xpar==0) && (ypar==0))) )
19303 return mp_n_arg(mp, xpar,ypar);
19308 @ The actual turning number is (for the moment) computed in a C function
19309 that receives eight integers corresponding to the four controlling points,
19310 and returns a single angle. Besides those, we have to account for discrete
19311 moves at the actual points.
19313 @d mp_floor(a) (a>=0 ? (int)a : -(int)(-a))
19314 @d bezier_error (720*(256*256*16))+1
19315 @d mp_sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19316 @d mp_out(A) (double)((A)/(256*256*16))
19317 @d divisor (256*256)
19318 @d double2angle(a) (int)mp_floor(a*256.0*256.0*16.0)
19320 @<Declare unary action...@>=
19321 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19322 integer CX,integer CY,integer DX,integer DY);
19325 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19326 integer CX,integer CY,integer DX,integer DY) {
19328 integer deltax,deltay;
19329 double ax,ay,bx,by,cx,cy,dx,dy;
19330 angle xi = 0, xo = 0, xm = 0;
19332 ax=(double)(AX/divisor); ay=(double)(AY/divisor);
19333 bx=(double)(BX/divisor); by=(double)(BY/divisor);
19334 cx=(double)(CX/divisor); cy=(double)(CY/divisor);
19335 dx=(double)(DX/divisor); dy=(double)(DY/divisor);
19337 deltax = (BX-AX); deltay = (BY-AY);
19338 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19339 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19340 xi = mp_an_angle(mp,deltax,deltay);
19342 deltax = (CX-BX); deltay = (CY-BY);
19343 xm = mp_an_angle(mp,deltax,deltay);
19345 deltax = (DX-CX); deltay = (DY-CY);
19346 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19347 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19348 xo = mp_an_angle(mp,deltax,deltay);
19350 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19351 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19352 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19354 if ((a==0)&&(c==0)) {
19355 res = (b==0 ? 0 : (mp_out(xo)-mp_out(xi)));
19356 } else if ((a==0)||(c==0)) {
19357 if ((mp_sign(b) == mp_sign(a)) || (mp_sign(b) == mp_sign(c))) {
19358 res = mp_out(xo)-mp_out(xi); /* ? */
19361 else if (res>180.0)
19364 res = mp_out(xo)-mp_out(xi); /* ? */
19366 } else if ((mp_sign(a)*mp_sign(c))<0) {
19367 res = mp_out(xo)-mp_out(xi); /* ? */
19370 else if (res>180.0)
19373 if (mp_sign(a) == mp_sign(b)) {
19374 res = mp_out(xo)-mp_out(xi); /* ? */
19377 else if (res>180.0)
19380 if ((b*b) == (4*a*c)) {
19381 res = (double)bezier_error;
19382 } else if ((b*b) < (4*a*c)) {
19383 res = mp_out(xo)-mp_out(xi); /* ? */
19384 if (res<=0.0 &&res>-180.0)
19386 else if (res>=0.0 && res<180.0)
19389 res = mp_out(xo)-mp_out(xi);
19392 else if (res>180.0)
19397 return double2angle(res);
19401 @d p_nextnext mp_link(mp_link(p))
19402 @d p_next mp_link(p)
19403 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19405 @<Declare unary action...@>=
19406 scaled mp_new_turn_cycles (MP mp,pointer c) {
19407 angle res,ang; /* the angles of intermediate results */
19408 scaled turns; /* the turn counter */
19409 pointer p; /* for running around the path */
19410 integer xp,yp; /* coordinates of next point */
19411 integer x,y; /* helper coordinates */
19412 angle in_angle,out_angle; /* helper angles */
19413 unsigned old_setting; /* saved |selector| setting */
19417 old_setting = mp->selector; mp->selector=term_only;
19418 if ( mp->internal[mp_tracing_commands]>unity ) {
19419 mp_begin_diagnostic(mp);
19420 mp_print_nl(mp, "");
19421 mp_end_diagnostic(mp, false);
19424 xp = x_coord(p_next); yp = y_coord(p_next);
19425 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19426 left_x(p_next), left_y(p_next), xp, yp);
19427 if ( ang>seven_twenty_deg ) {
19428 print_err("Strange path");
19430 mp->selector=old_setting;
19434 if ( res > one_eighty_deg ) {
19435 res = res - three_sixty_deg;
19436 turns = turns + unity;
19438 if ( res <= -one_eighty_deg ) {
19439 res = res + three_sixty_deg;
19440 turns = turns - unity;
19442 /* incoming angle at next point */
19443 x = left_x(p_next); y = left_y(p_next);
19444 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19445 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19446 in_angle = mp_an_angle(mp, xp - x, yp - y);
19447 /* outgoing angle at next point */
19448 x = right_x(p_next); y = right_y(p_next);
19449 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19450 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19451 out_angle = mp_an_angle(mp, x - xp, y- yp);
19452 ang = (out_angle - in_angle);
19456 if ( res >= one_eighty_deg ) {
19457 res = res - three_sixty_deg;
19458 turns = turns + unity;
19460 if ( res <= -one_eighty_deg ) {
19461 res = res + three_sixty_deg;
19462 turns = turns - unity;
19467 mp->selector=old_setting;
19472 @ This code is based on Bogus\l{}av Jackowski's
19473 |emergency_turningnumber| macro, with some minor changes by Taco
19474 Hoekwater. The macro code looked more like this:
19476 vardef turning\_number primary p =
19477 ~~save res, ang, turns;
19479 ~~if length p <= 2:
19480 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19482 ~~~~for t = 0 upto length p-1 :
19483 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19484 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19485 ~~~~~~if angc > 180: angc := angc - 360; fi;
19486 ~~~~~~if angc < -180: angc := angc + 360; fi;
19487 ~~~~~~res := res + angc;
19492 The general idea is to calculate only the sum of the angles of
19493 straight lines between the points, of a path, not worrying about cusps
19494 or self-intersections in the segments at all. If the segment is not
19495 well-behaved, the result is not necesarily correct. But the old code
19496 was not always correct either, and worse, it sometimes failed for
19497 well-behaved paths as well. All known bugs that were triggered by the
19498 original code no longer occur with this code, and it runs roughly 3
19499 times as fast because the algorithm is much simpler.
19501 @ It is possible to overflow the return value of the |turn_cycles|
19502 function when the path is sufficiently long and winding, but I am not
19503 going to bother testing for that. In any case, it would only return
19504 the looped result value, which is not a big problem.
19506 The macro code for the repeat loop was a bit nicer to look
19507 at than the pascal code, because it could use |point -1 of p|. In
19508 pascal, the fastest way to loop around the path is not to look
19509 backward once, but forward twice. These defines help hide the trick.
19511 @d p_to mp_link(mp_link(p))
19512 @d p_here mp_link(p)
19515 @<Declare unary action...@>=
19516 scaled mp_turn_cycles (MP mp,pointer c) {
19517 angle res,ang; /* the angles of intermediate results */
19518 scaled turns; /* the turn counter */
19519 pointer p; /* for running around the path */
19520 res=0; turns= 0; p=c;
19522 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19523 y_coord(p_to) - y_coord(p_here))
19524 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19525 y_coord(p_here) - y_coord(p_from));
19528 if ( res >= three_sixty_deg ) {
19529 res = res - three_sixty_deg;
19530 turns = turns + unity;
19532 if ( res <= -three_sixty_deg ) {
19533 res = res + three_sixty_deg;
19534 turns = turns - unity;
19541 @ @<Declare unary action...@>=
19542 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19544 scaled saved_t_o; /* tracing\_online saved */
19545 if ( (mp_link(c)==c)||(mp_link(mp_link(c))==c) ) {
19546 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19551 nval = mp_new_turn_cycles(mp, c);
19552 oval = mp_turn_cycles(mp, c);
19553 if ( nval!=oval ) {
19554 saved_t_o=mp->internal[mp_tracing_online];
19555 mp->internal[mp_tracing_online]=unity;
19556 mp_begin_diagnostic(mp);
19557 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19558 " The current computed value is ");
19559 mp_print_scaled(mp, nval);
19560 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19561 mp_print_scaled(mp, oval);
19562 mp_end_diagnostic(mp, false);
19563 mp->internal[mp_tracing_online]=saved_t_o;
19569 @ @<Declare unary action...@>=
19570 scaled mp_count_turns (MP mp,pointer c) {
19571 pointer p; /* a knot in envelope spec |c| */
19572 integer t; /* total pen offset changes counted */
19575 t=t+info(p)-zero_off;
19578 return ((t / 3)*unity);
19581 @ @d type_range(A,B) {
19582 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19583 mp_flush_cur_exp(mp, true_code);
19584 else mp_flush_cur_exp(mp, false_code);
19585 mp->cur_type=mp_boolean_type;
19588 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19589 else mp_flush_cur_exp(mp, false_code);
19590 mp->cur_type=mp_boolean_type;
19593 @<Additional cases of unary operators@>=
19594 case mp_boolean_type:
19595 type_range(mp_boolean_type,mp_unknown_boolean); break;
19596 case mp_string_type:
19597 type_range(mp_string_type,mp_unknown_string); break;
19599 type_range(mp_pen_type,mp_unknown_pen); break;
19601 type_range(mp_path_type,mp_unknown_path); break;
19602 case mp_picture_type:
19603 type_range(mp_picture_type,mp_unknown_picture); break;
19604 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19606 type_test(c); break;
19607 case mp_numeric_type:
19608 type_range(mp_known,mp_independent); break;
19609 case known_op: case unknown_op:
19610 mp_test_known(mp, c); break;
19612 @ @<Declare unary action procedures@>=
19613 void mp_test_known (MP mp,quarterword c) {
19614 int b; /* is the current expression known? */
19615 pointer p,q; /* locations in a big node */
19617 switch (mp->cur_type) {
19618 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19619 case mp_pen_type: case mp_path_type: case mp_picture_type:
19623 case mp_transform_type:
19624 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19625 p=value(mp->cur_exp);
19626 q=p+mp->big_node_size[mp->cur_type];
19629 if ( type(q)!=mp_known )
19638 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19639 else mp_flush_cur_exp(mp, true_code+false_code-b);
19640 mp->cur_type=mp_boolean_type;
19643 @ @<Additional cases of unary operators@>=
19645 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19646 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19647 else mp_flush_cur_exp(mp, false_code);
19648 mp->cur_type=mp_boolean_type;
19651 @ @<Additional cases of unary operators@>=
19653 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19654 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19655 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19658 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19660 @^data structure assumptions@>
19662 @<Additional cases of unary operators@>=
19668 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19669 else if ( mp_link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19670 else if ( type(mp_link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19671 mp_flush_cur_exp(mp, true_code);
19672 else mp_flush_cur_exp(mp, false_code);
19673 mp->cur_type=mp_boolean_type;
19676 @ @<Additional cases of unary operators@>=
19678 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19679 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19681 mp->cur_type=mp_pen_type;
19682 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19686 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19688 mp->cur_type=mp_path_type;
19689 mp_make_path(mp, mp->cur_exp);
19693 if ( mp->cur_type==mp_path_type ) {
19694 p=mp_htap_ypoc(mp, mp->cur_exp);
19695 if ( right_type(p)==mp_endpoint ) p=mp_link(p);
19696 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19697 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19698 else mp_bad_unary(mp, reverse);
19701 @ The |pair_value| routine changes the current expression to a
19702 given ordered pair of values.
19704 @<Declare unary action procedures@>=
19705 void mp_pair_value (MP mp,scaled x, scaled y) {
19706 pointer p; /* a pair node */
19707 p=mp_get_node(mp, value_node_size);
19708 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19709 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19711 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19712 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19715 @ @<Additional cases of unary operators@>=
19717 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19718 else mp_pair_value(mp, minx,miny);
19721 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19722 else mp_pair_value(mp, maxx,miny);
19725 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19726 else mp_pair_value(mp, minx,maxy);
19729 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19730 else mp_pair_value(mp, maxx,maxy);
19733 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19734 box of the current expression. The boolean result is |false| if the expression
19735 has the wrong type.
19737 @<Declare unary action procedures@>=
19738 boolean mp_get_cur_bbox (MP mp) {
19739 switch (mp->cur_type) {
19740 case mp_picture_type:
19741 mp_set_bbox(mp, mp->cur_exp,true);
19742 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19743 minx=0; maxx=0; miny=0; maxy=0;
19745 minx=minx_val(mp->cur_exp);
19746 maxx=maxx_val(mp->cur_exp);
19747 miny=miny_val(mp->cur_exp);
19748 maxy=maxy_val(mp->cur_exp);
19752 mp_path_bbox(mp, mp->cur_exp);
19755 mp_pen_bbox(mp, mp->cur_exp);
19763 @ @<Additional cases of unary operators@>=
19765 case close_from_op:
19766 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19767 else mp_do_read_or_close(mp,c);
19770 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19771 a line from the file or to close the file.
19773 @<Declare unary action procedures@>=
19774 void mp_do_read_or_close (MP mp,quarterword c) {
19775 readf_index n,n0; /* indices for searching |rd_fname| */
19776 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19777 call |start_read_input| and |goto found| or |not_found|@>;
19778 mp_begin_file_reading(mp);
19780 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19782 mp_end_file_reading(mp);
19784 @<Record the end of file and set |cur_exp| to a dummy value@>;
19787 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19790 mp_flush_cur_exp(mp, 0);
19791 mp_finish_read(mp);
19794 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19797 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19802 fn = str(mp->cur_exp);
19803 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19806 } else if ( c==close_from_op ) {
19809 if ( n0==mp->read_files ) {
19810 if ( mp->read_files<mp->max_read_files ) {
19811 incr(mp->read_files);
19816 l = mp->max_read_files + (mp->max_read_files/4);
19817 rd_file = xmalloc((l+1), sizeof(void *));
19818 rd_fname = xmalloc((l+1), sizeof(char *));
19819 for (k=0;k<=l;k++) {
19820 if (k<=mp->max_read_files) {
19821 rd_file[k]=mp->rd_file[k];
19822 rd_fname[k]=mp->rd_fname[k];
19828 xfree(mp->rd_file); xfree(mp->rd_fname);
19829 mp->max_read_files = l;
19830 mp->rd_file = rd_file;
19831 mp->rd_fname = rd_fname;
19835 if ( mp_start_read_input(mp,fn,n) )
19840 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19842 if ( c==close_from_op ) {
19843 (mp->close_file)(mp,mp->rd_file[n]);
19848 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19849 xfree(mp->rd_fname[n]);
19850 mp->rd_fname[n]=NULL;
19851 if ( n==mp->read_files-1 ) mp->read_files=n;
19852 if ( c==close_from_op )
19854 mp_flush_cur_exp(mp, mp->eof_line);
19855 mp->cur_type=mp_string_type
19857 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19860 str_number eof_line;
19865 @ Finally, we have the operations that combine a capsule~|p|
19866 with the current expression.
19868 @d binary_return { mp_finish_binary(mp, old_p, old_exp); return; }
19870 @c @<Declare binary action procedures@>
19871 void mp_finish_binary (MP mp, pointer old_p, pointer old_exp ){
19873 @<Recycle any sidestepped |independent| capsules@>;
19875 void mp_do_binary (MP mp,pointer p, quarterword c) {
19876 pointer q,r,rr; /* for list manipulation */
19877 pointer old_p,old_exp; /* capsules to recycle */
19878 integer v; /* for numeric manipulation */
19880 if ( mp->internal[mp_tracing_commands]>two ) {
19881 @<Trace the current binary operation@>;
19883 @<Sidestep |independent| cases in capsule |p|@>;
19884 @<Sidestep |independent| cases in the current expression@>;
19886 case plus: case minus:
19887 @<Add or subtract the current expression from |p|@>;
19889 @<Additional cases of binary operators@>;
19890 }; /* there are no other cases */
19891 mp_recycle_value(mp, p);
19892 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19893 mp_finish_binary(mp, old_p, old_exp);
19896 @ @<Declare binary action...@>=
19897 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19898 mp_disp_err(mp, p,"");
19899 exp_err("Not implemented: ");
19900 @.Not implemented...@>
19901 if ( c>=min_of ) mp_print_op(mp, c);
19902 mp_print_known_or_unknown_type(mp, type(p),p);
19903 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19904 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19905 help3("I'm afraid I don't know how to apply that operation to that",
19906 "combination of types. Continue, and I'll return the second",
19907 "argument (see above) as the result of the operation.");
19908 mp_put_get_error(mp);
19910 void mp_bad_envelope_pen (MP mp) {
19911 mp_disp_err(mp, null,"");
19912 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19913 @.Not implemented...@>
19914 help3("I'm afraid I don't know how to apply that operation to that",
19915 "combination of types. Continue, and I'll return the second",
19916 "argument (see above) as the result of the operation.");
19917 mp_put_get_error(mp);
19920 @ @<Trace the current binary operation@>=
19922 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19923 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19924 mp_print_char(mp,xord(')')); mp_print_op(mp,c); mp_print_char(mp,xord('('));
19925 mp_print_exp(mp,null,0); mp_print(mp,")}");
19926 mp_end_diagnostic(mp, false);
19929 @ Several of the binary operations are potentially complicated by the
19930 fact that |independent| values can sneak into capsules. For example,
19931 we've seen an instance of this difficulty in the unary operation
19932 of negation. In order to reduce the number of cases that need to be
19933 handled, we first change the two operands (if necessary)
19934 to rid them of |independent| components. The original operands are
19935 put into capsules called |old_p| and |old_exp|, which will be
19936 recycled after the binary operation has been safely carried out.
19938 @<Recycle any sidestepped |independent| capsules@>=
19939 if ( old_p!=null ) {
19940 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19942 if ( old_exp!=null ) {
19943 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19946 @ A big node is considered to be ``tarnished'' if it contains at least one
19947 independent component. We will define a simple function called `|tarnished|'
19948 that returns |null| if and only if its argument is not tarnished.
19950 @<Sidestep |independent| cases in capsule |p|@>=
19952 case mp_transform_type:
19953 case mp_color_type:
19954 case mp_cmykcolor_type:
19956 old_p=mp_tarnished(mp, p);
19958 case mp_independent: old_p=mp_void; break;
19959 default: old_p=null; break;
19961 if ( old_p!=null ) {
19962 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19963 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19966 @ @<Sidestep |independent| cases in the current expression@>=
19967 switch (mp->cur_type) {
19968 case mp_transform_type:
19969 case mp_color_type:
19970 case mp_cmykcolor_type:
19972 old_exp=mp_tarnished(mp, mp->cur_exp);
19974 case mp_independent:old_exp=mp_void; break;
19975 default: old_exp=null; break;
19977 if ( old_exp!=null ) {
19978 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19981 @ @<Declare binary action...@>=
19982 pointer mp_tarnished (MP mp,pointer p) {
19983 pointer q; /* beginning of the big node */
19984 pointer r; /* current position in the big node */
19985 q=value(p); r=q+mp->big_node_size[type(p)];
19988 if ( type(r)==mp_independent ) return mp_void;
19993 @ @<Add or subtract the current expression from |p|@>=
19994 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19995 mp_bad_binary(mp, p,c);
19997 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19998 mp_add_or_subtract(mp, p,null,c);
20000 if ( mp->cur_type!=type(p) ) {
20001 mp_bad_binary(mp, p,c);
20003 q=value(p); r=value(mp->cur_exp);
20004 rr=r+mp->big_node_size[mp->cur_type];
20006 mp_add_or_subtract(mp, q,r,c);
20013 @ The first argument to |add_or_subtract| is the location of a value node
20014 in a capsule or pair node that will soon be recycled. The second argument
20015 is either a location within a pair or transform node of |cur_exp|,
20016 or it is null (which means that |cur_exp| itself should be the second
20017 argument). The third argument is either |plus| or |minus|.
20019 The sum or difference of the numeric quantities will replace the second
20020 operand. Arithmetic overflow may go undetected; users aren't supposed to
20021 be monkeying around with really big values.
20022 @^overflow in arithmetic@>
20024 @<Declare binary action...@>=
20025 @<Declare the procedure called |dep_finish|@>
20026 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20027 quarterword s,t; /* operand types */
20028 pointer r; /* list traverser */
20029 integer v; /* second operand value */
20032 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20035 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20037 if ( t==mp_known ) {
20038 if ( c==minus ) negate(v);
20039 if ( type(p)==mp_known ) {
20040 v=mp_slow_add(mp, value(p),v);
20041 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20044 @<Add a known value to the constant term of |dep_list(p)|@>;
20046 if ( c==minus ) mp_negate_dep_list(mp, v);
20047 @<Add operand |p| to the dependency list |v|@>;
20051 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20053 while ( info(r)!=null ) r=mp_link(r);
20054 value(r)=mp_slow_add(mp, value(r),v);
20056 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20057 name_type(q)=mp_capsule;
20059 dep_list(q)=dep_list(p); type(q)=type(p);
20060 prev_dep(q)=prev_dep(p); mp_link(prev_dep(p))=q;
20061 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20063 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20064 nice to retain the extra accuracy of |fraction| coefficients.
20065 But we have to handle both kinds, and mixtures too.
20067 @<Add operand |p| to the dependency list |v|@>=
20068 if ( type(p)==mp_known ) {
20069 @<Add the known |value(p)| to the constant term of |v|@>;
20071 s=type(p); r=dep_list(p);
20072 if ( t==mp_dependent ) {
20073 if ( s==mp_dependent ) {
20074 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20075 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20076 } /* |fix_needed| will necessarily be false */
20077 t=mp_proto_dependent;
20078 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20080 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20081 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20083 @<Output the answer, |v| (which might have become |known|)@>;
20086 @ @<Add the known |value(p)| to the constant term of |v|@>=
20088 while ( info(v)!=null ) v=mp_link(v);
20089 value(v)=mp_slow_add(mp, value(p),value(v));
20092 @ @<Output the answer, |v| (which might have become |known|)@>=
20093 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20094 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20096 @ Here's the current situation: The dependency list |v| of type |t|
20097 should either be put into the current expression (if |q=null|) or
20098 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20099 or |q|) formerly held a dependency list with the same
20100 final pointer as the list |v|.
20102 @<Declare the procedure called |dep_finish|@>=
20103 void mp_dep_finish (MP mp, pointer v, pointer q, quarterword t) {
20104 pointer p; /* the destination */
20105 scaled vv; /* the value, if it is |known| */
20106 if ( q==null ) p=mp->cur_exp; else p=q;
20107 dep_list(p)=v; type(p)=t;
20108 if ( info(v)==null ) {
20111 mp_flush_cur_exp(mp, vv);
20113 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20115 } else if ( q==null ) {
20118 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20121 @ Let's turn now to the six basic relations of comparison.
20123 @<Additional cases of binary operators@>=
20124 case less_than: case less_or_equal: case greater_than:
20125 case greater_or_equal: case equal_to: case unequal_to:
20126 check_arith; /* at this point |arith_error| should be |false|? */
20127 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20128 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20129 } else if ( mp->cur_type!=type(p) ) {
20130 mp_bad_binary(mp, p,c); goto DONE;
20131 } else if ( mp->cur_type==mp_string_type ) {
20132 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20133 } else if ((mp->cur_type==mp_unknown_string)||
20134 (mp->cur_type==mp_unknown_boolean) ) {
20135 @<Check if unknowns have been equated@>;
20136 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20137 @<Reduce comparison of big nodes to comparison of scalars@>;
20138 } else if ( mp->cur_type==mp_boolean_type ) {
20139 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20141 mp_bad_binary(mp, p,c); goto DONE;
20143 @<Compare the current expression with zero@>;
20145 mp->arith_error=false; /* ignore overflow in comparisons */
20148 @ @<Compare the current expression with zero@>=
20149 if ( mp->cur_type!=mp_known ) {
20150 if ( mp->cur_type<mp_known ) {
20151 mp_disp_err(mp, p,"");
20152 help1("The quantities shown above have not been equated.")
20154 help2("Oh dear. I can\'t decide if the expression above is positive,",
20155 "negative, or zero. So this comparison test won't be `true'.");
20157 exp_err("Unknown relation will be considered false");
20158 @.Unknown relation...@>
20159 mp_put_get_flush_error(mp, false_code);
20162 case less_than: boolean_reset(mp->cur_exp<0); break;
20163 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20164 case greater_than: boolean_reset(mp->cur_exp>0); break;
20165 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20166 case equal_to: boolean_reset(mp->cur_exp==0); break;
20167 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20168 }; /* there are no other cases */
20170 mp->cur_type=mp_boolean_type
20172 @ When two unknown strings are in the same ring, we know that they are
20173 equal. Otherwise, we don't know whether they are equal or not, so we
20176 @<Check if unknowns have been equated@>=
20178 q=value(mp->cur_exp);
20179 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20180 if ( q==p ) mp_flush_cur_exp(mp, 0);
20183 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20185 q=value(p); r=value(mp->cur_exp);
20186 rr=r+mp->big_node_size[mp->cur_type]-2;
20187 while (1) { mp_add_or_subtract(mp, q,r,minus);
20188 if ( type(r)!=mp_known ) break;
20189 if ( value(r)!=0 ) break;
20190 if ( r==rr ) break;
20193 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20196 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20198 @<Additional cases of binary operators@>=
20201 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20202 mp_bad_binary(mp, p,c);
20203 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20206 @ @<Additional cases of binary operators@>=
20208 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20209 mp_bad_binary(mp, p,times);
20210 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20211 @<Multiply when at least one operand is known@>;
20212 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20213 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20214 (type(p)>mp_pair_type)) ) {
20215 mp_hard_times(mp, p);
20218 mp_bad_binary(mp, p,times);
20222 @ @<Multiply when at least one operand is known@>=
20224 if ( type(p)==mp_known ) {
20225 v=value(p); mp_free_node(mp, p,value_node_size);
20227 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20229 if ( mp->cur_type==mp_known ) {
20230 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20231 } else if ( (mp->cur_type==mp_pair_type)||
20232 (mp->cur_type==mp_color_type)||
20233 (mp->cur_type==mp_cmykcolor_type) ) {
20234 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20236 p=p-2; mp_dep_mult(mp, p,v,true);
20237 } while (p!=value(mp->cur_exp));
20239 mp_dep_mult(mp, null,v,true);
20244 @ @<Declare binary action...@>=
20245 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20246 pointer q; /* the dependency list being multiplied by |v| */
20247 quarterword s,t; /* its type, before and after */
20250 } else if ( type(p)!=mp_known ) {
20253 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20254 else value(p)=mp_take_fraction(mp, value(p),v);
20257 t=type(q); q=dep_list(q); s=t;
20258 if ( t==mp_dependent ) if ( v_is_scaled )
20259 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20260 t=mp_proto_dependent;
20261 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20262 mp_dep_finish(mp, q,p,t);
20265 @ Here is a routine that is similar to |times|; but it is invoked only
20266 internally, when |v| is a |fraction| whose magnitude is at most~1,
20267 and when |cur_type>=mp_color_type|.
20269 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20270 /* multiplies |cur_exp| by |n/d| */
20271 pointer p; /* a pair node */
20272 pointer old_exp; /* a capsule to recycle */
20273 fraction v; /* |n/d| */
20274 if ( mp->internal[mp_tracing_commands]>two ) {
20275 @<Trace the fraction multiplication@>;
20277 switch (mp->cur_type) {
20278 case mp_transform_type:
20279 case mp_color_type:
20280 case mp_cmykcolor_type:
20282 old_exp=mp_tarnished(mp, mp->cur_exp);
20284 case mp_independent: old_exp=mp_void; break;
20285 default: old_exp=null; break;
20287 if ( old_exp!=null ) {
20288 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20290 v=mp_make_fraction(mp, n,d);
20291 if ( mp->cur_type==mp_known ) {
20292 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20293 } else if ( mp->cur_type<=mp_pair_type ) {
20294 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20297 mp_dep_mult(mp, p,v,false);
20298 } while (p!=value(mp->cur_exp));
20300 mp_dep_mult(mp, null,v,false);
20302 if ( old_exp!=null ) {
20303 mp_recycle_value(mp, old_exp);
20304 mp_free_node(mp, old_exp,value_node_size);
20308 @ @<Trace the fraction multiplication@>=
20310 mp_begin_diagnostic(mp);
20311 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,xord('/'));
20312 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20314 mp_end_diagnostic(mp, false);
20317 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20319 @<Declare binary action procedures@>=
20320 void mp_hard_times (MP mp,pointer p) {
20321 pointer q; /* a copy of the dependent variable |p| */
20322 pointer r; /* a component of the big node for the nice color or pair */
20323 scaled v; /* the known value for |r| */
20324 if ( type(p)<=mp_pair_type ) {
20325 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20326 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20327 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20332 if ( r==value(mp->cur_exp) )
20334 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20335 mp_dep_mult(mp, r,v,true);
20337 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20338 mp_link(prev_dep(p))=r;
20339 mp_free_node(mp, p,value_node_size);
20340 mp_dep_mult(mp, r,v,true);
20343 @ @<Additional cases of binary operators@>=
20345 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20346 mp_bad_binary(mp, p,over);
20348 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20350 @<Squeal about division by zero@>;
20352 if ( mp->cur_type==mp_known ) {
20353 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20354 } else if ( mp->cur_type<=mp_pair_type ) {
20355 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20357 p=p-2; mp_dep_div(mp, p,v);
20358 } while (p!=value(mp->cur_exp));
20360 mp_dep_div(mp, null,v);
20367 @ @<Declare binary action...@>=
20368 void mp_dep_div (MP mp,pointer p, scaled v) {
20369 pointer q; /* the dependency list being divided by |v| */
20370 quarterword s,t; /* its type, before and after */
20371 if ( p==null ) q=mp->cur_exp;
20372 else if ( type(p)!=mp_known ) q=p;
20373 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20374 t=type(q); q=dep_list(q); s=t;
20375 if ( t==mp_dependent )
20376 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20377 t=mp_proto_dependent;
20378 q=mp_p_over_v(mp, q,v,s,t);
20379 mp_dep_finish(mp, q,p,t);
20382 @ @<Squeal about division by zero@>=
20384 exp_err("Division by zero");
20385 @.Division by zero@>
20386 help2("You're trying to divide the quantity shown above the error",
20387 "message by zero. I'm going to divide it by one instead.");
20388 mp_put_get_error(mp);
20391 @ @<Additional cases of binary operators@>=
20394 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20395 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20396 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20397 } else mp_bad_binary(mp, p,c);
20400 @ The next few sections of the program deal with affine transformations
20401 of coordinate data.
20403 @<Additional cases of binary operators@>=
20404 case rotated_by: case slanted_by:
20405 case scaled_by: case shifted_by: case transformed_by:
20406 case x_scaled: case y_scaled: case z_scaled:
20407 if ( type(p)==mp_path_type ) {
20408 path_trans(c,p); binary_return;
20409 } else if ( type(p)==mp_pen_type ) {
20411 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20412 /* rounding error could destroy convexity */
20414 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20415 mp_big_trans(mp, p,c);
20416 } else if ( type(p)==mp_picture_type ) {
20417 mp_do_edges_trans(mp, p,c); binary_return;
20419 mp_bad_binary(mp, p,c);
20423 @ Let |c| be one of the eight transform operators. The procedure call
20424 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20425 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20426 change at all if |c=transformed_by|.)
20428 Then, if all components of the resulting transform are |known|, they are
20429 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20430 and |cur_exp| is changed to the known value zero.
20432 @<Declare binary action...@>=
20433 void mp_set_up_trans (MP mp,quarterword c) {
20434 pointer p,q,r; /* list manipulation registers */
20435 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20436 @<Put the current transform into |cur_exp|@>;
20438 @<If the current transform is entirely known, stash it in global variables;
20439 otherwise |return|@>;
20448 scaled ty; /* current transform coefficients */
20450 @ @<Put the current transform...@>=
20452 p=mp_stash_cur_exp(mp);
20453 mp->cur_exp=mp_id_transform(mp);
20454 mp->cur_type=mp_transform_type;
20455 q=value(mp->cur_exp);
20457 @<For each of the eight cases, change the relevant fields of |cur_exp|
20459 but do nothing if capsule |p| doesn't have the appropriate type@>;
20460 }; /* there are no other cases */
20461 mp_disp_err(mp, p,"Improper transformation argument");
20462 @.Improper transformation argument@>
20463 help3("The expression shown above has the wrong type,",
20464 "so I can\'t transform anything using it.",
20465 "Proceed, and I'll omit the transformation.");
20466 mp_put_get_error(mp);
20468 mp_recycle_value(mp, p);
20469 mp_free_node(mp, p,value_node_size);
20472 @ @<If the current transform is entirely known, ...@>=
20473 q=value(mp->cur_exp); r=q+transform_node_size;
20476 if ( type(r)!=mp_known ) return;
20478 mp->txx=value(xx_part_loc(q));
20479 mp->txy=value(xy_part_loc(q));
20480 mp->tyx=value(yx_part_loc(q));
20481 mp->tyy=value(yy_part_loc(q));
20482 mp->tx=value(x_part_loc(q));
20483 mp->ty=value(y_part_loc(q));
20484 mp_flush_cur_exp(mp, 0)
20486 @ @<For each of the eight cases...@>=
20488 if ( type(p)==mp_known )
20489 @<Install sines and cosines, then |goto done|@>;
20492 if ( type(p)>mp_pair_type ) {
20493 mp_install(mp, xy_part_loc(q),p); goto DONE;
20497 if ( type(p)>mp_pair_type ) {
20498 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20503 if ( type(p)==mp_pair_type ) {
20504 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20505 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20509 if ( type(p)>mp_pair_type ) {
20510 mp_install(mp, xx_part_loc(q),p); goto DONE;
20514 if ( type(p)>mp_pair_type ) {
20515 mp_install(mp, yy_part_loc(q),p); goto DONE;
20519 if ( type(p)==mp_pair_type )
20520 @<Install a complex multiplier, then |goto done|@>;
20522 case transformed_by:
20526 @ @<Install sines and cosines, then |goto done|@>=
20527 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20528 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20529 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20530 value(xy_part_loc(q))=-value(yx_part_loc(q));
20531 value(yy_part_loc(q))=value(xx_part_loc(q));
20535 @ @<Install a complex multiplier, then |goto done|@>=
20538 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20539 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20540 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20541 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20542 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20543 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20547 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20548 insists that the transformation be entirely known.
20550 @<Declare binary action...@>=
20551 void mp_set_up_known_trans (MP mp,quarterword c) {
20552 mp_set_up_trans(mp, c);
20553 if ( mp->cur_type!=mp_known ) {
20554 exp_err("Transform components aren't all known");
20555 @.Transform components...@>
20556 help3("I'm unable to apply a partially specified transformation",
20557 "except to a fully known pair or transform.",
20558 "Proceed, and I'll omit the transformation.");
20559 mp_put_get_flush_error(mp, 0);
20560 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20561 mp->tx=0; mp->ty=0;
20565 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20566 coordinates in locations |p| and~|q|.
20568 @<Declare binary action...@>=
20569 void mp_trans (MP mp,pointer p, pointer q) {
20570 scaled v; /* the new |x| value */
20571 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20572 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20573 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20574 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20578 @ The simplest transformation procedure applies a transform to all
20579 coordinates of a path. The |path_trans(c)(p)| macro applies
20580 a transformation defined by |cur_exp| and the transform operator |c|
20583 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20584 mp_unstash_cur_exp(mp, (B));
20585 mp_do_path_trans(mp, mp->cur_exp); }
20587 @<Declare binary action...@>=
20588 void mp_do_path_trans (MP mp,pointer p) {
20589 pointer q; /* list traverser */
20592 if ( left_type(q)!=mp_endpoint )
20593 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20594 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20595 if ( right_type(q)!=mp_endpoint )
20596 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20597 @^data structure assumptions@>
20602 @ Transforming a pen is very similar, except that there are no |left_type|
20603 and |right_type| fields.
20605 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20606 mp_unstash_cur_exp(mp, (B));
20607 mp_do_pen_trans(mp, mp->cur_exp); }
20609 @<Declare binary action...@>=
20610 void mp_do_pen_trans (MP mp,pointer p) {
20611 pointer q; /* list traverser */
20612 if ( pen_is_elliptical(p) ) {
20613 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20614 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20618 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20619 @^data structure assumptions@>
20624 @ The next transformation procedure applies to edge structures. It will do
20625 any transformation, but the results may be substandard if the picture contains
20626 text that uses downloaded bitmap fonts. The binary action procedure is
20627 |do_edges_trans|, but we also need a function that just scales a picture.
20628 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20629 should be thought of as procedures that update an edge structure |h|, except
20630 that they have to return a (possibly new) structure because of the need to call
20633 @<Declare binary action...@>=
20634 pointer mp_edges_trans (MP mp, pointer h) {
20635 pointer q; /* the object being transformed */
20636 pointer r,s; /* for list manipulation */
20637 scaled sx,sy; /* saved transformation parameters */
20638 scaled sqdet; /* square root of determinant for |dash_scale| */
20639 integer sgndet; /* sign of the determinant */
20640 scaled v; /* a temporary value */
20641 h=mp_private_edges(mp, h);
20642 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20643 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20644 if ( dash_list(h)!=null_dash ) {
20645 @<Try to transform the dash list of |h|@>;
20647 @<Make the bounding box of |h| unknown if it can't be updated properly
20648 without scanning the whole structure@>;
20649 q=mp_link(dummy_loc(h));
20650 while ( q!=null ) {
20651 @<Transform graphical object |q|@>;
20656 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20657 mp_set_up_known_trans(mp, c);
20658 value(p)=mp_edges_trans(mp, value(p));
20659 mp_unstash_cur_exp(mp, p);
20661 void mp_scale_edges (MP mp) {
20662 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20663 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20664 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20667 @ @<Try to transform the dash list of |h|@>=
20668 if ( (mp->txy!=0)||(mp->tyx!=0)||
20669 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20670 mp_flush_dash_list(mp, h);
20672 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20673 @<Scale the dash list by |txx| and shift it by |tx|@>;
20674 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20677 @ @<Reverse the dash list of |h|@>=
20680 dash_list(h)=null_dash;
20681 while ( r!=null_dash ) {
20683 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20684 mp_link(s)=dash_list(h);
20689 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20691 while ( r!=null_dash ) {
20692 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20693 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20697 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20698 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20699 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20700 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20701 mp_init_bbox(mp, h);
20704 if ( minx_val(h)<=maxx_val(h) ) {
20705 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20712 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20714 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20715 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20718 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20721 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20723 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20724 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20725 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20726 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20727 if ( mp->txx+mp->txy<0 ) {
20728 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20730 if ( mp->tyx+mp->tyy<0 ) {
20731 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20735 @ Now we ready for the main task of transforming the graphical objects in edge
20738 @<Transform graphical object |q|@>=
20740 case mp_fill_code: case mp_stroked_code:
20741 mp_do_path_trans(mp, path_p(q));
20742 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20744 case mp_start_clip_code: case mp_start_bounds_code:
20745 mp_do_path_trans(mp, path_p(q));
20749 @<Transform the compact transformation starting at |r|@>;
20751 case mp_stop_clip_code: case mp_stop_bounds_code:
20753 } /* there are no other cases */
20755 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20756 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20757 since the \ps\ output procedures will try to compensate for the transformation
20758 we are applying to |pen_p(q)|. Since this compensation is based on the square
20759 root of the determinant, |sqdet| is the appropriate factor.
20761 @<Transform |pen_p(q)|, making sure...@>=
20762 if ( pen_p(q)!=null ) {
20763 sx=mp->tx; sy=mp->ty;
20764 mp->tx=0; mp->ty=0;
20765 mp_do_pen_trans(mp, pen_p(q));
20766 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20767 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20768 if ( ! pen_is_elliptical(pen_p(q)) )
20770 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20771 /* this unreverses the pen */
20772 mp->tx=sx; mp->ty=sy;
20775 @ This uses the fact that transformations are stored in the order
20776 |(tx,ty,txx,txy,tyx,tyy)|.
20777 @^data structure assumptions@>
20779 @<Transform the compact transformation starting at |r|@>=
20780 mp_trans(mp, r,r+1);
20781 sx=mp->tx; sy=mp->ty;
20782 mp->tx=0; mp->ty=0;
20783 mp_trans(mp, r+2,r+4);
20784 mp_trans(mp, r+3,r+5);
20785 mp->tx=sx; mp->ty=sy
20787 @ The hard cases of transformation occur when big nodes are involved,
20788 and when some of their components are unknown.
20790 @<Declare binary action...@>=
20791 @<Declare subroutines needed by |big_trans|@>
20792 void mp_big_trans (MP mp,pointer p, quarterword c) {
20793 pointer q,r,pp,qq; /* list manipulation registers */
20794 quarterword s; /* size of a big node */
20795 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20798 if ( type(r)!=mp_known ) {
20799 @<Transform an unknown big node and |return|@>;
20802 @<Transform a known big node@>;
20803 } /* node |p| will now be recycled by |do_binary| */
20805 @ @<Transform an unknown big node and |return|@>=
20807 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20808 r=value(mp->cur_exp);
20809 if ( mp->cur_type==mp_transform_type ) {
20810 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20811 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20812 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20813 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20815 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20816 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20820 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20821 and let |q| point to a another value field. The |bilin1| procedure
20822 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20824 @<Declare subroutines needed by |big_trans|@>=
20825 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20826 scaled u, scaled delta) {
20827 pointer r; /* list traverser */
20828 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20830 if ( type(q)==mp_known ) {
20831 delta+=mp_take_scaled(mp, value(q),u);
20833 @<Ensure that |type(p)=mp_proto_dependent|@>;
20834 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20835 mp_proto_dependent,type(q));
20838 if ( type(p)==mp_known ) {
20842 while ( info(r)!=null ) r=mp_link(r);
20844 if ( r!=dep_list(p) ) value(r)=delta;
20845 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20847 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20850 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20851 if ( type(p)!=mp_proto_dependent ) {
20852 if ( type(p)==mp_known )
20853 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20855 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20856 mp_proto_dependent,true);
20857 type(p)=mp_proto_dependent;
20860 @ @<Transform a known big node@>=
20861 mp_set_up_trans(mp, c);
20862 if ( mp->cur_type==mp_known ) {
20863 @<Transform known by known@>;
20865 pp=mp_stash_cur_exp(mp); qq=value(pp);
20866 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20867 if ( mp->cur_type==mp_transform_type ) {
20868 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20869 value(xy_part_loc(q)),yx_part_loc(qq),null);
20870 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20871 value(xx_part_loc(q)),yx_part_loc(qq),null);
20872 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20873 value(yy_part_loc(q)),xy_part_loc(qq),null);
20874 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20875 value(yx_part_loc(q)),xy_part_loc(qq),null);
20877 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20878 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20879 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20880 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20881 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20884 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20885 at |dep_final|. The following procedure adds |v| times another
20886 numeric quantity to~|p|.
20888 @<Declare subroutines needed by |big_trans|@>=
20889 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20890 if ( type(r)==mp_known ) {
20891 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20893 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20894 mp_proto_dependent,type(r));
20895 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20899 @ The |bilin2| procedure is something like |bilin1|, but with known
20900 and unknown quantities reversed. Parameter |p| points to a value field
20901 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20902 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20903 unless it is |null| (which stands for zero). Location~|p| will be
20904 replaced by $p\cdot t+v\cdot u+q$.
20906 @<Declare subroutines needed by |big_trans|@>=
20907 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20908 pointer u, pointer q) {
20909 scaled vv; /* temporary storage for |value(p)| */
20910 vv=value(p); type(p)=mp_proto_dependent;
20911 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20913 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20914 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20915 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20916 if ( dep_list(p)==mp->dep_final ) {
20917 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20918 type(p)=mp_known; value(p)=vv;
20922 @ @<Transform known by known@>=
20924 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20925 if ( mp->cur_type==mp_transform_type ) {
20926 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20927 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20928 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20929 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20931 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20932 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20935 @ Finally, in |bilin3| everything is |known|.
20937 @<Declare subroutines needed by |big_trans|@>=
20938 void mp_bilin3 (MP mp,pointer p, scaled t,
20939 scaled v, scaled u, scaled delta) {
20941 delta+=mp_take_scaled(mp, value(p),t);
20944 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20945 else value(p)=delta;
20948 @ @<Additional cases of binary operators@>=
20950 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20951 else mp_bad_binary(mp, p,concatenate);
20954 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20955 mp_chop_string(mp, value(p));
20956 else mp_bad_binary(mp, p,substring_of);
20959 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20960 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20961 mp_chop_path(mp, value(p));
20962 else mp_bad_binary(mp, p,subpath_of);
20965 @ @<Declare binary action...@>=
20966 void mp_cat (MP mp,pointer p) {
20967 str_number a,b; /* the strings being concatenated */
20968 pool_pointer k; /* index into |str_pool| */
20969 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20970 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20971 append_char(mp->str_pool[k]);
20973 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20974 append_char(mp->str_pool[k]);
20976 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20979 @ @<Declare binary action...@>=
20980 void mp_chop_string (MP mp,pointer p) {
20981 integer a, b; /* start and stop points */
20982 integer l; /* length of the original string */
20983 integer k; /* runs from |a| to |b| */
20984 str_number s; /* the original string */
20985 boolean reversed; /* was |a>b|? */
20986 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20987 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20988 if ( a<=b ) reversed=false;
20989 else { reversed=true; k=a; a=b; b=k; };
20990 s=mp->cur_exp; l=length(s);
21001 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21002 append_char(mp->str_pool[k]);
21005 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21006 append_char(mp->str_pool[k]);
21009 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21012 @ @<Declare binary action...@>=
21013 void mp_chop_path (MP mp,pointer p) {
21014 pointer q; /* a knot in the original path */
21015 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21016 scaled a,b,k,l; /* indices for chopping */
21017 boolean reversed; /* was |a>b|? */
21018 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21019 if ( a<=b ) reversed=false;
21020 else { reversed=true; k=a; a=b; b=k; };
21021 @<Dispense with the cases |a<0| and/or |b>l|@>;
21023 while ( a>=unity ) {
21024 q=mp_link(q); a=a-unity; b=b-unity;
21027 @<Construct a path from |pp| to |qq| of length zero@>;
21029 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21031 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; mp_link(qq)=pp;
21032 mp_toss_knot_list(mp, mp->cur_exp);
21034 mp->cur_exp=mp_link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21040 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21042 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21043 a=0; if ( b<0 ) b=0;
21045 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21049 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21050 b=l; if ( a>l ) a=l;
21058 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21060 pp=mp_copy_knot(mp, q); qq=pp;
21062 q=mp_link(q); rr=qq; qq=mp_copy_knot(mp, q); mp_link(rr)=qq; b=b-unity;
21065 ss=pp; pp=mp_link(pp);
21066 mp_split_cubic(mp, ss,a*010000); pp=mp_link(ss);
21067 mp_free_node(mp, ss,knot_node_size);
21069 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21073 mp_split_cubic(mp, rr,(b+unity)*010000);
21074 mp_free_node(mp, qq,knot_node_size);
21079 @ @<Construct a path from |pp| to |qq| of length zero@>=
21081 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=mp_link(q); };
21082 pp=mp_copy_knot(mp, q); qq=pp;
21085 @ @<Additional cases of binary operators@>=
21086 case point_of: case precontrol_of: case postcontrol_of:
21087 if ( mp->cur_type==mp_pair_type )
21088 mp_pair_to_path(mp);
21089 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21090 mp_find_point(mp, value(p),c);
21092 mp_bad_binary(mp, p,c);
21094 case pen_offset_of:
21095 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21096 mp_set_up_offset(mp, value(p));
21098 mp_bad_binary(mp, p,pen_offset_of);
21100 case direction_time_of:
21101 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21102 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21103 mp_set_up_direction_time(mp, value(p));
21105 mp_bad_binary(mp, p,direction_time_of);
21108 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21109 mp_bad_binary(mp, p,envelope_of);
21111 mp_set_up_envelope(mp, p);
21114 @ @<Declare binary action...@>=
21115 void mp_set_up_offset (MP mp,pointer p) {
21116 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21117 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21119 void mp_set_up_direction_time (MP mp,pointer p) {
21120 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21121 value(y_part_loc(p)),mp->cur_exp));
21123 void mp_set_up_envelope (MP mp,pointer p) {
21124 quarterword ljoin, lcap;
21126 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21127 /* TODO: accept elliptical pens for straight paths */
21128 if (pen_is_elliptical(value(p))) {
21129 mp_bad_envelope_pen(mp);
21131 mp->cur_type = mp_path_type;
21134 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21135 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21137 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21138 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21140 if ( mp->internal[mp_miterlimit]<unity )
21143 miterlim=mp->internal[mp_miterlimit];
21144 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21145 mp->cur_type = mp_path_type;
21148 @ @<Declare binary action...@>=
21149 void mp_find_point (MP mp,scaled v, quarterword c) {
21150 pointer p; /* the path */
21151 scaled n; /* its length */
21153 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21154 do { p=mp_link(p); n=n+unity; } while (p!=mp->cur_exp);
21157 } else if ( v<0 ) {
21158 if ( left_type(p)==mp_endpoint ) v=0;
21159 else v=n-1-((-v-1) % n);
21160 } else if ( v>n ) {
21161 if ( left_type(p)==mp_endpoint ) v=n;
21165 while ( v>=unity ) { p=mp_link(p); v=v-unity; };
21167 @<Insert a fractional node by splitting the cubic@>;
21169 @<Set the current expression to the desired path coordinates@>;
21172 @ @<Insert a fractional node...@>=
21173 { mp_split_cubic(mp, p,v*010000); p=mp_link(p); }
21175 @ @<Set the current expression to the desired path coordinates...@>=
21178 mp_pair_value(mp, x_coord(p),y_coord(p));
21180 case precontrol_of:
21181 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21182 else mp_pair_value(mp, left_x(p),left_y(p));
21184 case postcontrol_of:
21185 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21186 else mp_pair_value(mp, right_x(p),right_y(p));
21188 } /* there are no other cases */
21190 @ @<Additional cases of binary operators@>=
21192 if ( mp->cur_type==mp_pair_type )
21193 mp_pair_to_path(mp);
21194 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21195 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21197 mp_bad_binary(mp, p,c);
21200 @ @<Additional cases of bin...@>=
21202 if ( type(p)==mp_pair_type ) {
21203 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21204 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21206 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21207 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21208 mp_path_intersection(mp, value(p),mp->cur_exp);
21209 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21211 mp_bad_binary(mp, p,intersect);
21215 @ @<Additional cases of bin...@>=
21217 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21218 mp_bad_binary(mp, p,in_font);
21219 else { mp_do_infont(mp, p); binary_return; }
21222 @ Function |new_text_node| owns the reference count for its second argument
21223 (the text string) but not its first (the font name).
21225 @<Declare binary action...@>=
21226 void mp_do_infont (MP mp,pointer p) {
21228 q=mp_get_node(mp, edge_header_size);
21229 mp_init_edges(mp, q);
21230 mp_link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21231 obj_tail(q)=mp_link(obj_tail(q));
21232 mp_free_node(mp, p,value_node_size);
21233 mp_flush_cur_exp(mp, q);
21234 mp->cur_type=mp_picture_type;
21237 @* \[40] Statements and commands.
21238 The chief executive of \MP\ is the |do_statement| routine, which
21239 contains the master switch that causes all the various pieces of \MP\
21240 to do their things, in the right order.
21242 In a sense, this is the grand climax of the program: It applies all the
21243 tools that we have worked so hard to construct. In another sense, this is
21244 the messiest part of the program: It necessarily refers to other pieces
21245 of code all over the place, so that a person can't fully understand what is
21246 going on without paging back and forth to be reminded of conventions that
21247 are defined elsewhere. We are now at the hub of the web.
21249 The structure of |do_statement| itself is quite simple. The first token
21250 of the statement is fetched using |get_x_next|. If it can be the first
21251 token of an expression, we look for an equation, an assignment, or a
21252 title. Otherwise we use a \&{case} construction to branch at high speed to
21253 the appropriate routine for various and sundry other types of commands,
21254 each of which has an ``action procedure'' that does the necessary work.
21256 The program uses the fact that
21257 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21258 to interpret a statement that starts with, e.g., `\&{string}',
21259 as a type declaration rather than a boolean expression.
21261 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21262 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21263 if ( mp->cur_cmd>max_primary_command ) {
21264 @<Worry about bad statement@>;
21265 } else if ( mp->cur_cmd>max_statement_command ) {
21266 @<Do an equation, assignment, title, or
21267 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21269 @<Do a statement that doesn't begin with an expression@>;
21271 if ( mp->cur_cmd<semicolon )
21272 @<Flush unparsable junk that was found after the statement@>;
21276 @ @<Declarations@>=
21277 @<Declare action procedures for use by |do_statement|@>
21279 @ The only command codes |>max_primary_command| that can be present
21280 at the beginning of a statement are |semicolon| and higher; these
21281 occur when the statement is null.
21283 @<Worry about bad statement@>=
21285 if ( mp->cur_cmd<semicolon ) {
21286 print_err("A statement can't begin with `");
21287 @.A statement can't begin with x@>
21288 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, xord('\''));
21289 help5("I was looking for the beginning of a new statement.",
21290 "If you just proceed without changing anything, I'll ignore",
21291 "everything up to the next `;'. Please insert a semicolon",
21292 "now in front of anything that you don't want me to delete.",
21293 "(See Chapter 27 of The METAFONTbook for an example.)");
21294 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21295 mp_back_error(mp); mp_get_x_next(mp);
21299 @ The help message printed here says that everything is flushed up to
21300 a semicolon, but actually the commands |end_group| and |stop| will
21301 also terminate a statement.
21303 @<Flush unparsable junk that was found after the statement@>=
21305 print_err("Extra tokens will be flushed");
21306 @.Extra tokens will be flushed@>
21307 help6("I've just read as much of that statement as I could fathom,",
21308 "so a semicolon should have been next. It's very puzzling...",
21309 "but I'll try to get myself back together, by ignoring",
21310 "everything up to the next `;'. Please insert a semicolon",
21311 "now in front of anything that you don't want me to delete.",
21312 "(See Chapter 27 of The METAFONTbook for an example.)");
21313 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21314 mp_back_error(mp); mp->scanner_status=flushing;
21317 @<Decrease the string reference count...@>;
21318 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21319 mp->scanner_status=normal;
21322 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21323 |cur_type=mp_vacuous| unless the statement was simply an expression;
21324 in the latter case, |cur_type| and |cur_exp| should represent that
21327 @<Do a statement that doesn't...@>=
21329 if ( mp->internal[mp_tracing_commands]>0 )
21331 switch (mp->cur_cmd ) {
21332 case type_name:mp_do_type_declaration(mp); break;
21334 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21335 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21337 @<Cases of |do_statement| that invoke particular commands@>;
21338 } /* there are no other cases */
21339 mp->cur_type=mp_vacuous;
21342 @ The most important statements begin with expressions.
21344 @<Do an equation, assignment, title, or...@>=
21346 mp->var_flag=assignment; mp_scan_expression(mp);
21347 if ( mp->cur_cmd<end_group ) {
21348 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21349 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21350 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21351 else if ( mp->cur_type!=mp_vacuous ){
21352 exp_err("Isolated expression");
21353 @.Isolated expression@>
21354 help3("I couldn't find an `=' or `:=' after the",
21355 "expression that is shown above this error message,",
21356 "so I guess I'll just ignore it and carry on.");
21357 mp_put_get_error(mp);
21359 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21365 if ( mp->internal[mp_tracing_titles]>0 ) {
21366 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21370 @ Equations and assignments are performed by the pair of mutually recursive
21372 routines |do_equation| and |do_assignment|. These routines are called when
21373 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21374 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21375 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21376 will be equal to the right-hand side (which will normally be equal
21377 to the left-hand side).
21379 @<Declare action procedures for use by |do_statement|@>=
21380 @<Declare the procedure called |try_eq|@>
21381 @<Declare the procedure called |make_eq|@>
21382 void mp_do_equation (MP mp) ;
21385 void mp_do_equation (MP mp) {
21386 pointer lhs; /* capsule for the left-hand side */
21387 pointer p; /* temporary register */
21388 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21389 mp->var_flag=assignment; mp_scan_expression(mp);
21390 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21391 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21392 if ( mp->internal[mp_tracing_commands]>two )
21393 @<Trace the current equation@>;
21394 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21395 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21396 }; /* in this case |make_eq| will change the pair to a path */
21397 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21400 @ And |do_assignment| is similar to |do_equation|:
21403 void mp_do_assignment (MP mp);
21405 @ @<Declare action procedures for use by |do_statement|@>=
21406 void mp_do_assignment (MP mp) ;
21409 void mp_do_assignment (MP mp) {
21410 pointer lhs; /* token list for the left-hand side */
21411 pointer p; /* where the left-hand value is stored */
21412 pointer q; /* temporary capsule for the right-hand value */
21413 if ( mp->cur_type!=mp_token_list ) {
21414 exp_err("Improper `:=' will be changed to `='");
21416 help2("I didn't find a variable name at the left of the `:=',",
21417 "so I'm going to pretend that you said `=' instead.");
21418 mp_error(mp); mp_do_equation(mp);
21420 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21421 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21422 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21423 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21424 if ( mp->internal[mp_tracing_commands]>two )
21425 @<Trace the current assignment@>;
21426 if ( info(lhs)>hash_end ) {
21427 @<Assign the current expression to an internal variable@>;
21429 @<Assign the current expression to the variable |lhs|@>;
21431 mp_flush_node_list(mp, lhs);
21435 @ @<Trace the current equation@>=
21437 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21438 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21439 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21442 @ @<Trace the current assignment@>=
21444 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21445 if ( info(lhs)>hash_end )
21446 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21448 mp_show_token_list(mp, lhs,null,1000,0);
21449 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21450 mp_print_char(mp, xord('}')); mp_end_diagnostic(mp, false);
21453 @ @<Assign the current expression to an internal variable@>=
21454 if ( mp->cur_type==mp_known ) {
21455 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21457 exp_err("Internal quantity `");
21458 @.Internal quantity...@>
21459 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21460 mp_print(mp, "' must receive a known value");
21461 help2("I can\'t set an internal quantity to anything but a known",
21462 "numeric value, so I'll have to ignore this assignment.");
21463 mp_put_get_error(mp);
21466 @ @<Assign the current expression to the variable |lhs|@>=
21468 p=mp_find_variable(mp, lhs);
21470 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21471 mp_recycle_value(mp, p);
21472 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21473 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21475 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21480 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21481 a pointer to a capsule that is to be equated to the current expression.
21483 @<Declare the procedure called |make_eq|@>=
21484 void mp_make_eq (MP mp,pointer lhs) ;
21488 @c void mp_make_eq (MP mp,pointer lhs) {
21489 quarterword t; /* type of the left-hand side */
21490 pointer p,q; /* pointers inside of big nodes */
21491 integer v=0; /* value of the left-hand side */
21494 if ( t<=mp_pair_type ) v=value(lhs);
21496 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21497 is incompatible with~|t|@>;
21498 } /* all cases have been listed */
21499 @<Announce that the equation cannot be performed@>;
21501 check_arith; mp_recycle_value(mp, lhs);
21502 mp_free_node(mp, lhs,value_node_size);
21505 @ @<Announce that the equation cannot be performed@>=
21506 mp_disp_err(mp, lhs,"");
21507 exp_err("Equation cannot be performed (");
21508 @.Equation cannot be performed@>
21509 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21510 else mp_print(mp, "numeric");
21511 mp_print_char(mp, xord('='));
21512 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21513 else mp_print(mp, "numeric");
21514 mp_print_char(mp, xord(')'));
21515 help2("I'm sorry, but I don't know how to make such things equal.",
21516 "(See the two expressions just above the error message.)");
21517 mp_put_get_error(mp)
21519 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21520 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21521 case mp_path_type: case mp_picture_type:
21522 if ( mp->cur_type==t+unknown_tag ) {
21523 mp_nonlinear_eq(mp, v,mp->cur_exp,false);
21524 mp_unstash_cur_exp(mp, mp->cur_exp); goto DONE;
21525 } else if ( mp->cur_type==t ) {
21526 @<Report redundant or inconsistent equation and |goto done|@>;
21529 case unknown_types:
21530 if ( mp->cur_type==t-unknown_tag ) {
21531 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21532 } else if ( mp->cur_type==t ) {
21533 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21534 } else if ( mp->cur_type==mp_pair_type ) {
21535 if ( t==mp_unknown_path ) {
21536 mp_pair_to_path(mp); goto RESTART;
21540 case mp_transform_type: case mp_color_type:
21541 case mp_cmykcolor_type: case mp_pair_type:
21542 if ( mp->cur_type==t ) {
21543 @<Do multiple equations and |goto done|@>;
21546 case mp_known: case mp_dependent:
21547 case mp_proto_dependent: case mp_independent:
21548 if ( mp->cur_type>=mp_known ) {
21549 mp_try_eq(mp, lhs,null); goto DONE;
21555 @ @<Report redundant or inconsistent equation and |goto done|@>=
21557 if ( mp->cur_type<=mp_string_type ) {
21558 if ( mp->cur_type==mp_string_type ) {
21559 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21562 } else if ( v!=mp->cur_exp ) {
21565 @<Exclaim about a redundant equation@>; goto DONE;
21567 print_err("Redundant or inconsistent equation");
21568 @.Redundant or inconsistent equation@>
21569 help2("An equation between already-known quantities can't help.",
21570 "But don't worry; continue and I'll just ignore it.");
21571 mp_put_get_error(mp); goto DONE;
21573 print_err("Inconsistent equation");
21574 @.Inconsistent equation@>
21575 help2("The equation I just read contradicts what was said before.",
21576 "But don't worry; continue and I'll just ignore it.");
21577 mp_put_get_error(mp); goto DONE;
21580 @ @<Do multiple equations and |goto done|@>=
21582 p=v+mp->big_node_size[t];
21583 q=value(mp->cur_exp)+mp->big_node_size[t];
21585 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21590 @ The first argument to |try_eq| is the location of a value node
21591 in a capsule that will soon be recycled. The second argument is
21592 either a location within a pair or transform node pointed to by
21593 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21594 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21595 but to equate the two operands.
21597 @<Declare the procedure called |try_eq|@>=
21598 void mp_try_eq (MP mp,pointer l, pointer r) ;
21601 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21602 pointer p; /* dependency list for right operand minus left operand */
21603 int t; /* the type of list |p| */
21604 pointer q; /* the constant term of |p| is here */
21605 pointer pp; /* dependency list for right operand */
21606 int tt; /* the type of list |pp| */
21607 boolean copied; /* have we copied a list that ought to be recycled? */
21608 @<Remove the left operand from its container, negate it, and
21609 put it into dependency list~|p| with constant term~|q|@>;
21610 @<Add the right operand to list |p|@>;
21611 if ( info(p)==null ) {
21612 @<Deal with redundant or inconsistent equation@>;
21614 mp_linear_eq(mp, p,t);
21615 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21616 if ( type(mp->cur_exp)==mp_known ) {
21617 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21618 mp_free_node(mp, pp,value_node_size);
21624 @ @<Remove the left operand from its container, negate it, and...@>=
21626 if ( t==mp_known ) {
21627 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21628 } else if ( t==mp_independent ) {
21629 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21632 p=dep_list(l); q=p;
21635 if ( info(q)==null ) break;
21638 mp_link(prev_dep(l))=mp_link(q); prev_dep(mp_link(q))=prev_dep(l);
21642 @ @<Deal with redundant or inconsistent equation@>=
21644 if ( abs(value(p))>64 ) { /* off by .001 or more */
21645 print_err("Inconsistent equation");
21646 @.Inconsistent equation@>
21647 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21648 mp_print_char(mp, xord(')'));
21649 help2("The equation I just read contradicts what was said before.",
21650 "But don't worry; continue and I'll just ignore it.");
21651 mp_put_get_error(mp);
21652 } else if ( r==null ) {
21653 @<Exclaim about a redundant equation@>;
21655 mp_free_node(mp, p,dep_node_size);
21658 @ @<Add the right operand to list |p|@>=
21660 if ( mp->cur_type==mp_known ) {
21661 value(q)=value(q)+mp->cur_exp; goto DONE1;
21664 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21665 else pp=dep_list(mp->cur_exp);
21668 if ( type(r)==mp_known ) {
21669 value(q)=value(q)+value(r); goto DONE1;
21672 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21673 else pp=dep_list(r);
21676 if ( tt!=mp_independent ) copied=false;
21677 else { copied=true; tt=mp_dependent; };
21678 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21679 if ( copied ) mp_flush_node_list(mp, pp);
21682 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21683 mp->watch_coefs=false;
21685 p=mp_p_plus_q(mp, p,pp,t);
21686 } else if ( t==mp_proto_dependent ) {
21687 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21690 while ( info(q)!=null ) {
21691 value(q)=mp_round_fraction(mp, value(q)); q=mp_link(q);
21693 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21695 mp->watch_coefs=true;
21697 @ Our next goal is to process type declarations. For this purpose it's
21698 convenient to have a procedure that scans a $\langle\,$declared
21699 variable$\,\rangle$ and returns the corresponding token list. After the
21700 following procedure has acted, the token after the declared variable
21701 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21704 @<Declare the function called |scan_declared_variable|@>=
21705 pointer mp_scan_declared_variable (MP mp) {
21706 pointer x; /* hash address of the variable's root */
21707 pointer h,t; /* head and tail of the token list to be returned */
21708 pointer l; /* hash address of left bracket */
21709 mp_get_symbol(mp); x=mp->cur_sym;
21710 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21711 h=mp_get_avail(mp); info(h)=x; t=h;
21714 if ( mp->cur_sym==0 ) break;
21715 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21716 if ( mp->cur_cmd==left_bracket ) {
21717 @<Descend past a collective subscript@>;
21722 mp_link(t)=mp_get_avail(mp); t=mp_link(t); info(t)=mp->cur_sym;
21724 if ( (eq_type(x)%outer_tag)!=tag_token ) mp_clear_symbol(mp, x,false);
21725 if ( equiv(x)==null ) mp_new_root(mp, x);
21729 @ If the subscript isn't collective, we don't accept it as part of the
21732 @<Descend past a collective subscript@>=
21734 l=mp->cur_sym; mp_get_x_next(mp);
21735 if ( mp->cur_cmd!=right_bracket ) {
21736 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21738 mp->cur_sym=collective_subscript;
21742 @ Type declarations are introduced by the following primitive operations.
21745 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21746 @:numeric_}{\&{numeric} primitive@>
21747 mp_primitive(mp, "string",type_name,mp_string_type);
21748 @:string_}{\&{string} primitive@>
21749 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21750 @:boolean_}{\&{boolean} primitive@>
21751 mp_primitive(mp, "path",type_name,mp_path_type);
21752 @:path_}{\&{path} primitive@>
21753 mp_primitive(mp, "pen",type_name,mp_pen_type);
21754 @:pen_}{\&{pen} primitive@>
21755 mp_primitive(mp, "picture",type_name,mp_picture_type);
21756 @:picture_}{\&{picture} primitive@>
21757 mp_primitive(mp, "transform",type_name,mp_transform_type);
21758 @:transform_}{\&{transform} primitive@>
21759 mp_primitive(mp, "color",type_name,mp_color_type);
21760 @:color_}{\&{color} primitive@>
21761 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21762 @:color_}{\&{rgbcolor} primitive@>
21763 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21764 @:color_}{\&{cmykcolor} primitive@>
21765 mp_primitive(mp, "pair",type_name,mp_pair_type);
21766 @:pair_}{\&{pair} primitive@>
21768 @ @<Cases of |print_cmd...@>=
21769 case type_name: mp_print_type(mp, m); break;
21771 @ Now we are ready to handle type declarations, assuming that a
21772 |type_name| has just been scanned.
21774 @<Declare action procedures for use by |do_statement|@>=
21775 void mp_do_type_declaration (MP mp) ;
21778 void mp_do_type_declaration (MP mp) {
21779 quarterword t; /* the type being declared */
21780 pointer p; /* token list for a declared variable */
21781 pointer q; /* value node for the variable */
21782 if ( mp->cur_mod>=mp_transform_type )
21785 t=mp->cur_mod+unknown_tag;
21787 p=mp_scan_declared_variable(mp);
21788 mp_flush_variable(mp, equiv(info(p)),mp_link(p),false);
21789 q=mp_find_variable(mp, p);
21791 type(q)=t; value(q)=null;
21793 print_err("Declared variable conflicts with previous vardef");
21794 @.Declared variable conflicts...@>
21795 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.",
21796 "Proceed, and I'll ignore the illegal redeclaration.");
21797 mp_put_get_error(mp);
21799 mp_flush_list(mp, p);
21800 if ( mp->cur_cmd<comma ) {
21801 @<Flush spurious symbols after the declared variable@>;
21803 } while (! end_of_statement);
21806 @ @<Flush spurious symbols after the declared variable@>=
21808 print_err("Illegal suffix of declared variable will be flushed");
21809 @.Illegal suffix...flushed@>
21810 help5("Variables in declarations must consist entirely of",
21811 "names and collective subscripts, e.g., `x[]a'.",
21812 "Are you trying to use a reserved word in a variable name?",
21813 "I'm going to discard the junk I found here,",
21814 "up to the next comma or the end of the declaration.");
21815 if ( mp->cur_cmd==numeric_token )
21816 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21817 mp_put_get_error(mp); mp->scanner_status=flushing;
21820 @<Decrease the string reference count...@>;
21821 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21822 mp->scanner_status=normal;
21825 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21826 until coming to the end of the user's program.
21827 Each execution of |do_statement| concludes with
21828 |cur_cmd=semicolon|, |end_group|, or |stop|.
21830 @c void mp_main_control (MP mp) {
21832 mp_do_statement(mp);
21833 if ( mp->cur_cmd==end_group ) {
21834 print_err("Extra `endgroup'");
21835 @.Extra `endgroup'@>
21836 help2("I'm not currently working on a `begingroup',",
21837 "so I had better not try to end anything.");
21838 mp_flush_error(mp, 0);
21840 } while (mp->cur_cmd!=stop);
21842 int mp_run (MP mp) {
21844 if (mp->history < mp_fatal_error_stop ) {
21845 @<Install and test the non-local jump buffer@>;
21846 mp_main_control(mp); /* come to life */
21847 mp_final_cleanup(mp); /* prepare for death */
21848 mp_close_files_and_terminate(mp);
21850 return mp->history;
21853 @ For |mp_execute|, we need to define a structure to store the
21854 redirected input and output. This structure holds the five relevant
21855 streams: the three informational output streams, the PostScript
21856 generation stream, and the input stream. These streams have many
21857 things in common, so it makes sense to give them their own structure
21860 \item{fptr} is a virtual file pointer
21861 \item{data} is the data this stream holds
21862 \item{cur} is a cursor pointing into |data|
21863 \item{size} is the allocated length of the data stream
21864 \item{used} is the actual length of the data stream
21866 There are small differences between input and output: |term_in| never
21867 uses |used|, whereas the other four never use |cur|.
21869 @<Exported types@>=
21879 mp_stream term_out;
21880 mp_stream error_out;
21884 struct mp_edge_object *edges;
21887 @ We need a function to clear an output stream, this is called at the
21888 beginning of |mp_execute|. We also need one for destroying an output
21889 stream, this is called just before a stream is (re)opened.
21892 static void mp_reset_stream(mp_stream *str) {
21898 static void mp_free_stream(mp_stream *str) {
21900 mp_reset_stream(str);
21903 @ @<Declarations@>=
21904 static void mp_reset_stream(mp_stream *str);
21905 static void mp_free_stream(mp_stream *str);
21907 @ The global instance contains a pointer instead of the actual structure
21908 even though it is essentially static, because that makes it is easier to move
21912 mp_run_data run_data;
21914 @ Another type is needed: the indirection will overload some of the
21915 file pointer objects in the instance (but not all). For clarity, an
21916 indirect object is used that wraps a |FILE *|.
21919 typedef struct File {
21923 @ Here are all of the functions that need to be overloaded for |mp_execute|.
21926 static void *mplib_open_file(MP mp, const char *fname, const char *fmode, int ftype);
21927 static int mplib_get_char(void *f, mp_run_data * mplib_data);
21928 static void mplib_unget_char(void *f, mp_run_data * mplib_data, int c);
21929 static char *mplib_read_ascii_file(MP mp, void *ff, size_t * size);
21930 static void mplib_write_ascii_file(MP mp, void *ff, const char *s);
21931 static void mplib_read_binary_file(MP mp, void *ff, void **data, size_t * size);
21932 static void mplib_write_binary_file(MP mp, void *ff, void *s, size_t size);
21933 static void mplib_close_file(MP mp, void *ff);
21934 static int mplib_eof_file(MP mp, void *ff);
21935 static void mplib_flush_file(MP mp, void *ff);
21936 static void mplib_shipout_backend(MP mp, int h);
21938 @ The |xmalloc(1,1)| calls make sure the stored indirection values are unique.
21940 @d reset_stream(a) do {
21941 mp_reset_stream(&(a));
21943 ff->f = xmalloc(1,1);
21949 static void *mplib_open_file(MP mp, const char *fname, const char *fmode, int ftype)
21951 File *ff = xmalloc(1, sizeof(File));
21952 mp_run_data *run = mp_rundata(mp);
21954 if (ftype == mp_filetype_terminal) {
21955 if (fmode[0] == 'r') {
21957 ff->f = xmalloc(1,1);
21958 run->term_in.fptr = ff->f;
21961 reset_stream(run->term_out);
21963 } else if (ftype == mp_filetype_error) {
21964 reset_stream(run->error_out);
21965 } else if (ftype == mp_filetype_log) {
21966 reset_stream(run->log_out);
21967 } else if (ftype == mp_filetype_postscript) {
21968 mp_free_stream(&(run->ps_out));
21969 ff->f = xmalloc(1,1);
21970 run->ps_out.fptr = ff->f;
21973 char *f = (mp->find_file)(mp, fname, fmode, ftype);
21976 realmode[0] = *fmode;
21979 ff->f = fopen(f, realmode);
21981 if ((fmode[0] == 'r') && (ff->f == NULL)) {
21989 static int mplib_get_char(void *f, mp_run_data * run)
21992 if (f == run->term_in.fptr && run->term_in.data != NULL) {
21993 if (run->term_in.size == 0) {
21994 if (run->term_in.cur != NULL) {
21995 run->term_in.cur = NULL;
21997 xfree(run->term_in.data);
22001 run->term_in.size--;
22002 c = *(run->term_in.cur)++;
22010 static void mplib_unget_char(void *f, mp_run_data * run, int c)
22012 if (f == run->term_in.fptr && run->term_in.cur != NULL) {
22013 run->term_in.size++;
22014 run->term_in.cur--;
22021 static char *mplib_read_ascii_file(MP mp, void *ff, size_t * size)
22026 size_t len = 0, lim = 128;
22027 mp_run_data *run = mp_rundata(mp);
22028 FILE *f = ((File *) ff)->f;
22032 c = mplib_get_char(f, run);
22038 while (c != EOF && c != '\n' && c != '\r') {
22040 s = xrealloc(s, (lim + (lim >> 2)),1);
22046 c = mplib_get_char(f, run);
22049 c = mplib_get_char(f, run);
22050 if (c != EOF && c != '\n')
22051 mplib_unget_char(f, run, c);
22059 static void mp_append_string (MP mp, mp_stream *a,const char *b) {
22060 size_t l = strlen(b);
22061 if ((a->used+l)>=a->size) {
22062 a->size += 256+(a->size)/5+l;
22063 a->data = xrealloc(a->data,a->size,1);
22065 (void)strcpy(a->data+a->used,b);
22070 static void mplib_write_ascii_file(MP mp, void *ff, const char *s)
22073 void *f = ((File *) ff)->f;
22074 mp_run_data *run = mp_rundata(mp);
22076 if (f == run->term_out.fptr) {
22077 mp_append_string(mp,&(run->term_out), s);
22078 } else if (f == run->error_out.fptr) {
22079 mp_append_string(mp,&(run->error_out), s);
22080 } else if (f == run->log_out.fptr) {
22081 mp_append_string(mp,&(run->log_out), s);
22082 } else if (f == run->ps_out.fptr) {
22083 mp_append_string(mp,&(run->ps_out), s);
22085 fprintf((FILE *) f, "%s", s);
22091 static void mplib_read_binary_file(MP mp, void *ff, void **data, size_t * size)
22096 FILE *f = ((File *) ff)->f;
22098 len = fread(*data, 1, *size, f);
22103 static void mplib_write_binary_file(MP mp, void *ff, void *s, size_t size)
22107 FILE *f = ((File *) ff)->f;
22109 (void)fwrite(s, size, 1, f);
22113 static void mplib_close_file(MP mp, void *ff)
22116 mp_run_data *run = mp_rundata(mp);
22117 void *f = ((File *) ff)->f;
22119 if (f != run->term_out.fptr
22120 && f != run->error_out.fptr
22121 && f != run->log_out.fptr
22122 && f != run->ps_out.fptr
22123 && f != run->term_in.fptr) {
22131 static int mplib_eof_file(MP mp, void *ff)
22134 mp_run_data *run = mp_rundata(mp);
22135 FILE *f = ((File *) ff)->f;
22138 if (f == run->term_in.fptr && run->term_in.data != NULL) {
22139 return (run->term_in.size == 0);
22146 static void mplib_flush_file(MP mp, void *ff)
22153 static void mplib_shipout_backend(MP mp, int h)
22155 mp_edge_object *hh = mp_gr_export(mp, h);
22157 mp_run_data *run = mp_rundata(mp);
22158 if (run->edges==NULL) {
22161 mp_edge_object *p = run->edges;
22162 while (p->_next!=NULL) { p = p->_next; }
22169 @ This is where we fill them all in.
22170 @<Prepare function pointers for non-interactive use@>=
22172 mp->open_file = mplib_open_file;
22173 mp->close_file = mplib_close_file;
22174 mp->eof_file = mplib_eof_file;
22175 mp->flush_file = mplib_flush_file;
22176 mp->write_ascii_file = mplib_write_ascii_file;
22177 mp->read_ascii_file = mplib_read_ascii_file;
22178 mp->write_binary_file = mplib_write_binary_file;
22179 mp->read_binary_file = mplib_read_binary_file;
22180 mp->shipout_backend = mplib_shipout_backend;
22183 @ Perhaps this is the most important API function in the library.
22185 @<Exported function ...@>=
22186 mp_run_data *mp_rundata (MP mp) ;
22189 mp_run_data *mp_rundata (MP mp) {
22190 return &(mp->run_data);
22194 mp_free_stream(&(mp->run_data.term_in));
22195 mp_free_stream(&(mp->run_data.term_out));
22196 mp_free_stream(&(mp->run_data.log_out));
22197 mp_free_stream(&(mp->run_data.error_out));
22198 mp_free_stream(&(mp->run_data.ps_out));
22200 @ @<Finish non-interactive use@>=
22201 xfree(mp->term_out);
22202 xfree(mp->term_in);
22203 xfree(mp->err_out);
22205 @ @<Start non-interactive work@>=
22206 @<Initialize the output routines@>;
22207 mp->input_ptr=0; mp->max_in_stack=0;
22208 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
22209 mp->param_ptr=0; mp->max_param_stack=0;
22210 start = loc = iindex = 0; mp->first = 0;
22211 line=0; name=is_term;
22212 mp->mpx_name[0]=absent;
22213 mp->force_eof=false;
22215 mp->scanner_status=normal;
22216 if (mp->mem_ident==NULL) {
22217 if ( ! mp_load_mem_file(mp) ) {
22218 (mp->close_file)(mp, mp->mem_file);
22219 mp->history = mp_fatal_error_stop;
22220 return mp->history;
22222 (mp->close_file)(mp, mp->mem_file);
22224 mp_fix_date_and_time(mp);
22225 if (mp->random_seed==0)
22226 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
22227 mp_init_randoms(mp, mp->random_seed);
22228 @<Initialize the print |selector|...@>;
22229 mp_open_log_file(mp);
22231 mp_init_map_file(mp, mp->troff_mode);
22232 mp->history=mp_spotless; /* ready to go! */
22233 if (mp->troff_mode) {
22234 mp->internal[mp_gtroffmode]=unity;
22235 mp->internal[mp_prologues]=unity;
22237 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
22238 mp->cur_sym=mp->start_sym; mp_back_input(mp);
22242 int mp_execute (MP mp, char *s, size_t l) {
22244 mp_reset_stream(&(mp->run_data.term_out));
22245 mp_reset_stream(&(mp->run_data.log_out));
22246 mp_reset_stream(&(mp->run_data.error_out));
22247 mp_reset_stream(&(mp->run_data.ps_out));
22248 if (mp->finished) {
22249 return mp->history;
22250 } else if (!mp->noninteractive) {
22251 mp->history = mp_fatal_error_stop ;
22252 return mp->history;
22254 if (mp->history < mp_fatal_error_stop ) {
22255 mp->jump_buf = &buf;
22256 if (setjmp(*(mp->jump_buf)) != 0) {
22257 return mp->history;
22259 if (s==NULL) { /* this signals EOF */
22260 mp_final_cleanup(mp); /* prepare for death */
22261 mp_close_files_and_terminate(mp);
22262 return mp->history;
22265 mp->term_offset=0; mp->file_offset=0;
22266 /* Perhaps some sort of warning here when |data| is not
22267 * yet exhausted would be nice ... this happens after errors
22269 if (mp->run_data.term_in.data)
22270 xfree(mp->run_data.term_in.data);
22271 mp->run_data.term_in.data = xstrdup(s);
22272 mp->run_data.term_in.cur = mp->run_data.term_in.data;
22273 mp->run_data.term_in.size = l;
22274 if (mp->run_state == 0) {
22275 mp->selector=term_only;
22276 @<Start non-interactive work@>;
22279 (void)mp_input_ln(mp,mp->term_in);
22280 mp_firm_up_the_line(mp);
22281 mp->buffer[limit]=xord('%');
22282 mp->first=(size_t)(limit+1);
22285 mp_do_statement(mp);
22286 } while (mp->cur_cmd!=stop);
22287 mp_final_cleanup(mp);
22288 mp_close_files_and_terminate(mp);
22290 return mp->history;
22293 @ This function cleans up
22295 int mp_finish (MP mp) {
22298 if (mp->finished || mp->history >= mp_fatal_error_stop) {
22299 history = mp->history;
22303 mp->jump_buf = &buf;
22304 if (setjmp(*(mp->jump_buf)) != 0) {
22305 history = mp->history;
22307 history = mp->history;
22308 mp_final_cleanup(mp); /* prepare for death */
22310 mp_close_files_and_terminate(mp);
22315 @ People may want to know the library version
22317 const char * mp_metapost_version (void) {
22318 return metapost_version;
22321 @ @<Exported function headers@>=
22322 int mp_run (MP mp);
22323 int mp_execute (MP mp, char *s, size_t l);
22324 int mp_finish (MP mp);
22325 const char * mp_metapost_version (void);
22328 mp_primitive(mp, "end",stop,0);
22329 @:end_}{\&{end} primitive@>
22330 mp_primitive(mp, "dump",stop,1);
22331 @:dump_}{\&{dump} primitive@>
22333 @ @<Cases of |print_cmd...@>=
22335 if ( m==0 ) mp_print(mp, "end");
22336 else mp_print(mp, "dump");
22340 Let's turn now to statements that are classified as ``commands'' because
22341 of their imperative nature. We'll begin with simple ones, so that it
22342 will be clear how to hook command processing into the |do_statement| routine;
22343 then we'll tackle the tougher commands.
22345 Here's one of the simplest:
22347 @<Cases of |do_statement|...@>=
22348 case mp_random_seed: mp_do_random_seed(mp); break;
22350 @ @<Declare action procedures for use by |do_statement|@>=
22351 void mp_do_random_seed (MP mp) ;
22353 @ @c void mp_do_random_seed (MP mp) {
22355 if ( mp->cur_cmd!=assignment ) {
22356 mp_missing_err(mp, ":=");
22358 help1("Always say `randomseed:=<numeric expression>'.");
22361 mp_get_x_next(mp); mp_scan_expression(mp);
22362 if ( mp->cur_type!=mp_known ) {
22363 exp_err("Unknown value will be ignored");
22364 @.Unknown value...ignored@>
22365 help2("Your expression was too random for me to handle,",
22366 "so I won't change the random seed just now.");
22367 mp_put_get_flush_error(mp, 0);
22369 @<Initialize the random seed to |cur_exp|@>;
22373 @ @<Initialize the random seed to |cur_exp|@>=
22375 mp_init_randoms(mp, mp->cur_exp);
22376 if ( mp->selector>=log_only && mp->selector<write_file) {
22377 mp->old_setting=mp->selector; mp->selector=log_only;
22378 mp_print_nl(mp, "{randomseed:=");
22379 mp_print_scaled(mp, mp->cur_exp);
22380 mp_print_char(mp, xord('}'));
22381 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
22385 @ And here's another simple one (somewhat different in flavor):
22387 @<Cases of |do_statement|...@>=
22389 mp_print_ln(mp); mp->interaction=mp->cur_mod;
22390 @<Initialize the print |selector| based on |interaction|@>;
22391 if ( mp->log_opened ) mp->selector=mp->selector+2;
22396 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
22397 @:mp_batch_mode_}{\&{batchmode} primitive@>
22398 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
22399 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
22400 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
22401 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
22402 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
22403 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
22405 @ @<Cases of |print_cmd_mod|...@>=
22408 case mp_batch_mode: mp_print(mp, "batchmode"); break;
22409 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
22410 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
22411 default: mp_print(mp, "errorstopmode"); break;
22415 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22417 @<Cases of |do_statement|...@>=
22418 case protection_command: mp_do_protection(mp); break;
22421 mp_primitive(mp, "inner",protection_command,0);
22422 @:inner_}{\&{inner} primitive@>
22423 mp_primitive(mp, "outer",protection_command,1);
22424 @:outer_}{\&{outer} primitive@>
22426 @ @<Cases of |print_cmd...@>=
22427 case protection_command:
22428 if ( m==0 ) mp_print(mp, "inner");
22429 else mp_print(mp, "outer");
22432 @ @<Declare action procedures for use by |do_statement|@>=
22433 void mp_do_protection (MP mp) ;
22435 @ @c void mp_do_protection (MP mp) {
22436 int m; /* 0 to unprotect, 1 to protect */
22437 halfword t; /* the |eq_type| before we change it */
22440 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22442 if ( t>=outer_tag )
22443 eq_type(mp->cur_sym)=t-outer_tag;
22444 } else if ( t<outer_tag ) {
22445 eq_type(mp->cur_sym)=t+outer_tag;
22448 } while (mp->cur_cmd==comma);
22451 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22452 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22453 declaration assigns the command code |left_delimiter| to `\.{(}' and
22454 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22455 hash address of its mate.
22457 @<Cases of |do_statement|...@>=
22458 case delimiters: mp_def_delims(mp); break;
22460 @ @<Declare action procedures for use by |do_statement|@>=
22461 void mp_def_delims (MP mp) ;
22463 @ @c void mp_def_delims (MP mp) {
22464 pointer l_delim,r_delim; /* the new delimiter pair */
22465 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22466 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22467 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22468 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22472 @ Here is a procedure that is called when \MP\ has reached a point
22473 where some right delimiter is mandatory.
22475 @<Declare the procedure called |check_delimiter|@>=
22476 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22477 if ( mp->cur_cmd==right_delimiter )
22478 if ( mp->cur_mod==l_delim )
22480 if ( mp->cur_sym!=r_delim ) {
22481 mp_missing_err(mp, str(text(r_delim)));
22483 help2("I found no right delimiter to match a left one. So I've",
22484 "put one in, behind the scenes; this may fix the problem.");
22487 print_err("The token `"); mp_print_text(r_delim);
22488 @.The token...delimiter@>
22489 mp_print(mp, "' is no longer a right delimiter");
22490 help3("Strange: This token has lost its former meaning!",
22491 "I'll read it as a right delimiter this time;",
22492 "but watch out, I'll probably miss it later.");
22497 @ The next four commands save or change the values associated with tokens.
22499 @<Cases of |do_statement|...@>=
22502 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22503 } while (mp->cur_cmd==comma);
22505 case interim_command: mp_do_interim(mp); break;
22506 case let_command: mp_do_let(mp); break;
22507 case new_internal: mp_do_new_internal(mp); break;
22509 @ @<Declare action procedures for use by |do_statement|@>=
22510 void mp_do_statement (MP mp);
22511 void mp_do_interim (MP mp);
22513 @ @c void mp_do_interim (MP mp) {
22515 if ( mp->cur_cmd!=internal_quantity ) {
22516 print_err("The token `");
22517 @.The token...quantity@>
22518 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22519 else mp_print_text(mp->cur_sym);
22520 mp_print(mp, "' isn't an internal quantity");
22521 help1("Something like `tracingonline' should follow `interim'.");
22524 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22526 mp_do_statement(mp);
22529 @ The following procedure is careful not to undefine the left-hand symbol
22530 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22532 @<Declare action procedures for use by |do_statement|@>=
22533 void mp_do_let (MP mp) ;
22535 @ @c void mp_do_let (MP mp) {
22536 pointer l; /* hash location of the left-hand symbol */
22537 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22538 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22539 mp_missing_err(mp, "=");
22541 help3("You should have said `let symbol = something'.",
22542 "But don't worry; I'll pretend that an equals sign",
22543 "was present. The next token I read will be `something'.");
22547 switch (mp->cur_cmd) {
22548 case defined_macro: case secondary_primary_macro:
22549 case tertiary_secondary_macro: case expression_tertiary_macro:
22550 add_mac_ref(mp->cur_mod);
22555 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22556 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22557 else equiv(l)=mp->cur_mod;
22561 @ @<Declarations@>=
22562 void mp_grow_internals (MP mp, int l);
22563 void mp_do_new_internal (MP mp) ;
22566 void mp_grow_internals (MP mp, int l) {
22570 if ( hash_end+l>max_halfword ) {
22571 mp_confusion(mp, "out of memory space"); /* can't be reached */
22573 int_name = xmalloc ((l+1),sizeof(char *));
22574 internal = xmalloc ((l+1),sizeof(scaled));
22575 for (k=0;k<=l; k++ ) {
22576 if (k<=mp->max_internal) {
22577 internal[k]=mp->internal[k];
22578 int_name[k]=mp->int_name[k];
22584 xfree(mp->internal); xfree(mp->int_name);
22585 mp->int_name = int_name;
22586 mp->internal = internal;
22587 mp->max_internal = l;
22591 void mp_do_new_internal (MP mp) {
22593 if ( mp->int_ptr==mp->max_internal ) {
22594 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal/4)));
22596 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22597 eq_type(mp->cur_sym)=internal_quantity;
22598 equiv(mp->cur_sym)=mp->int_ptr;
22599 if(mp->int_name[mp->int_ptr]!=NULL)
22600 xfree(mp->int_name[mp->int_ptr]);
22601 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22602 mp->internal[mp->int_ptr]=0;
22604 } while (mp->cur_cmd==comma);
22607 @ @<Dealloc variables@>=
22608 for (k=0;k<=mp->max_internal;k++) {
22609 xfree(mp->int_name[k]);
22611 xfree(mp->internal);
22612 xfree(mp->int_name);
22615 @ The various `\&{show}' commands are distinguished by modifier fields
22618 @d show_token_code 0 /* show the meaning of a single token */
22619 @d show_stats_code 1 /* show current memory and string usage */
22620 @d show_code 2 /* show a list of expressions */
22621 @d show_var_code 3 /* show a variable and its descendents */
22622 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22625 mp_primitive(mp, "showtoken",show_command,show_token_code);
22626 @:show_token_}{\&{showtoken} primitive@>
22627 mp_primitive(mp, "showstats",show_command,show_stats_code);
22628 @:show_stats_}{\&{showstats} primitive@>
22629 mp_primitive(mp, "show",show_command,show_code);
22630 @:show_}{\&{show} primitive@>
22631 mp_primitive(mp, "showvariable",show_command,show_var_code);
22632 @:show_var_}{\&{showvariable} primitive@>
22633 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22634 @:show_dependencies_}{\&{showdependencies} primitive@>
22636 @ @<Cases of |print_cmd...@>=
22639 case show_token_code:mp_print(mp, "showtoken"); break;
22640 case show_stats_code:mp_print(mp, "showstats"); break;
22641 case show_code:mp_print(mp, "show"); break;
22642 case show_var_code:mp_print(mp, "showvariable"); break;
22643 default: mp_print(mp, "showdependencies"); break;
22647 @ @<Cases of |do_statement|...@>=
22648 case show_command:mp_do_show_whatever(mp); break;
22650 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22651 if it's |show_code|, complicated structures are abbreviated, otherwise
22654 @<Declare action procedures for use by |do_statement|@>=
22655 void mp_do_show (MP mp) ;
22657 @ @c void mp_do_show (MP mp) {
22659 mp_get_x_next(mp); mp_scan_expression(mp);
22660 mp_print_nl(mp, ">> ");
22662 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22663 } while (mp->cur_cmd==comma);
22666 @ @<Declare action procedures for use by |do_statement|@>=
22667 void mp_disp_token (MP mp) ;
22669 @ @c void mp_disp_token (MP mp) {
22670 mp_print_nl(mp, "> ");
22672 if ( mp->cur_sym==0 ) {
22673 @<Show a numeric or string or capsule token@>;
22675 mp_print_text(mp->cur_sym); mp_print_char(mp, xord('='));
22676 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22677 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22678 if ( mp->cur_cmd==defined_macro ) {
22679 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22680 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22685 @ @<Show a numeric or string or capsule token@>=
22687 if ( mp->cur_cmd==numeric_token ) {
22688 mp_print_scaled(mp, mp->cur_mod);
22689 } else if ( mp->cur_cmd==capsule_token ) {
22690 mp_print_capsule(mp,mp->cur_mod);
22692 mp_print_char(mp, xord('"'));
22693 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, xord('"'));
22694 delete_str_ref(mp->cur_mod);
22698 @ The following cases of |print_cmd_mod| might arise in connection
22699 with |disp_token|, although they don't necessarily correspond to
22702 @<Cases of |print_cmd_...@>=
22703 case left_delimiter:
22704 case right_delimiter:
22705 if ( c==left_delimiter ) mp_print(mp, "left");
22706 else mp_print(mp, "right");
22707 mp_print(mp, " delimiter that matches ");
22711 if ( m==null ) mp_print(mp, "tag");
22712 else mp_print(mp, "variable");
22714 case defined_macro:
22715 mp_print(mp, "macro:");
22717 case secondary_primary_macro:
22718 case tertiary_secondary_macro:
22719 case expression_tertiary_macro:
22720 mp_print_cmd_mod(mp, macro_def,c);
22721 mp_print(mp, "'d macro:");
22722 mp_print_ln(mp); mp_show_token_list(mp, mp_link(mp_link(m)),null,1000,0);
22725 mp_print(mp, "[repeat the loop]");
22727 case internal_quantity:
22728 mp_print(mp, mp->int_name[m]);
22731 @ @<Declare action procedures for use by |do_statement|@>=
22732 void mp_do_show_token (MP mp) ;
22734 @ @c void mp_do_show_token (MP mp) {
22736 get_t_next; mp_disp_token(mp);
22738 } while (mp->cur_cmd==comma);
22741 @ @<Declare action procedures for use by |do_statement|@>=
22742 void mp_do_show_stats (MP mp) ;
22744 @ @c void mp_do_show_stats (MP mp) {
22745 mp_print_nl(mp, "Memory usage ");
22746 @.Memory usage...@>
22747 mp_print_int(mp, mp->var_used); mp_print_char(mp, xord('&')); mp_print_int(mp, mp->dyn_used);
22748 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22749 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22750 mp_print_nl(mp, "String usage ");
22751 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22752 mp_print_char(mp, xord('&')); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22753 mp_print(mp, " (");
22754 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, xord('&'));
22755 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22756 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22760 @ Here's a recursive procedure that gives an abbreviated account
22761 of a variable, for use by |do_show_var|.
22763 @<Declare action procedures for use by |do_statement|@>=
22764 void mp_disp_var (MP mp,pointer p) ;
22766 @ @c void mp_disp_var (MP mp,pointer p) {
22767 pointer q; /* traverses attributes and subscripts */
22768 int n; /* amount of macro text to show */
22769 if ( type(p)==mp_structured ) {
22770 @<Descend the structure@>;
22771 } else if ( type(p)>=mp_unsuffixed_macro ) {
22772 @<Display a variable macro@>;
22773 } else if ( type(p)!=undefined ){
22774 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22775 mp_print_char(mp, xord('='));
22776 mp_print_exp(mp, p,0);
22780 @ @<Descend the structure@>=
22783 do { mp_disp_var(mp, q); q=mp_link(q); } while (q!=end_attr);
22785 while ( name_type(q)==mp_subscr ) {
22786 mp_disp_var(mp, q); q=mp_link(q);
22790 @ @<Display a variable macro@>=
22792 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22793 if ( type(p)>mp_unsuffixed_macro )
22794 mp_print(mp, "@@#"); /* |suffixed_macro| */
22795 mp_print(mp, "=macro:");
22796 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22797 else n=mp->max_print_line-mp->file_offset-15;
22798 mp_show_macro(mp, value(p),null,n);
22801 @ @<Declare action procedures for use by |do_statement|@>=
22802 void mp_do_show_var (MP mp) ;
22804 @ @c void mp_do_show_var (MP mp) {
22807 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22808 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22809 mp_disp_var(mp, mp->cur_mod); goto DONE;
22814 } while (mp->cur_cmd==comma);
22817 @ @<Declare action procedures for use by |do_statement|@>=
22818 void mp_do_show_dependencies (MP mp) ;
22820 @ @c void mp_do_show_dependencies (MP mp) {
22821 pointer p; /* link that runs through all dependencies */
22822 p=mp_link(dep_head);
22823 while ( p!=dep_head ) {
22824 if ( mp_interesting(mp, p) ) {
22825 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22826 if ( type(p)==mp_dependent ) mp_print_char(mp, xord('='));
22827 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22828 mp_print_dependency(mp, dep_list(p),type(p));
22831 while ( info(p)!=null ) p=mp_link(p);
22837 @ Finally we are ready for the procedure that governs all of the
22840 @<Declare action procedures for use by |do_statement|@>=
22841 void mp_do_show_whatever (MP mp) ;
22843 @ @c void mp_do_show_whatever (MP mp) {
22844 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22845 switch (mp->cur_mod) {
22846 case show_token_code:mp_do_show_token(mp); break;
22847 case show_stats_code:mp_do_show_stats(mp); break;
22848 case show_code:mp_do_show(mp); break;
22849 case show_var_code:mp_do_show_var(mp); break;
22850 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22851 } /* there are no other cases */
22852 if ( mp->internal[mp_showstopping]>0 ){
22855 if ( mp->interaction<mp_error_stop_mode ) {
22856 help0; decr(mp->error_count);
22858 help1("This isn't an error message; I'm just showing something.");
22860 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22861 else mp_put_get_error(mp);
22865 @ The `\&{addto}' command needs the following additional primitives:
22867 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22868 @d contour_code 1 /* command modifier for `\&{contour}' */
22869 @d also_code 2 /* command modifier for `\&{also}' */
22871 @ Pre and postscripts need two new identifiers:
22873 @d with_pre_script 11
22874 @d with_post_script 13
22877 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22878 @:double_path_}{\&{doublepath} primitive@>
22879 mp_primitive(mp, "contour",thing_to_add,contour_code);
22880 @:contour_}{\&{contour} primitive@>
22881 mp_primitive(mp, "also",thing_to_add,also_code);
22882 @:also_}{\&{also} primitive@>
22883 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22884 @:with_pen_}{\&{withpen} primitive@>
22885 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22886 @:dashed_}{\&{dashed} primitive@>
22887 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22888 @:with_pre_script_}{\&{withprescript} primitive@>
22889 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22890 @:with_post_script_}{\&{withpostscript} primitive@>
22891 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22892 @:with_color_}{\&{withoutcolor} primitive@>
22893 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22894 @:with_color_}{\&{withgreyscale} primitive@>
22895 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22896 @:with_color_}{\&{withcolor} primitive@>
22897 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22898 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22899 @:with_color_}{\&{withrgbcolor} primitive@>
22900 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22901 @:with_color_}{\&{withcmykcolor} primitive@>
22903 @ @<Cases of |print_cmd...@>=
22905 if ( m==contour_code ) mp_print(mp, "contour");
22906 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22907 else mp_print(mp, "also");
22910 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22911 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22912 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22913 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22914 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22915 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22916 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22917 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22918 else mp_print(mp, "dashed");
22921 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22922 updates the list of graphical objects starting at |p|. Each $\langle$with
22923 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22924 Other objects are ignored.
22926 @<Declare action procedures for use by |do_statement|@>=
22927 void mp_scan_with_list (MP mp,pointer p) ;
22929 @ @c void mp_scan_with_list (MP mp,pointer p) {
22930 quarterword t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22931 pointer q; /* for list manipulation */
22932 unsigned old_setting; /* saved |selector| setting */
22933 pointer k; /* for finding the near-last item in a list */
22934 str_number s; /* for string cleanup after combining */
22935 pointer cp,pp,dp,ap,bp;
22936 /* objects being updated; |void| initially; |null| to suppress update */
22937 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22939 while ( mp->cur_cmd==with_option ){
22942 if ( t!=mp_no_model ) mp_scan_expression(mp);
22943 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22944 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22945 ((t==mp_uninitialized_model)&&
22946 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22947 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22948 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22949 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22950 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22951 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22952 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22953 @<Complain about improper type@>;
22954 } else if ( t==mp_uninitialized_model ) {
22955 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22957 @<Transfer a color from the current expression to object~|cp|@>;
22958 mp_flush_cur_exp(mp, 0);
22959 } else if ( t==mp_rgb_model ) {
22960 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22962 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22963 mp_flush_cur_exp(mp, 0);
22964 } else if ( t==mp_cmyk_model ) {
22965 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22967 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22968 mp_flush_cur_exp(mp, 0);
22969 } else if ( t==mp_grey_model ) {
22970 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22972 @<Transfer a greyscale from the current expression to object~|cp|@>;
22973 mp_flush_cur_exp(mp, 0);
22974 } else if ( t==mp_no_model ) {
22975 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22977 @<Transfer a noncolor from the current expression to object~|cp|@>;
22978 } else if ( t==mp_pen_type ) {
22979 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22981 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22982 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22984 } else if ( t==with_pre_script ) {
22987 while ( (ap!=null)&&(! has_color(ap)) )
22990 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22992 old_setting=mp->selector;
22993 mp->selector=new_string;
22994 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22995 mp_print_str(mp, mp->cur_exp);
22996 append_char(13); /* a forced \ps\ newline */
22997 mp_print_str(mp, pre_script(ap));
22998 pre_script(ap)=mp_make_string(mp);
23000 mp->selector=old_setting;
23002 pre_script(ap)=mp->cur_exp;
23004 mp->cur_type=mp_vacuous;
23006 } else if ( t==with_post_script ) {
23010 while ( mp_link(k)!=null ) {
23012 if ( has_color(k) ) bp=k;
23015 if ( post_script(bp)!=null ) {
23017 old_setting=mp->selector;
23018 mp->selector=new_string;
23019 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
23020 mp_print_str(mp, post_script(bp));
23021 append_char(13); /* a forced \ps\ newline */
23022 mp_print_str(mp, mp->cur_exp);
23023 post_script(bp)=mp_make_string(mp);
23025 mp->selector=old_setting;
23027 post_script(bp)=mp->cur_exp;
23029 mp->cur_type=mp_vacuous;
23032 if ( dp==mp_void ) {
23033 @<Make |dp| a stroked node in list~|p|@>;
23036 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
23037 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
23038 dash_scale(dp)=unity;
23039 mp->cur_type=mp_vacuous;
23043 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
23047 @ @<Complain about improper type@>=
23048 { exp_err("Improper type");
23050 help2("Next time say `withpen <known pen expression>';",
23051 "I'll ignore the bad `with' clause and look for another.");
23052 if ( t==with_pre_script )
23053 mp->help_line[1]="Next time say `withprescript <known string expression>';";
23054 else if ( t==with_post_script )
23055 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
23056 else if ( t==mp_picture_type )
23057 mp->help_line[1]="Next time say `dashed <known picture expression>';";
23058 else if ( t==mp_uninitialized_model )
23059 mp->help_line[1]="Next time say `withcolor <known color expression>';";
23060 else if ( t==mp_rgb_model )
23061 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
23062 else if ( t==mp_cmyk_model )
23063 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
23064 else if ( t==mp_grey_model )
23065 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
23066 mp_put_get_flush_error(mp, 0);
23069 @ Forcing the color to be between |0| and |unity| here guarantees that no
23070 picture will ever contain a color outside the legal range for \ps\ graphics.
23072 @<Transfer a color from the current expression to object~|cp|@>=
23073 { if ( mp->cur_type==mp_color_type )
23074 @<Transfer a rgbcolor from the current expression to object~|cp|@>
23075 else if ( mp->cur_type==mp_cmykcolor_type )
23076 @<Transfer a cmykcolor from the current expression to object~|cp|@>
23077 else if ( mp->cur_type==mp_known )
23078 @<Transfer a greyscale from the current expression to object~|cp|@>
23079 else if ( mp->cur_exp==false_code )
23080 @<Transfer a noncolor from the current expression to object~|cp|@>;
23083 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
23084 { q=value(mp->cur_exp);
23089 red_val(cp)=value(red_part_loc(q));
23090 green_val(cp)=value(green_part_loc(q));
23091 blue_val(cp)=value(blue_part_loc(q));
23092 color_model(cp)=mp_rgb_model;
23093 if ( red_val(cp)<0 ) red_val(cp)=0;
23094 if ( green_val(cp)<0 ) green_val(cp)=0;
23095 if ( blue_val(cp)<0 ) blue_val(cp)=0;
23096 if ( red_val(cp)>unity ) red_val(cp)=unity;
23097 if ( green_val(cp)>unity ) green_val(cp)=unity;
23098 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
23101 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
23102 { q=value(mp->cur_exp);
23103 cyan_val(cp)=value(cyan_part_loc(q));
23104 magenta_val(cp)=value(magenta_part_loc(q));
23105 yellow_val(cp)=value(yellow_part_loc(q));
23106 black_val(cp)=value(black_part_loc(q));
23107 color_model(cp)=mp_cmyk_model;
23108 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
23109 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
23110 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
23111 if ( black_val(cp)<0 ) black_val(cp)=0;
23112 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
23113 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
23114 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
23115 if ( black_val(cp)>unity ) black_val(cp)=unity;
23118 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
23125 color_model(cp)=mp_grey_model;
23126 if ( grey_val(cp)<0 ) grey_val(cp)=0;
23127 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
23130 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
23137 color_model(cp)=mp_no_model;
23140 @ @<Make |cp| a colored object in object list~|p|@>=
23142 while ( cp!=null ){
23143 if ( has_color(cp) ) break;
23148 @ @<Make |pp| an object in list~|p| that needs a pen@>=
23150 while ( pp!=null ) {
23151 if ( has_pen(pp) ) break;
23156 @ @<Make |dp| a stroked node in list~|p|@>=
23158 while ( dp!=null ) {
23159 if ( type(dp)==mp_stroked_code ) break;
23164 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
23165 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
23166 if ( pp>mp_void ) {
23167 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
23169 if ( dp>mp_void ) {
23170 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
23174 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
23176 while ( q!=null ) {
23177 if ( has_color(q) ) {
23178 red_val(q)=red_val(cp);
23179 green_val(q)=green_val(cp);
23180 blue_val(q)=blue_val(cp);
23181 black_val(q)=black_val(cp);
23182 color_model(q)=color_model(cp);
23188 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
23190 while ( q!=null ) {
23191 if ( has_pen(q) ) {
23192 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
23193 pen_p(q)=copy_pen(pen_p(pp));
23199 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
23201 while ( q!=null ) {
23202 if ( type(q)==mp_stroked_code ) {
23203 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
23204 dash_p(q)=dash_p(dp);
23205 dash_scale(q)=unity;
23206 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
23212 @ One of the things we need to do when we've parsed an \&{addto} or
23213 similar command is find the header of a supposed \&{picture} variable, given
23214 a token list for that variable. Since the edge structure is about to be
23215 updated, we use |private_edges| to make sure that this is possible.
23217 @<Declare action procedures for use by |do_statement|@>=
23218 pointer mp_find_edges_var (MP mp, pointer t) ;
23220 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
23222 pointer cur_edges; /* the return value */
23223 p=mp_find_variable(mp, t); cur_edges=null;
23225 mp_obliterated(mp, t); mp_put_get_error(mp);
23226 } else if ( type(p)!=mp_picture_type ) {
23227 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
23228 @.Variable x is the wrong type@>
23229 mp_print(mp, " is the wrong type (");
23230 mp_print_type(mp, type(p)); mp_print_char(mp, xord(')'));
23231 help2("I was looking for a \"known\" picture variable.",
23232 "So I'll not change anything just now.");
23233 mp_put_get_error(mp);
23235 value(p)=mp_private_edges(mp, value(p));
23236 cur_edges=value(p);
23238 mp_flush_node_list(mp, t);
23242 @ @<Cases of |do_statement|...@>=
23243 case add_to_command: mp_do_add_to(mp); break;
23244 case bounds_command:mp_do_bounds(mp); break;
23247 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
23248 @:clip_}{\&{clip} primitive@>
23249 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
23250 @:set_bounds_}{\&{setbounds} primitive@>
23252 @ @<Cases of |print_cmd...@>=
23253 case bounds_command:
23254 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
23255 else mp_print(mp, "setbounds");
23258 @ The following function parses the beginning of an \&{addto} or \&{clip}
23259 command: it expects a variable name followed by a token with |cur_cmd=sep|
23260 and then an expression. The function returns the token list for the variable
23261 and stores the command modifier for the separator token in the global variable
23262 |last_add_type|. We must be careful because this variable might get overwritten
23263 any time we call |get_x_next|.
23266 quarterword last_add_type;
23267 /* command modifier that identifies the last \&{addto} command */
23269 @ @<Declare action procedures for use by |do_statement|@>=
23270 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
23272 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
23273 pointer lhv; /* variable to add to left */
23274 quarterword add_type=0; /* value to be returned in |last_add_type| */
23276 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
23277 if ( mp->cur_type!=mp_token_list ) {
23278 @<Abandon edges command because there's no variable@>;
23280 lhv=mp->cur_exp; add_type=mp->cur_mod;
23281 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
23283 mp->last_add_type=add_type;
23287 @ @<Abandon edges command because there's no variable@>=
23288 { exp_err("Not a suitable variable");
23289 @.Not a suitable variable@>
23290 help4("At this point I needed to see the name of a picture variable.",
23291 "(Or perhaps you have indeed presented me with one; I might",
23292 "have missed it, if it wasn't followed by the proper token.)",
23293 "So I'll not change anything just now.");
23294 mp_put_get_flush_error(mp, 0);
23297 @ Here is an example of how to use |start_draw_cmd|.
23299 @<Declare action procedures for use by |do_statement|@>=
23300 void mp_do_bounds (MP mp) ;
23302 @ @c void mp_do_bounds (MP mp) {
23303 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
23304 pointer p; /* for list manipulation */
23305 integer m; /* initial value of |cur_mod| */
23307 lhv=mp_start_draw_cmd(mp, to_token);
23309 lhe=mp_find_edges_var(mp, lhv);
23311 mp_flush_cur_exp(mp, 0);
23312 } else if ( mp->cur_type!=mp_path_type ) {
23313 exp_err("Improper `clip'");
23314 @.Improper `addto'@>
23315 help2("This expression should have specified a known path.",
23316 "So I'll not change anything just now.");
23317 mp_put_get_flush_error(mp, 0);
23318 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
23319 @<Complain about a non-cycle@>;
23321 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
23326 @ @<Complain about a non-cycle@>=
23327 { print_err("Not a cycle");
23329 help2("That contour should have ended with `..cycle' or `&cycle'.",
23330 "So I'll not change anything just now."); mp_put_get_error(mp);
23333 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
23334 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
23335 mp_link(p)=mp_link(dummy_loc(lhe));
23336 mp_link(dummy_loc(lhe))=p;
23337 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
23338 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
23339 type(p)=stop_type(m);
23340 mp_link(obj_tail(lhe))=p;
23342 mp_init_bbox(mp, lhe);
23345 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
23346 cases to deal with.
23348 @<Declare action procedures for use by |do_statement|@>=
23349 void mp_do_add_to (MP mp) ;
23351 @ @c void mp_do_add_to (MP mp) {
23352 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
23353 pointer p; /* the graphical object or list for |scan_with_list| to update */
23354 pointer e; /* an edge structure to be merged */
23355 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
23356 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
23358 if ( add_type==also_code ) {
23359 @<Make sure the current expression is a suitable picture and set |e| and |p|
23362 @<Create a graphical object |p| based on |add_type| and the current
23365 mp_scan_with_list(mp, p);
23366 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
23370 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
23371 setting |e:=null| prevents anything from being added to |lhe|.
23373 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
23376 if ( mp->cur_type!=mp_picture_type ) {
23377 exp_err("Improper `addto'");
23378 @.Improper `addto'@>
23379 help2("This expression should have specified a known picture.",
23380 "So I'll not change anything just now.");
23381 mp_put_get_flush_error(mp, 0);
23383 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
23384 p=mp_link(dummy_loc(e));
23388 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
23389 attempts to add to the edge structure.
23391 @<Create a graphical object |p| based on |add_type| and the current...@>=
23393 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
23394 if ( mp->cur_type!=mp_path_type ) {
23395 exp_err("Improper `addto'");
23396 @.Improper `addto'@>
23397 help2("This expression should have specified a known path.",
23398 "So I'll not change anything just now.");
23399 mp_put_get_flush_error(mp, 0);
23400 } else if ( add_type==contour_code ) {
23401 if ( left_type(mp->cur_exp)==mp_endpoint ) {
23402 @<Complain about a non-cycle@>;
23404 p=mp_new_fill_node(mp, mp->cur_exp);
23405 mp->cur_type=mp_vacuous;
23408 p=mp_new_stroked_node(mp, mp->cur_exp);
23409 mp->cur_type=mp_vacuous;
23413 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23414 lhe=mp_find_edges_var(mp, lhv);
23416 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23417 if ( e!=null ) delete_edge_ref(e);
23418 } else if ( add_type==also_code ) {
23420 @<Merge |e| into |lhe| and delete |e|@>;
23424 } else if ( p!=null ) {
23425 mp_link(obj_tail(lhe))=p;
23427 if ( add_type==double_path_code )
23428 if ( pen_p(p)==null )
23429 pen_p(p)=mp_get_pen_circle(mp, 0);
23432 @ @<Merge |e| into |lhe| and delete |e|@>=
23433 { if ( mp_link(dummy_loc(e))!=null ) {
23434 mp_link(obj_tail(lhe))=mp_link(dummy_loc(e));
23435 obj_tail(lhe)=obj_tail(e);
23436 obj_tail(e)=dummy_loc(e);
23437 mp_link(dummy_loc(e))=null;
23438 mp_flush_dash_list(mp, lhe);
23440 mp_toss_edges(mp, e);
23443 @ @<Cases of |do_statement|...@>=
23444 case ship_out_command: mp_do_ship_out(mp); break;
23446 @ @<Declare action procedures for use by |do_statement|@>=
23447 @<Declare the \ps\ output procedures@>
23448 void mp_do_ship_out (MP mp) ;
23450 @ @c void mp_do_ship_out (MP mp) {
23451 integer c; /* the character code */
23452 mp_get_x_next(mp); mp_scan_expression(mp);
23453 if ( mp->cur_type!=mp_picture_type ) {
23454 @<Complain that it's not a known picture@>;
23456 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23457 if ( c<0 ) c=c+256;
23458 @<Store the width information for character code~|c|@>;
23459 mp_ship_out(mp, mp->cur_exp);
23460 mp_flush_cur_exp(mp, 0);
23464 @ @<Complain that it's not a known picture@>=
23466 exp_err("Not a known picture");
23467 help1("I can only output known pictures.");
23468 mp_put_get_flush_error(mp, 0);
23471 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23474 @<Cases of |do_statement|...@>=
23475 case every_job_command:
23476 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23480 halfword start_sym; /* a symbolic token to insert at beginning of job */
23485 @ Finally, we have only the ``message'' commands remaining.
23488 @d err_message_code 1
23490 @d filename_template_code 3
23491 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23492 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23494 mp->pool_ptr = mp->pool_ptr - g;
23496 mp_print_char(mp, xord('0'));
23499 mp_print_int(mp, (A));
23504 mp_primitive(mp, "message",message_command,message_code);
23505 @:message_}{\&{message} primitive@>
23506 mp_primitive(mp, "errmessage",message_command,err_message_code);
23507 @:err_message_}{\&{errmessage} primitive@>
23508 mp_primitive(mp, "errhelp",message_command,err_help_code);
23509 @:err_help_}{\&{errhelp} primitive@>
23510 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23511 @:filename_template_}{\&{filenametemplate} primitive@>
23513 @ @<Cases of |print_cmd...@>=
23514 case message_command:
23515 if ( m<err_message_code ) mp_print(mp, "message");
23516 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23517 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23518 else mp_print(mp, "errhelp");
23521 @ @<Cases of |do_statement|...@>=
23522 case message_command: mp_do_message(mp); break;
23524 @ @<Declare action procedures for use by |do_statement|@>=
23525 @<Declare a procedure called |no_string_err|@>
23526 void mp_do_message (MP mp) ;
23529 @c void mp_do_message (MP mp) {
23530 int m; /* the type of message */
23531 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23532 if ( mp->cur_type!=mp_string_type )
23533 mp_no_string_err(mp, "A message should be a known string expression.");
23537 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23539 case err_message_code:
23540 @<Print string |cur_exp| as an error message@>;
23542 case err_help_code:
23543 @<Save string |cur_exp| as the |err_help|@>;
23545 case filename_template_code:
23546 @<Save the filename template@>;
23548 } /* there are no other cases */
23550 mp_flush_cur_exp(mp, 0);
23553 @ @<Declare a procedure called |no_string_err|@>=
23554 void mp_no_string_err (MP mp, const char *s) {
23555 exp_err("Not a string");
23558 mp_put_get_error(mp);
23561 @ The global variable |err_help| is zero when the user has most recently
23562 given an empty help string, or if none has ever been given.
23564 @<Save string |cur_exp| as the |err_help|@>=
23566 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23567 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23568 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23571 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23572 \&{errhelp}, we don't want to give a long help message each time. So we
23573 give a verbose explanation only once.
23576 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23578 @ @<Set init...@>=mp->long_help_seen=false;
23580 @ @<Print string |cur_exp| as an error message@>=
23582 print_err(""); mp_print_str(mp, mp->cur_exp);
23583 if ( mp->err_help!=0 ) {
23584 mp->use_err_help=true;
23585 } else if ( mp->long_help_seen ) {
23586 help1("(That was another `errmessage'.)") ;
23588 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23589 help4("This error message was generated by an `errmessage'",
23590 "command, so I can\'t give any explicit help.",
23591 "Pretend that you're Miss Marple: Examine all clues,",
23593 "and deduce the truth by inspired guesses.");
23595 mp_put_get_error(mp); mp->use_err_help=false;
23598 @ @<Cases of |do_statement|...@>=
23599 case write_command: mp_do_write(mp); break;
23601 @ @<Declare action procedures for use by |do_statement|@>=
23602 void mp_do_write (MP mp) ;
23604 @ @c void mp_do_write (MP mp) {
23605 str_number t; /* the line of text to be written */
23606 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23607 unsigned old_setting; /* for saving |selector| during output */
23609 mp_scan_expression(mp);
23610 if ( mp->cur_type!=mp_string_type ) {
23611 mp_no_string_err(mp, "The text to be written should be a known string expression");
23612 } else if ( mp->cur_cmd!=to_token ) {
23613 print_err("Missing `to' clause");
23614 help1("A write command should end with `to <filename>'");
23615 mp_put_get_error(mp);
23617 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23619 mp_scan_expression(mp);
23620 if ( mp->cur_type!=mp_string_type )
23621 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23623 @<Write |t| to the file named by |cur_exp|@>;
23627 mp_flush_cur_exp(mp, 0);
23630 @ @<Write |t| to the file named by |cur_exp|@>=
23632 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23633 |cur_exp| must be inserted@>;
23634 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23635 @<Record the end of file on |wr_file[n]|@>;
23637 old_setting=mp->selector;
23638 mp->selector=n+write_file;
23639 mp_print_str(mp, t); mp_print_ln(mp);
23640 mp->selector = old_setting;
23644 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23646 char *fn = str(mp->cur_exp);
23648 n0=mp->write_files;
23649 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23650 if ( n==0 ) { /* bottom reached */
23651 if ( n0==mp->write_files ) {
23652 if ( mp->write_files<mp->max_write_files ) {
23653 incr(mp->write_files);
23658 l = mp->max_write_files + (mp->max_write_files/4);
23659 wr_file = xmalloc((l+1),sizeof(void *));
23660 wr_fname = xmalloc((l+1),sizeof(char *));
23661 for (k=0;k<=l;k++) {
23662 if (k<=mp->max_write_files) {
23663 wr_file[k]=mp->wr_file[k];
23664 wr_fname[k]=mp->wr_fname[k];
23670 xfree(mp->wr_file); xfree(mp->wr_fname);
23671 mp->max_write_files = l;
23672 mp->wr_file = wr_file;
23673 mp->wr_fname = wr_fname;
23677 mp_open_write_file(mp, fn ,n);
23680 if ( mp->wr_fname[n]==NULL ) n0=n;
23685 @ @<Record the end of file on |wr_file[n]|@>=
23686 { (mp->close_file)(mp,mp->wr_file[n]);
23687 xfree(mp->wr_fname[n]);
23688 if ( n==mp->write_files-1 ) mp->write_files=n;
23692 @* \[42] Writing font metric data.
23693 \TeX\ gets its knowledge about fonts from font metric files, also called
23694 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23695 but other programs know about them too. One of \MP's duties is to
23696 write \.{TFM} files so that the user's fonts can readily be
23697 applied to typesetting.
23698 @:TFM files}{\.{TFM} files@>
23699 @^font metric files@>
23701 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23702 Since the number of bytes is always a multiple of~4, we could
23703 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23704 byte interpretation. The format of \.{TFM} files was designed by
23705 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23706 @^Ramshaw, Lyle Harold@>
23707 of information in a compact but useful form.
23710 void * tfm_file; /* the font metric output goes here */
23711 char * metric_file_name; /* full name of the font metric file */
23713 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23714 integers that give the lengths of the various subsequent portions
23715 of the file. These twelve integers are, in order:
23716 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23717 |lf|&length of the entire file, in words;\cr
23718 |lh|&length of the header data, in words;\cr
23719 |bc|&smallest character code in the font;\cr
23720 |ec|&largest character code in the font;\cr
23721 |nw|&number of words in the width table;\cr
23722 |nh|&number of words in the height table;\cr
23723 |nd|&number of words in the depth table;\cr
23724 |ni|&number of words in the italic correction table;\cr
23725 |nl|&number of words in the lig/kern table;\cr
23726 |nk|&number of words in the kern table;\cr
23727 |ne|&number of words in the extensible character table;\cr
23728 |np|&number of font parameter words.\cr}}$$
23729 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23731 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23732 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23733 and as few as 0 characters (if |bc=ec+1|).
23735 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23736 16 or more bits, the most significant bytes appear first in the file.
23737 This is called BigEndian order.
23738 @^BigEndian order@>
23740 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23743 The most important data type used here is a |fix_word|, which is
23744 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23745 quantity, with the two's complement of the entire word used to represent
23746 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23747 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23748 the smallest is $-2048$. We will see below, however, that all but two of
23749 the |fix_word| values must lie between $-16$ and $+16$.
23751 @ The first data array is a block of header information, which contains
23752 general facts about the font. The header must contain at least two words,
23753 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23754 header information of use to other software routines might also be
23755 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23756 For example, 16 more words of header information are in use at the Xerox
23757 Palo Alto Research Center; the first ten specify the character coding
23758 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23759 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23760 last gives the ``face byte.''
23762 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23763 the \.{GF} output file. This helps ensure consistency between files,
23764 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23765 should match the check sums on actual fonts that are used. The actual
23766 relation between this check sum and the rest of the \.{TFM} file is not
23767 important; the check sum is simply an identification number with the
23768 property that incompatible fonts almost always have distinct check sums.
23771 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23772 font, in units of \TeX\ points. This number must be at least 1.0; it is
23773 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23774 font, i.e., a font that was designed to look best at a 10-point size,
23775 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23776 $\delta$ \.{pt}', the effect is to override the design size and replace it
23777 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23778 the font image by a factor of $\delta$ divided by the design size. {\sl
23779 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23780 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23781 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23782 since many fonts have a design size equal to one em. The other dimensions
23783 must be less than 16 design-size units in absolute value; thus,
23784 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23785 \.{TFM} file whose first byte might be something besides 0 or 255.
23788 @ Next comes the |char_info| array, which contains one |char_info_word|
23789 per character. Each word in this part of the file contains six fields
23790 packed into four bytes as follows.
23792 \yskip\hang first byte: |width_index| (8 bits)\par
23793 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23795 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23797 \hang fourth byte: |remainder| (8 bits)\par
23799 The actual width of a character is \\{width}|[width_index]|, in design-size
23800 units; this is a device for compressing information, since many characters
23801 have the same width. Since it is quite common for many characters
23802 to have the same height, depth, or italic correction, the \.{TFM} format
23803 imposes a limit of 16 different heights, 16 different depths, and
23804 64 different italic corrections.
23806 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23807 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23808 value of zero. The |width_index| should never be zero unless the
23809 character does not exist in the font, since a character is valid if and
23810 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23812 @ The |tag| field in a |char_info_word| has four values that explain how to
23813 interpret the |remainder| field.
23815 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23816 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23817 program starting at location |remainder| in the |lig_kern| array.\par
23818 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23819 characters of ascending sizes, and not the largest in the chain. The
23820 |remainder| field gives the character code of the next larger character.\par
23821 \hang|tag=3| (|ext_tag|) means that this character code represents an
23822 extensible character, i.e., a character that is built up of smaller pieces
23823 so that it can be made arbitrarily large. The pieces are specified in
23824 |exten[remainder]|.\par
23826 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23827 unless they are used in special circumstances in math formulas. For example,
23828 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23829 operation looks for both |list_tag| and |ext_tag|.
23831 @d no_tag 0 /* vanilla character */
23832 @d lig_tag 1 /* character has a ligature/kerning program */
23833 @d list_tag 2 /* character has a successor in a charlist */
23834 @d ext_tag 3 /* character is extensible */
23836 @ The |lig_kern| array contains instructions in a simple programming language
23837 that explains what to do for special letter pairs. Each word in this array is a
23838 |lig_kern_command| of four bytes.
23840 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23841 step if the byte is 128 or more, otherwise the next step is obtained by
23842 skipping this number of intervening steps.\par
23843 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23844 then perform the operation and stop, otherwise continue.''\par
23845 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23846 a kern step otherwise.\par
23847 \hang fourth byte: |remainder|.\par
23850 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23851 between the current character and |next_char|. This amount is
23852 often negative, so that the characters are brought closer together
23853 by kerning; but it might be positive.
23855 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23856 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23857 |remainder| is inserted between the current character and |next_char|;
23858 then the current character is deleted if $b=0$, and |next_char| is
23859 deleted if $c=0$; then we pass over $a$~characters to reach the next
23860 current character (which may have a ligature/kerning program of its own).
23862 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23863 the |next_char| byte is the so-called right boundary character of this font;
23864 the value of |next_char| need not lie between |bc| and~|ec|.
23865 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23866 there is a special ligature/kerning program for a left boundary character,
23867 beginning at location |256*op_byte+remainder|.
23868 The interpretation is that \TeX\ puts implicit boundary characters
23869 before and after each consecutive string of characters from the same font.
23870 These implicit characters do not appear in the output, but they can affect
23871 ligatures and kerning.
23873 If the very first instruction of a character's |lig_kern| program has
23874 |skip_byte>128|, the program actually begins in location
23875 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23876 arrays, because the first instruction must otherwise
23877 appear in a location |<=255|.
23879 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23881 $$\hbox{|256*op_byte+remainder<nl|.}$$
23882 If such an instruction is encountered during
23883 normal program execution, it denotes an unconditional halt; no ligature
23884 command is performed.
23887 /* value indicating `\.{STOP}' in a lig/kern program */
23888 @d kern_flag (128) /* op code for a kern step */
23889 @d skip_byte(A) mp->lig_kern[(A)].b0
23890 @d next_char(A) mp->lig_kern[(A)].b1
23891 @d op_byte(A) mp->lig_kern[(A)].b2
23892 @d rem_byte(A) mp->lig_kern[(A)].b3
23894 @ Extensible characters are specified by an |extensible_recipe|, which
23895 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23896 order). These bytes are the character codes of individual pieces used to
23897 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23898 present in the built-up result. For example, an extensible vertical line is
23899 like an extensible bracket, except that the top and bottom pieces are missing.
23901 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23902 if the piece isn't present. Then the extensible characters have the form
23903 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23904 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23905 The width of the extensible character is the width of $R$; and the
23906 height-plus-depth is the sum of the individual height-plus-depths of the
23907 components used, since the pieces are butted together in a vertical list.
23909 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23910 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23911 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23912 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23914 @ The final portion of a \.{TFM} file is the |param| array, which is another
23915 sequence of |fix_word| values.
23917 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23918 to help position accents. For example, |slant=.25| means that when you go
23919 up one unit, you also go .25 units to the right. The |slant| is a pure
23920 number; it is the only |fix_word| other than the design size itself that is
23921 not scaled by the design size.
23924 \hang|param[2]=space| is the normal spacing between words in text.
23925 Note that character 040 in the font need not have anything to do with
23928 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23930 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23932 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23933 the height of letters for which accents don't have to be raised or lowered.
23935 \hang|param[6]=quad| is the size of one em in the font.
23937 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23941 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23946 @d space_stretch_code 3
23947 @d space_shrink_code 4
23950 @d extra_space_code 7
23952 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23953 information, and it does this all at once at the end of a job.
23954 In order to prepare for such frenetic activity, it squirrels away the
23955 necessary facts in various arrays as information becomes available.
23957 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23958 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23959 |tfm_ital_corr|. Other information about a character (e.g., about
23960 its ligatures or successors) is accessible via the |char_tag| and
23961 |char_remainder| arrays. Other information about the font as a whole
23962 is kept in additional arrays called |header_byte|, |lig_kern|,
23963 |kern|, |exten|, and |param|.
23965 @d max_tfm_int 32510
23966 @d undefined_label max_tfm_int /* an undefined local label */
23969 #define TFM_ITEMS 257
23971 eight_bits ec; /* smallest and largest character codes shipped out */
23972 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23973 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23974 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23975 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23976 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23977 int char_tag[TFM_ITEMS]; /* |remainder| category */
23978 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23979 char *header_byte; /* bytes of the \.{TFM} header */
23980 int header_last; /* last initialized \.{TFM} header byte */
23981 int header_size; /* size of the \.{TFM} header */
23982 four_quarters *lig_kern; /* the ligature/kern table */
23983 short nl; /* the number of ligature/kern steps so far */
23984 scaled *kern; /* distinct kerning amounts */
23985 short nk; /* the number of distinct kerns so far */
23986 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23987 short ne; /* the number of extensible characters so far */
23988 scaled *param; /* \&{fontinfo} parameters */
23989 short np; /* the largest \&{fontinfo} parameter specified so far */
23990 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23991 short skip_table[TFM_ITEMS]; /* local label status */
23992 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23993 integer bchar; /* right boundary character */
23994 short bch_label; /* left boundary starting location */
23995 short ll;short lll; /* registers used for lig/kern processing */
23996 short label_loc[257]; /* lig/kern starting addresses */
23997 eight_bits label_char[257]; /* characters for |label_loc| */
23998 short label_ptr; /* highest position occupied in |label_loc| */
24000 @ @<Allocate or initialize ...@>=
24001 mp->header_size = 128; /* just for init */
24002 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
24004 @ @<Dealloc variables@>=
24005 xfree(mp->header_byte);
24006 xfree(mp->lig_kern);
24011 for (k=0;k<= 255;k++ ) {
24012 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
24013 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
24014 mp->skip_table[k]=undefined_label;
24016 memset(mp->header_byte,0,(size_t)mp->header_size);
24017 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
24018 mp->internal[mp_boundary_char]=-unity;
24019 mp->bch_label=undefined_label;
24020 mp->label_loc[0]=-1; mp->label_ptr=0;
24022 @ @<Declarations@>=
24023 scaled mp_tfm_check (MP mp,quarterword m) ;
24026 scaled mp_tfm_check (MP mp,quarterword m) {
24027 if ( abs(mp->internal[m])>=fraction_half ) {
24028 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
24029 @.Enormous charwd...@>
24030 @.Enormous chardp...@>
24031 @.Enormous charht...@>
24032 @.Enormous charic...@>
24033 @.Enormous designsize...@>
24034 mp_print(mp, " has been reduced");
24035 help1("Font metric dimensions must be less than 2048pt.");
24036 mp_put_get_error(mp);
24037 if ( mp->internal[m]>0 ) return (fraction_half-1);
24038 else return (1-fraction_half);
24040 return mp->internal[m];
24044 @ @<Store the width information for character code~|c|@>=
24045 if ( c<mp->bc ) mp->bc=(eight_bits)c;
24046 if ( c>mp->ec ) mp->ec=(eight_bits)c;
24047 mp->char_exists[c]=true;
24048 mp->tfm_width[c]=mp_tfm_check(mp,mp_char_wd);
24049 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
24050 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
24051 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
24053 @ Now let's consider \MP's special \.{TFM}-oriented commands.
24055 @<Cases of |do_statement|...@>=
24056 case tfm_command: mp_do_tfm_command(mp); break;
24058 @ @d char_list_code 0
24059 @d lig_table_code 1
24060 @d extensible_code 2
24061 @d header_byte_code 3
24062 @d font_dimen_code 4
24065 mp_primitive(mp, "charlist",tfm_command,char_list_code);
24066 @:char_list_}{\&{charlist} primitive@>
24067 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
24068 @:lig_table_}{\&{ligtable} primitive@>
24069 mp_primitive(mp, "extensible",tfm_command,extensible_code);
24070 @:extensible_}{\&{extensible} primitive@>
24071 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
24072 @:header_byte_}{\&{headerbyte} primitive@>
24073 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
24074 @:font_dimen_}{\&{fontdimen} primitive@>
24076 @ @<Cases of |print_cmd...@>=
24079 case char_list_code:mp_print(mp, "charlist"); break;
24080 case lig_table_code:mp_print(mp, "ligtable"); break;
24081 case extensible_code:mp_print(mp, "extensible"); break;
24082 case header_byte_code:mp_print(mp, "headerbyte"); break;
24083 default: mp_print(mp, "fontdimen"); break;
24087 @ @<Declare action procedures for use by |do_statement|@>=
24088 eight_bits mp_get_code (MP mp) ;
24090 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
24091 integer c; /* the code value found */
24092 mp_get_x_next(mp); mp_scan_expression(mp);
24093 if ( mp->cur_type==mp_known ) {
24094 c=mp_round_unscaled(mp, mp->cur_exp);
24095 if ( c>=0 ) if ( c<256 ) return (eight_bits)c;
24096 } else if ( mp->cur_type==mp_string_type ) {
24097 if ( length(mp->cur_exp)==1 ) {
24098 c=mp->str_pool[mp->str_start[mp->cur_exp]];
24099 return (eight_bits)c;
24102 exp_err("Invalid code has been replaced by 0");
24103 @.Invalid code...@>
24104 help2("I was looking for a number between 0 and 255, or for a",
24105 "string of length 1. Didn't find it; will use 0 instead.");
24106 mp_put_get_flush_error(mp, 0); c=0;
24107 return (eight_bits)c;
24110 @ @<Declare action procedures for use by |do_statement|@>=
24111 void mp_set_tag (MP mp,halfword c, quarterword t, halfword r) ;
24113 @ @c void mp_set_tag (MP mp,halfword c, quarterword t, halfword r) {
24114 if ( mp->char_tag[c]==no_tag ) {
24115 mp->char_tag[c]=t; mp->char_remainder[c]=r;
24117 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
24118 mp->label_char[mp->label_ptr]=(eight_bits)c;
24121 @<Complain about a character tag conflict@>;
24125 @ @<Complain about a character tag conflict@>=
24127 print_err("Character ");
24128 if ( (c>' ')&&(c<127) ) mp_print_char(mp,xord(c));
24129 else if ( c==256 ) mp_print(mp, "||");
24130 else { mp_print(mp, "code "); mp_print_int(mp, c); };
24131 mp_print(mp, " is already ");
24132 @.Character c is already...@>
24133 switch (mp->char_tag[c]) {
24134 case lig_tag: mp_print(mp, "in a ligtable"); break;
24135 case list_tag: mp_print(mp, "in a charlist"); break;
24136 case ext_tag: mp_print(mp, "extensible"); break;
24137 } /* there are no other cases */
24138 help2("It's not legal to label a character more than once.",
24139 "So I'll not change anything just now.");
24140 mp_put_get_error(mp);
24143 @ @<Declare action procedures for use by |do_statement|@>=
24144 void mp_do_tfm_command (MP mp) ;
24146 @ @c void mp_do_tfm_command (MP mp) {
24147 int c,cc; /* character codes */
24148 int k; /* index into the |kern| array */
24149 int j; /* index into |header_byte| or |param| */
24150 switch (mp->cur_mod) {
24151 case char_list_code:
24153 /* we will store a list of character successors */
24154 while ( mp->cur_cmd==colon ) {
24155 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
24158 case lig_table_code:
24159 if (mp->lig_kern==NULL)
24160 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
24161 if (mp->kern==NULL)
24162 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
24163 @<Store a list of ligature/kern steps@>;
24165 case extensible_code:
24166 @<Define an extensible recipe@>;
24168 case header_byte_code:
24169 case font_dimen_code:
24170 c=mp->cur_mod; mp_get_x_next(mp);
24171 mp_scan_expression(mp);
24172 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
24173 exp_err("Improper location");
24174 @.Improper location@>
24175 help2("I was looking for a known, positive number.",
24176 "For safety's sake I'll ignore the present command.");
24177 mp_put_get_error(mp);
24179 j=mp_round_unscaled(mp, mp->cur_exp);
24180 if ( mp->cur_cmd!=colon ) {
24181 mp_missing_err(mp, ":");
24183 help1("A colon should follow a headerbyte or fontinfo location.");
24186 if ( c==header_byte_code ) {
24187 @<Store a list of header bytes@>;
24189 if (mp->param==NULL)
24190 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
24191 @<Store a list of font dimensions@>;
24195 } /* there are no other cases */
24198 @ @<Store a list of ligature/kern steps@>=
24200 mp->lk_started=false;
24203 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
24204 @<Process a |skip_to| command and |goto done|@>;
24205 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
24206 else { mp_back_input(mp); c=mp_get_code(mp); };
24207 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
24208 @<Record a label in a lig/kern subprogram and |goto continue|@>;
24210 if ( mp->cur_cmd==lig_kern_token ) {
24211 @<Compile a ligature/kern command@>;
24213 print_err("Illegal ligtable step");
24214 @.Illegal ligtable step@>
24215 help1("I was looking for `=:' or `kern' here.");
24216 mp_back_error(mp); next_char(mp->nl)=qi(0);
24217 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
24218 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
24220 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
24222 if ( mp->cur_cmd==comma ) goto CONTINUE;
24223 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
24228 mp_primitive(mp, "=:",lig_kern_token,0);
24229 @:=:_}{\.{=:} primitive@>
24230 mp_primitive(mp, "=:|",lig_kern_token,1);
24231 @:=:/_}{\.{=:\char'174} primitive@>
24232 mp_primitive(mp, "=:|>",lig_kern_token,5);
24233 @:=:/>_}{\.{=:\char'174>} primitive@>
24234 mp_primitive(mp, "|=:",lig_kern_token,2);
24235 @:=:/_}{\.{\char'174=:} primitive@>
24236 mp_primitive(mp, "|=:>",lig_kern_token,6);
24237 @:=:/>_}{\.{\char'174=:>} primitive@>
24238 mp_primitive(mp, "|=:|",lig_kern_token,3);
24239 @:=:/_}{\.{\char'174=:\char'174} primitive@>
24240 mp_primitive(mp, "|=:|>",lig_kern_token,7);
24241 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
24242 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
24243 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
24244 mp_primitive(mp, "kern",lig_kern_token,128);
24245 @:kern_}{\&{kern} primitive@>
24247 @ @<Cases of |print_cmd...@>=
24248 case lig_kern_token:
24250 case 0:mp_print(mp, "=:"); break;
24251 case 1:mp_print(mp, "=:|"); break;
24252 case 2:mp_print(mp, "|=:"); break;
24253 case 3:mp_print(mp, "|=:|"); break;
24254 case 5:mp_print(mp, "=:|>"); break;
24255 case 6:mp_print(mp, "|=:>"); break;
24256 case 7:mp_print(mp, "|=:|>"); break;
24257 case 11:mp_print(mp, "|=:|>>"); break;
24258 default: mp_print(mp, "kern"); break;
24262 @ Local labels are implemented by maintaining the |skip_table| array,
24263 where |skip_table[c]| is either |undefined_label| or the address of the
24264 most recent lig/kern instruction that skips to local label~|c|. In the
24265 latter case, the |skip_byte| in that instruction will (temporarily)
24266 be zero if there were no prior skips to this label, or it will be the
24267 distance to the prior skip.
24269 We may need to cancel skips that span more than 127 lig/kern steps.
24271 @d cancel_skips(A) mp->ll=(A);
24273 mp->lll=qo(skip_byte(mp->ll));
24274 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
24275 } while (mp->lll!=0)
24276 @d skip_error(A) { print_err("Too far to skip");
24277 @.Too far to skip@>
24278 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
24279 mp_error(mp); cancel_skips((A));
24282 @<Process a |skip_to| command and |goto done|@>=
24285 if ( mp->nl-mp->skip_table[c]>128 ) {
24286 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
24288 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
24289 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
24290 mp->skip_table[c]=mp->nl-1; goto DONE;
24293 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
24295 if ( mp->cur_cmd==colon ) {
24296 if ( c==256 ) mp->bch_label=mp->nl;
24297 else mp_set_tag(mp, c,lig_tag,mp->nl);
24298 } else if ( mp->skip_table[c]<undefined_label ) {
24299 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
24301 mp->lll=qo(skip_byte(mp->ll));
24302 if ( mp->nl-mp->ll>128 ) {
24303 skip_error(mp->ll); goto CONTINUE;
24305 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
24306 } while (mp->lll!=0);
24311 @ @<Compile a ligature/kern...@>=
24313 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
24314 if ( mp->cur_mod<128 ) { /* ligature op */
24315 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
24317 mp_get_x_next(mp); mp_scan_expression(mp);
24318 if ( mp->cur_type!=mp_known ) {
24319 exp_err("Improper kern");
24321 help2("The amount of kern should be a known numeric value.",
24322 "I'm zeroing this one. Proceed, with fingers crossed.");
24323 mp_put_get_flush_error(mp, 0);
24325 mp->kern[mp->nk]=mp->cur_exp;
24327 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
24329 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
24332 op_byte(mp->nl)=kern_flag+(k / 256);
24333 rem_byte(mp->nl)=qi((k % 256));
24335 mp->lk_started=true;
24338 @ @d missing_extensible_punctuation(A)
24339 { mp_missing_err(mp, (A));
24340 @.Missing `\char`\#'@>
24341 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
24344 @<Define an extensible recipe@>=
24346 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
24347 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
24348 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
24349 ext_top(mp->ne)=qi(mp_get_code(mp));
24350 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
24351 ext_mid(mp->ne)=qi(mp_get_code(mp));
24352 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
24353 ext_bot(mp->ne)=qi(mp_get_code(mp));
24354 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
24355 ext_rep(mp->ne)=qi(mp_get_code(mp));
24359 @ The header could contain ASCII zeroes, so can't use |strdup|.
24361 @<Store a list of header bytes@>=
24363 if ( j>=mp->header_size ) {
24364 size_t l = (size_t)(mp->header_size + (mp->header_size/4));
24365 char *t = xmalloc(l,1);
24367 memcpy(t,mp->header_byte,(size_t)mp->header_size);
24368 xfree (mp->header_byte);
24369 mp->header_byte = t;
24370 mp->header_size = (int)l;
24372 mp->header_byte[j]=(char)mp_get_code(mp);
24373 incr(j); incr(mp->header_last);
24374 } while (mp->cur_cmd==comma)
24376 @ @<Store a list of font dimensions@>=
24378 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
24379 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
24380 mp_get_x_next(mp); mp_scan_expression(mp);
24381 if ( mp->cur_type!=mp_known ){
24382 exp_err("Improper font parameter");
24383 @.Improper font parameter@>
24384 help1("I'm zeroing this one. Proceed, with fingers crossed.");
24385 mp_put_get_flush_error(mp, 0);
24387 mp->param[j]=mp->cur_exp; incr(j);
24388 } while (mp->cur_cmd==comma)
24390 @ OK: We've stored all the data that is needed for the \.{TFM} file.
24391 All that remains is to output it in the correct format.
24393 An interesting problem needs to be solved in this connection, because
24394 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
24395 and 64~italic corrections. If the data has more distinct values than
24396 this, we want to meet the necessary restrictions by perturbing the
24397 given values as little as possible.
24399 \MP\ solves this problem in two steps. First the values of a given
24400 kind (widths, heights, depths, or italic corrections) are sorted;
24401 then the list of sorted values is perturbed, if necessary.
24403 The sorting operation is facilitated by having a special node of
24404 essentially infinite |value| at the end of the current list.
24406 @<Initialize table entries...@>=
24407 value(inf_val)=fraction_four;
24409 @ Straight linear insertion is good enough for sorting, since the lists
24410 are usually not terribly long. As we work on the data, the current list
24411 will start at |mp_link(temp_head)| and end at |inf_val|; the nodes in this
24412 list will be in increasing order of their |value| fields.
24414 Given such a list, the |sort_in| function takes a value and returns a pointer
24415 to where that value can be found in the list. The value is inserted in
24416 the proper place, if necessary.
24418 At the time we need to do these operations, most of \MP's work has been
24419 completed, so we will have plenty of memory to play with. The value nodes
24420 that are allocated for sorting will never be returned to free storage.
24422 @d clear_the_list mp_link(temp_head)=inf_val
24424 @c pointer mp_sort_in (MP mp,scaled v) {
24425 pointer p,q,r; /* list manipulation registers */
24429 if ( v<=value(q) ) break;
24432 if ( v<value(q) ) {
24433 r=mp_get_node(mp, value_node_size); value(r)=v; mp_link(r)=q; mp_link(p)=r;
24438 @ Now we come to the interesting part, where we reduce the list if necessary
24439 until it has the required size. The |min_cover| routine is basic to this
24440 process; it computes the minimum number~|m| such that the values of the
24441 current sorted list can be covered by |m|~intervals of width~|d|. It
24442 also sets the global value |perturbation| to the smallest value $d'>d$
24443 such that the covering found by this algorithm would be different.
24445 In particular, |min_cover(0)| returns the number of distinct values in the
24446 current list and sets |perturbation| to the minimum distance between
24449 @c integer mp_min_cover (MP mp,scaled d) {
24450 pointer p; /* runs through the current list */
24451 scaled l; /* the least element covered by the current interval */
24452 integer m; /* lower bound on the size of the minimum cover */
24453 m=0; p=mp_link(temp_head); mp->perturbation=el_gordo;
24454 while ( p!=inf_val ){
24455 incr(m); l=value(p);
24456 do { p=mp_link(p); } while (value(p)<=l+d);
24457 if ( value(p)-l<mp->perturbation )
24458 mp->perturbation=value(p)-l;
24464 scaled perturbation; /* quantity related to \.{TFM} rounding */
24465 integer excess; /* the list is this much too long */
24467 @ The smallest |d| such that a given list can be covered with |m| intervals
24468 is determined by the |threshold| routine, which is sort of an inverse
24469 to |min_cover|. The idea is to increase the interval size rapidly until
24470 finding the range, then to go sequentially until the exact borderline has
24473 @c scaled mp_threshold (MP mp,integer m) {
24474 scaled d; /* lower bound on the smallest interval size */
24475 mp->excess=mp_min_cover(mp, 0)-m;
24476 if ( mp->excess<=0 ) {
24480 d=mp->perturbation;
24481 } while (mp_min_cover(mp, d+d)>m);
24482 while ( mp_min_cover(mp, d)>m )
24483 d=mp->perturbation;
24488 @ The |skimp| procedure reduces the current list to at most |m| entries,
24489 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24490 is the |k|th distinct value on the resulting list, and it sets
24491 |perturbation| to the maximum amount by which a |value| field has
24492 been changed. The size of the resulting list is returned as the
24495 @c integer mp_skimp (MP mp,integer m) {
24496 scaled d; /* the size of intervals being coalesced */
24497 pointer p,q,r; /* list manipulation registers */
24498 scaled l; /* the least value in the current interval */
24499 scaled v; /* a compromise value */
24500 d=mp_threshold(mp, m); mp->perturbation=0;
24501 q=temp_head; m=0; p=mp_link(temp_head);
24502 while ( p!=inf_val ) {
24503 incr(m); l=value(p); info(p)=m;
24504 if ( value(mp_link(p))<=l+d ) {
24505 @<Replace an interval of values by its midpoint@>;
24512 @ @<Replace an interval...@>=
24515 p=mp_link(p); info(p)=m;
24516 decr(mp->excess); if ( mp->excess==0 ) d=0;
24517 } while (value(mp_link(p))<=l+d);
24518 v=l+halfp(value(p)-l);
24519 if ( value(p)-v>mp->perturbation )
24520 mp->perturbation=value(p)-v;
24523 r=mp_link(r); value(r)=v;
24525 mp_link(q)=p; /* remove duplicate values from the current list */
24528 @ A warning message is issued whenever something is perturbed by
24529 more than 1/16\thinspace pt.
24531 @c void mp_tfm_warning (MP mp,quarterword m) {
24532 mp_print_nl(mp, "(some ");
24533 mp_print(mp, mp->int_name[m]);
24534 @.some charwds...@>
24535 @.some chardps...@>
24536 @.some charhts...@>
24537 @.some charics...@>
24538 mp_print(mp, " values had to be adjusted by as much as ");
24539 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24542 @ Here's an example of how we use these routines.
24543 The width data needs to be perturbed only if there are 256 distinct
24544 widths, but \MP\ must check for this case even though it is
24547 An integer variable |k| will be defined when we use this code.
24548 The |dimen_head| array will contain pointers to the sorted
24549 lists of dimensions.
24551 @<Massage the \.{TFM} widths@>=
24553 for (k=mp->bc;k<=mp->ec;k++) {
24554 if ( mp->char_exists[k] )
24555 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24557 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=mp_link(temp_head);
24558 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24561 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24563 @ Heights, depths, and italic corrections are different from widths
24564 not only because their list length is more severely restricted, but
24565 also because zero values do not need to be put into the lists.
24567 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24569 for (k=mp->bc;k<=mp->ec;k++) {
24570 if ( mp->char_exists[k] ) {
24571 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24572 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24575 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=mp_link(temp_head);
24576 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24578 for (k=mp->bc;k<=mp->ec;k++) {
24579 if ( mp->char_exists[k] ) {
24580 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24581 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24584 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=mp_link(temp_head);
24585 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24587 for (k=mp->bc;k<=mp->ec;k++) {
24588 if ( mp->char_exists[k] ) {
24589 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24590 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24593 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=mp_link(temp_head);
24594 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24596 @ @<Initialize table entries...@>=
24597 value(zero_val)=0; info(zero_val)=0;
24599 @ Bytes 5--8 of the header are set to the design size, unless the user has
24600 some crazy reason for specifying them differently.
24603 Error messages are not allowed at the time this procedure is called,
24604 so a warning is printed instead.
24606 The value of |max_tfm_dimen| is calculated so that
24607 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24608 < \\{three\_bytes}.$$
24610 @d three_bytes 0100000000 /* $2^{24}$ */
24613 void mp_fix_design_size (MP mp) {
24614 scaled d; /* the design size */
24615 d=mp->internal[mp_design_size];
24616 if ( (d<unity)||(d>=fraction_half) ) {
24618 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24619 @.illegal design size...@>
24620 d=040000000; mp->internal[mp_design_size]=d;
24622 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24623 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24624 mp->header_byte[4]=d / 04000000;
24625 mp->header_byte[5]=(d / 4096) % 256;
24626 mp->header_byte[6]=(d / 16) % 256;
24627 mp->header_byte[7]=(d % 16)*16;
24629 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-1-mp->internal[mp_design_size] / 010000000;
24630 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24633 @ The |dimen_out| procedure computes a |fix_word| relative to the
24634 design size. If the data was out of range, it is corrected and the
24635 global variable |tfm_changed| is increased by~one.
24637 @c integer mp_dimen_out (MP mp,scaled x) {
24638 if ( abs(x)>mp->max_tfm_dimen ) {
24639 incr(mp->tfm_changed);
24640 if ( x>0 ) x=mp->max_tfm_dimen; else x=-mp->max_tfm_dimen;
24642 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24647 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24648 integer tfm_changed; /* the number of data entries that were out of bounds */
24650 @ If the user has not specified any of the first four header bytes,
24651 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24652 from the |tfm_width| data relative to the design size.
24655 @c void mp_fix_check_sum (MP mp) {
24656 eight_bits k; /* runs through character codes */
24657 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24658 integer x; /* hash value used in check sum computation */
24659 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24660 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24661 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24662 mp->header_byte[0]=(char)B1; mp->header_byte[1]=(char)B2;
24663 mp->header_byte[2]=(char)B3; mp->header_byte[3]=(char)B4;
24668 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24669 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24670 for (k=mp->bc;k<=mp->ec;k++) {
24671 if ( mp->char_exists[k] ) {
24672 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24673 B1=(eight_bits)((B1+B1+x) % 255);
24674 B2=(eight_bits)((B2+B2+x) % 253);
24675 B3=(eight_bits)((B3+B3+x) % 251);
24676 B4=(eight_bits)((B4+B4+x) % 247);
24680 @ Finally we're ready to actually write the \.{TFM} information.
24681 Here are some utility routines for this purpose.
24683 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24684 unsigned char s=(unsigned char)(A);
24685 (mp->write_binary_file)(mp,mp->tfm_file,(void *)&s,1);
24688 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24689 tfm_out(x / 256); tfm_out(x % 256);
24691 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24692 if ( x>=0 ) tfm_out(x / three_bytes);
24694 x=x+010000000000; /* use two's complement for negative values */
24696 tfm_out((x / three_bytes) + 128);
24698 x=x % three_bytes; tfm_out(x / unity);
24699 x=x % unity; tfm_out(x / 0400);
24702 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24703 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24704 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24707 @ @<Finish the \.{TFM} file@>=
24708 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24709 mp_pack_job_name(mp, ".tfm");
24710 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24711 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24712 mp->metric_file_name=xstrdup(mp->name_of_file);
24713 @<Output the subfile sizes and header bytes@>;
24714 @<Output the character information bytes, then
24715 output the dimensions themselves@>;
24716 @<Output the ligature/kern program@>;
24717 @<Output the extensible character recipes and the font metric parameters@>;
24718 if ( mp->internal[mp_tracing_stats]>0 )
24719 @<Log the subfile sizes of the \.{TFM} file@>;
24720 mp_print_nl(mp, "Font metrics written on ");
24721 mp_print(mp, mp->metric_file_name); mp_print_char(mp, xord('.'));
24722 @.Font metrics written...@>
24723 (mp->close_file)(mp,mp->tfm_file)
24725 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24728 @<Output the subfile sizes and header bytes@>=
24730 LH=(k+3) / 4; /* this is the number of header words */
24731 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24732 @<Compute the ligature/kern program offset and implant the
24733 left boundary label@>;
24734 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24735 +lk_offset+mp->nk+mp->ne+mp->np);
24736 /* this is the total number of file words that will be output */
24737 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24738 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24739 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24740 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24741 mp_tfm_two(mp, mp->np);
24742 for (k=0;k< 4*LH;k++) {
24743 tfm_out(mp->header_byte[k]);
24746 @ @<Output the character information bytes...@>=
24747 for (k=mp->bc;k<=mp->ec;k++) {
24748 if ( ! mp->char_exists[k] ) {
24749 mp_tfm_four(mp, 0);
24751 tfm_out(info(mp->tfm_width[k])); /* the width index */
24752 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24753 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24754 tfm_out(mp->char_remainder[k]);
24758 for (k=1;k<=4;k++) {
24759 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24760 while ( p!=inf_val ) {
24761 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=mp_link(p);
24766 @ We need to output special instructions at the beginning of the
24767 |lig_kern| array in order to specify the right boundary character
24768 and/or to handle starting addresses that exceed 255. The |label_loc|
24769 and |label_char| arrays have been set up to record all the
24770 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24771 \le|label_loc|[|label_ptr]|$.
24773 @<Compute the ligature/kern program offset...@>=
24774 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24775 if ((mp->bchar<0)||(mp->bchar>255))
24776 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24777 else { mp->lk_started=true; lk_offset=1; };
24778 @<Find the minimum |lk_offset| and adjust all remainders@>;
24779 if ( mp->bch_label<undefined_label )
24780 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24781 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24782 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24783 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24786 @ @<Find the minimum |lk_offset|...@>=
24787 k=mp->label_ptr; /* pointer to the largest unallocated label */
24788 if ( mp->label_loc[k]+lk_offset>255 ) {
24789 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24791 mp->char_remainder[mp->label_char[k]]=lk_offset;
24792 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24793 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24795 incr(lk_offset); decr(k);
24796 } while (! (lk_offset+mp->label_loc[k]<256));
24797 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24799 if ( lk_offset>0 ) {
24801 mp->char_remainder[mp->label_char[k]]
24802 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24807 @ @<Output the ligature/kern program@>=
24808 for (k=0;k<= 255;k++ ) {
24809 if ( mp->skip_table[k]<undefined_label ) {
24810 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24811 @.local label l:: was missing@>
24812 cancel_skips(mp->skip_table[k]);
24815 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24816 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24818 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24819 mp->ll=mp->label_loc[mp->label_ptr];
24820 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24821 else { tfm_out(255); tfm_out(mp->bchar); };
24822 mp_tfm_two(mp, mp->ll+lk_offset);
24824 decr(mp->label_ptr);
24825 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24828 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24829 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24831 @ @<Output the extensible character recipes...@>=
24832 for (k=0;k<=mp->ne-1;k++)
24833 mp_tfm_qqqq(mp, mp->exten[k]);
24834 for (k=1;k<=mp->np;k++) {
24836 if ( abs(mp->param[1])<fraction_half ) {
24837 mp_tfm_four(mp, mp->param[1]*16);
24839 incr(mp->tfm_changed);
24840 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24841 else mp_tfm_four(mp, -el_gordo);
24844 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24847 if ( mp->tfm_changed>0 ) {
24848 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24849 @.a font metric dimension...@>
24851 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24852 @.font metric dimensions...@>
24853 mp_print(mp, " font metric dimensions");
24855 mp_print(mp, " had to be decreased)");
24858 @ @<Log the subfile sizes of the \.{TFM} file@>=
24862 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24863 mp_snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24864 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24868 @* \[43] Reading font metric data.
24870 \MP\ isn't a typesetting program but it does need to find the bounding box
24871 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24872 well as write them.
24877 @ All the width, height, and depth information is stored in an array called
24878 |font_info|. This array is allocated sequentially and each font is stored
24879 as a series of |char_info| words followed by the width, height, and depth
24880 tables. Since |font_name| entries are permanent, their |str_ref| values are
24881 set to |max_str_ref|.
24884 typedef unsigned int font_number; /* |0..font_max| */
24886 @ The |font_info| array is indexed via a group directory arrays.
24887 For example, the |char_info| data for character~|c| in font~|f| will be
24888 in |font_info[char_base[f]+c].qqqq|.
24891 font_number font_max; /* maximum font number for included text fonts */
24892 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24893 memory_word *font_info; /* height, width, and depth data */
24894 char **font_enc_name; /* encoding names, if any */
24895 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24896 size_t next_fmem; /* next unused entry in |font_info| */
24897 font_number last_fnum; /* last font number used so far */
24898 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24899 char **font_name; /* name as specified in the \&{infont} command */
24900 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24901 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24902 eight_bits *font_bc;
24903 eight_bits *font_ec; /* first and last character code */
24904 int *char_base; /* base address for |char_info| */
24905 int *width_base; /* index for zeroth character width */
24906 int *height_base; /* index for zeroth character height */
24907 int *depth_base; /* index for zeroth character depth */
24908 pointer *font_sizes;
24910 @ @<Allocate or initialize ...@>=
24911 mp->font_mem_size = 10000;
24912 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24913 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24914 mp->last_fnum = null_font;
24916 @ @<Dealloc variables@>=
24917 for (k=1;k<=(int)mp->last_fnum;k++) {
24918 xfree(mp->font_enc_name[k]);
24919 xfree(mp->font_name[k]);
24920 xfree(mp->font_ps_name[k]);
24922 xfree(mp->font_info);
24923 xfree(mp->font_enc_name);
24924 xfree(mp->font_ps_name_fixed);
24925 xfree(mp->font_dsize);
24926 xfree(mp->font_name);
24927 xfree(mp->font_ps_name);
24928 xfree(mp->font_bc);
24929 xfree(mp->font_ec);
24930 xfree(mp->char_base);
24931 xfree(mp->width_base);
24932 xfree(mp->height_base);
24933 xfree(mp->depth_base);
24934 xfree(mp->font_sizes);
24938 void mp_reallocate_fonts (MP mp, font_number l) {
24940 XREALLOC(mp->font_enc_name, l, char *);
24941 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24942 XREALLOC(mp->font_dsize, l, scaled);
24943 XREALLOC(mp->font_name, l, char *);
24944 XREALLOC(mp->font_ps_name, l, char *);
24945 XREALLOC(mp->font_bc, l, eight_bits);
24946 XREALLOC(mp->font_ec, l, eight_bits);
24947 XREALLOC(mp->char_base, l, int);
24948 XREALLOC(mp->width_base, l, int);
24949 XREALLOC(mp->height_base, l, int);
24950 XREALLOC(mp->depth_base, l, int);
24951 XREALLOC(mp->font_sizes, l, pointer);
24952 for (f=(mp->last_fnum+1);f<=l;f++) {
24953 mp->font_enc_name[f]=NULL;
24954 mp->font_ps_name_fixed[f] = false;
24955 mp->font_name[f]=NULL;
24956 mp->font_ps_name[f]=NULL;
24957 mp->font_sizes[f]=null;
24962 @ @<Declare |mp_reallocate| functions@>=
24963 void mp_reallocate_fonts (MP mp, font_number l);
24966 @ A |null_font| containing no characters is useful for error recovery. Its
24967 |font_name| entry starts out empty but is reset each time an erroneous font is
24968 found. This helps to cut down on the number of duplicate error messages without
24969 wasting a lot of space.
24971 @d null_font 0 /* the |font_number| for an empty font */
24973 @<Set initial...@>=
24974 mp->font_dsize[null_font]=0;
24975 mp->font_bc[null_font]=1;
24976 mp->font_ec[null_font]=0;
24977 mp->char_base[null_font]=0;
24978 mp->width_base[null_font]=0;
24979 mp->height_base[null_font]=0;
24980 mp->depth_base[null_font]=0;
24982 mp->last_fnum=null_font;
24983 mp->last_ps_fnum=null_font;
24984 mp->font_name[null_font]=(char *)"nullfont";
24985 mp->font_ps_name[null_font]=(char *)"";
24986 mp->font_ps_name_fixed[null_font] = false;
24987 mp->font_enc_name[null_font]=NULL;
24988 mp->font_sizes[null_font]=null;
24990 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24991 the |width index|; the |b1| field contains the height
24992 index; the |b2| fields contains the depth index, and the |b3| field used only
24993 for temporary storage. (It is used to keep track of which characters occur in
24994 an edge structure that is being shipped out.)
24995 The corresponding words in the width, height, and depth tables are stored as
24996 |scaled| values in units of \ps\ points.
24998 With the macros below, the |char_info| word for character~|c| in font~|f| is
24999 |char_info(f,c)| and the width is
25000 $$\hbox{|char_width(f,char_info(f,c)).sc|.}$$
25002 @d char_info(A,B) mp->font_info[mp->char_base[(A)]+(B)].qqqq
25003 @d char_width(A,B) mp->font_info[mp->width_base[(A)]+(B).b0].sc
25004 @d char_height(A,B) mp->font_info[mp->height_base[(A)]+(B).b1].sc
25005 @d char_depth(A,B) mp->font_info[mp->depth_base[(A)]+(B).b2].sc
25006 @d ichar_exists(A) ((A).b0>0)
25008 @ The |font_ps_name| for a built-in font should be what PostScript expects.
25009 A preliminary name is obtained here from the \.{TFM} name as given in the
25010 |fname| argument. This gets updated later from an external table if necessary.
25012 @<Declare text measuring subroutines@>=
25013 @<Declare subroutines for parsing file names@>
25014 font_number mp_read_font_info (MP mp, char *fname) {
25015 boolean file_opened; /* has |tfm_infile| been opened? */
25016 font_number n; /* the number to return */
25017 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
25018 size_t whd_size; /* words needed for heights, widths, and depths */
25019 int i,ii; /* |font_info| indices */
25020 int jj; /* counts bytes to be ignored */
25021 scaled z; /* used to compute the design size */
25023 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
25024 eight_bits h_and_d; /* height and depth indices being unpacked */
25025 unsigned char tfbyte; /* a byte read from the file */
25027 @<Open |tfm_infile| for input@>;
25028 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
25029 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
25031 @<Complain that the \.{TFM} file is bad@>;
25033 if ( file_opened ) (mp->close_file)(mp,mp->tfm_infile);
25034 if ( n!=null_font ) {
25035 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
25036 mp->font_name[n]=mp_xstrdup(mp,fname);
25041 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
25042 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
25043 @.TFtoPL@> @.PLtoTF@>
25044 and \.{PLtoTF} can be used to debug \.{TFM} files.
25046 @<Complain that the \.{TFM} file is bad@>=
25047 print_err("Font ");
25048 mp_print(mp, fname);
25049 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
25050 else mp_print(mp, " not usable: TFM file not found");
25051 help3("I wasn't able to read the size data for this font so this",
25052 "`infont' operation won't produce anything. If the font name",
25053 "is right, you might ask an expert to make a TFM file");
25055 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
25058 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
25059 @<Read the \.{TFM} size fields@>;
25060 @<Use the size fields to allocate space in |font_info|@>;
25061 @<Read the \.{TFM} header@>;
25062 @<Read the character data and the width, height, and depth tables and
25065 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
25066 might try to read past the end of the file if this happens. Changes will be
25067 needed if it causes a system error to refer to |tfm_infile^| or call
25068 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
25069 @^system dependencies@>
25070 of |tfget| could be changed to
25071 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
25075 void *tfbyte_ptr = &tfbyte;
25076 (mp->read_binary_file)(mp,mp->tfm_infile,&tfbyte_ptr,&wanted);
25077 if (wanted==0) goto BAD_TFM;
25079 @d read_two(A) { (A)=tfbyte;
25080 if ( (A)>127 ) goto BAD_TFM;
25081 tfget; (A)=(A)*0400+tfbyte;
25083 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
25085 @<Read the \.{TFM} size fields@>=
25086 tfget; read_two(lf);
25087 tfget; read_two(tfm_lh);
25088 tfget; read_two(bc);
25089 tfget; read_two(ec);
25090 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
25091 tfget; read_two(nw);
25092 tfget; read_two(nh);
25093 tfget; read_two(nd);
25094 whd_size=(size_t)((ec+1-bc)+nw+nh+nd);
25095 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
25098 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
25099 necessary to apply the |so| and |qo| macros when looking up the width of a
25100 character in the string pool. In order to ensure nonnegative |char_base|
25101 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
25104 @<Use the size fields to allocate space in |font_info|@>=
25105 if ( mp->next_fmem<(size_t)bc)
25106 mp->next_fmem=(size_t)bc; /* ensure nonnegative |char_base| */
25107 if (mp->last_fnum==mp->font_max)
25108 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max/4)));
25109 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
25110 size_t l = mp->font_mem_size+(mp->font_mem_size/4);
25111 memory_word *font_info;
25112 font_info = xmalloc ((l+1),sizeof(memory_word));
25113 memset (font_info,0,sizeof(memory_word)*(l+1));
25114 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
25115 xfree(mp->font_info);
25116 mp->font_info = font_info;
25117 mp->font_mem_size = l;
25119 incr(mp->last_fnum);
25121 mp->font_bc[n]=(eight_bits)bc;
25122 mp->font_ec[n]=(eight_bits)ec;
25123 mp->char_base[n]=(int)(mp->next_fmem-bc);
25124 mp->width_base[n]=(int)(mp->next_fmem+ec-bc+1);
25125 mp->height_base[n]=mp->width_base[n]+nw;
25126 mp->depth_base[n]=mp->height_base[n]+nh;
25127 mp->next_fmem=mp->next_fmem+whd_size;
25130 @ @<Read the \.{TFM} header@>=
25131 if ( tfm_lh<2 ) goto BAD_TFM;
25133 tfget; read_two(z);
25134 tfget; z=z*0400+tfbyte;
25135 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
25136 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
25137 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
25138 tf_ignore(4*(tfm_lh-2))
25140 @ @<Read the character data and the width, height, and depth tables...@>=
25141 ii=mp->width_base[n];
25142 i=mp->char_base[n]+bc;
25144 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
25145 tfget; h_and_d=tfbyte;
25146 mp->font_info[i].qqqq.b1=qi(h_and_d / 16);
25147 mp->font_info[i].qqqq.b2=qi(h_and_d % 16);
25151 while ( i<(int)mp->next_fmem ) {
25152 @<Read a four byte dimension, scale it by the design size, store it in
25153 |font_info[i]|, and increment |i|@>;
25157 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
25158 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
25159 we can multiply it by sixteen and think of it as a |fraction| that has been
25160 divided by sixteen. This cancels the extra scale factor contained in
25163 @<Read a four byte dimension, scale it by the design size, store it in...@>=
25166 if ( d>=0200 ) d=d-0400;
25167 tfget; d=d*0400+tfbyte;
25168 tfget; d=d*0400+tfbyte;
25169 tfget; d=d*0400+tfbyte;
25170 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
25174 @ This function does no longer use the file name parser, because |fname| is
25175 a C string already.
25176 @<Open |tfm_infile| for input@>=
25178 mp_ptr_scan_file(mp, fname);
25179 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); }
25180 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
25182 mp->tfm_infile = (mp->open_file)(mp, mp->name_of_file, "r",mp_filetype_metrics);
25183 if ( !mp->tfm_infile ) goto BAD_TFM;
25186 @ When we have a font name and we don't know whether it has been loaded yet,
25187 we scan the |font_name| array before calling |read_font_info|.
25189 @<Declare text measuring subroutines@>=
25190 font_number mp_find_font (MP mp, char *f) {
25192 for (n=0;n<=mp->last_fnum;n++) {
25193 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
25198 n = mp_read_font_info(mp, f);
25203 @ This is an interface function for getting the width of character,
25204 as a double in ps units
25206 @c double mp_get_char_dimension (MP mp, char *fname, int c, int t) {
25211 for (n=0;n<=mp->last_fnum;n++) {
25212 if (mp_xstrcmp(fname,mp->font_name[n])==0 ) {
25219 cc = char_info(f,c);
25220 if (! ichar_exists(cc) )
25223 w = (double)char_width(f,cc);
25225 w = (double)char_height(f,cc);
25227 w = (double)char_depth(f,cc);
25228 return w/655.35*(72.27/72);
25231 @ @<Exported function ...@>=
25232 double mp_get_char_dimension (MP mp, char *fname, int n, int t);
25235 @ One simple application of |find_font| is the implementation of the |font_size|
25236 operator that gets the design size for a given font name.
25238 @<Find the design size of the font whose name is |cur_exp|@>=
25239 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
25241 @ If we discover that the font doesn't have a requested character, we omit it
25242 from the bounding box computation and expect the \ps\ interpreter to drop it.
25243 This routine issues a warning message if the user has asked for it.
25245 @<Declare text measuring subroutines@>=
25246 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
25247 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
25248 mp_begin_diagnostic(mp);
25249 if ( mp->selector==log_only ) incr(mp->selector);
25250 mp_print_nl(mp, "Missing character: There is no ");
25251 @.Missing character@>
25252 mp_print_str(mp, mp->str_pool[k]);
25253 mp_print(mp, " in font ");
25254 mp_print(mp, mp->font_name[f]); mp_print_char(mp, xord('!'));
25255 mp_end_diagnostic(mp, false);
25259 @ The whole purpose of saving the height, width, and depth information is to be
25260 able to find the bounding box of an item of text in an edge structure. The
25261 |set_text_box| procedure takes a text node and adds this information.
25263 @<Declare text measuring subroutines@>=
25264 void mp_set_text_box (MP mp,pointer p) {
25265 font_number f; /* |font_n(p)| */
25266 ASCII_code bc,ec; /* range of valid characters for font |f| */
25267 pool_pointer k,kk; /* current character and character to stop at */
25268 four_quarters cc; /* the |char_info| for the current character */
25269 scaled h,d; /* dimensions of the current character */
25271 height_val(p)=-el_gordo;
25272 depth_val(p)=-el_gordo;
25273 f=(font_number)font_n(p);
25276 kk=str_stop(text_p(p));
25277 k=mp->str_start[text_p(p)];
25279 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
25281 @<Set the height and depth to zero if the bounding box is empty@>;
25284 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
25286 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
25287 mp_lost_warning(mp, f,k);
25289 cc=char_info(f,mp->str_pool[k]);
25290 if ( ! ichar_exists(cc) ) {
25291 mp_lost_warning(mp, f,k);
25293 width_val(p)=width_val(p)+char_width(f,cc);
25294 h=char_height(f,cc);
25295 d=char_depth(f,cc);
25296 if ( h>height_val(p) ) height_val(p)=h;
25297 if ( d>depth_val(p) ) depth_val(p)=d;
25303 @ Let's hope modern compilers do comparisons correctly when the difference would
25306 @<Set the height and depth to zero if the bounding box is empty@>=
25307 if ( height_val(p)<-depth_val(p) ) {
25312 @ The new primitives fontmapfile and fontmapline.
25314 @<Declare action procedures for use by |do_statement|@>=
25315 void mp_do_mapfile (MP mp) ;
25316 void mp_do_mapline (MP mp) ;
25318 @ @c void mp_do_mapfile (MP mp) {
25319 mp_get_x_next(mp); mp_scan_expression(mp);
25320 if ( mp->cur_type!=mp_string_type ) {
25321 @<Complain about improper map operation@>;
25323 mp_map_file(mp,mp->cur_exp);
25326 void mp_do_mapline (MP mp) {
25327 mp_get_x_next(mp); mp_scan_expression(mp);
25328 if ( mp->cur_type!=mp_string_type ) {
25329 @<Complain about improper map operation@>;
25331 mp_map_line(mp,mp->cur_exp);
25335 @ @<Complain about improper map operation@>=
25337 exp_err("Unsuitable expression");
25338 help1("Only known strings can be map files or map lines.");
25339 mp_put_get_error(mp);
25342 @ To print |scaled| value to PDF output we need some subroutines to ensure
25345 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
25348 scaled one_bp; /* scaled value corresponds to 1bp */
25349 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
25350 scaled one_hundred_inch; /* scaled value corresponds to 100in */
25351 integer ten_pow[10]; /* $10^0..10^9$ */
25352 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
25355 mp->one_bp = 65782; /* 65781.76 */
25356 mp->one_hundred_bp = 6578176;
25357 mp->one_hundred_inch = 473628672;
25358 mp->ten_pow[0] = 1;
25359 for (i = 1;i<= 9; i++ ) {
25360 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
25363 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
25365 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
25369 if ( s < 0 ) { sign = -sign; s = -s; }
25370 if ( m < 0 ) { sign = -sign; m = -m; }
25372 mp_confusion(mp, "arithmetic: divided by zero");
25373 else if ( m >= (max_integer / 10) )
25374 mp_confusion(mp, "arithmetic: number too big");
25377 for (i = 1;i<=dd;i++) {
25378 q = 10*q + (10*r) / m;
25381 if ( 2*r >= m ) { incr(q); r = r - m; }
25382 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
25386 @* \[44] Shipping pictures out.
25387 The |ship_out| procedure, to be described below, is given a pointer to
25388 an edge structure. Its mission is to output a file containing the \ps\
25389 description of an edge structure.
25391 @ Each time an edge structure is shipped out we write a new \ps\ output
25392 file named according to the current \&{charcode}.
25393 @:char_code_}{\&{charcode} primitive@>
25395 This is the only backend function that remains in the main |mpost.w| file.
25396 There are just too many variable accesses needed for status reporting
25397 etcetera to make it worthwile to move the code to |psout.w|.
25399 @<Internal library declarations@>=
25400 void mp_open_output_file (MP mp) ;
25403 char *mp_set_output_file_name (MP mp, integer c) {
25404 char *ss = NULL; /* filename extension proposal */
25405 char *nn = NULL; /* temp string for str() */
25406 unsigned old_setting; /* previous |selector| setting */
25407 pool_pointer i; /* indexes into |filename_template| */
25408 integer cc; /* a temporary integer for template building */
25409 integer f,g=0; /* field widths */
25410 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25411 if ( mp->filename_template==0 ) {
25412 char *s; /* a file extension derived from |c| */
25416 @<Use |c| to compute the file extension |s|@>;
25417 mp_pack_job_name(mp, s);
25419 ss = xstrdup(mp->name_of_file);
25420 } else { /* initializations */
25421 str_number s, n; /* a file extension derived from |c| */
25422 old_setting=mp->selector;
25423 mp->selector=new_string;
25425 i = mp->str_start[mp->filename_template];
25426 n = null_str; /* initialize */
25427 while ( i<str_stop(mp->filename_template) ) {
25428 if ( mp->str_pool[i]=='%' ) {
25431 if ( i<str_stop(mp->filename_template) ) {
25432 if ( mp->str_pool[i]=='j' ) {
25433 mp_print(mp, mp->job_name);
25434 } else if ( mp->str_pool[i]=='d' ) {
25435 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25436 print_with_leading_zeroes(cc);
25437 } else if ( mp->str_pool[i]=='m' ) {
25438 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25439 print_with_leading_zeroes(cc);
25440 } else if ( mp->str_pool[i]=='y' ) {
25441 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25442 print_with_leading_zeroes(cc);
25443 } else if ( mp->str_pool[i]=='H' ) {
25444 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25445 print_with_leading_zeroes(cc);
25446 } else if ( mp->str_pool[i]=='M' ) {
25447 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25448 print_with_leading_zeroes(cc);
25449 } else if ( mp->str_pool[i]=='c' ) {
25450 if ( c<0 ) mp_print(mp, "ps");
25451 else print_with_leading_zeroes(c);
25452 } else if ( (mp->str_pool[i]>='0') &&
25453 (mp->str_pool[i]<='9') ) {
25455 f = (f*10) + mp->str_pool[i]-'0';
25458 mp_print_str(mp, mp->str_pool[i]);
25462 if ( mp->str_pool[i]=='.' )
25464 n = mp_make_string(mp);
25465 mp_print_str(mp, mp->str_pool[i]);
25469 s = mp_make_string(mp);
25470 mp->selector= old_setting;
25471 if (length(n)==0) {
25477 mp_pack_file_name(mp, nn,"",ss);
25485 char * mp_get_output_file_name (MP mp) {
25487 char *saved_name; /* saved |name_of_file| */
25488 saved_name = xstrdup(mp->name_of_file);
25489 f = xstrdup(mp_set_output_file_name(mp, mp_round_unscaled(mp, mp->internal[mp_char_code])));
25490 mp_pack_file_name(mp, saved_name,NULL,NULL);
25495 void mp_open_output_file (MP mp) {
25496 char *ss; /* filename extension proposal */
25497 integer c; /* \&{charcode} rounded to the nearest integer */
25498 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25499 ss = mp_set_output_file_name(mp, c);
25500 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25501 mp_prompt_file_name(mp, "file name for output",ss);
25503 @<Store the true output file name if appropriate@>;
25506 @ The file extension created here could be up to five characters long in
25507 extreme cases so it may have to be shortened on some systems.
25508 @^system dependencies@>
25510 @<Use |c| to compute the file extension |s|@>=
25513 mp_snprintf(s,7,".%i",(int)c);
25516 @ The user won't want to see all the output file names so we only save the
25517 first and last ones and a count of how many there were. For this purpose
25518 files are ordered primarily by \&{charcode} and secondarily by order of
25520 @:char_code_}{\&{charcode} primitive@>
25522 @<Store the true output file name if appropriate@>=
25523 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25524 mp->first_output_code=c;
25525 xfree(mp->first_file_name);
25526 mp->first_file_name=xstrdup(mp->name_of_file);
25528 if ( c>=mp->last_output_code ) {
25529 mp->last_output_code=c;
25530 xfree(mp->last_file_name);
25531 mp->last_file_name=xstrdup(mp->name_of_file);
25535 char * first_file_name;
25536 char * last_file_name; /* full file names */
25537 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25538 @:char_code_}{\&{charcode} primitive@>
25539 integer total_shipped; /* total number of |ship_out| operations completed */
25542 mp->first_file_name=xstrdup("");
25543 mp->last_file_name=xstrdup("");
25544 mp->first_output_code=32768;
25545 mp->last_output_code=-32768;
25546 mp->total_shipped=0;
25548 @ @<Dealloc variables@>=
25549 xfree(mp->first_file_name);
25550 xfree(mp->last_file_name);
25552 @ @<Begin the progress report for the output of picture~|c|@>=
25553 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25554 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, xord(' '));
25555 mp_print_char(mp, xord('['));
25556 if ( c>=0 ) mp_print_int(mp, c)
25558 @ @<End progress report@>=
25559 mp_print_char(mp, xord(']'));
25561 incr(mp->total_shipped)
25563 @ @<Explain what output files were written@>=
25564 if ( mp->total_shipped>0 ) {
25565 mp_print_nl(mp, "");
25566 mp_print_int(mp, mp->total_shipped);
25567 if (mp->noninteractive) {
25568 mp_print(mp, " figure");
25569 if ( mp->total_shipped>1 ) mp_print_char(mp, xord('s'));
25570 mp_print(mp, " created.");
25572 mp_print(mp, " output file");
25573 if ( mp->total_shipped>1 ) mp_print_char(mp, xord('s'));
25574 mp_print(mp, " written: ");
25575 mp_print(mp, mp->first_file_name);
25576 if ( mp->total_shipped>1 ) {
25577 if ( 31+strlen(mp->first_file_name)+
25578 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25580 mp_print(mp, " .. ");
25581 mp_print(mp, mp->last_file_name);
25586 @ @<Internal library declarations@>=
25587 boolean mp_has_font_size(MP mp, font_number f );
25590 boolean mp_has_font_size(MP mp, font_number f ) {
25591 return (mp->font_sizes[f]!=null);
25594 @ The \&{special} command saves up lines of text to be printed during the next
25595 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25598 pointer last_pending; /* the last token in a list of pending specials */
25601 mp->last_pending=spec_head;
25603 @ @<Cases of |do_statement|...@>=
25604 case special_command:
25605 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25606 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25610 @ @<Declare action procedures for use by |do_statement|@>=
25611 void mp_do_special (MP mp) ;
25613 @ @c void mp_do_special (MP mp) {
25614 mp_get_x_next(mp); mp_scan_expression(mp);
25615 if ( mp->cur_type!=mp_string_type ) {
25616 @<Complain about improper special operation@>;
25618 mp_link(mp->last_pending)=mp_stash_cur_exp(mp);
25619 mp->last_pending=mp_link(mp->last_pending);
25620 mp_link(mp->last_pending)=null;
25624 @ @<Complain about improper special operation@>=
25626 exp_err("Unsuitable expression");
25627 help1("Only known strings are allowed for output as specials.");
25628 mp_put_get_error(mp);
25631 @ On the export side, we need an extra object type for special strings.
25633 @<Graphical object codes@>=
25636 @ @<Export pending specials@>=
25637 p=mp_link(spec_head);
25638 while ( p!=null ) {
25639 mp_special_object *tp;
25640 tp = (mp_special_object *)mp_new_graphic_object(mp,mp_special_code);
25641 gr_pre_script(tp) = str(value(p));
25642 if (hh->body==NULL) hh->body = (mp_graphic_object *)tp;
25643 else gr_link(hp) = (mp_graphic_object *)tp;
25644 hp = (mp_graphic_object *)tp;
25647 mp_flush_token_list(mp, mp_link(spec_head));
25648 mp_link(spec_head)=null;
25649 mp->last_pending=spec_head
25651 @ We are now ready for the main output procedure. Note that the |selector|
25652 setting is saved in a global variable so that |begin_diagnostic| can access it.
25654 @<Declare the \ps\ output procedures@>=
25655 void mp_ship_out (MP mp, pointer h) ;
25657 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25659 @d export_color(q,p)
25660 if ( color_model(p)==mp_uninitialized_model ) {
25661 gr_color_model(q) = (unsigned char)(mp->internal[mp_default_color_model]/65536);
25662 gr_cyan_val(q) = 0;
25663 gr_magenta_val(q) = 0;
25664 gr_yellow_val(q) = 0;
25665 gr_black_val(q) = (gr_color_model(q)==mp_cmyk_model ? unity : 0);
25667 gr_color_model(q) = (unsigned char)color_model(p);
25668 gr_cyan_val(q) = cyan_val(p);
25669 gr_magenta_val(q) = magenta_val(p);
25670 gr_yellow_val(q) = yellow_val(p);
25671 gr_black_val(q) = black_val(p);
25674 @d export_scripts(q,p)
25675 if (pre_script(p)!=null) gr_pre_script(q) = str(pre_script(p));
25676 if (post_script(p)!=null) gr_post_script(q) = str(post_script(p));
25679 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25680 pointer p; /* the current graphical object */
25681 integer t; /* a temporary value */
25682 integer c; /* a rounded charcode */
25683 scaled d_width; /* the current pen width */
25684 mp_edge_object *hh; /* the first graphical object */
25685 mp_graphic_object *hq; /* something |hp| points to */
25686 mp_text_object *tt;
25687 mp_fill_object *tf;
25688 mp_stroked_object *ts;
25689 mp_clip_object *tc;
25690 mp_bounds_object *tb;
25691 mp_graphic_object *hp = NULL; /* the current graphical object */
25692 mp_set_bbox(mp, h, true);
25693 hh = xmalloc(1,sizeof(mp_edge_object));
25697 hh->_minx = minx_val(h);
25698 hh->_miny = miny_val(h);
25699 hh->_maxx = maxx_val(h);
25700 hh->_maxy = maxy_val(h);
25701 hh->_filename = mp_get_output_file_name(mp);
25702 c = mp_round_unscaled(mp,mp->internal[mp_char_code]);
25704 hh->_width = mp->internal[mp_char_wd];
25705 hh->_height = mp->internal[mp_char_ht];
25706 hh->_depth = mp->internal[mp_char_dp];
25707 hh->_ital_corr = mp->internal[mp_char_ic];
25708 @<Export pending specials@>;
25709 p=mp_link(dummy_loc(h));
25710 while ( p!=null ) {
25711 hq = mp_new_graphic_object(mp,type(p));
25714 tf = (mp_fill_object *)hq;
25715 gr_pen_p(tf) = mp_export_knot_list(mp,pen_p(p));
25716 d_width = mp_get_pen_scale(mp, pen_p(p));
25717 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25718 gr_path_p(tf) = mp_export_knot_list(mp,path_p(p));
25721 pc = mp_copy_path(mp, path_p(p));
25722 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25723 gr_path_p(tf) = mp_export_knot_list(mp,pp);
25724 mp_toss_knot_list(mp, pp);
25725 pc = mp_htap_ypoc(mp, path_p(p));
25726 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25727 gr_htap_p(tf) = mp_export_knot_list(mp,pp);
25728 mp_toss_knot_list(mp, pp);
25730 export_color(tf,p) ;
25731 export_scripts(tf,p);
25732 gr_ljoin_val(tf) = (unsigned char)ljoin_val(p);
25733 gr_miterlim_val(tf) = miterlim_val(p);
25735 case mp_stroked_code:
25736 ts = (mp_stroked_object *)hq;
25737 gr_pen_p(ts) = mp_export_knot_list(mp,pen_p(p));
25738 d_width = mp_get_pen_scale(mp, pen_p(p));
25739 if (pen_is_elliptical(pen_p(p))) {
25740 gr_path_p(ts) = mp_export_knot_list(mp,path_p(p));
25743 pc=mp_copy_path(mp, path_p(p));
25745 if ( left_type(pc)!=mp_endpoint ) {
25746 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25747 right_type(pc)=mp_endpoint;
25751 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25752 gr_path_p(ts) = mp_export_knot_list(mp,pc);
25753 mp_toss_knot_list(mp, pc);
25755 export_color(ts,p) ;
25756 export_scripts(ts,p);
25757 gr_ljoin_val(ts) = (unsigned char)ljoin_val(p);
25758 gr_miterlim_val(ts) = miterlim_val(p);
25759 gr_lcap_val(ts) = (unsigned char)lcap_val(p);
25760 gr_dash_p(ts) = mp_export_dashes(mp,p,&d_width);
25763 tt = (mp_text_object *)hq;
25764 gr_text_p(tt) = str(text_p(p));
25765 gr_font_n(tt) = (unsigned int)font_n(p);
25766 gr_font_name(tt) = mp_xstrdup(mp,mp->font_name[font_n(p)]);
25767 gr_font_dsize(tt) = (unsigned int)mp->font_dsize[font_n(p)];
25768 export_color(tt,p) ;
25769 export_scripts(tt,p);
25770 gr_width_val(tt) = width_val(p);
25771 gr_height_val(tt) = height_val(p);
25772 gr_depth_val(tt) = depth_val(p);
25773 gr_tx_val(tt) = tx_val(p);
25774 gr_ty_val(tt) = ty_val(p);
25775 gr_txx_val(tt) = txx_val(p);
25776 gr_txy_val(tt) = txy_val(p);
25777 gr_tyx_val(tt) = tyx_val(p);
25778 gr_tyy_val(tt) = tyy_val(p);
25780 case mp_start_clip_code:
25781 tc = (mp_clip_object *)hq;
25782 gr_path_p(tc) = mp_export_knot_list(mp,path_p(p));
25784 case mp_start_bounds_code:
25785 tb = (mp_bounds_object *)hq;
25786 gr_path_p(tb) = mp_export_knot_list(mp,path_p(p));
25788 case mp_stop_clip_code:
25789 case mp_stop_bounds_code:
25790 /* nothing to do here */
25793 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25800 @ @<Exported function ...@>=
25801 struct mp_edge_object *mp_gr_export(MP mp, int h);
25803 @ This function is now nearly trivial.
25806 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25807 integer c; /* \&{charcode} rounded to the nearest integer */
25808 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25809 @<Begin the progress report for the output of picture~|c|@>;
25810 (mp->shipout_backend) (mp, h);
25811 @<End progress report@>;
25812 if ( mp->internal[mp_tracing_output]>0 )
25813 mp_print_edges(mp, h," (just shipped out)",true);
25816 @ @<Declarations@>=
25817 void mp_shipout_backend (MP mp, pointer h);
25820 void mp_shipout_backend (MP mp, pointer h) {
25821 mp_edge_object *hh; /* the first graphical object */
25822 hh = mp_gr_export(mp,h);
25823 (void)mp_gr_ship_out (hh,
25824 (mp->internal[mp_prologues]/65536),
25825 (mp->internal[mp_procset]/65536),
25827 mp_gr_toss_objects(hh);
25830 @ @<Exported types@>=
25831 typedef void (*mp_backend_writer)(MP, int);
25833 @ @<Option variables@>=
25834 mp_backend_writer shipout_backend;
25836 @ Now that we've finished |ship_out|, let's look at the other commands
25837 by which a user can send things to the \.{GF} file.
25839 @ @<Determine if a character has been shipped out@>=
25841 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25842 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25843 boolean_reset(mp->char_exists[mp->cur_exp]);
25844 mp->cur_type=mp_boolean_type;
25850 @ @<Allocate or initialize ...@>=
25851 mp_backend_initialize(mp);
25854 mp_backend_free(mp);
25857 @* \[45] Dumping and undumping the tables.
25858 After \.{INIMP} has seen a collection of macros, it
25859 can write all the necessary information on an auxiliary file so
25860 that production versions of \MP\ are able to initialize their
25861 memory at high speed. The present section of the program takes
25862 care of such output and input. We shall consider simultaneously
25863 the processes of storing and restoring,
25864 so that the inverse relation between them is clear.
25867 The global variable |mem_ident| is a string that is printed right
25868 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25869 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25870 for example, `\.{(mem=plain 1990.4.14)}', showing the year,
25871 month, and day that the mem file was created. We have |mem_ident=0|
25872 before \MP's tables are loaded.
25878 mp->mem_ident=NULL;
25880 @ @<Initialize table entries...@>=
25881 mp->mem_ident=xstrdup(" (INIMP)");
25883 @ @<Declare act...@>=
25884 void mp_store_mem_file (MP mp) ;
25886 @ @c void mp_store_mem_file (MP mp) {
25887 integer k; /* all-purpose index */
25888 pointer p,q; /* all-purpose pointers */
25889 integer x; /* something to dump */
25890 four_quarters w; /* four ASCII codes */
25892 @<Create the |mem_ident|, open the mem file,
25893 and inform the user that dumping has begun@>;
25894 @<Dump constants for consistency check@>;
25895 @<Dump the string pool@>;
25896 @<Dump the dynamic memory@>;
25897 @<Dump the table of equivalents and the hash table@>;
25898 @<Dump a few more things and the closing check word@>;
25899 @<Close the mem file@>;
25902 @ Corresponding to the procedure that dumps a mem file, we also have a function
25903 that reads~one~in. The function returns |false| if the dumped mem is
25904 incompatible with the present \MP\ table sizes, etc.
25906 @d too_small(A) { wake_up_terminal;
25907 wterm_ln("---! Must increase the "); wterm((A));
25908 @.Must increase the x@>
25913 boolean mp_load_mem_file (MP mp) {
25914 integer k; /* all-purpose index */
25915 pointer p,q; /* all-purpose pointers */
25916 integer x; /* something undumped */
25917 str_number s; /* some temporary string */
25918 four_quarters w; /* four ASCII codes */
25920 /* |@<Undump constants for consistency check@>;| read earlier */
25921 @<Undump the string pool@>;
25922 @<Undump the dynamic memory@>;
25923 @<Undump the table of equivalents and the hash table@>;
25924 @<Undump a few more things and the closing check word@>;
25925 return true; /* it worked! */
25928 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25929 @.Fatal mem file error@>
25933 @ @<Declarations@>=
25934 boolean mp_load_mem_file (MP mp) ;
25936 @ Mem files consist of |memory_word| items, and we use the following
25937 macros to dump words of different types:
25939 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25940 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp,mp->mem_file,&cint,sizeof(cint)); }
25941 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25942 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25943 @d dump_string(A) { dump_int((int)(strlen(A)+1));
25944 (mp->write_binary_file)(mp,mp->mem_file,A,strlen(A)+1); }
25947 void * mem_file; /* for input or output of mem information */
25949 @ The inverse macros are slightly more complicated, since we need to check
25950 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25951 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25954 size_t wanted = sizeof(A);
25956 (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted);
25957 if (wanted!=sizeof(A)) goto OFF_BASE;
25961 size_t wanted = sizeof(A);
25963 (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted);
25964 if (wanted!=sizeof(A)) goto OFF_BASE;
25967 @d undump_wd(A) { mgetw(WW); A=WW; }
25968 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25969 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25970 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25971 @d undump_strings(A,B,C) {
25972 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25973 @d undump(A,B,C) { undump_int(x);
25974 if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25975 @d undump_size(A,B,C,D) { undump_int(x);
25976 if (x<(A)) goto OFF_BASE;
25977 if (x>(B)) too_small((C)); else D=x; }
25978 @d undump_string(A) {
25983 the_wanted = (size_t)XX;
25984 the_string = xmalloc(XX,1);
25985 (mp->read_binary_file)(mp,mp->mem_file,&the_string,&the_wanted);
25986 A = (char *)the_string;
25987 if (the_wanted!=(size_t)XX) goto OFF_BASE;
25990 @ The next few sections of the program should make it clear how we use the
25991 dump/undump macros.
25993 @<Dump constants for consistency check@>=
25994 dump_int(mp->mem_top);
25995 dump_int(mp->hash_size);
25996 dump_int(mp->hash_prime)
25997 dump_int(mp->param_size);
25998 dump_int(mp->max_in_open);
26000 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
26001 strings to the string pool; therefore \.{INIMP} and \MP\ will have
26002 the same strings. (And it is, of course, a good thing that they do.)
26006 @<Undump constants for consistency check@>=
26007 undump_int(x); mp->mem_top = x;
26008 undump_int(x); mp->hash_size = x;
26009 undump_int(x); mp->hash_prime = x;
26010 undump_int(x); mp->param_size = x;
26011 undump_int(x); mp->max_in_open = x;
26013 @ We do string pool compaction to avoid dumping unused strings.
26016 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
26017 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
26020 @<Dump the string pool@>=
26021 mp_do_compaction(mp, mp->pool_size);
26022 dump_int(mp->pool_ptr);
26023 dump_int(mp->max_str_ptr);
26024 dump_int(mp->str_ptr);
26026 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
26029 while ( k<=mp->max_str_ptr ) {
26030 dump_int(mp->next_str[k]); incr(k);
26034 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
26035 if ( k==mp->str_ptr ) {
26042 while (k+4<mp->pool_ptr ) {
26043 dump_four_ASCII; k=k+4;
26045 k=mp->pool_ptr-4; dump_four_ASCII;
26046 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
26047 mp_print(mp, " strings of total length ");
26048 mp_print_int(mp, mp->pool_ptr)
26050 @ @d undump_four_ASCII
26052 mp->str_pool[k]=(ASCII_code)qo(w.b0); mp->str_pool[k+1]=(ASCII_code)qo(w.b1);
26053 mp->str_pool[k+2]=(ASCII_code)qo(w.b2); mp->str_pool[k+3]=(ASCII_code)qo(w.b3)
26055 @<Undump the string pool@>=
26056 undump_int(mp->pool_ptr);
26057 mp_reallocate_pool(mp, mp->pool_ptr) ;
26058 undump_int(mp->max_str_ptr);
26059 mp_reallocate_strings (mp,mp->max_str_ptr) ;
26060 undump(0,mp->max_str_ptr,mp->str_ptr);
26061 undump(0,mp->max_str_ptr+1,s);
26062 for (k=0;k<=s-1;k++)
26063 mp->next_str[k]=k+1;
26064 for (k=s;k<=mp->max_str_ptr;k++)
26065 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
26066 mp->fixed_str_use=0;
26069 undump(0,mp->pool_ptr,mp->str_start[k]);
26070 if ( k==mp->str_ptr ) break;
26071 mp->str_ref[k]=max_str_ref;
26072 incr(mp->fixed_str_use);
26073 mp->last_fixed_str=k; k=mp->next_str[k];
26076 while ( k+4<mp->pool_ptr ) {
26077 undump_four_ASCII; k=k+4;
26079 k=mp->pool_ptr-4; undump_four_ASCII;
26080 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
26081 mp->max_pool_ptr=mp->pool_ptr;
26082 mp->strs_used_up=mp->fixed_str_use;
26083 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
26084 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
26085 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
26087 @ By sorting the list of available spaces in the variable-size portion of
26088 |mem|, we are usually able to get by without having to dump very much
26089 of the dynamic memory.
26091 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
26092 information even when it has not been gathering statistics.
26094 @<Dump the dynamic memory@>=
26095 mp_sort_avail(mp); mp->var_used=0;
26096 dump_int(mp->lo_mem_max); dump_int(mp->rover);
26097 p=0; q=mp->rover; x=0;
26099 for (k=p;k<= q+1;k++)
26100 dump_wd(mp->mem[k]);
26101 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
26102 p=q+node_size(q); q=rmp_link(q);
26103 } while (q!=mp->rover);
26104 mp->var_used=mp->var_used+mp->lo_mem_max-p;
26105 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
26106 for (k=p;k<= mp->lo_mem_max;k++ )
26107 dump_wd(mp->mem[k]);
26108 x=x+mp->lo_mem_max+1-p;
26109 dump_int(mp->hi_mem_min); dump_int(mp->avail);
26110 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
26111 dump_wd(mp->mem[k]);
26112 x=x+mp->mem_end+1-mp->hi_mem_min;
26114 while ( p!=null ) {
26115 decr(mp->dyn_used); p=mp_link(p);
26117 dump_int(mp->var_used); dump_int(mp->dyn_used);
26118 mp_print_ln(mp); mp_print_int(mp, x);
26119 mp_print(mp, " memory locations dumped; current usage is ");
26120 mp_print_int(mp, mp->var_used); mp_print_char(mp, xord('&')); mp_print_int(mp, mp->dyn_used)
26122 @ @<Undump the dynamic memory@>=
26123 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
26124 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
26127 for (k=p;k<= q+1; k++)
26128 undump_wd(mp->mem[k]);
26130 if ( (p>mp->lo_mem_max)||((q>=rmp_link(q))&&(rmp_link(q)!=mp->rover)) )
26133 } while (q!=mp->rover);
26134 for (k=p;k<=mp->lo_mem_max;k++ )
26135 undump_wd(mp->mem[k]);
26136 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
26137 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
26138 mp->last_pending=spec_head;
26139 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
26140 undump_wd(mp->mem[k]);
26141 undump_int(mp->var_used); undump_int(mp->dyn_used)
26143 @ A different scheme is used to compress the hash table, since its lower region
26144 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
26145 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
26146 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
26148 @<Dump the table of equivalents and the hash table@>=
26149 dump_int(mp->hash_used);
26150 mp->st_count=frozen_inaccessible-1-mp->hash_used;
26151 for (p=1;p<=mp->hash_used;p++) {
26152 if ( text(p)!=0 ) {
26153 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
26156 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
26157 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
26159 dump_int(mp->st_count);
26160 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
26162 @ @<Undump the table of equivalents and the hash table@>=
26163 undump(1,frozen_inaccessible,mp->hash_used);
26166 undump(p+1,mp->hash_used,p);
26167 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26168 } while (p!=mp->hash_used);
26169 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
26170 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26172 undump_int(mp->st_count)
26174 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
26175 to prevent them appearing again.
26177 @<Dump a few more things and the closing check word@>=
26178 dump_int(mp->max_internal);
26179 dump_int(mp->int_ptr);
26180 for (k=1;k<= mp->int_ptr;k++ ) {
26181 dump_int(mp->internal[k]);
26182 dump_string(mp->int_name[k]);
26184 dump_int(mp->start_sym);
26185 dump_int(mp->interaction);
26186 dump_string(mp->mem_ident);
26187 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
26188 mp->internal[mp_tracing_stats]=0
26190 @ @<Undump a few more things and the closing check word@>=
26192 if (x>mp->max_internal) mp_grow_internals(mp,x);
26193 undump_int(mp->int_ptr);
26194 for (k=1;k<= mp->int_ptr;k++) {
26195 undump_int(mp->internal[k]);
26196 undump_string(mp->int_name[k]);
26198 undump(0,frozen_inaccessible,mp->start_sym);
26199 if (mp->interaction==mp_unspecified_mode) {
26200 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
26202 undump(mp_unspecified_mode,mp_error_stop_mode,x);
26204 undump_string(mp->mem_ident);
26205 undump(1,hash_end,mp->bg_loc);
26206 undump(1,hash_end,mp->eg_loc);
26207 undump_int(mp->serial_no);
26209 if (x!=69073) goto OFF_BASE
26211 @ @<Create the |mem_ident|...@>=
26213 char *tmp = xmalloc(11,1);
26214 xfree(mp->mem_ident);
26215 mp->mem_ident = xmalloc(256,1);
26216 mp_snprintf(tmp,11,"%04d.%02d.%02d",
26217 (int)mp_round_unscaled(mp, mp->internal[mp_year]),
26218 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
26219 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
26220 mp_snprintf(mp->mem_ident,256," (mem=%s %s)",mp->job_name, tmp);
26222 mp_pack_job_name(mp, ".mem");
26223 while (! mp_w_open_out(mp, &mp->mem_file) )
26224 mp_prompt_file_name(mp, "mem file name", ".mem");
26225 mp_print_nl(mp, "Beginning to dump on file ");
26226 @.Beginning to dump...@>
26227 mp_print(mp, mp->name_of_file);
26228 mp_print_nl(mp, mp->mem_ident);
26231 @ @<Dealloc variables@>=
26232 xfree(mp->mem_ident);
26234 @ @<Close the mem file@>=
26235 (mp->close_file)(mp,mp->mem_file)
26237 @* \[46] The main program.
26238 This is it: the part of \MP\ that executes all those procedures we have
26241 Well---almost. We haven't put the parsing subroutines into the
26242 program yet; and we'd better leave space for a few more routines that may
26243 have been forgotten.
26245 @c @<Declare the basic parsing subroutines@>
26246 @<Declare miscellaneous procedures that were declared |forward|@>
26247 @<Last-minute procedures@>
26249 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
26251 has to be run first; it initializes everything from scratch, without
26252 reading a mem file, and it has the capability of dumping a mem file.
26253 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
26255 to input a mem file in order to get started. \.{VIRMP} typically has
26256 a bit more memory capacity than \.{INIMP}, because it does not need the
26257 space consumed by the dumping/undumping routines and the numerous calls on
26260 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
26261 the best implementations therefore allow for production versions of \MP\ that
26262 not only avoid the loading routine for object code, they also have
26263 a mem file pre-loaded.
26265 @ @<Option variables@>=
26266 int ini_version; /* are we iniMP? */
26268 @ @<Set |ini_version|@>=
26269 mp->ini_version = (opt->ini_version ? true : false);
26271 @ The code below make the final chosen hash size the next larger
26272 multiple of 2 from the requested size, and this array is a list of
26273 suitable prime numbers to go with such values.
26275 The top limit is chosen such that it is definately lower than
26276 |max_halfword-3*param_size|, because |param_size| cannot be larger
26277 than |max_halfword/sizeof(pointer)|.
26280 static int mp_prime_choices[] =
26281 { 12289, 24593, 49157, 98317,
26282 196613, 393241, 786433, 1572869,
26283 3145739, 6291469, 12582917, 25165843,
26284 50331653, 100663319 };
26286 @ @<Find constant sizes@>=
26287 if (mp->ini_version) {
26289 set_value(mp->mem_top,opt->main_memory,5000);
26290 mp->mem_max = mp->mem_top;
26291 set_value(mp->param_size,opt->param_size,150);
26292 set_value(mp->max_in_open,opt->max_in_open,10);
26293 if (opt->hash_size>0x8000000)
26294 opt->hash_size=0x8000000;
26295 set_value(mp->hash_size,(2*opt->hash_size-1),16384);
26296 mp->hash_size = mp->hash_size>>i;
26297 while (mp->hash_size>=2) {
26298 mp->hash_size /= 2;
26301 mp->hash_size = mp->hash_size << i;
26302 if (mp->hash_size>0x8000000)
26303 mp->hash_size=0x8000000;
26304 mp->hash_prime=mp_prime_choices[(i-14)];
26307 if (mp->command_line != NULL && *(mp->command_line) == '&') {
26309 char *cmd = mp->command_line+1;
26310 xfree(mp->mem_name); /* just in case */
26311 mp->mem_name = mp_xstrdup(mp,cmd);
26312 while (*cmd && *cmd!=' ') cmd++;
26313 if (*cmd==' ') *cmd++ = '\0';
26315 s = mp_xstrdup(mp,cmd);
26317 xfree(mp->command_line);
26318 mp->command_line = s;
26320 if (mp->mem_name == NULL) {
26321 mp->mem_name = mp_xstrdup(mp,"plain");
26323 if (mp_open_mem_file(mp)) {
26324 @<Undump constants for consistency check@>;
26325 set_value(mp->mem_max,opt->main_memory,mp->mem_top);
26329 wterm_ln("(Fatal mem file error; I'm stymied)\n");
26330 mp->history = mp_fatal_error_stop;
26336 @ Here we do whatever is needed to complete \MP's job gracefully on the
26337 local operating system. The code here might come into play after a fatal
26338 error; it must therefore consist entirely of ``safe'' operations that
26339 cannot produce error messages. For example, it would be a mistake to call
26340 |str_room| or |make_string| at this time, because a call on |overflow|
26341 might lead to an infinite loop.
26342 @^system dependencies@>
26344 This program doesn't bother to close the input files that may still be open.
26346 @ @<Last-minute...@>=
26347 void mp_close_files_and_terminate (MP mp) {
26348 integer k; /* all-purpose index */
26349 integer LH; /* the length of the \.{TFM} header, in words */
26350 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
26351 pointer p; /* runs through a list of \.{TFM} dimensions */
26352 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
26353 if ( mp->internal[mp_tracing_stats]>0 )
26354 @<Output statistics about this job@>;
26356 @<Do all the finishing work on the \.{TFM} file@>;
26357 @<Explain what output files were written@>;
26358 if ( mp->log_opened && ! mp->noninteractive ){
26360 (mp->close_file)(mp,mp->log_file);
26361 mp->selector=mp->selector-2;
26362 if ( mp->selector==term_only ) {
26363 mp_print_nl(mp, "Transcript written on ");
26364 @.Transcript written...@>
26365 mp_print(mp, mp->log_name); mp_print_char(mp, xord('.'));
26369 mp->finished = true;
26372 @ @<Declarations@>=
26373 void mp_close_files_and_terminate (MP mp) ;
26375 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26376 if (mp->rd_fname!=NULL) {
26377 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26378 if ( mp->rd_fname[k]!=NULL ) {
26379 (mp->close_file)(mp,mp->rd_file[k]);
26380 xfree(mp->rd_fname[k]);
26384 if (mp->wr_fname!=NULL) {
26385 for (k=0;k<=(int)mp->write_files-1;k++) {
26386 if ( mp->wr_fname[k]!=NULL ) {
26387 (mp->close_file)(mp,mp->wr_file[k]);
26388 xfree(mp->wr_fname[k]);
26394 for (k=0;k<(int)mp->max_read_files;k++ ) {
26395 if ( mp->rd_fname[k]!=NULL ) {
26396 (mp->close_file)(mp,mp->rd_file[k]);
26397 xfree(mp->rd_fname[k]);
26400 xfree(mp->rd_file);
26401 xfree(mp->rd_fname);
26402 for (k=0;k<(int)mp->max_write_files;k++) {
26403 if ( mp->wr_fname[k]!=NULL ) {
26404 (mp->close_file)(mp,mp->wr_file[k]);
26405 xfree(mp->wr_fname[k]);
26408 xfree(mp->wr_file);
26409 xfree(mp->wr_fname);
26412 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
26414 We reclaim all of the variable-size memory at this point, so that
26415 there is no chance of another memory overflow after the memory capacity
26416 has already been exceeded.
26418 @<Do all the finishing work on the \.{TFM} file@>=
26419 if ( mp->internal[mp_fontmaking]>0 ) {
26420 @<Make the dynamic memory into one big available node@>;
26421 @<Massage the \.{TFM} widths@>;
26422 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26423 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26424 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
26425 @<Finish the \.{TFM} file@>;
26428 @ @<Make the dynamic memory into one big available node@>=
26429 mp->rover=lo_mem_stat_max+1; mp_link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26430 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26431 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26432 lmp_link(mp->rover)=mp->rover; rmp_link(mp->rover)=mp->rover;
26433 mp_link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
26435 @ The present section goes directly to the log file instead of using
26436 |print| commands, because there's no need for these strings to take
26437 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26439 @<Output statistics...@>=
26440 if ( mp->log_opened ) {
26443 wlog_ln("Here is how much of MetaPost's memory you used:");
26444 @.Here is how much...@>
26445 mp_snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26446 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26447 (int)(mp->max_strings-1-mp->init_str_use));
26449 mp_snprintf(s,128," %i string characters out of %i",
26450 (int)mp->max_pl_used-mp->init_pool_ptr,
26451 (int)mp->pool_size-mp->init_pool_ptr);
26453 mp_snprintf(s,128," %i words of memory out of %i",
26454 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26457 mp_snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26459 mp_snprintf(s,128," %ii,%in,%ip,%ib stack positions out of %ii,%in,%ip,%ib",
26460 (int)mp->max_in_stack,(int)mp->int_ptr,
26461 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26462 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26464 mp_snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26465 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26469 @ It is nice to have have some of the stats available from the API.
26471 @<Exported function ...@>=
26472 int mp_memory_usage (MP mp );
26473 int mp_hash_usage (MP mp );
26474 int mp_param_usage (MP mp );
26475 int mp_open_usage (MP mp );
26478 int mp_memory_usage (MP mp ) {
26479 return (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2;
26481 int mp_hash_usage (MP mp ) {
26482 return (int)mp->st_count;
26484 int mp_param_usage (MP mp ) {
26485 return (int)mp->max_param_stack;
26487 int mp_open_usage (MP mp ) {
26488 return (int)mp->max_in_stack;
26491 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26494 @<Last-minute...@>=
26495 void mp_final_cleanup (MP mp) {
26496 quarterword c; /* 0 for \&{end}, 1 for \&{dump} */
26498 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26499 while ( mp->input_ptr>0 ) {
26500 if ( token_state ) mp_end_token_list(mp);
26501 else mp_end_file_reading(mp);
26503 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26504 while ( mp->open_parens>0 ) {
26505 mp_print(mp, " )"); decr(mp->open_parens);
26507 while ( mp->cond_ptr!=null ) {
26508 mp_print_nl(mp, "(end occurred when ");
26509 @.end occurred...@>
26510 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26511 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26512 if ( mp->if_line!=0 ) {
26513 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26515 mp_print(mp, " was incomplete)");
26516 mp->if_line=if_line_field(mp->cond_ptr);
26517 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=mp_link(mp->cond_ptr);
26519 if ( mp->history!=mp_spotless )
26520 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26521 if ( mp->selector==term_and_log ) {
26522 mp->selector=term_only;
26523 mp_print_nl(mp, "(see the transcript file for additional information)");
26524 @.see the transcript file...@>
26525 mp->selector=term_and_log;
26528 if (mp->ini_version) {
26529 mp_store_mem_file(mp); return;
26531 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26532 @.dump...only by INIMP@>
26536 @ @<Declarations@>=
26537 void mp_final_cleanup (MP mp) ;
26538 void mp_init_prim (MP mp) ;
26539 void mp_init_tab (MP mp) ;
26541 @ @<Last-minute...@>=
26542 void mp_init_prim (MP mp) { /* initialize all the primitives */
26546 void mp_init_tab (MP mp) { /* initialize other tables */
26547 integer k; /* all-purpose index */
26548 @<Initialize table entries (done by \.{INIMP} only)@>;
26552 @ When we begin the following code, \MP's tables may still contain garbage;
26553 thus we must proceed cautiously to get bootstrapped in.
26555 But when we finish this part of the program, \MP\ is ready to call on the
26556 |main_control| routine to do its work.
26558 @<Get the first line...@>=
26560 @<Initialize the input routines@>;
26561 if (mp->mem_ident==NULL) {
26562 if ( ! mp_load_mem_file(mp) ) {
26563 (mp->close_file)(mp, mp->mem_file);
26564 mp->history = mp_fatal_error_stop;
26567 (mp->close_file)(mp, mp->mem_file);
26569 @<Initializations following first line@>;
26572 @ @<Initializations following first line@>=
26573 mp->buffer[limit]=(ASCII_code)'%';
26574 mp_fix_date_and_time(mp);
26575 if (mp->random_seed==0)
26576 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
26577 mp_init_randoms(mp, mp->random_seed);
26578 @<Initialize the print |selector|...@>;
26579 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26580 mp_start_input(mp); /* \&{input} assumed */
26582 @ @<Run inimpost commands@>=
26584 mp_get_strings_started(mp);
26585 mp_init_tab(mp); /* initialize the tables */
26586 mp_init_prim(mp); /* call |primitive| for each primitive */
26587 mp->init_str_use=mp->max_str_ptr=mp->str_ptr;
26588 mp->init_pool_ptr=mp->max_pool_ptr=mp->pool_ptr;
26589 mp_fix_date_and_time(mp);
26592 @ Saving the filename template
26594 @<Save the filename template@>=
26596 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26597 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26599 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26603 @* \[47] Debugging.
26606 @* \[48] System-dependent changes.
26607 This section should be replaced, if necessary, by any special
26608 modification of the program
26609 that are necessary to make \MP\ work at a particular installation.
26610 It is usually best to design your change file so that all changes to
26611 previous sections preserve the section numbering; then everybody's version
26612 will be consistent with the published program. More extensive changes,
26613 which introduce new sections, can be inserted here; then only the index
26614 itself will get a new section number.
26615 @^system dependencies@>
26618 Here is where you can find all uses of each identifier in the program,
26619 with underlined entries pointing to where the identifier was defined.
26620 If the identifier is only one letter long, however, you get to see only
26621 the underlined entries. {\sl All references are to section numbers instead of
26624 This index also lists error messages and other aspects of the program
26625 that you might want to look up some day. For example, the entry
26626 for ``system dependencies'' lists all sections that should receive
26627 special attention from people who are installing \MP\ in a new
26628 operating environment. A list of various things that can't happen appears
26629 under ``this can't happen''.
26630 Approximately 25 sections are listed under ``inner loop''; these account
26631 for more than 60\pct! of \MP's running time, exclusive of input and output.