2 * dlls/rsaenh/tomcrypt.h
3 * Function prototypes, type definitions and constant definitions
4 * for LibTomCrypt code.
6 * Copyright 2004 Michael Jung
7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
25 * This file contains code from the LibTomCrypt cryptographic
26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
27 * is in the public domain. The code in this file is tailored to
28 * special requirements. Take a look at http://libtomcrypt.org for the
32 #ifndef __WINE_TOMCRYPT_H_
33 #define __WINE_TOMCRYPT_H_
41 /* error codes [will be expanded in future releases] */
43 CRYPT_OK=0, /* Result OK */
44 CRYPT_ERROR, /* Generic Error */
45 CRYPT_NOP, /* Not a failure but no operation was performed */
47 CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
48 CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
49 CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
51 CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
52 CRYPT_INVALID_PACKET, /* Invalid input packet given */
54 CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
55 CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
57 CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
58 CRYPT_INVALID_HASH, /* Invalid hash specified */
59 CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
61 CRYPT_MEM, /* Out of memory */
63 CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
64 CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
66 CRYPT_INVALID_ARG, /* Generic invalid argument */
67 CRYPT_FILE_NOTFOUND, /* File Not Found */
69 CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
70 CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
71 CRYPT_PK_DUP, /* Duplicate key already in key ring */
72 CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
73 CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
75 CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
78 #define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
79 typedef ULONG64 ulong64;
81 /* this is the "32-bit at least" data type
82 * Re-define it to suit your platform but it must be at least 32-bits
84 typedef ULONG32 ulong32;
86 /* ---- HELPER MACROS ---- */
87 #define STORE32H(x, y) \
88 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
89 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
91 #define LOAD32H(x, y) \
92 { x = ((unsigned long)((y)[0] & 255)<<24) | \
93 ((unsigned long)((y)[1] & 255)<<16) | \
94 ((unsigned long)((y)[2] & 255)<<8) | \
95 ((unsigned long)((y)[3] & 255)); }
97 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
99 static inline unsigned ROR(unsigned word, int i)
101 __asm__("rorl %%cl,%0"
103 :"0" (word),"c" (i));
109 /* rotates the hard way */
110 #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
111 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
116 #define MIN(x, y) ( ((x)<(y))?(x):(y) )
118 #define byte(x, n) (((x) >> (8 * (n))) & 255)
120 typedef struct tag_rc2_key {
124 typedef struct tag_des_key {
125 ulong32 ek[32], dk[32];
128 typedef struct tag_des3_key {
129 ulong32 ek[3][32], dk[3][32];
132 typedef struct tag_aes_key {
133 ulong32 eK[64], dK[64];
137 int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
138 void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
139 void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
141 int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
142 void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key);
143 void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key);
145 int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
146 void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key);
147 void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key);
149 int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey);
150 void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey);
151 void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey);
153 typedef struct tag_md2_state {
154 unsigned char chksum[16], X[48], buf[16];
155 unsigned long curlen;
158 int md2_init(md2_state * md);
159 int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
160 int md2_done(md2_state * md, unsigned char *hash);
164 unsigned char buf[256];
167 typedef union Prng_state {
171 int rc4_start(prng_state *prng);
172 int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
173 int rc4_ready(prng_state *prng);
174 unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
176 /* some default configurations.
178 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
179 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
181 * At the very least a mp_digit must be able to hold 7 bits
182 * [any size beyond that is ok provided it doesn't overflow the data type]
184 typedef unsigned long mp_digit;
185 typedef ulong64 mp_word;
188 #define MP_DIGIT_BIT DIGIT_BIT
189 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
190 #define MP_DIGIT_MAX MP_MASK
193 #define MP_LT -1 /* less than */
194 #define MP_EQ 0 /* equal to */
195 #define MP_GT 1 /* greater than */
197 #define MP_ZPOS 0 /* positive integer */
198 #define MP_NEG 1 /* negative */
200 #define MP_OKAY 0 /* ok result */
201 #define MP_MEM -2 /* out of mem */
202 #define MP_VAL -3 /* invalid input */
203 #define MP_RANGE MP_VAL
205 #define MP_YES 1 /* yes response */
206 #define MP_NO 0 /* no response */
208 /* Primality generation flags */
209 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */
210 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
211 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
212 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
216 /* define this to use lower memory usage routines (exptmods mostly) */
217 /* #define MP_LOW_MEM */
219 #define MP_PREC 64 /* default digits of precision */
221 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
222 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
224 /* the infamous mp_int structure */
226 int used, alloc, sign;
230 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
231 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
233 #define DIGIT(m,k) ((m)->dp[(k)])
235 /* error code to char* string */
236 char *mp_error_to_string(int code);
238 /* init a null terminated series of arguments */
239 int mp_init_multi(mp_int *mp, ...);
241 /* clear a null terminated series of arguments */
242 void mp_clear_multi(mp_int *mp, ...);
244 /* shrink ram required for a bignum */
245 int mp_shrink(mp_int *a);
247 /* ---> Basic Manipulations <--- */
248 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
249 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
250 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
253 void mp_set(mp_int *a, mp_digit b);
255 /* set a 32-bit const */
256 int mp_set_int(mp_int *a, unsigned long b);
258 /* get a 32-bit value */
259 unsigned long mp_get_int(const mp_int * a);
261 /* initialize and set a digit */
262 int mp_init_set (mp_int * a, mp_digit b);
264 /* initialize and set 32-bit value */
265 int mp_init_set_int (mp_int * a, unsigned long b);
268 int mp_copy(const mp_int *a, mp_int *b);
270 /* inits and copies, a = b */
271 int mp_init_copy(mp_int *a, const mp_int *b);
273 /* trim unused digits */
274 void mp_clamp(mp_int *a);
276 /* ---> digit manipulation <--- */
278 /* Counts the number of lsbs which are zero before the first zero bit */
279 int mp_cnt_lsb(const mp_int *a);
283 /* makes a pseudo-random int of a given size */
284 int mp_rand(mp_int *a, int digits);
286 /* ---> binary operations <--- */
288 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
291 int mp_or(mp_int *a, mp_int *b, mp_int *c);
294 int mp_and(mp_int *a, mp_int *b, mp_int *c);
296 /* ---> Basic arithmetic <--- */
299 int mp_neg(mp_int *a, mp_int *b);
302 int mp_cmp(const mp_int *a, const mp_int *b);
304 /* compare |a| to |b| */
305 int mp_cmp_mag(const mp_int *a, const mp_int *b);
308 int mp_add(mp_int *a, mp_int *b, mp_int *c);
311 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
314 int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
317 int mp_sqr(const mp_int *a, mp_int *b);
319 /* c = a mod b, 0 <= c < b */
320 int mp_mod(const mp_int *a, mp_int *b, mp_int *c);
322 /* ---> single digit functions <--- */
324 /* compare against a single digit */
325 int mp_cmp_d(const mp_int *a, mp_digit b);
328 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
330 /* a/3 => 3c + d == a */
331 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
334 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
336 /* ---> number theory <--- */
338 /* d = a + b (mod c) */
339 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
341 /* d = a - b (mod c) */
342 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
344 /* d = a * b (mod c) */
345 int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
347 /* c = a * a (mod b) */
348 int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);
350 /* c = 1/a (mod b) */
351 int mp_invmod(const mp_int *a, mp_int *b, mp_int *c);
354 int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
356 /* produces value such that U1*a + U2*b = U3 */
357 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
359 /* c = [a, b] or (a*b)/(a, b) */
360 int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
362 /* finds one of the b'th root of a, such that |c|**b <= |a|
364 * returns error if a < 0 and b is even
366 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
368 /* special sqrt algo */
369 int mp_sqrt(mp_int *arg, mp_int *ret);
371 /* is number a square? */
372 int mp_is_square(mp_int *arg, int *ret);
374 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
375 int mp_jacobi(mp_int *a, mp_int *n, int *c);
377 /* used to setup the Barrett reduction for a given modulus b */
378 int mp_reduce_setup(mp_int *a, const mp_int *b);
380 /* Barrett Reduction, computes a (mod b) with a precomputed value c
382 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
383 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
385 int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
387 /* setups the montgomery reduction */
388 int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
390 /* computes a = B**n mod b without division or multiplication useful for
391 * normalizing numbers in a Montgomery system.
393 int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
395 /* computes x/R == x (mod N) via Montgomery Reduction */
396 int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
398 /* returns 1 if a is a valid DR modulus */
399 int mp_dr_is_modulus(mp_int *a);
401 /* returns true if a can be reduced with mp_reduce_2k */
402 int mp_reduce_is_2k(mp_int *a);
404 /* determines k value for 2k reduction */
405 int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
407 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
408 int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
410 /* d = a**b (mod c) */
411 int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
413 /* ---> Primes <--- */
415 /* number of primes */
416 #define PRIME_SIZE 256
418 /* performs one Fermat test of "a" using base "b".
419 * Sets result to 0 if composite or 1 if probable prime
421 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
423 /* This gives [for a given bit size] the number of trials required
424 * such that Miller-Rabin gives a prob of failure lower than 2^-96
426 int mp_prime_rabin_miller_trials(int size);
428 /* finds the next prime after the number "a" using "t" trials
431 * bbs_style = 1 means the prime must be congruent to 3 mod 4
433 int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
435 /* makes a truly random prime of a given size (bytes),
436 * call with bbs = 1 if you want it to be congruent to 3 mod 4
438 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
439 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
442 * The prime generated will be larger than 2^(8*size).
444 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
446 /* makes a truly random prime of a given size (bits),
448 * Flags are as follows:
450 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
451 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
452 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
453 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
455 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
456 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
460 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
462 /* ---> radix conversion <--- */
463 int mp_count_bits(const mp_int *a);
465 int mp_unsigned_bin_size(const mp_int *a);
466 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
467 int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
469 int mp_signed_bin_size(const mp_int *a);
470 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
471 int mp_to_signed_bin(mp_int *a, unsigned char *b);
473 int mp_read_radix(mp_int *a, char *str, int radix);
474 int mp_toradix(mp_int *a, char *str, int radix);
475 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
476 int mp_radix_size(mp_int *a, int radix, int *size);
478 int mp_fread(mp_int *a, int radix, FILE *stream);
479 int mp_fwrite(mp_int *a, int radix, FILE *stream);
481 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
482 #define mp_raw_size(mp) mp_signed_bin_size(mp)
483 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
484 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
485 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
486 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
488 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
489 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
490 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
491 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
493 extern const char *mp_s_rmap;
495 #define PK_PRIVATE 0 /* PK private keys */
496 #define PK_PUBLIC 1 /* PK public keys */
498 /* Min and Max RSA key sizes (in bits) */
499 #define MIN_RSA_SIZE 384
500 #define MAX_RSA_SIZE 16384
502 typedef struct Rsa_key {
504 mp_int e, d, N, p, q, qP, dP, dQ;
507 int rsa_make_key(int size, long e, rsa_key *key);
509 int rsa_exptmod(const unsigned char *in, unsigned long inlen,
510 unsigned char *out, unsigned long *outlen, int which,
513 void rsa_free(rsa_key *key);
515 #endif /* __WINE_TOMCRYPT_H_ */