1 matlab comment % PROGRAM theta_logistic.m
2 matlab comment % Calculates by simulation the probability that a population
3 matlab comment % following the theta logistic model and starting at Nc will fall
4 matlab comment % below the quasi-extinction threshold Nx at or before time tmax
6 matlab comment % SIMULATION PARAMETERS
7 matlab comment % for butterflies (Euphydryas editha bayensis) at Jasper Ridge (population C)
9 matlab code r=0.3458; % intrinsic rate of increase--Butterflies at Jasper Ridge
10 matlab code K=846.017; % carrying capacity
11 matlab code theta=1; % nonlinearity in density dependence
12 matlab code sigma2=1.1151; % environmental variance
13 matlab code Nc=94; % starting population size
14 matlab code Nx=20; % quasi-extinction threshold
15 matlab code tmax=20; % time horizon
16 matlab code NumReps=50000; % number of replicate population trajectories
18 matlab comment % SIMULATION CODE
20 matlab code sigma=sqrt(sigma2);
21 matlab code randn('state',sum(100*clock)); % seed the random number generator
23 matlab code N=Nc*ones(1,NumReps); % all NumRep populations start at Nc
24 matlab code NumExtant=NumReps; % all populations are initially extant
25 matlab code Extant=[NumExtant]; % vector for number of extant pops. vs. time
27 matlab code for t=1:tmax, % For each future time,
28 matlab code N=N.*exp( r*( 1-(N/K).^theta )... % the theta logistic model
29 matlab code + sigma*randn(1,NumExtant) ); % with random environmental effects.
30 matlab code for i=NumExtant:-1:1, % Then, looping over all extant populations,
31 matlab code if N(i)<=Nx, % if at or below quasi-extinction threshold,
32 matlab code N(i)=[]; % delete the population.
35 matlab code NumExtant=length(N); % Count remaining extant populations
36 matlab code Extant=[Extant NumExtant]; % and store the result.
39 matlab comment % OUTPUT CODE
40 matlab comment % ComputeS quasi-extinction probability as the fraction of replicate
41 matlab comment % populations that have hit the threshold by each future time,
42 matlab comment % and plotS quasi-extinction probability vs. time
44 matlab code ProbExtinct=(NumReps-Extant)/NumReps;
45 matlab code plot([0:tmax],ProbExtinct)
46 matlab code xlabel('Years into the future');
47 matlab code ylabel('Cumulative probability of quasi-extinction');
48 matlab code axis([0 tmax 0 1]);
50 matlab comment % Integrate solution exactly %
51 matlab comment % Options=[];
52 matlab comment % [T,true] = ode45(@logistic,[0,20],Nc,Options,r,K,theta);
53 matlab comment % subplot(1,2,2)
54 matlab comment % plot([1:tmax],P,'r.-',T,true,'g.-')
56 matlab comment ... This is a seriously old-school comment.